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Abstract. This study focuses on differential cryptanalysis of the ChaCha
stream cipher. In the conventional approach, an adversary first searches
for an input/output differential pair with the highest differential bias
and then analyzes the probabilistic neutral bits (PNB) based on the ob-
tained input/output differential pair. However, although the time and
data complexities for the attack can be estimated by the differential bias
and PNB obtained by this approach, the combination of the differential
bias and PNB is not always optimal. In addition, the existing studies
have not performed a comprehensive analysis of the PNB; thus, they
have not provided an upper bound on the number of rounds required
for a differential attack that uses a single-bit truncated differential to
be successful. To address these limitations, we propose a PNB-focused
differential attack on reduced-round ChaCha by first comprehensively
analyzing the PNB for all possible single-bit truncated output differences
and then searching for the input/output differential pair with the highest
differential bias based on the obtained PNB. The best existing attack on
ChaCha, proposed by Beierle et al. at CRYPTO 2020, works on up to 7
rounds, whereas the most extended attack we observed works on up to
7.25 rounds using the proposed PNB-focused approach. The time com-
plexity, data complexity, and success probability of the proposed attack
are 2255.62, 248.36, and 0.5, respectively. Although the proposed attack
is less efficient than a brute force attack, it is the first dedicated attack
on the target and provides both a baseline and useful components (i.e.,
differential bias and PNB) for improved attacks.
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1 Introduction

ChaCha [4] is a stream cipher designed by Bernstein in January 2008. It was mo-
tivated by the ECRYPT Stream Cipher Project (eSTREAM)1 finalist, Salsa [5],
which was proposed by the same designer in April 2005. After the release of

1 http://www.ecrypt.eu.org/stream

http://www.ecrypt.eu.org/stream
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Salsa and ChaCha, several studies performed the security evaluations of both
ciphers [1,3,6–16,18]. One of the most relevant of these evaluations is the differ-
ential attack based on the concept of probabilistic neutral bits (PNB), proposed
by Aumasson et al. at FSE 2008 [1]. The PNB concept is to divide secret key
bits into two sets – a set of significant key bits and a set of non-significant key
bits – and to use a neutral measure as an evaluation indicator to distinguish
them. The fewer the elements in the set of significant key bits, the lower the
time complexity required for an adversary to recover the unknown secret key;
thus, it is crucial to analyze the PNB concept for the differential attacks on Salsa
and ChaCha.

Aumasson et al. [1] first searched for the input/output differential pair with
the highest differential bias; then, based on this pair, they divided the secret
key bits into two sets using the PNB concept; finally, they performed a differen-
tial attack on the 7-round version of ChaCha, ChaCha20/7, with time and data
complexities of 2248 and 227, respectively. Several researchers later reported im-
provements to this attack [3,6–9,16,18]. To the best of our knowledge, the best
key recovery attack on ChaCha works on up to seven rounds with time and
data complexities of 2230.86 and 248.80, respectively, proposed by Beierle et al. at
CRYPTO 2020 [3].

The existing studies [1, 3, 6–9, 16, 18] have focused on searching for the in-
put/output differential pair with the highest differential bias; however, no study
focusing on PNB analysis has been conducted thus far. For this reason, the com-
bination of differential biases and PNB obtained from the existing attacks may
not always be optimal. The theoretical time and data complexities for the at-
tacks can be estimated from the combination of differential biases and PNB. In
addition, the differential biases and PNB can be analyzed independently; there-
fore, focusing on the PNB analysis may help provide an upper bound on the
number of rounds required for a differential attack that uses a single-bit trun-
cated differential to be successful. The above suggests that PNB-focused analysis
has the potential to improve the existing attacks.

Our Contributions. In this study, we propose a PNB-focused differential at-
tack. The proposed attack targets reduced-round ChaCha by first analyzing the
PNB for all possible single-bit truncated output differences (ODs) and then
searching for the input difference (ID) bit position with the highest differential
bias in the obtained OD bit position. The primary aims of the proposed attack
are to identify the best combination of the differential bias and PNB through
PNB-focused analysis and to provide an upper bound on the number of rounds
required for a differential attack that uses a single-bit truncated differential to
be successful. Our contributions can be summarized as follows.

Comprehensive Analysis of PNB. By focusing on PNB analysis, we first
clarify the distribution of the number of non-significant key bits in each
round. Furthermore, we demonstrate that the number of non-significant key
bits varies significantly depending on the OD bit position. In particular,
all 0-th single-bits (i.e., all the least significant bits) of each word in all



PNB-focused Differential Cryptanalysis of ChaCha Stream Cipher 3

intermediate rounds of reduced-round ChaCha are OD bit positions with a
large number of non-significant key bits.

Upper Bound on the Number of Rounds for the Attacks. Based on the
comprehensive analysis of the PNB, we examine the values of the average
neutral measure for each round of the inverse round function. Consequently,
we determine that the PNB-focused differential attack on reduced-round
ChaCha should work on up to 7.25 rounds. In addition, our investigation
suggests that the number of intermediate rounds must be at least 3.5 to
improve the existing attacks [1, 3, 6–9,16,18].

Best Combinations of Differential Bias and PNB. Let∆
(r)
i [j] be a single-

bit difference for the j-th bit of the i-th word in the r-round internal state.
By analyzing the differential biases at the obtained OD bit positions (i.e.,
all 0-th single-bit positions of each word in 3.5 intermediate rounds), we
report the ID-OD pairs with a high differential bias to use in the at-

tack, such as (∆
(0)
15 [6],∆

(3.5)
0 [0]), (∆

(0)
12 [6],∆

(3.5)
1 [0]), (∆

(0)
13 [6],∆

(3.5)
2 [0]), and

(∆
(0)
14 [6],∆

(3.5)
3 [0]). Our investigation suggests that at least one of these ID-

OD pairs should yield the best combination of the differential bias and PNB.
Differential Attacks on Reduced-Round ChaCha. Based on the combi-

nations of the differential bias and PNB, we present a differential attack
on ChaCha20/7 with a time complexity of 2231.63, data complexity of 249.58,

and success probability of 0.5 using the ID-OD pair of (∆
(0)
14 [6],∆

(3.5)
3 [0]).

Furthermore, by using the ID-OD pair of (∆
(0)
15 [6],∆

(3.5)
0 [0]), we present a

differential attack on ChaCha20/7.25 with a time complexity of 2255.62, data
complexity of 248.36, and success probability of 0.5.

Table 1 summarizes our proposed attack as well as existing attacks on reduced-
round ChaCha2. As illustrated in this table, our attack does not offer an im-
provement over the best existing attack on ChaCha20/7. However, we demon-
strate that the PNB-focused differential attack on reduced-round ChaCha should
work on up to 7.25 rounds. There have been no studies focusing on attacks on
ChaCha20/7.25 thus far. It is crucial to thoroughly analyze the security evalu-
ations of symmetric-key ciphers while gradually increasing the nonlinear opera-
tions, such as S-boxes and modular additions. In other words, it is important to
thoroughly analyze the security of reduced-round ChaCha for each 0.25 round
since the round function in ChaCha adds four wordwise modular additions every
0.25 round.

In conventional attacks on ChaCha, if the time complexity for the attack is
beyond that of an exhaustive search for the unknown secret key, cryptanalysts

2 According to [8], Coutinho and Neto stated that their initial results presented at
EUROCRYPT 2021 [9] were erronous. That is, a differential attack on ChaCha20/7
with time and data complexities of 2228.51 and 280.51, respectively, is infeasible.
Furthermore, Coutinho and Neto presented a differential attack on ChaCha20/7
with time and data complexities of 2224 and 2224, respectively [8]. This was similar
to the best attacks on ChaCha20/7; however, verification is beyond the scope of this
study because this was a distinguishing attack, not a key recovery attack.
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Table 1. Summary of the proposed and existing key recovery attacks.

Target Time Data Reference

ChaCha20/6

2139 230 [1]

2136 228 [18]

2127.5 227.5 [6]

2102.2 256 [7]

277.4 258 [3]

ChaCha20/7

2248 227 [1]

2246.5 227 [18]

2242.59 269.58 [8]

2238.9 296 [16]

2237.7 296 [6]

2231.9 250 [7]

2231.63 249.58 This work

2230.86 248.8 [3]

ChaCha20/7.25 2255.62 248.36 This work

utilize an approach that reduces the number of target rounds for the attack or
selects an ID-OD pair with a higher differential bias. In our approach, we focus
on the fact that the PNB concept has a strong influence on the theoretical time
complexity. We demonstrate the relevance of the comprehensive analysis of PNB
for ChaCha for the first time and conclude that it is crucial to analyze not only
differential biases but also PNB.

Organization. The rest of this paper is organized as follows. In Sect. 2, we
briefly describe the ChaCha specification. In Sect. 3, we review generic tech-
niques for the existing attack based on the PNB concept. In Sect. 4, we present
and discuss the experimental results of the comprehensive analysis of PNB. In
Sect. 5, we examine the differential bias at the OD bit position obtained in
Sect. 4 and perform a differential attack on ChaCha20/7, ChaCha20/7.25, and
ChaCha20/7.5. Finally, we summarize related works in Sect. 6 and conclude this
study in Sect. 7.

2 Specification of ChaCha

ChaCha [4] performs the following three steps to generate a keystream block of
16 words, where the size of each word is 32 bits:

Step 1. The initial state matrix X(0) of order 4 × 4 is initialized from a 256-
bit secret key k = (k0, k1, . . . , k7), a 96-bit nonce v = (v0, v1, v2), a 32-
bit block counter t0, and four 32-bit constants c = (c0, c1, c2, c3), such as
c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32, and c3 = 0x6b206574.
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After initialization, the following initial state matrix is obtained:

X(0) =


x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

 =


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 v0 v1 v2

 .

Step 2. The round function of ChaCha comprises four simultaneous compu-
tations of the quarterround function. According to the procedure, a vector

(x
(r)
a , x

(r)
b , x

(r)
c , x

(r)
d ) in the internal state matrix X(r) is updated by sequen-

tially computing the following:

x
(r)
a′ = x

(r)
a + x

(r)
b ; x

(r)
d′ = x

(r)
d ⊕ x

(r)
a′ ; x

(r)
d′′ = x

(r)
d′ ≪ 16;

x
(r)
c′ = x

(r)
c + x

(r)
d′′ ; x

(r)
b′ = x

(r)
b ⊕ x

(r)
c′ ; x

(r)
b′′ = x

(r)
b′ ≪ 12;

x
(r+1)
a = x

(r)
a′ + x

(r)
b′′ ; x

(r)
d′′′ = x

(r)
d′′ ⊕ x

(r+1)
a ; x

(r+1)
d = x

(r)
d′′′ ≪ 8;

x
(r+1)
c = x

(r)
c′ + x

(r+1)
d ; x

(r)
b′′′ = x

(r)
b′′ ⊕ x

(r+1)
c ; x

(r+1)
b = x

(r)
b′′′ ≪ 7;

where the symbols “+”, “⊕”, and “≪” represent wordwise modular addi-
tion, bitwise XOR, and bitwise left rotation, respectively. For odd-numbered
rounds, which are called columnrounds, the quarterround function is applied to

the following four column vectors: (x
(r)
0 , x

(r)
4 , x

(r)
8 , x

(r)
12 ), (x

(r)
1 , x

(r)
5 , x

(r)
9 , x

(r)
13 ),

(x
(r)
2 , x

(r)
6 , x

(r)
10 , x

(r)
14 ), and (x

(r)
3 , x

(r)
7 , x

(r)
11 , x

(r)
15 ). For even-numbered rounds,

which are called diagonalrounds, the quarterround function is applied to the

following four diagonal vectors: (x
(r)
0 , x

(r)
5 , x

(r)
10 , x

(r)
15 ), (x

(r)
1 , x

(r)
6 , x

(r)
11 , x

(r)
12 ),

(x
(r)
2 , x

(r)
7 , x

(r)
8 , x

(r)
13 ), and (x

(r)
3 , x

(r)
4 , x

(r)
9 , x

(r)
14 ).

Step 3. A 512-bit keystream block is computed as Z = X(0) +X(R), where R
is the final round. The original version of ChaCha has R = 20 rounds, and
the reduced-round version of ChaCha is denoted as ChaCha20/R.

The round function of ChaCha is reversible. In other words, an input vector

(x
(r+1)
a , x

(r+1)
b , x

(r+1)
c , x

(r+1)
d ) in the internal state matrix X(r+1) is backdated

by sequentially computing the following:

x
(r)
b′′′ = x

(r+1)
b ≪ 25; x

(r)
b′′ = x

(r)
b′′′ ⊕ x

(r+1)
c ; x

(r)
c′ = x

(r+1)
c − x

(r+1)
d ;

x
(r)
d′′′ = x

(r+1)
d ≪ 24; x

(r)
d′′ = x

(r)
d′′′ ⊕ x

(r+1)
a ; x

(r)
a′ = x

(r+1)
a − x

(r)
b′′ ;

x
(r)
b′ = x

(r)
b′′ ≪ 20; x

(r)
b = x

(r)
b′ ⊕ x

(r)
c′ ; x

(r)
c = x

(r)
c′ − x

(r)
d′′ ;

x
(r)
d′ = x

(r)
d′′ ≪ 16; x

(r)
d = x

(r)
d′ ⊕ x

(r)
a′ ; x

(r)
a = x

(r)
a′ − x

(r)
b ;

where the symbol “−” represents wordwise modular subtraction.
For a more accurate analysis of the round function, we further divide it

into four rounds: 0.25, 0.5, 0.75, and 1 round. For example, the 0.25 round
signifies that all quarterround functions in the round function have 0.25 round.
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The 0.25-round quarterround function comprises one wordwise modular addition,
one bitwise XOR, and one bitwise left rotation; thus, the ChaCha round function
adds four wordwise modular additions every 0.25 round.

3 Differential Cryptanalysis of ChaCha

In this section, we review generic techniques for a differential attack based on
the PNB concept, proposed by Aumasson et al. at FSE 2008 [1]. This attack
comprises precomputation and online phases. In the precomputation phase, we
examine single-bit differential biases and PNB and perform a probabilistic back-
ward computation (PBC). Subsequently, we execute the online phase to recover
the unknown key.

3.1 Precomputation Phase

Single-Bit Differential Biases. Let x
(r)
i [j] be the j-th bit of the i-th word in

the r-round internal state matrix X(r) for 0 ≤ i ≤ 15 and 0 ≤ j ≤ 31, and let

x
′(r)
i [j] be an associated bit with the difference ∆

(r)
i [j] = x

(r)
i [j]⊕ x

′(r)
i [j]. Based

on the difference ∆
(0)
i [j] = 1 to the initial state matrix X(0), which is called

the input difference or ID, we obtain the corresponding initial state matrix
X ′(0). Then, we execute the round function of ChaCha using these initial state

matrices X(0) and X ′(0) as inputs and obtain ∆
(r)
p [q] = x

(r)
p [q] ⊕ x

′(r)
p [q] from

the r-round output internal state matrices X(r) and X ′(r), which is called the
output difference or OD. For a fixed key and all possible choices of nonces and
block counters, the single-bit differential probability is defined as

Pr
(
∆(r)

p [q] = 1 | ∆(0)
i [j] = 1

)
=

1

2
(1 + ϵd), (1)

where ϵd denotes the OD bias. Note that we use the specified 1-bit ID and then
obtain the truncated 1-bit OD.

To estimate the number of samples to distinguish two distributions of ran-
dom bit strings, we use the following theorem provided by Baignères et al. at
ASIACRYPT 2004 [2].

Theorem 1 ( [2, Theorem 6]). Let Z1, . . . , Zn be independent and identically
distributed random variables over the set Z of distribution D, D0 and D1 be two
distributions of same support which are close to each other, and n be the number
of samples of the best distinguisher between D = D0 or D = D1. Let d be a real
number such that

n =
d∑

z∈Z
ϵ2z
pz

, (2)

where pz and pz + ϵz are probabilities of a random variable z following D0 and
D1, respectively. Then, the overall probability of error is Pe ≈ Φ(−

√
d/2), where

Φ(·) is the distribution function of the standard normal distribution.
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Let D0 and D1 be the uniform distribution and a distribution of the truncated
OD bit strings obtained from the internal state of ChaCha, respectively. In this
case, the target event occurs in D0 and D1 with probabilities of 1

2 and 1
2 ·(1+ϵd),

respectively (i.e., p0 = p1 = 1
2 , |ϵ0| = 0, and |ϵ1| = ϵd

2 ). Based on this, the
number of samples of the best distinguisher between D = D0 and D = D1 can
be estimated as 2dϵ−2

d with an overall error probability of Pe ≈ Φ(−
√
d/2). In

this study, we often use d = 2; thus, the number of samples can be estimated as
4ϵ−2

d with an error probability of Pe ≈ Φ(−
√
2/2) ≈ 0.221.

PNB. The PNB divides secret key bits into sets of m-bit significant and n-bit
non-significant key bits. To differentiate between the sets, Aumasson et al. [1]
focused on the degree of influence of each secret key bit on the OD. The degree
of influence is called the neutral measure and is defined as follows:

Definition 1 ( [1, Definition 1]). The neutral measure of the key bit position
κ with respect to the OD is defined as γκ, where

1
2 (1+ γκ) is the probability that

complementing the key bit κ does not change the OD.

For example, we have the following singular cases of neutral measure:

– γi = 1: OD does not depend on the i-th key bit (i.e., it is non-significant).
– γi = 0: OD is statistically independent of the i-th key bit (i.e., it is signifi-

cant).
– γi = −1: OD linearly depends on the i-th key bit.

By performing the following steps, we compute the neutral measure and
divide the secret key bits into two sets – a set of m-bit significant key bits and
a set of n-bit non-significant key bits:

Step 1. Compute the R-round internal state matrix pair (X(R), X ′(R)) corre-

sponding to the input pair (X(0), X ′(0)) with ∆
(0)
i [j] = 1, and derive the

keystream blocks Z = X(0) +X(R) and Z ′ = X ′(0) +X ′(R), respectively.

Step 2. Prepare a new input pair (X
(0)

, X ′(0)) with the key bit position κi of
the original input pair (X(0), X ′(0)) flipped by one bit.

Step 3. Compute the r-round internal state matrix pair (Y (r), Y ′(r)) for r < R

with Z − X
(0)

and Z ′ − X ′(0) as inputs to the inverse round function of
ChaCha.

Step 4. Compute Γ
(r)
p [q] = y

(r)
p [q]⊕ y

′(r)
p [q] for the fixed OD bit, where y

(r)
p [q]

and y
′(r)
p [q] denote the q-th bit of the p-th word of Y (r) and Y ′(r), respectively.

Step 5. Repeat Steps 1–4 using different initial state matrices with the same

∆
(0)
i [j] = 1, and compute the neutral measure as Pr(∆

(r)
p [q] = Γ

(r)
p [q] |

∆
(0)
i [j] = 1) = 1

2 (1 + γi), where ∆
(r)
p [q] is the OD obtained when searching

for single-bit differential biases.
Step 6. Set a threshold γ and place all key bits with γκ < γ into the set of m-bit

significant key bits and those with γκ ≥ γ into the set of n-bit non-significant
key bits.
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PBC. As explained at the beginning of this subsection, we obtain r-round
single-bit differential biases from the initial state matrices with the selected ID,
indicating that these biases can be obtained by performing forward computation
in the target cipher. Moreover, we can obtain the r-round single-bit differential
biases for ChaCha20/R from the obtained keystream by performing the following
backward computation, which is called PBC:

Step 1. Compute the R-round internal state matrix pair (X(R), X ′(R)) corre-

sponding to the input pair (X(0), X ′(0)) with ∆
(0)
i [j] = 1, and derive the

keystream blocks Z = X(0) +X(R) and Z ′ = X ′(0) +X ′(R), respectively.

Step 2. Prepare a new input pair (X̂(0), X̂ ′(0)) with only non-significant key bits
reset to a fixed value (e.g., all zeros) from the original input pair (X(0), X ′(0)).

Step 3. Compute the r-round internal state matrix pair (Ŷ (r), Ŷ ′(r)) for r < R

with Z − X̂(0) and Z ′ − X̂ ′(0) as inputs to the inverse round function of
ChaCha.

Step 4. Compute Γ̂
(r)
p [q] = ŷ

(r)
p [q]⊕ ŷ

′(r)
p [q] for the fixed OD bit, where ŷ

(r)
p [q]

and ŷ
′(r)
p [q] are the q-th bit of the p-th word of Ŷ (r) and Ŷ ′(r), respectively.

Step 5. Repeat Steps 1-4 using different initial state matrices with the same

∆
(0)
i [j] = 1. Compute the r-round bias ϵa as Pr(∆

(r)
p [q] = Γ̂

(r)
p [q] | ∆(0)

i [j] =

1) = 1
2 (1+ϵa), where∆

(r)
p [q] is the OD obtained when searching for single-bit

differential biases.

The bias of Γ̂
(r)
p [q] is denoted by ϵ, that is, Pr(Γ̂

(r)
p [q] = 1 | ∆(0)

i [j] = 1) =
1
2 (1 + ϵ). According to [1], the bias ϵ is approximated as ϵd · ϵa and is used to
compute the overall complexity of the attack on the R-round target cipher.

3.2 Online Phase

After the precomputation phase, we perform the following steps to recover an
unknown key:

Step 1. For an unknown key, collect N keystream block pairs where each pair
is generated by a random input pair satisfying the relevant ID.

Step 2. For each choice of the subkey (i.e., m-bit significant key bits), the
following steps should be performed:

Step 2-1. Derive the r-round single-bit differential biases from the obtained
N keystream block pairs by performing backward computation.

Step 2-2. If the optimal distinguisher legitimates the subkeys candidate as
(possibly) correct, perform an additional exhaustive search over the n-bit
non-significant key bits to confirm the correctness of the filtered subkey
and identify the n-bit non-significant key bits.

Step 2-3. Stop if the correct key is reported and output the recovered key.
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Complexity Estimation. Given N keystream block pairs and a false alarm
probability of Pfa = 2−α, the time complexity of the attack is

2m(N + 2nPfa) = 2mN + 2256−α, where N ≈
(√

α log 4 + 3
√
1− ϵ2

ϵ

)2

,

for a probability of non-detection Pnd = 1.3 × 10−3. In practice, α and thus N
are selected to minimize the time complexity of the attack. Based on an existing
study [1], we use the median bias ϵ in our attack; therefore, we note that our
attack has a success probability of approximately 0.5.

4 Analysis of PNB

4.1 Search for PNB with High Neutral Measures

Typically, differential attacks on Salsa and ChaCha first determine the ID-
OD pair with a higher differential bias and then explore neutral measures of
the target OD bit position. The existing studies [1, 3, 6–9, 16, 18] analyzed the
differential bias and optimized the combination of the differential bias and PNB,
as this combination can be used to determine the time and data complexities for
the attack. Optimizing this combination by focusing on PNB analysis may help
improve differential attacks on Salsa and ChaCha.

In this section, we perform a comprehensive analysis of the PNB and examine
the conditions that produce a large number of non-significant key bits because
the size of the PNB directly influences the theoretical time complexity of an
attack, as described in Sect. 3.2. No study focusing on analyzing PNB has been
conducted. If the conditions that produce a large number of non-significant key
bits can be clarified, it can be claimed that existing attacks require improvement.

We perform the following procedure to search for conditions that produce a
large number of non-significant key bits:

Step 1. Generate a known key k = (k0, . . . , k7) uniformly at random.

Step 2. Select the ID bit position ∆
(0)
i [j], nonce, and block counter uniformly

at random. Then, generate the initial state matrix X(0) and the correspond-

ing initial matrix X ′(0) = X(0) ⊕∆
(0)
i [j].

Step 3. From the input pair (X(0), X ′(0)), compute the r-round internal state
matrix pair (X(r), X ′(r)) andR-round internal state matrix pair (X(R), X ′(R)),
where R is the target round for the attack on ChaCha20/R.

Step 4. From the r-round internal state matrix pair (X(r), X ′(r)), compute the

OD for each bit, such as ∆
(r)
p [q] = X

(r)
p [q]⊕X

′(r)
p [q] for all possible choices

of p and q.
Step 5. From the R-round internal state matrix pair (X(R), X ′(R)), obtain

keystream blocks Z = X(0) +X(R) and Z ′ = X ′(0) +X ′(R).
Step 6. Complement a particular key bit position κ (κ ∈ {0, . . . , 255}) to yield

states X
(0)

and X ′(0). Then, compute the r-round internal state matrix pair
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(Y (r), Y ′(r)) with Z − X
(0)

and Z ′ − X ′(0) as inputs to the inverse round

function of ChaCha, and derive Γ
(r)
p [q] = Y

(r)
p [q] ⊕ Y

′(r)
p [q] for all possible

choices of p and q.

Step 7. Increase the counter for each p, q, and κ only if ∆
(r)
p [q] = Γ

(r)
p [q].

Step 8. Repeat Steps 2–7 for the required number of samples.

After completing multiple trials with the above steps, we compute the neu-
tral measures γκ for each key bit position and then count the number of non-
significant key bits for each OD bit position with a specified threshold value γ.
We note that the number of trials represents the number of different keys used in
our experiments, while the number of samples represents the number of different
initial state matrices generated from a fixed ID bit in each trial.

4.2 Experimental Results

This subsection presents our experimental results based on the search procedure
described in Sect. 4.1. The following is our experimental environment: five Linux
machines with 40-core Intel Xeon CPU E5-2660 v3 (2.60 GHz), 128.0 GB of
main memory, a gcc 7.2.0 compiler, and the C programming language. We use
the Mersenne Twister3, which is a pseudorandom number generator proposed
by Matsumoto and Nishimura [17], to generate the secret keys and samples used
in all our experiments, and thus did not reuse secret keys and samples in any of
the experiments.

To search for the conditions that produce a large number of non-significant
key bits, we conduct experiments with 28 trials using 221 samples for each of the
possible 27 IDs (i.e., 228 total samples). Based on Theorem 1, let D0 and D1 be

the uniform distribution and a distribution of ∆
(r)
p [q] = Γ

(r)
p [q] obtained from the

r-round internal state matrices of ChaCha20/R, respectively. The target event
occurs in D0 and D1 with probabilities of 1

2 and 1
2 · (1 + γκ), respectively; thus,

the number of samples of the best distinguisher between D = D0 and D = D1 can
be estimated as 4

γ2
κ
. Our results are reliable when the derived neutral measures

γκ are greater than 2−13 (≈ 0.000122), as 228 samples are used.

ChaCha20/7. Fig. 1 presents the number of non-significant key bits for each
OD bit position in ChaCha20/7. In this figure, the vertical axis represents the
number of non-significant key bits at each OD bit position, the horizontal axis
represents the OD bit position, and the auxiliary lines on the vertical axis sepa-
rate the OD word positions (i.e., the word positions are 0, 1, . . . , 15 in order from
left to right). The blue (top), orange (center), and green (bottom) lines represent
the number of non-significant key bits when the number of intermediate rounds
r is 3, 3.5, and 4, respectively.

3 The source code is available at https://github.com/omitakahiro/omitakahiro.

github.io/blob/master/random/code/MT.h

https://github.com/omitakahiro/omitakahiro.github.io/blob/master/random/code/MT.h
https://github.com/omitakahiro/omitakahiro.github.io/blob/master/random/code/MT.h
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Fig. 1. Number of non-significant key bits for each OD bit position when the number
of intermediate rounds r is 3, 3.5, and 4 in ChaCha20/7. We use γ = 0.35 as the
threshold value.

Fig. 1 indicates that the number of non-significant key bits tends to be larger
at all 0-th OD bit positions (i.e., all least significant OD bit positions) of each
word regardless of the number of intermediate rounds. Therefore, optimizing the
combination of the differential bias and PNB by focusing on all 0-th OD bit
positions may improve the differential attack on ChaCha20/7. Referring to the
existing studies [1,16,18], the 0-th OD bit positions with a high average neutral

measure were selected in the third round (i.e., ∆
(3)
11 [0]); thus, it is difficult to

improve the differential attack on ChaCha20/7 even for 3 intermediate rounds r.
This is because the smaller the number of the intermediate rounds r, the smaller
the number of non-significant key bits. Therefore, to improve the differential
attack on ChaCha20/7, we should focus on more than 3 intermediate rounds.

The PNB analysis in this subsection cannot be directly compared with that
in existing studies (e.g., [3,6,11]) because a multi-bit differential or differential-
linear technique was employed in the existing studies, whereas we focus solely
on the single-bit differential technique. From a computational complexity per-
spective, we have searched for the number of non-significant key bits for only a
single-bit OD bit position. Similarly, we should search for the number of non-
significant key bits for multi-bit OD bit positions, which is left for future work.

ChaCha20/7.25, ChaCha20/7.5, and ChaCha20/7.75. Fig. 2 presents
the number of non-significant key bits for each 3.5-round OD bit position when
the number of target rounds R is 7, 7.25, 7.5, and 7.75. In this figure, the vertical
and horizontal axes and the auxiliary lines on the vertical axis are the same as
in Fig. 1. The blue (top), orange (second from the top), green (second from
the bottom), and yellow (bottom) lines represent the number of non-significant
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Fig. 2. Number of non-significant key bits for each OD bit position when the number
of intermediate rounds r is 3.5 and number of target rounds R is 7, 7.25, 7.5, and 7.75.
We use γ = 0.35 as the threshold value.

key bits when the number of intermediate rounds r is 3.5 and number of target
rounds R is 7, 7.25, 7.5, and 7.75, respectively.

Similar to the experimental results for ChaCha20/7, the number of non-
significant key bits tends to be larger at all 0-th OD bit positions of each word
regardless of the number of target rounds. Therefore, optimizing the combination
of the differential bias and PNB by focusing on all 0-th OD bit positions may be
effective for performing a differential attack on ChaCha20/7.25, ChaCha20/7.5,
and ChaCha20/7.75.

4.3 Discussion

Relationship between PNB and Inverse Round Function. We discuss
the relationship between the PNB (or the number of non-significant key bits) and
inverse round function of ChaCha. To this end, we investigate the relationship
between the input word position to the inverse quarterround function and the
cumulative number of wordwise modular subtractions. This is because wordwise
modular addition/subtraction plays a crucial role in ensuring the security of
ARX ciphers. In our investigation, the cumulative number of wordwise modular
subtractions is counted as follows:

Wordwise modular subtraction. The cumulative number of wordwise mod-
ular subtractions is counted only when wordwise modular subtraction is exe-
cuted. Moreover, we calculate the sum of the cumulative number of wordwise
modular subtractions in two input words to wordwise modular subtraction.
For example, when the wordwise modular subtraction, A′ = A − B, is exe-
cuted and the cumulative number of wordwise modular subtractions in the
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Table 2. Relationship between the input word position to the inverse quarterround
function and the cumulative number of modular subtractions when the number of
target rounds R is 7 or 7.5.

Input Cumulative number of modular subtractions for R− r rounds.

word 3 rounds 3.25 rounds 3.5 rounds 3.75 rounds 4 rounds

position (r = 4 or 4.5) (r = 3.75 or 4.25) (r = 3.5 or 4) (r = 3.25 or 3.75) (r = 3 or 3.5)

A 70 70 156 156 349

B 37 85 85 192 192

C 48 107 107 236 236

D 58 128 128 128 284

Table 3. Relationship between the input word position to the inverse quarterround
function and the cumulative number of modular subtractions when the number of
target rounds R is 7.25 or 7.75.

Input Cumulative number of modular subtractions for R− r rounds.

word 3 rounds 3.25 rounds 3.5 rounds 3.75 rounds 4 rounds

position (r = 4.25 or 4.75) (r = 4 or 4.5) (r = 3.75 or 4.25) (r = 3.5 or 4) (r = 3.25 or 3.75)

A 48 107 107 236 236

B 58 58 128 128 284

C 70 70 156 156 349

D 37 85 85 192 192

two input words A and B are 70 and 85, respectively, 156 is the cumulative
number of wordwise modular subtractions in the output word A′.

Bitwise XOR. We calculate only the sum of the cumulative number of word-
wise modular subtractions in two input words to bitwise XOR. For example,
when the bitwise XOR operation, B′ = B ⊕ C, is executed and the cumu-
lative number of wordwise modular subtractions in the two input words B
and C are 37 and 48, respectively, 85 is the cumulative number of wordwise
modular subtractions in the output word B′.

Bitwise left rotation. The cumulative number of wordwise modular subtrac-
tions did not change after the execution of bitwise left rotation.

Tables 2 and 3 present the results of examining the cumulative number of
wordwise modular subtractions. In Table 2, the number of target rounds R is
7 or 7.5, whereas in Table 3, the number of target rounds R is 7.25 or 7.75. In
these tables, the input word position column contains the word positions, such
as a vector (A,B,C,D), input to the inverse quarterround function. Note that
each input word position always transitions to the same input word position in
the next round (refer to Sect. 2 for more details).

Tables 2 and 3 indicate that the cumulative number of wordwise modular
subtractions differ depending on the input word position relative to the inverse
round function and the number of intermediate rounds r. In particular, the
cumulative number of wordwise modular subtractions is smaller in the order
of the input word positions B, C, D, and A when the number of intermediate
rounds r is 3, 3.5, 4, and 4.5. In contrast, the cumulative number of wordwise
modular subtractions is smaller in the order of the input word positions D, A,
B, and C when the number of intermediate rounds r is 3.25, 3.75, 4.25, and 4.75.
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Table 4. Maximum, minimum, average, and median values of the average neutral
measures γ̂κ for each target round R when r = 3.5, where p and q are the word and
bit positions of the OD, respectively (i.e., ∆

(r)
p [q]).

R
Maximum Minimum

Average Median
γ̂κ p q γ̂κ p q

7 0.382 11 0 0.050 2 13 0.169 0.174

7.25 0.282 6 0 0.018 3 13 0.097 0.087

7.5 0.151 4 0 0.004 0 13 0.034 0.016

7.75 0.075 9 0 0.001 0 13 0.011 0.005

We now compare the experimental results presented in Fig. 2 with the results
when r = 3.5, as illustrated in Tables 2 and 3. Note that the range of input
word positions A, B, C, and D corresponds to the OD bit positions 0 to 127,
128 to 255, 256 to 383, and 384 to 511, respectively. From Fig. 2, the number of
non-significant key bits is larger in the order of the input word positions B, C,
D, and A when the number of intermediate rounds r is 3.5 (all 0-th bit positions
are exceptions); thus, the smaller the cumulative number of wordwise modular
subtractions, the larger the number of non-significant key bits. The 0-th bit
position is uninfluenced by the carry-in wordwise modular subtraction (i.e., it is
uninfluenced by the ID/OD). This has been suggested to be a special case.

In summary, the number of non-significant key bits depends on the input
word position relative to the inverse round function and is affected by the cumu-
lative number of wordwise modular subtractions. Specifically, the conditions that
produce the number of non-significant key bits depend on the OD bit position,
particularly all 0-th OD bit positions.

Upper Bound on the Number of Rounds for the Attacks. We discuss the
upper bound on the number of rounds required for a PNB-focused differential
attack that uses a single-bit truncated differential to be successful. To this end,
we investigate the value of the average neutral measures γ̂κ for each round of the
inverse round function. Table 4 presents the maximum, minimum, average, and
median values of the average neutral measures γ̂κ for each target round R when
the number of intermediate rounds r is 3.54. These findings can be obtained
by a detailed analysis of the experimental results described in Sect. 4.2. The
R column in Table 4 lists the number of target rounds for our attack, and the
number of rounds of the inverse round function can be calculated as R− r.

Our experimental results are reliable when the derived average neutral mea-
sures γ̂κ are greater than 2−13 (≈ 0.000122), as 228 samples are used. As illus-
trated in Table 4, all values of γ̂κ are reliable when the number of target rounds
R is 7, 7.25, 7.5, and 7.75; thus, the upper bound on the number of rounds

4 The latest study presented by Coutinho and Neto at EUROCRYPT 2021 [9] used

∆
(3.5)
5 [0] (= ∆

(4)
5 [7] ⊕ ∆

(4)
10 [0]) as the OD to perform a differential attack on

ChaCha20/7. Accordingly, we focused solely on r = 3.5.
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required for a PNB-focused differential attack that uses a single-bit truncated
differential to be successful is at most 7.75 rounds. However, given that the
threshold γ used in the existing attacks, such as [3,6,9], was γ = 0.27 or 0.35, it
is practically difficult to perform a differential attack when the number of target
rounds R is 7.5 or 7.75 because γ̂κ is too small; thus, our results suggest that a
PNB-focused differential attack on reduced-round ChaCha should work on up to
7.25 rounds. To verify this claim, we perform a PNB-focused differential attack
on reduced-round ChaCha with target rounds of 7, 7.25, and 7.5.

5 PNB-focused Differential Attack

In this section, we describe a PNB-focused differential attack on reduced-round
ChaCha. First, based on the PNB analysis described in Sect. 4, we determine the
target OD bit position for the proposed attack. Next, we analyze the differential
biases at the target OD bit positions and then obtain the ID bit position with
the best differential bias at the target OD bit positions. Finally, we estimate
the time and data complexities for our attack using the combination of the
differential bias and PNB.

5.1 Analysis of Single-Bit Differential Biases

In Sect. 4, we comprehensively analyze the PNB for all possible single-bit trun-
cated ODs. Accordingly, by analyzing the ID bit position with the highest dif-
ferential bias at the target OD bit position, we can determine the ID-OD pair
to use for our attack.

To identify the ID bit position with the highest differential bias |ϵd| at the
target OD bit positions, we conduct experiments with 26 trials using 228 sam-
ples for a fixed ID; thus, the results are reliable when the derived differen-
tial biases |ϵd| are greater than 2−13 (≈ 0.000122), as 228 samples are used.

In our experiments, the target ODs are ∆
(3.5)
0 [0], ∆

(3.5)
1 [0], ∆

(3.5)
2 [0], ∆

(3.5)
3 [0],

∆
(3.5)
12 [0], ∆

(3.5)
13 [0], ∆

(3.5)
14 [0], and ∆

(3.5)
15 [0]. Consequently, our results are reliable

at ∆
(3.5)
0 [0], ∆

(3.5)
1 [0], ∆

(3.5)
2 [0], and ∆

(3.5)
3 [0] because these absolute biases are

at least 0.000430, but not at ∆
(3.5)
12 [0], ∆

(3.5)
13 [0], ∆

(3.5)
14 [0], and ∆

(3.5)
15 [0] because

these absolute biases are at most 0.000028. Moreover, these results lead to unreli-

able at other 0-thOD bit positions, such as∆
(3.5)
4 [0],∆

(3.5)
5 [0],∆

(3.5)
6 [0],∆

(3.5)
7 [0],

∆
(3.5)
8 [0], ∆

(3.5)
9 [0], ∆

(3.5)
10 [0], and ∆

(3.5)
11 [0], because the results are affected by the

unreliable results at ∆
(3.5)
12 [0], ∆

(3.5)
13 [0], ∆

(3.5)
14 [0], and ∆

(3.5)
15 [0] according to the

computations of the quarterround function (see Sect. 2 for details). Consequently,

we determine the following ID-OD pairs to use for our attack: (∆
(0)
15 [6],∆

(3.5)
0 [0]),

(∆
(0)
12 [6],∆

(3.5)
1 [0]), (∆

(0)
13 [6],∆

(3.5)
2 [0]), and (∆

(0)
14 [6],∆

(3.5)
3 [0]).

To obtain more precise single-bit differential biases for the derived ID-OD
pairs, we conduct additional experiments with 28 trials using 234 samples for a
fixed ID; thus, the results are reliable when the derived differential biases |ϵd|
are greater than 2−16 (≈ 0.000015), as 234 samples are used. Table 5 lists the
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Table 5. Best single-bit differential biases |ϵd| at the 0-th OD bit positions of each
word for 3.5 rounds of ChaCha. Experiments are conducted with 28 trials using 234

samples for a fixed ID; thus, the results are reliable when the derived differential biases
|ϵd| are greater than 2−16 (≈ 0.000015), as 234 samples are used.

ID OD |ϵd|

∆
(0)
15 [6] ∆

(3.5)
0 [0] 0.000469

∆
(0)
12 [6] ∆

(3.5)
1 [0] 0.000478

∆
(0)
13 [6] ∆

(3.5)
2 [0] 0.000504

∆
(0)
14 [6] ∆

(3.5)
3 [0] 0.000478

additional experimental results of the best differential biases |ϵd| at the target

OD bit positions: ∆
(3.5)
0 [0], ∆

(3.5)
1 [0], ∆

(3.5)
2 [0], and ∆

(3.5)
3 [0]. As displayed in

this table, we can obtain reliable results at the target positions; then, we use the
listed biases |ϵd| to estimate the time and data complexities for our attack.

5.2 Complexity Estimation

To estimate the time and data complexities for the PNB-focused differential at-
tack on the target rounds of ChaCha (i.e., 7, 7.25, and 7.5 rounds), the remaining
steps should be performed as follows (see Sect. 3 for details):

Step 1. Recalculate the neutral measures corresponding to the derived ID-OD
pairs and divide the secret key bits into two sets – a set of m-bit significant
and a set of n-bit non-significant key bits.

Step 2. By performing PBC, obtain the biases |ϵa| for each threshold γ from
the obtained keystream and approximate the overall bias ϵ ≈ ϵd · ϵa for the
attack on the target rounds of ChaCha.

Step 3. Perform the online phase and estimate the time and data complexities
to recover the unknown key, as described in Sect. 3.2.

To perform the above-mentioned steps, we conduct experiments with 28 trials
using 230 samples for the fixed ID; thus, the results are reliable when the derived
biases |ϵa| are greater than 2−14 (≈ 0.000061), as 230 samples are used.

ChaCha20/7. Table 6 presents the best parameters for each target ID-OD pair
to estimate the time and data complexities for our attack on ChaCha20/7. The
threshold γ is set from 0.10 to 0.95 at intervals of 0.05 (i.e., total 18 patterns),
n represents the number of non-significant key bits, |ϵd| is derived from Table 5,
|ϵa| is obtained by performing PBC for each threshold γ, and α is selected to
minimize the time complexity of our attack.

Consequently, we can perform our attack on ChaCha20/7 with time and data
complexities of 2231.63 and 249.58, respectively, using the best parameters, where

the ID-OD pair is (∆
(0)
14 [6],∆

(3.5)
3 [0]), γ is 0.35, n is 74, α is 29, and the list of

PNB is {6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 27, 28, 29, 30, 31, 34, 35, 36, 37, 46,
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Table 6. Best parameters for the proposed attack on ChaCha20/7.

ID OD γ n |ϵd| |ϵa| α Time Data

∆
(0)
15 [6] ∆

(3.5)
0 [0] 0.35 74 0.000469 0.000662 29 2231.74 249.68

∆
(0)
12 [6] ∆

(3.5)
1 [0] 0.35 74 0.000478 0.000556 29 2232.17 250.13

∆
(0)
13 [6] ∆

(3.5)
2 [0] 0.35 74 0.000504 0.000615 29 2231.74 249.69

∆
(0)
14 [6] ∆

(3.5)
3 [0] 0.35 74 0.000478 0.000674 29 2231.63 249.58

Table 7. Best parameters for the proposed attack on ChaCha20/7.25.

ID OD γ n |ϵd| |ϵa| α Time Data

∆
(0)
15 [6] ∆

(3.5)
0 [0] 0.30 49 0.000469 0.000564 3 2255.62 248.36

∆
(0)
12 [6] ∆

(3.5)
1 [0] 0.35 45 0.000478 0.002200 3 2255.64 244.38

∆
(0)
13 [6] ∆

(3.5)
2 [0] 0.35 45 0.000504 0.001783 2 2256.02 244.61

∆
(0)
14 [6] ∆

(3.5)
3 [0] 0.35 45 0.000478 0.002186 3 2255.65 244.40

71, 79, 80, 83, 98, 99, 100, 101, 102, 103, 104, 105, 106, 109, 110, 111, 112, 113,
114, 115, 116, 117, 118, 119, 122, 123, 127, 128, 129, 130, 148, 149, 150, 159, 187,
188, 189, 190, 191, 200, 223, 224, 225, 231, 232, 239, 240, 243, 244, 251, 252, 253,
254, 255}.

ChaCha20/7.25 and ChaCha20/7.5. Similar to the complexity estimation
for ChaCha20/7, we present the best parameters for each target ID-OD pair to
estimate the time and data complexities for our attack on ChaCha20/7.25 and
ChaCha20/7.5 in Tables 7 and 8, respectively.

As illustrated in Table 7, our attack on ChaCha20/7.25 can be performed
with time and data complexities of 2255.62 and 248.36, respectively, using the

best parameters, where the ID-OD pair is (∆
(0)
15 [6],∆

(3.5)
0 [0]), γ is 0.30, n is

49, α is 3, and the list of PNB is {2, 3, 10, 13, 14, 19, 20, 26, 27, 31, 40, 44,
45, 46, 51, 59, 60, 61, 62, 63, 128, 129, 130, 135, 136, 143, 144, 147, 148, 155,
156, 157, 158, 159, 160, 161, 162, 180, 181, 182, 191, 219, 220, 221, 222, 223,
224, 232, 255}. ChaCha provides a 256-bit security level against key recovery
attacks. Given that the success probability is approximately 0.5, our attack on
ChaCha20/7.25 is slightly less efficient than a brute force attack; however, it
is the first dedicated attack on the target to be reported. It provides both a
baseline and useful components (i.e., differential bias and PNB) for improved
attacks.

In addition, as displayed in Table 8, our attack on ChaCha20/7.5 can be
performed with time and data complexities of 2273.49 and 237.49, respectively,

using the best parameters, where the ID-OD pair is (∆
(0)
15 [6],∆

(3.5)
0 [0]), γ is

0.30, n is 20, α is 1, and the list of PNB is {6, 7, 14, 22, 25, 31, 39, 40, 41, 42,
56, 57, 58, 63, 191, 219, 220, 221, 222, 223}. Thus, our attack on ChaCha20/7.5
is inefficient because this is beyond the security level of ChaCha.
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Table 8. Best parameters for the proposed attack on ChaCha20/7.5.

ID OD γ n |ϵd| |ϵa| α Time Data

∆
(0)
15 [6] ∆

(3.5)
0 [0] 0.30 20 0.000469 0.020269 1 2273.49 237.49

∆
(0)
12 [6] ∆

(3.5)
1 [0] 0.30 20 0.000478 0.014840 1 2274.33 238.33

∆
(0)
13 [6] ∆

(3.5)
2 [0] 0.30 20 0.000504 0.017594 1 2273.69 237.69

∆
(0)
14 [6] ∆

(3.5)
3 [0] 0.30 20 0.000478 0.018693 1 2273.67 237.67

6 Related Works

Aumasson et al. [1] proposed a framework for a differential attack based on
the PNB concept and applied it to reduced-round Salsa, ChaCha, and Rumba.

They first obtained an ID-OD pair, (∆
(0)
13 [13],∆

(3)
11 [0]), with a high differential

bias using a single-bit differential technique. Then, they determined the PNB
at the target OD bit position and estimated the time and data complexities for
their attack on ChaCha20/7. Their attack can be performed with time and data
complexities of 2248 and 227, respectively.

Shi et al. [18] proposed new techniques, called the column chaining distin-
guisher (CCD) and probabilistic neutral vector (PNV) concept, to improve Au-

masson et al.’s attack. They used the same ID-OD pair, (∆
(0)
13 [13],∆

(3)
11 [0]),

obtained by Aumasson et al., constructed a 4-step CCD, determined the PNV
at the target OD bit position, and estimated the time and data complexities as
well as the success probability for their attack on ChaCha20/7. Their attack can
be performed with time and data complexities of 2246.5 and 227, respectively,
and a success probability of approximately 0.43.

Maitra [16] further improved Aumasson et al.’s attack by using the chosen-IV

technique. Maitra used the same ID-OD pair, (∆
(0)
13 [13],∆

(3)
11 [0]), obtained by

Aumasson et al. and explored how to appropriately select IVs corresponding to

the secret keys, given the target ID, ∆
(0)
13 [13]. This attack can be performed on

ChaCha20/7 with the time and data complexities of 2238.94 and 223.89, respec-
tively.

Choudhuri and Maitra [6] used a differential-linear technique to extend the

existing 3-round single-bit differential, (∆
(0)
13 [13],∆

(3)
11 [0]), to 4-, 4.5-, and 5-round

multi-bit differentials, such that the 4.5-round OD is ∆
(4.5)
0 [0] ⊕ ∆

(4.5)
0 [8] ⊕

∆
(4.5)
1 [0] ⊕ ∆

(4.5)
5 [12] ⊕ ∆

(4.5)
11 [0] ⊕ ∆

(4.5)
9 [0] ⊕ ∆

(4.5)
15 [0] ⊕ ∆

(4.5)
12 [16] ⊕ ∆

(4.5)
12 [24].

Using such multi-bit differentials, their attack on ChaCha20/7 can be performed
with time and data complexities of 2237.65 and 231.6, respectively.

Beierle et al. [3] presented a generic framework for differential-linear attacks
with a special focus on ARX ciphers. Then, they applied this framework to
ChaCha20/7 and improved the best existing attacks. To perform a differential-
linear attack on ChaCha20/7, the target cipher is divided into a differential part
covering 1 round, a middle part covering 2.5 rounds, a linear part covering 2.5
rounds, and a key guessing part covering 1 round. As a result, their attack can
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be performed on ChaCha20/7 with time and data complexities of 2230.86 and
248.83, respectively.

As summarized above, the best existing attack on reduced-round ChaCha
works on up to 7 rounds with time and data complexities of 2230.86 and 248.83,
respectively. Our attack has the time and data complexities of 2231.63 and 249.58,
respectively; thus, it is not an improvement over the best existing attack on
ChaCha20/7. However, our analysis suggests that a PNB-focused differential
attack on reduced-round ChaCha should work on up to 7.25 rounds. No study
focusing on attacks on ChaCha20/7.25 has been conducted until now. Although
the proposed attack on ChaCha20/7.25 is less efficient than a brute force attack,
it is the first dedicated attack on the target. It provides both a baseline and useful
components (i.e., differential bias and PNB) for improved attacks.

7 Conclusion

In this study, we have proposed a new approach for differential cryptanalysis
against the ChaCha stream cipher. Our approach focuses on analyzing PNB
rather than searching for differential biases; therefore, we refer to the proposed
approach as a PNB-focused differential attack. The proposed approach allows us
to perform the most effective differential attack on the 7.25-round ChaCha (i.e.,
ChaCha20/7.25) with a time complexity of 2255.62, a data complexity of 248.36,
and a success probability of 0.5. Although this attack is less efficient than a
brute force attack, it is the first dedicated attack on the target. It provides both
a baseline and useful components (i.e., differential bias and PNB) for improved
attacks.

Our work can be extended in the following directions in the future. First, in
this study, we have focused solely on the truncated single-bit differential tech-
nique. However, it may be possible to improve the proposed attack by employing
multi-bit differential or differential-linear techniques, especially in the framework
proposed by Beierle et al. [3]. In addition, our analysis have not fully considered
both the differential bias and PNB to obtain the best combination because these
characteristics can be analyzed independently. The next step is thus to consider
these characteristics together to obtain stricter evaluation results. Finally, the
PNB-focused differential attack can be used to improve existing differential at-
tacks on the Salsa stream cipher.
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