
Generating cryptographically-strong random
lattice bases and recognizing rotations of Zn

Tamar Lichter Blanks*

Stephen D. Miller�

{tl548,miller}@math.rutgers.edu

February 11, 2021

Abstract

Lattice-based cryptography relies on generating random bases which
are difficult to fully reduce. Given a lattice basis (such as the private
basis for a cryptosystem), all other bases are related by multiplication
by matrices in GL(n,Z). How can one sample random elements from
GL(n,Z)? We consider various methods, finding some are stronger
than others with respect to the problem of recognizing rotations of the
Zn lattice. In particular, the standard algorithm of multiplying unipo-
tent generators together (as implemented in Magma’s RandomSLnZ

command) generates instances of this last problem which can be effi-
ciently broken, even in dimensions nearing 1,500. Similar weaknesses
for this problem are found with the random basis generation method
in one of the NIST Post-Quantum Cryptography competition submis-
sions (DRS). Other algorithms are described which appear to be much
stronger.

keywords: lattices, random basis, integral lattices, unimodular in-
tegral matrices, DRS.

*Supported by a National Science Foundation Graduate Research Fellowship.
�Supported by National Science Foundation Grants CNS-1526333 and CNS-1815562.

1

1 Introduction

In cryptography one often encounters problems which are easy to solve using
a secret private basis of a lattice Λ ⊂ Rn, but are expected to be difficult
to solve using suitably-chosen public bases. Famous examples include the
Shortest Vector Problem (SVP) and Closest Vector Problem (CVP).

Implicit here is that not only do harder bases exist, but that it is easy
to generate them. The main contribution of this paper is to demonstrate
that either some lattices lack hard bases altogether, or instead certain basis
generation algorithms are cryptographically weak.

In [17] Lenstra and Silverberg posed the challenge of whether highly-
symmetric lattices have hard bases, and proved several interesting results
along these lines (related to earlier work of Gentry-Szydlo [9]; see also [16,
18]). One particularly beautiful question they posed is:

can one efficiently recognize rotations of the standard Zn lattice? (1.1)

To be more precise, this problem can be stated in two different group-
theoretic ways (the second being the formulation in [17, §2]). Let {b1, . . . , bn}
denote a basis for Λ and let B denote the n× n matrix whose i-th row is bi:

Problem 1.

Can one efficiently factor B as B = MR, with M ∈ GL(n,Z)
and R ∈ O(n)?

(1.2)

Alternatively, following [8] and [17, §2] we may suppose one is given a
positive-definite symmetric matrix G ∈ SL(n,Z) (which we think of as the
Gram matrix BBt of Λ):

Problem 2 (“Recognizing Zn”).

Can one efficiently solve the equation G = MM t with M ∈
GL(n,Z)?

(1.3)

Clearly, Problem 1 reduces to Problem 2 with G = BBt. Conversely, one
can orthogonally diagonalize the matrix G in Problem 2 as G = PDP t for
some P ∈ O(n) and diagonal matrix D with positive diagonal entries. Then
B = PD1/2 solves the equation G = BBt, and Problem 2 therefore reduces

2

to Problem 1 (modulo technicalities we will not delve into, such as that the
entries of P , D, and B will in general be algebraic integers).

Both Problems 1 and 2 have inefficient solutions using sufficiently strong
lattice basis reduction. For example, the given information is sufficient to
determine whether or not all lattice vector norms are square-roots of inte-
gers, and an SVP solver can determine the shortest nonzero norm λ1(Λ). If
λ1(Λ) 6= 1, the lattice Λ is definitely not a rotation of Zn and Problems 1
and 2 have negative solutions. However, if one finds a vector of norm 1 and
all lattice norms are square-roots of integers, it is then easy to see (by sub-
tracting multiples of this vector to obtain an orthogonal complement) that
the dimension of the problem reduces from n to n− 1.

We saw above that finding a non-integral solution M ∈ GL(n,R) to (1.3)
is trivial, since one can orthogonally diagonalize G and take the square-
root of a positive diagonal matrix. However, imposing the constraint that
M ∈ GL(n,Z) adds an intricate dose of number theory, since (1.3) then
becomes a class number problem: indeed, in large dimensions n there is a
combinatorial explosion of possible GL(n,Z)-equivalence classes.1 For that
reason we split Problem 2 into two parts:

Problem 2a (Decision version).

Efficiently determine whether or not a solution M ∈ GL(n,Z)
exists to (1.3).

Problem 2b (Search version).

If so, efficiently find such a solution M ∈ GL(n,Z).

(1.4)

It was recently shown in [12] that Problem 2a is in the class NP∩ co-NP, using
results of Elkies [5] on characteristic vectors of lattices (see also [10, §9.6]).

This paper primarily concerns Problem 2b, i.e., one is handed a matrix
of the form MM t and wishes to efficiently recover M . Of course permuting
the columns of M does not change MM t, nor does multiplying any subset of
columns by −1; thus we look for solutions up to such signed permutations of
the columns. (For this reason it is equivalent to insist that M ∈ SL(n,Z).)
We find that the choice of procedure to randomly generate instances of M has

1For example, the E8 lattice has a Gram matrix G in SL(8,Z), but is not equivalent
to the Z8 lattice. In general the number of GL(n,Z)-equivalence classes of such integral
unimodular lattices grows faster than exponentially in n [3, Chapter 16].

3

a drastic impact on the difficulty of the problem. We state this in terms of
a probability density function p : GL(n,Z)→ R≥0 (i.e.,

∑
M∈GL(n,Z) p(M) =

1):

Problem 3 (Average case version of Problem 2).

Given a matrix M ∈ GL(n,Z) drawn with respect to the
probability density p, efficiently recover M from MM t (up
to signed permutations of the columns) with high probability.

(1.5)

In Section 2 we consider various methods of generating random bases of
a lattice, which corresponds to different probability densities p, generalizing
[1, §5.1.2] (see also Section 4). This is tantamount to looking for distribu-
tions for which Problem 3 is hard on average, much like SIS and LWE are
average-case hard instances of variants of SVP and CVP, respectively. We
then perform experiments on them in Section 3. Our main finding there
is that a certain well-known existing method, namely generating matrices
by multiplying unipotents (e.g., Magma’s RandomSLNZ command), is cryp-
tographically weak: we were able to recover M in instances in dimensions
over 1000 that were in some measurable ways comparable to NTRU lattices
having purported 256-bit quantum cryptographic strength. That gives an
example of an average-case easy distribution. In the other direction, we also
describe some other methods of generating random bases which are average-
case stronger, as well as make some comments on strategies to generate
a large random-looking matrix in GL(n,Z) using a only moderate number
of random bits (“entropy”). In Section 4 we present some evidence that
the random basis generation method used in the DRS NIST Post-Quantum
Cryptography submission [20] may have security weaknesses.

Acknowledgements: it is a pleasure to thank Huck Bennett, Leo Ducas,
Nicholas Genise, Craig Gentry, Shai Halevi, Nadia Heninger, Jeff Hoffstein,
Hendrik Lenstra, Amos Nevo, Phong Nguyen, Oded Regev, Ze’ev Rudnick,
Alice Silverberg, Damien Stehlé, Noah Stephens-Davidowitz, and Berk Sunar
for very helpful discussions. We are particularly indebted to Joe Silverman
for kindly suggesting an earlier variant of Algorithm 4, which is very sim-
ilar to the one we suggest here, and to Daniel J. Bernstein for important
comments about the poor equidistribution provided by Algorithm 2. We are
also grateful to Galen Collier of the Rutgers University Office of Advanced

4

Research Computing for his assistance, and to the Simons Foundation for
providing Rutgers University with Magma licenses.

2 Choosing random elements of GL(n,Z)
We consider the problem of uniformly sampling matrices in a large box2

ΓT := {M = (mij) ∈ GL(n,Z) : |mij| ≤ T} , T > 0 , (2.1)

inside GL(n,Z). For large T one has #ΓT ∼ cnT
n2−n, for some positive

constant cn
3. We now consider a series of algorithms to sample matrices

in GL(n,Z). The first, and most naive, does uniformly sample ΓT but is
prohibitively slow:

Algorithm 1.

For each 1 ≤ i, j ≤ n sample mi,j ∈ Z ∩ [−T, T] at random.
Let M = (mij).
Discard and repeat if det(M) 6= ±1, otherwise
return M .

(2.2)

Though we do not analyze it here, the determinant of such a randomly chosen
matrix M is a very large integer, and highly improbable to be ±1 as required
for membership in GL(n,Z). One minor improvement that can be made is to
first check that the elements of each row (and of each column, as well) do not
share a common factor, which is a necessary condition to have determinant
±1. Nevertheless, this fails to seriously improve the extreme unlikelihood of
randomly producing an integral matrix of determinant ±1.

Problem 4.

Find a nontrivial uniform sampling algorithm which substan-
tially speeds up Algorithm 1.

(2.3)

2One can consider other shapes, such as balls; boxes are convenient for our applications
and for making more concise statements. The same problem for SL(n,Z) is of course
equivalent.

3See [11, Corollary 2.3] and [4, (1.14)] for more details on this surprisingly difficult
result.

5

We note that some computer algebra packages already include commands
for generating random elements of GL(n,Z). In addition to its command
RandomSLnZ which we shall shortly come to in Algorithm 2, Magma’s docu-
mentation includes the command RandomUnimodularMatrix for fairly rapidly
generating matrices in GL(n,Z) (not SL(n,Z) as the name indicates) hav-
ing “most entries” inside a prescribed interval, but provides no further ex-
planation. Even after accounting for a typo which switches the role of the
command’s arguments, we found in fact that most of the entries were outside
the prescribed interval (the documentation’s claims notwithstanding). Fur-
thermore, the lattices constructed using this command appear to be much
easier to attack than those generated by the closest analog considered here
(Algorithm 4). SageMath’s random matrix command has a unimodular con-
structor (designed for teaching purposes) which does produce matrices in
GL(n,Z) whose entries are bounded by a given size, but it is not as fast
as other alternatives and its outputs must satisfy further constraints. For
these reasons we did not seriously consider RandomUnimodularMatrix and
random matrix.

Because Algorithm 1 is so slow, the rest of this section considers faster
algorithms which do not uniformly sample ΓT , some better than others.4 For
1 ≤ i 6= j ≤ n let Ei,j denote the elementary n×n matrix whose entries are all
0 aside from a 1 in the (i, j)-th position. Here as elsewhere the abbreviation
i.i.d. stands for independently identically distributed.

Algorithm 2 (Random products of unipotents,
such as Magma’s RandomSLNZ).

Input: a size bound b and word length `.
Return: a random product γ1 · · · γ`, where each γj is chosen
i.i.d. uniformly among all n×n matrices of the form In+xEi,j,
with i 6= j and x ∈ Z ∩ [−b, b].

(2.4)

As we shall see, the matrices produced by Algorithm 2 have a very special
form, creating a cryptographic weakness.

Algorithm 2 can be thought of as a counterpart to the LLL algorithm [15],
which applies successive unipotent matrices and vector swaps to reduce lat-

4Unfortunately it is prohibitively complicated here to describe particular parameter
choices matching the bound in (2.1).

6

tices. Although Algorithm 2 does not literally contain vector swaps, they are
nevertheless present in the background because conjugates of γj by permuta-
tion matrices have the same form. In that light, the following algorithm can
then be thought of as an analog of BKZ reduction [22], since it involves block
matrices of size much smaller than n. Its statement involves embedding maps
Φk1,...,kd : GL(d,R) ↪→ GL(n,R) for size-d subsets {k1, . . . , kd} ⊂ {1, . . . , n}
given by the formula

(Φk1,...,kd(h))i′j′ =

{
hij, if i′ = ki and j′ = kj for some i, j ≤ d;
δi′=j′ , otherwise ,

(2.5)
where h = (hij) ∈ GL(d,R).5 The image of Φk1,...,kd is a subgroup of GL(n,R)
isomorphic to GL(d,R). (Of course we will only apply the map Φk1,...,kd to
elements of GL(d,Z).)

Algorithm 3 (Random products of smaller matrices).

Input: a word length ` and fixed dimension 2 ≤ d < n for
which one can uniformlya sample GL(d,Z) matrices in a large
box.
Return: a random product γ1 · · · γ` in which each γj ∈
GL(n,Z) is a matrix of the form γ = Φk1,...,kd(γ(d)), where γ(d)

is a uniformly sampled random element of GL(d,Z) in a box
as mentioned above, and {k1, . . . , kd} is a uniformly sampled
random subset of {1, . . . , n} containing d elements.

aMore generally, one can consider non-uniform distributions as well.

(2.6)

The matrices γ(d) can also be described as random conjugates (by permuta-
tion matrices) of the matrices from GL(d,Z), embedded into the upper-left
corner of an n× n matrix.

We expect Algorithm 3 produces more-uniformly distributed matrices as
d increases. The role of the parameter d is essentially to interpolate between
Algorithms 1 and 2, though the d = 2 case of Algorithm 3 is not precisely
identical to Algorithm 2: this is because γ(2) can be a much more general
than simply a unipotent.

5The role of GL(·, ·) as opposed to SL(·, ·) here is again purely cosmetic.

7

Next we turn to the following method, which among the algorithms we
considered seems the best at rapidly creating uniformly-distributed entries
of matrices in GL(n,Z). This algorithm was originally suggested to us by
Joseph Silverman in a slightly different form, in which more coprimality
conditions needed to be checked. It relies on the fact that an integral n× n
matrix M = (mij) lies in GL(n,Z) if and only if the n determinants of
(n− 1)× (n− 1) minors

det

(m22 ··· m2n

...
...

...
mn2 ··· mnn

)
, det

(m21 m23 ··· m2n

...
...

...
...

mn1 mn3 ··· mnn

)
,

det

(m21 m22 m24 ··· m2n

...
...

...
...

...
mn1 mn2 mn4 ··· mnn

)
, . . . , det

(m21 ··· m2n−1

...
...

...
mn1 ··· mnn−1

)
(2.7)

share no common factors.

Algorithm 4 (slight modification of a suggestion of
Joseph Silverman).

Uniformly sample random integers mi,j ∈ [−T, T], for 2 ≤ i ≤
n and 1 ≤ j ≤ n, until the n determinants in (2.7) share no
common factor.
Use the euclidean algorithm to find integers m11, . . . ,m1n such
that det((mij)) = ±1, the sign chosen uniformly at random.
Use least-squares to find the linear combination
n∑

i≥2

ci[mi1 · · ·min] closest to [m11 · · ·m1n], and let c̃i de-

note an integer nearest to ci.
Return: the matrix M whose top row is

[m11 · · ·m1n] −
n∑

i≥2

c̃i[mi1 · · ·min]

and whose i-th row (for i ≥ 2) is [mi1 · · ·min].

(2.8)

Remarks on Algorithm 4: The n integers in (2.7) are very large and un-
likely to share a common factor between them: for example, the most prob-
able common factor is 2, and this happens only with probability roughly
2−n. Obviously the top row of M is chosen differently than the others, and

8

its size is different as well since it is typically larger than size T – this is
because the euclidean algorithm can produce large coefficients (as the mi-
nors in (2.7) are themselves so enormous). Also, it is likely that the first
two or three minors will already be coprime, and hence that most of the en-
tries in [m11m12 · · · m1n] will vanish. The use of rounding and least-squares
cuts down this size and further randomizes the top row, while keeping the
determinant equal to one.

One could instead try a different method to find an integral combination
of the bottom n − 1 rows closer to the initial guess for the top row. One
extreme possibility involves appealing to the Closest Vector Problem (CVP)
itself, which is thought to be very difficult. We found Algorithm 4 gave good
randomness properties in that nearly all of the matrix is equidistributed, and
it is fairly fast to execute. In comparison, we will see that using Algorithm 2
requires many matrix multiplications to achieve random entries of a similar
size, which are not as well distributed.

The following algorithm is folklore (see [13, §4.1]). As we shall see just
below, it shares some similarities with Algorithm 4.

Algorithm 5 (via Hermite Normal Form).

Create a uniformly distributed m × n matrix B, with m ≥ n
and entries uniformly chosen in Z ∩ [−T, T].
Decompose B in a Hermite normal form B = UM , where
M ∈ GL(n,Z) and U = (uij) has no nonzero entries with
i < j.
Return: M .

(2.9)

A surprising connection between Algorithms 4 and 5: Even though
Algorithms 4 and 5 appear to be very different, they are actually extremely
similar (in fact, arguably nearly identical) in practice. Algorithms for Her-
mite Normal Form (such as HermiteDecomposition in Mathematica) pro-
ceed by building the matrix M directly out of the rows of B whenever possi-
ble. For example, it is frequently the case that the first n−1 rows of U agree
with those of the identity matrix In, or at least differ only very slightly; in
other words, the first n − 1 rows of B and M are expected to coincide or
nearly coincide.6 Also, the last row of U is an integral combination of the

6In our experiments, for example, the top n − 2 rows agreed most of the time for
m = n ≥ 10.

9

first n rows of B. In contrast with Algorithm 4 this last combination, how-
ever, is mainly determined by arithmetic considerations, and in particular
depends on the n-th row of B; thus more random information is used than
in Algorithm 4, which uses only n(n− 1) random integers instead of the n2

here.
To summarize, in fairly typical cases both Algorithms 4 and 5 populate

the matrix M by generating all but one row uniformly at random, and use
integral combinations to create a final row having relatively small entries.
The practical distinction is essentially how this final row is created, which
utilizes random information in Algorithm 5 but not in Algorithm 4. The
final row also appears to be typically smaller (that is, closer to fitting in the
box defined in (2.1)) when using Algorithm 4 than when using Algorithm 5;
consequently, we did not do any experiments with Algorithm 5.

Note that the Hermite decomposition as stated above is not unique, since
there are lower triangular matrices in GL(n,Z). Thus there can be no im-
mediate guarantee on the entry sizes of M unless this ambiguity is resolved.
Algorithm 5 can be thought of as a p-adic analog of the following method
of producing random rotations in O(n): apply the Gram-Schmidt process to
a matrix chosen according to a probability density function (e.g., Gaussian)
which is invariant under multiplication by O(n).

Remarks on an Algorithm in [21]: Igor Rivin makes the proposal in
[21, §6.1] to generate matrices in GL(n,Z) by applying complete lattice basis
reduction to a basis of Rn chosen inside a large ball. Let B ∈ GL(n,R) denote
the n×n matrix whose rows consist of this basis. Complete lattice reduction
produces a random element γ ∈ GL(n,Z) of constrained size for which γB
lies in a fixed fundamental domain for GL(n,Z)\GL(n,R).

This procedure is extremely slow, since complete lattice reduction is im-
practical in large dimensions. Rivin thus considers instead using weaker
lattice basis reduction methods (such as LLL [15]) to speed this up, but at
the cost of less-uniform distributions. For example, the results of LLL are
thought to be skewed towards certain favored outputs avoiding “dark bases”
[14]. Since our interest in generating random bases is to see how long incom-
plete lattice reduction takes on them, the use of complete lattice reduction to
make the basis itself is too slow for our purposes (hence we did not consider
this algorithm in our experiments).

10

3 Experiments on recognizing Zn

In this section we report on attempts to solve instances of Problem 2b which
are generated using some of the algorithms from Section 2 for sampling
GL(n,Z). We first note that Geissler and Smart [8] reported on attempts
using LLL [15] (as well as their own modification, for which they report up
to a factor of four speedup), and concluded that LLL itself is insufficient
for NTRU instances far smaller than those considered in (3.5) below. Here,
however, we are considering various distributions of matrices on which LLL
may be more successful (but yet still not solve). Instead of LLL alone, we
try the following:

Procedure to test matrix generation algorithms
with Problem 2b.

1. In Magma, apply LLL or Nguyen-Stehlé’s L2 lattice basis
reduction algorithm [19] to the Gram matrix G = MM t,
then

2. apply BKZ with incrementally-increasing block sizes 3, 4,
and 5.

3. Success is measured by whether or the output basis vectors
all have norm equal to 1 (in which case they span a rotation
of the Zn lattice).

(3.1)

One can of course continue further with block sizes larger than 5, but we
fixed this as a stopping point in order to be systematic.

Our main finding is that Algorithm 2 in Section 2 (as implemented in
Magma’s RandomSLnZ) is insecure for generating hard instances of Problem
2b. Algorithms 3, 4, and 5 fare much better.

It is not particularly surprising that LLL performs better on rotations of
the Zn lattice than it does on random lattices; for one thing, the random
lattice in Rn has shortest vector on the order of

√
n, as opposed to 1 for

rotations of the Zn lattice (so the latter has an immense quantity of short
vectors compared to typical lattices). Since LLL typically outperforms its
provable guarantees, it is not surprising it is effective on Problem 2b. A
detailed analysis of LLL and BKZ heuristics on Problem 2b is beyond the

11

scope of this paper; rather, we emphasize they perform better on certain
distributions in Problem 2b than on others.

A reference point for the bit-strength of lattice prob-
lems: NTRU

Before describing our experiments, a word is in order on how the security of
lattice problems is measured. This is an active area in which no general con-
sensus has been reached despite many competing suggestions (reflecting its
underlying notoriously complicated difficulty). One area where bit strengths
have been suggested is for the NTRU cryptosystem with particular parame-
ters. We mention this to attempt to quantify the notion that lattice problems
in high dimensions are hard and as a point of comparison, though there are
of course many differences between NTRU lattices and rotations of the Zn

lattice (we don’t say anything about the security of NTRU itself).
In more detail, NTRU matrices have the form(

In/2 X

0 qIn/2

)
(3.2)

with n even, q an integer greater than one, and X chosen randomly from a
certain distribution among all integral matrices of the form

X =

 x1 x2 x3 ··· xn/2−1 xn/2
x2 x3 x4 ··· xn/2 x1

...
...

...
...

...
...

xn/2 x1 x2 ··· xn/2−2 xn/2−1

 , |xj| ≤
q

2
. (3.3)

The rows of an NTRU matrix span an “NTRU lattice” Λ ⊂ Rn. In [23]
and in earlier NIST Post-Quantum Cryptography submissions the following
quantum bit security is suggested for NTRU with the following parameters:

q n = dim(Λ) estimated quantum security (in bits)
2048 886 128
2048 1486 256

(3.4)

These estimates are not directly relevant to the lattice bases we examine,
which have different determinants and very different structure. Neverthe-
less, they are consistent with the general expectation that lattice problems
in dimensions 500 or more (and especially 1,000 or more) become crypto-
graphically difficult.

12

With the table in (3.4) in mind, we attempted to use the procedure (3.1)
to solve Problem 2b on instances generated by Algorithms 2, 3, and 4 having
similar size and density to NTRU matrices. Namely, in addition to having
the same dimensions we also ensured (e.g., by taking sufficiently long prod-
ucts) that the vector lengths were at least those of the rows of the NTRU
lattice basis in (3.2)7, and generated using comparably many random bits
(“entropy”). This overall amount of entropy involved in generating a ran-
dom matrix is very important, since for long products such as in Algorithms
2 and 3 the entries of the resulting product matrix will be more uniformly
distributed than if the random bits were packed into a smaller number of ma-
trices, with each matrix using a large number of random bits. (For example,
consider the extreme case where the product length is 1.)

3.1 Experiments with Algorithm 2 (Magma’s RandomSLnZ
command)

To mimic random elements of GL(n,Z) and address the issue just mentioned,
one may desire that the product matrix has as many nonzero entries as
possible per random bit. For this reason, we set the parameter b = 1 in
Algorithm 2 in order to take longer products (thereby further spreading out
the nonzero entries of the matrix), while keeping the number of random bits
constant. When the product length is less than the matrix size, one expects
to have rows or columns of the product matrix which are unchanged by the
successive matrix multiplications. (This much less likely to be the case for
Gram matrices, however.)

Thus each random factor has at most a single nonzero off-diagonal entry,
and this entry is in {−1, 0, 1}. It is prohibitive to pack in as many random
bits as the total number of entries this way, since multiplication of large
matrices is slow. As an extreme example, as part of a comparison with
the last row of (3.4) we generated a random matrix in GL(1486,Z) using
products of length 55,000, again with b = 1. Generating the product alone
took about half a day. Its row lengths were between 214 and 220 in size. For
comparison, an NTRU matrix with similar parameters (as in Table 3.4) uses
≈ n/2 = 743 random bits and roughly 1/4 of its entries are nonvanishing.
One might hypothesize that having more random bits in the matrix makes

7The vector lengths of the rows in the NTRU matrix (3.2) are either roughly
√

n
2
q
2 (for

the first n/2 rows), or q (the last n/2 rows)

13

solving Problem 2b more difficult, but as we shall see this is in fact turns out
not to be the case: the structure of the matrix plays a very important role,
and the product structure from Algorithm 2 seems to be a weakness. That
is, the larger the value of the parameter b, the more unusual properties the
product matrix possesses.

We tried a number of experiments with Algorithm 2 from (2.4) using
lattice reduction packages built into Magma. Our emphasis was mainly on
the success of lattice reduction, but not its speed (these jobs ran from seconds
to up to about a week, whether or not they were successful). As mentioned
above, we took long products using Magma’s RandomSLnZ command, each
roughly matching the parameters of an NTRU instance whose hardness was
estimated in (3.4). The following table shows cases where lattice reduction
solved Problem 2b on instances generated by Algorithm 2 (using the testing
procedure from (3.1), all with running time of a matter of days):

n = dim(Λ) estimated bit-hardness range of vector lengths product
for corresp. NTRU (3.4) (in bits) (in bits)

886 128 from 25 to 32 55,000
1486 256 from 14 to 20 55,000

(3.5)
The second column reproduces the bit-strength estimates from (3.4) for
NTRU lattices. Of course these are not the same lattices we are looking
at here, so these numbers are given purely as a reference point. From the
success of our trials one immediately sees that it is either much easier to
solve Problem 2b than it is to crack NTRU, or that the matrices generated
by Algorithm 2 give rise to fairly weak instances of Problem 2b. Either
way, we conclude on the basis of this comparison that the Lenstra-Silverberg
Problem 2b is fairly easy for matrices M generated by Magma’s RandomSLnZ
command.

3.2 Experiments with Algorithm 3 (random SL(d,Z)
matrices)

Next we consider matrices generated by Algorithm 3 (random GL(d,Z)’s),
and find that for small d they are also cryptographically weak for the Lenstra-
Silverberg problem, but stronger than those generated by Algorithm 2. Fur-
thermore, we see they are stronger as the value of d increases.

14

The following tables list the outcome of several examples of experiments
attacking instances of Problem 2b from matrices generated by Algorithm
3, where the matrices in SL(d,Z) ⊂ SL(n,Z) are chosen randomly among
those whose matrix entries are bounded in absolute value by some parameter
T , again following the procedure in (3.1). One sees the dramatic effect of
the product length `. For example, if ` is too short there may be rows
and columns of the matrix not touched by the individual multiplications by
the embedded random d × d matrices; if ` is too long, the matrix entries
become large and lattice basis reduction becomes prohibitively slow (as so
does generating the product to begin with).

n d T ` shortest row longest row found M?
length (in bits) length (in bits)

200 2 1 4000 6.03607 12.7988 ×
200 2 2 1500 1.29248 18.5329 X
200 2 2 2000 7.86583 22.2151 ×
200 2 3 1000 0.5 27.0875 ×
200 2 3 2000 23.521 41.5678 ×
200 2 10 500 2.04373 38.7179 X
200 2 10 700 7.943 49.0346 ×
200 3 1 1000 2.04373 11.3283 X
200 3 1 1500 7.66619 17.1312 ×
200 3 1 2000 13.0661 20.8768 ×
200 3 2 500 3.27729 18.4087 X
200 3 2 600 4.89232 24.111 ×
200 3 2 1000 13.0585 34.0625 ×
200 4 1 500 3.66096 12.2277 X
200 4 2 300 0.5 24.2424 X
200 4 2 400 1.79248 26.6452 ×

key: n=lattice dimension, d=size of smaller embedded matrices, T=bound
on embedded matrix entries, `=length of the product of smaller matrices.

15

n d T ` shortest row longest row found M?
length (in bits) length (in bits)

500 2 1 4000 0. 5.90085 X
500 2 1 8000 3.41009 10.7467 X
500 2 1 10000 7.08508 12.7447 X
500 2 1 15000 12.6617 18.5326 X
500 2 1 20000 18.0246 24.5732 ×
500 2 2 4000 4.21731 18.587 X
500 2 2 6000 12.3467 28.7882 ×
500 2 2 8000 18.87 35.7267 ×
500 2 2 10000 28.5508 45.8028 ×
500 2 3 2000 0. 19.0752 X
500 2 3 3000 7.38752 32.9895 X
500 2 3 4000 16.9325 40.9656 ×
500 2 10 1000 0. 30.3755 X
500 2 10 2000 11.9964 61.5006 ×
500 3 1 1000 0. 5.39761 X
500 3 1 2000 1.29248 9.164 X
500 3 1 3000 2.37744 13.9903 X
500 3 1 4000 8.43829 17.4593 X
500 3 1 5000 14.1789 21.528 X
500 3 1 6000 18.3878 25.2578 ×
500 3 1 7000 20.5646 29.287 ×
500 3 2 1000 0. 15.551 X
500 3 2 2000 3.24593 33.0945 X
500 3 2 3000 23.5966 43.7986 ×
500 3 3 1000 0. 28.1575 X
500 3 3 2000 16.6455 53.1806 ×
500 3 3 3000 41.3371 83.9486 ×
500 4 1 1000 0. 9.85319 X
500 4 1 2000 8.11356 18.9434 X
500 4 1 3000 19.1019 26.9836 X
500 4 1 4000 24.4869 35.6328 ×
500 4 1 5000 26.6804 44.3982 ×
500 4 1 6000 40.5944 53.3654 ×
500 4 2 1000 6.29272 33.4373 X
500 4 2 2000 33.6181 63.3469 ×

16

n d T ` shortest row longest row found M?
length (in bits) length (in bits)

886 2 1 3000 0 3.49434 X
886 2 1 4000 0 3.80735 X
886 2 1 5000 0 4.40207 X
886 2 1 6000 0 5.30459 X
886 2 1 7000 0 6.16923 X
886 2 1 8000 0 6.90754 X
886 2 1 9000 1 7.58371 X
886 2 1 10000 2.37744 8.05954 X
886 2 1 15000 5.46942 11.2176 X
886 2 1 20000 8.6594 14.5837 X
886 2 1 25000 10.884 18.035 X
886 2 1 30000 15.0082 21.0333 X
886 2 1 35000 17.6964 24.8408 X
886 2 1 40000 20.7706 28.3888 X
886 2 1 45000 24.484 30.6745 X
886 2 1 50000 25.7401 34.0742 ×

Comments

Each sequence of experiments (for fixed values of n, d, and T) eventually
fails when ` is sufficiently large. For ` too small the random product will not
involve all the rows and columns of the matrix, meaning that the dimension
of the lattice problem is effectively reduced to a smaller value of n. There
is some correlation between entries having a short vector in M (the fifth
column), especially in the trials having n = 200. For n = 500 one sees more
successful trials with longer shortest rows, especially as d (and to a lesser
extent, T) increase. Note that each entry in these tables corresponds to a
single experiment; we did not attempt to average over several experiments
since we want to report on the range of the row lengths (which is one means
of comparison with NTRU lattices (3.2)).

We did not take values of d > 4, since it is difficult to use Algorithm 1 to
generate larger random elements of SL(n,Z).

The table for n = 886 is in some sense an elaboration of the middle
entry of (3.5), the difference being that the latter uses unipotents (instead of
embedded SL(2,Z) matrices).

17

3.3 Experiments with Algorithm 4

Finally, we turn to the opposite extreme of random elements of GL(n,Z)
generated by Algorithm 4, in which the bottom n − 1 rows are uniformly
distributed among entries in the range [−T, T]. Here we were able to solve
Problem 2b with instances having n = 100, even with entry sizes up to
T = 50 (again, using the testing procedure in (3.1)). However, none of our
experiments with n ≥ 110 were successful at all, even with T = 1 (i.e., all
entries below the top row are −1, 0, or 1).

n T shortest row longest row found M?
length (in bits) length (in bits)

100 1 2.91645 4.65757 X
100 3 4.14501 5.81034 X
100 4 4.50141 6.20496 X
100 10 5.64183 7.15018 X
100 50 7.99332 9.77546 X
100 1 2.91645 4.65757 X
110 1 2.98864 4.54902 ×
120 1 3.03304 4.77441 ×
125 1 3.09491 4.93979 ×
150 1 3.12396 5.09738 ×
200 1 3.42899 5.32597 ×
200 2 4.23584 6.42421 ×
200 3 4.72766 6.82899 ×
200 4 5.06529 7.41803 ×

Comments

One numerically sees that matrices produced by Algorithm 2 are nearly rank-
one matrices (i.e., up to a small overall perturbation relative to the size of the
entries). In general, matrices in GL(n,Z) with large entries have very small
determinants (±1) relative to their overall entry size, so they are already very
close to singular matrices. However, the size of the rank of nearby matrices is
important. The matrices produced by Algorithm 4 are instead perturbations
of matrices having rank n−1 (which is as large as possible for singular n×n
matrices). We expect Algorithm 3’s matrices, which are produced by taking
products of random GL(d,Z) matrices, have intermediate behavior (but have
not systematically analyzed this).

18

A related fact is that matrices produced by Algorithm 2 frequently have
a very large row or column (if b is sufficiently large) – typically coming from
the last factor in the matrix multiplication. That serves as a possible hint
to recover the spelling of the word in the random product, along the lines
of the length-based attack in [2, §4]. However, we were unable to turn this
into a direct, general attack. For example, it is unclear what to do when the
value of x ∈ Z∩ [−b, b] is small, say in the regime that b ≤ `. (The situation
is clearer when b is extremely large relative to `, in which case we expect a
bias effect in random words similar to underlying device used in [2, §4].)

4 Random basis generation in the DRS NIST

Post-Quantum Cryptography competition

submission

In [1, §5.1.2] some examples of methods for generating random lattice bases
are described, which are closely related to Algorithms 2, 3, and 5. The
authors reported their experiments on these methods resulted in similar out-
comes in practice. Our experiments, which appear to possibly use slightly
different variants of the algorithms used by the authors, do show a difference
(as was explained in Section 3).

In this section we wish to make further comments about one method
highlighted in [1], which is from the DRS NIST Post-Quantum competition
submission [20, §2.2]. Random elements of SL(n,Z) there are constructed
as products of length 2R + 1 of the form

M = P1γ1P2γ2P3γ3 · · ·PRγRPR+1 , (4.1)

where P1, . . . , PR+1 are randomly chosen uniformly among permutation ma-
trix in SL(n,Z) and γ1, . . . , γR are elements in SL(n,Z) produced by the
following random process. Let A+ = (1 1

1 2) and A− =
(

1 −1
−1 2

)
. Then each γi

is a block diagonal matrix with n
2

2× 2 entries chosen uniformly at random
from {A+, A−}. This construction has some similarities with Algorithm 3
with d = 2, but is expected to be weaker in the sense that many of the SL(2)
matrices commute (being diagonal blocks of the same matrix). In fact, here
there is essentially only one choice of diagonal entry (as A+ is conjugate by
(1 0
0 −1) to A−), and so one may take all the matrices on the block diagonal

19

to be A+ at the cost of allowing the Pi’s to be signed permutation matri-
ces). Alternatively, by rearranging the permutation matrices and applying
an extra rotation on the right, Problem 2b on matrices of the form (4.1) is
equivalent to it on products of the form

M ′ = M1M2 · · ·MR , (4.2)

in which each Mi is conjugate of diag(

n/2︷ ︸︸ ︷
A+, A+, . . . , A+) by a random signed

permutation matrix.
Since Algorithm 3 with d = 2 performed relatively weakly in the exper-

iments of Section 3, for these reasons we suspect Problem 2b is relatively
easy to solve on matrices generated using (4.1) (as compared to those, say,
generated using Algorithm 4). Our remaining comments in this section per-
tain solely to the construction of the element M ∈ SL(n,Z) from (4.1) in
the context of Problem 2b, and not to any other aspect of [20].

The parameters listed in [20, §3.2] assert 128-bit security for their scheme
when n = 912 and R = 24. The testing procedure (3.1) easily solves Problem
2b when n or R are smaller yet still relatively large. For example, it took
roughly an hour to recover M from MM t when (n,R) = (180, 24) using BKZ
with block sizes up to 26.

Perhaps more interestingly, we also applied the testing procedure (3.1) for
the parameters n = 912 and increasing values of R up to the recommended
choice of R = 24 (see Figure 1). The results were strikingly successful, in that
each trial for R ≤ 22 successfully recovered M from MM t using only LLL
(without requiring BKZ). We additionally tried R = 23 and nearly recovered
M using LLL this way: the longest vector in the LLL output had length

√
7,

and running BKZ reduction with block size 3 for less than five minutes then
found M . We were unsuccessful in the case R = 24 suggested in [20].

Again, these results are for Problem 2b applied to the random basis con-
struction used in [20], not for the actual problem they consider there; nev-
ertheless, this may indicate a weakness of the random bases in [20] as well.
Interestingly, our experiments for fixed values of the product length R some-
times fared better for larger values of n. For example, we were not successful
with (n,R) = (200, 22) despite being successful for (n,R) = (912, 22). Our
explanation is that as n grows there may be a weakness in that it is hard
to randomly fill out the full matrix M (analogous to the role of the length
` in Algorithms 2 and 3, where a similar issue was faced). Indeed, matrices

20

Figure 1: Suggested parameters in the DRS NIST submission [20] include
(n,R) = (912, 24). We experimentally tried to solve Problem 2b on instances
generated by the random basis construction in [20, §2.2] with n = 912 and
1 ≤ R ≤ 24. We were able to solve all cases for R ≤ 22 in less than 60 hours
using LLL, and the R = 23 case in slightly more time using the procedure in
(3.1). Our attempts failed, though, for the recommended parameter R = 24.
We conclude that DRS’s method of random basis generation is insecure with
the recommended parameter setting (n,R) = (912, 24), at least for Problem
2b. Times are shown for runs on a Dell PowerEdge R740xd server equipped
with two Intel Xeon Silver 4114 2.2GHz processors and 256GB RAM.

of the form (4.1) seem to have a very special form: Figure 2 shows the entry
sizes in MM t have a banded structure.

5 Conclusions

We have considered the role of generating random elements in GL(n,Z) in
the difficulty of lattice problems, and have found that it can have a profound
influence. Concretely, Magma’s RandomSLnZ command (Algorithm 2) is un-
suitable in the context of the Lenstra-Silverberg’s “Recognizing Zn Decision”
Problem 2b from (1.4). We were able to successfully attack lattices of di-
mension up to 1,486, which are in many ways comparable to NTRU lattices
having claimed 256-bit quantum security. On the other hand, using appar-

21

Figure 2: Mathematica’s MatrixPlot command on a matrix the Gram matrix
MM t, where M is generated according to (4.1) with recommended parame-
ters n = 912 and R = 24 from [20]. Similar plots arise when M is generated
using Algorithm 3 with d = 2. In contrast, Gram matrices generated by
Algorithm 4 have a (provably) far more uniform structure.

ently stronger methods such as Algorithms 3 and 4 make Problem 2b much
more difficult to solve.

We would thus recommend not using Algorithm 2 in generating random
bases for cryptographic applications. For similar reasons discussed in Sec-
tion 4, we also recommend not using the random basis algorithm from the

22

NIST Post-Quantum Competition submission DRS [20] (e.g., we solved Prob-
lem 2 on instances of its random basis generation method using parameters
just slightly below its recommend settings for 128-bit security).

We have not fully understood the weaknesses of these algorithms. It
seems plausible that the failure to quickly fill out the matrix entries in a
uniform way (many are zero at the initial stages) is at least partly to blame.
For example, the construction of Algorithm 2 in some sense reverses the steps
of an LLL basis reduction. Furthermore, one might expect the block sizes in
Algorithm 3 to be related to the block sizes in the BKZ algorithm. From
this point of view, we would expect Algorithms 4 and 5 to be the strongest
lattice basis generation algorithms considered in this paper, consistent with
our experiments.

References

[1] Yoshinori Aono, Thomas Espitau, and Phong Q. Nguyen, Random Lattices: Theory
And Practice, preprint. https://espitau.github.io/bin/random_lattice.pdf

[2] Evgeni Begelfor, Stephen D. Miller, and Ramarathnam Venkatesan, Non-abelian
analogs of lattice rounding, Groups Complexity Cryptology 7, 117–133. Volume 7:
Issue 2.

[3] J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices, and Groups, 3rd ed.,
Grundlehren der mathematischen Wissenschafter 290, Springer, New York (1999).

[4] W. Duke, Z. Rudnick, and P. Sarnak, Density of integer points on affine homogeneous
varieties, Duke Math. Jour. 71 (1993), 143–179.

[5] Noam D. Elkies, A characterization of the Zn lattice, Math. Res. Lett. 2 (1995),
321–326.

[6] The FPLLL development team, FPLLL, a lattice reduction library. Available at
https://github.com/fplll/fplll

[7] Steven Galbraith, Mathematics of Public Key Cryptography, http://www.math.

auckland.ac.nz/~sgal018/crypto-book/crypto-book.html.

[8] Katharina Geißler and Nigel P. Smart, Computing the M = UU t integer matrix
decomposition, Cryptography and Coding 2003, Lect. Notes in Comp. Sci. 2898,
Springer, Berlin Heidelberg, 2003, 223–233.

[9] C. Gentry and M. Szydlo, Cryptanalysis of the revised NTRU signature scheme,
Advances in Cryptology—EUROCRYPT 2002, Lect. Notes in Comp. Sci. 2332,
Springer, Berlin, 2002, 299–320. http://www.szydlo.com/ntru-revised-full02.

pdf

23

https://espitau.github.io/bin/random_lattice.pdf
https://github.com/fplll/fplll
http://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
http://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
http://www.szydlo.com/ntru-revised-full02.pdf
http://www.szydlo.com/ntru-revised-full02.pdf

[10] Larry Gerstein, Basic Quadratic Forms, Graduate Studies in Mathematics 90, Amer.
Math. Soc.., Providence, RI, 2008.

[11] A. Gorodnik and A. Nevo, The ergodic theory of lattice subgroups, Annals of Mathe-
matics Studies 172, Princeton University Press, 2010.

[12] Christoph Hunkenschröder, Deciding whether a Lattice has an Orthonormal Basis is
in co-NP, arxiv:1910.03838

[13] Seungki Kim, On the shape of a high-dimensional random lattice, Stanford Ph.D.
Thesis (2015).

[14] Seungki Kim and Akshay Venkatesh, The Behavior of Random Reduced Bases, Int.
Math. Res. Notices 2018, pp. 6442–6480.

[15] Arjen K. Lenstra, Jr., Hendrik W. Lenstra, and Laszlo Lovasz, Factoring polynomials
with rational coefficients, Mathematische Annalen, 261, pp. 513–534, (1982).

[16] H. W. Lenstra Jr. and A. Silverberg, Revisiting the Gentry-Szydlo Algorithm,
CRYPTO 2014, Lecture Notes in Computer Science, 8616, Springer, Berlin, pp. 280–
296.

[17] H. W. Lenstra Jr. and A. Silverberg, Lattices with symmetry, Journal of Cryptology
30 (2017), 760-804.

[18] H. W. Lenstra Jr. and A. Silverberg, Testing isomorphism of lattices over CM-orders,
SIAM Journal on Computing 48, no. 4 (2019), 1300–1334.

[19] Phong Q. Nguyen and Damien Stehlé, An LLL algorithm with quadratic complexity,
SIAM J. Comput, 39, pp. 874–903 (2009).

[20] Thomas Plantard, Arnaud Sipasseuth, Cédric Dumondelle, Willy Susilo, DRS: Di-
agonal dominant Reduction for lattice-based Signature, NIST Post-Quantum
Digital Signature Competition entry, https://csrc.nist.gov/Projects/

post-quantum-cryptography/Round-1-Submissions

[21] Igor Rivin, How to pick a random integer matrix? (and other questions), Math. Comp.
85 (2016), 783–797.

[22] C.P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms, The-
oretical Computer Science 53 (1987), 201–224.

[23] William Whyte and Lee Wilson, Quantum Safety In Certified Cryptographic Modules,
https://icmconference.org/wp-content/uploads/A21c-Whyte.pdf

24

https://csrc.nist.gov/Projects/post-quantum-cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/Round-1-Submissions
https://icmconference.org/wp-content/uploads/A21c-Whyte.pdf

	Introduction
	Choosing random elements of GL(n,Z)
	Experiments on recognizing Zn
	Experiments with Algorithm 2 (Magma's RandomSLnZ command)
	Experiments with Algorithm 3 (random SL(d,Z) matrices)
	Experiments with Algorithm 4

	Random basis generation in the DRS NIST Post-Quantum Cryptography competition submission
	Conclusions

