
Lightweight Swarm Authentication

George Teşeleanu1,2

1 Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania

tgeorge@dcti.ro
2 Simion Stoilow Institute of Mathematics of the Romanian Academy

21 Calea Grivitei, Bucharest, Romania

Abstract. In this paper we describe a provably secure authentication
protocol for resource limited devices. The proposed algorithm performs
whole-network authentication using very few rounds and in a time loga-
rithmic in the number of nodes. Compared to one-to-one node authenti-
cation and previous proposals, our protocol is more efficient: it requires
less communication and computation and, in turn, lower energy con-
sumption.

1 Introduction

With the rise in popularity of the Internet of Things paradigm (IoT), low-cost
devices with limited resources are used much more frequently by the industry
and, implicitly, by us. In an IoT setting, spatially distributed nodes form a
network and are able to control or monitor physical or environmental conditions3,
perform computations or store data. Due to the nodes’ limited resources, either
computational or physical, they normally transmit the acquired data through
the network to a gateway which collects information and sends it to a processing
unit.

Usually, nodes are deployed in hostile environments and therefore there are
a number of serious security concerns that need to be addressed. Unfortunately,
the lightweight nature of nodes heavily restricts cryptographic operations and
makes any communication costly. Thus, the need for specific cryptographic solu-
tions becomes obvious. The Fiat-Shamir-like distributed authentication protocol
presented in [1] (denoted by QR-Swarm) represents such an example. Based on
the QR-Swarm construction, an unified generic zero-knowledge protocol is de-
scribed in [7] (denoted by Unif -Swarm).

Although the Unif -Swarm construction offers flexibility when choosing the
underlying security assumption, the discrete logarithm instantiation (denoted by
DL-Swarm) is one of interest. To ensure a certain security level, the QR-Swarm
protocol needs to be run several times. To reach the same security level it is
sufficient to run the DL-Swarm construction once. Therefore, it requires less
communication. Note that the security of DL-Swarm is based on the discrete
logarithm problem.
3 e.g. temperature, pressure, image, sound

https://orcid.org/0000-0003-3953-2744


2

In this paper we describe an authentication protocol that is an optimization
of the DL-Swarm protocol. More precisely, our protocol reduces the number of
messages transmitted during the authentication process, while requiring a lower
level of processing. This in turn ensures lower power consumption, and hence
nodes have a longer battery life. The security of our main proposal is based on
the computational Diffie-Hellman assumption, instead of the discrete logarithm
problem. Although we base our security on a weaker security notion, in practice,
the only known way to attack the computational Diffie-Hellman is to attempt
to retrieve one of the secret exponents (i.e. to solve the discrete logarithm) [2].
In the appendix we also propose a version of our protocol that is based on the
computational bilinear Diffie-Hellman assumption. Even though this version is
less efficient, we believe that the bilinear version is of theoretical interest, since
it shows that we can implement the protocol in multiple ways.

Structure of the paper. Notations and preliminaries are presented in Section 2.
We describe the core of our paper, a lightweight authentication protocol for IoT
devices, in Section 3. We conclude in Section 4. A variation of our protocol is
proposed in Appendix A.

2 Preliminaries

Notations. Throughout the paper, the notation ∥ denotes string concatenation.
The subset {0, . . . , s} ∈ N is denoted by [0, s]. The action of selecting a random
element x from a sample space X is represented by x

$←− X, while x← y indicates
the assignment of value y to variable x.

2.1 Hardness Assumptions

Definition 1 (Discrete Logarithm - dl). Let G be a cyclic group of order q,
g a generator of G and let A be a probabilistic polynomial-time algorithm (PPT
algorithm) that returns an element from Z∗

q . We define the advantage

ADV dl
G,g(A) = Pr[A(gx) = x|x $←− Z∗

q ].

If ADV dl
G,g(A) is negligible for any PPT algorithm A, we say that the discrete

logarithm problem is hard in G.

Definition 2 (Computational Diffie-Hellman - cdh). Let G be a cyclic
group of order q, g a generator of G and let A be a probabilistic PPT algorithm
that returns an element from G. We define the advantage

ADV cdh
G,g (A) = Pr[A(gx, gy) = gxy|x, y $←− Z∗

q ].

If ADV cdh
G,g (A) is negligible for any PPT algorithm A, we say that the com-

putational Diffie-Hellman problem is hard in G.



3

2.2 Zero-Knowledge Protocols

In a traditional proof of knowledge a prover, called Peggy, tries to convince a
verifier, called Victor, that she knows a piece of knowledge. To achieve that, they
engage in an interactive protocol. To make sense, the protocol must be complete
and sound. Completeness means that if Peggy is honest she can succeed to
convince an honest Victor that her claim is true, while soundness means that a
dishonest Peggy cannot convince Victor of a false statement.

Formally, let Q : {0, 1}∗ × {0, 1}∗ → {true, false} be a predicate. Given a
value z, Peggy will try to convince Victor that she knows a value x such that
Q(z, x) = true. The following definition [3,8] captures the notions of complete-
ness and soundness for a proof of knowledge protocol.

Definition 3 (Proof of Knowledge Protocol). An interactive protocol (P, V )
is a proof of knowledge protocol for predicate Q if the following properties hold

– Completeness: V accepts the proof when P has as input a value x with
Q(z, x) = true;

– Soundness: there exists an efficient program K (called knowledge extrac-
tor) such that for any P̄ (possibly dishonest) with non-negligible probability
of making V accept the proof, K can interact with P̄ and output (with over-
whelming probability) an x such that Q(z, x) = true.

An interesting property of proofs of knowledge is that they can be performed
without leaking any information besides the validity of Peggy’s claim. More pre-
cisely, the protocol can be implemented such that Victor can simulate it by
himself (i.e. without requiring Peggy to be part of the protocol). The aforemen-
tioned property is called zero-knowledge and it is formally defined next [4, 8].

Definition 4 (Zero Knowledge Protocol). A protocol (P, V ) is zero-knowledge
if for every efficient program V̄ there exists an efficient program S, the simulator,
such that the output of S is indistinguishable from a transcript of the protocol
execution between P and V̄ .

2.3 A Distributed Unified Protocol

Let us consider an n-node network consisting of N1, ...,Nn. The nodes Ni can be
seen as users and the base station T as a trusted center. To achieve the authen-
tication of the entire network, the authors of [7] propose a unified Fiat-Shamir-
like construction. The construction which we detail next is an instantiation of
Unif -Swarm using discrete logarithms.

Before deploying the nodes, we must select the network’s security parameters.
Thus, we choose a group G of order p and we select an element g of order q, where
q is a large prime such that q|p. After selecting the public parameters, each node
Ni randomly selects its private key xi

$←− Z∗
q and computes the corresponding

public key zi ← gxi .



4

After the nodes are deployed, the network topology has to converge and a
spanning tree needs to be constructed. For example, we can use an algorithm
similar with the one presented in [9].

The protocol proposed in [7] can be summarized as follows:

1. First, T sends an authentication request message to all the Ni nodes directly
connected to it. The request message may contain a commitment com to the
challenge c (see 3.) to ensure the protocol’s zero-knowledge property even
against dishonest verifiers.

2. After receiving an authentication request message:
– Each Ni generates a private ki

$←− Z∗
q and computes ti ← gki ;

– The Ni nodes send authentication messages to all their (existing) chil-
dren;

– After the children respond, nodes Ni compute ti ← ti ·
(∏

j tj

)
and send

the result up to their parents. Note that the tj values are sent by the
nodes’ children.

Such a construction permits the network to compute the product of all the
ti values and send the result tc to the top of the tree in d steps, where d
represents the degree of the spanning tree. We refer the reader to Figure 1
for a toy example of this step.

3. T sends a random c = (c1, . . . , cn) ∈ [0, q−1]n as an authentication challenge
to the Ni nodes directly connected to it.

4. After receiving an authentication challenge c:
– Each Ni computes ri ← ki + cixi mod q;
– The Ni nodes then send the authentication challenge c to all their (ex-

isting) children;
– After the children respond, the nodesNi compute ri ← ri+

(∑
j rj

)
mod

q and send the result to their parents. Note that the rj values are sent
by the nodes’ children.

The network therefore computes collectively the sum of all the ri values and
transmits the result rc to T . Again, we refer the reader to Figure 1 for a toy
example of this step.

5. After receiving the response rc, T authenticates the whole network if and
only if grc = tc · (

∏n
i=1 z

ci
i ) holds.

In [7], the authors investigate the relation between the DL-Swarm protocol
and the discrete logarithm assumption. Their result is summarized in Theorem 1.

Theorem 1. The DL-Swarm protocol is a proof of knowledge if and only if the
dl assumption holds. Moreover, the protocol is zero knowledge.



5

T tc = t4

N4 t4 = gk4t1t2t3

N2

t2 = gk2

N3

t3 = gk3

N1

t1 = gk1

T rc = r4

N4 r4 = k4 + c4x4 + r1 + r2 + r3

N2

r2 = k2 + c2x2

N3

r3 = k3 + c3x3

N1

r1 = k1 + c1x1

Fig. 1: The DL-Swarm algorithm running on a network consisting of 4 nodes:
computation of tc (left) and of rc (right).

3 Computational Diffie-Hellman Swarm Protocol

3.1 Description

Let us consider again an n-node network consisting of the nodes N1, ...,Nn and
a base station T . The core idea of our proposal is that the base station does a
Diffie-Hellman type key exchange with all its children and then compares the
resulting network key with its own key.

We further describe our proposed distributed protocol (further denoted by
CDH-Swarm).

1. After the network is set, T sends an authentication request message to all the
Ni nodes directly connected to it. The request message contains a challenge
c← gk, where k

$←− Z∗
q .

2. After receiving an authentication request message:
– Each Ni computes ti ← cxi ;
– The Ni nodes send authentication messages to all their (existing) chil-

dren;
– After the children respond, Ni nodes compute ti ← ti ·

(∏
j tj

)
and send

the result up to their parents. Note that the tj values are sent by the
nodes’ children.

Such a construction permits the network to compute the product of all the
ti values and send the result tc to the top of the tree in d steps, where d
represents the degree of the spanning tree. We refer the reader to Figure 2
for a toy example of this step.

3. After receiving the response tc, T authenticates the whole network if and
only if tc = (

∏n
i=1 zi)

k holds.



6

T tc = t4

N4 t4 = cx4t1t2t3

N2

t2 = cx2

N3

t3 = cx3

N1

t1 = cx1

Fig. 2: The CDH-Swarm algorithm running on a network consisting of 4 nodes:
computation of tc.

Remark 1. The CDH-Swarm protocol either authenticates the whole network
or none of the nodes. More precisely, a single defective node suffices for au-
thentication to fail. In certain cases this is not acceptable and more information
is needed. For instance, one could wish to know which node is responsible for
the authentication failure. A simple back-up strategy consists in performing the
protocol with each of the nodes that still respond and thus identify where the
problem lies. Since all nodes already have the hardware and software required to
perform the protocol, the nodes can use the same keys to perform the one-to-one
protocol with the base station. Hence, this back-up solution adds no implementa-
tion overhead. Note that, as long as the network is healthy, using our distributed
algorithm instead is more efficient and consumes less bandwidth and less energy.

3.2 Security Analysis

Before stating the security proof, we first want to point out that in the case of
our protocol Peggy is given as input (gxi , gk) and she will try to convince Victor
that she knows an element v such that the predicate “Is v = gxik?” is true.

Theorem 2. The CDH-Swarm protocol is a proof of knowledge if and only if
the cdh assumption holds. Moreover, the protocol is zero knowledge.

Proof. If T receives a genuine tc, then we have

tc =

n∏
i=1

ti =

n∏
i=1

cxi =

n∏
i=1

(gk)xi =

n∏
i=1

(gxi)k =

(
n∏

i=1

zi

)k

.

Hence, T will always accept honest tc values, and thus the completeness property
is satisfied.

Let P̃ be a PPT algorithm that takes as input z1, . . . , zn and makes T accept
the proof with non-negligible probability Pr(P̃ ). Then we are able to construct
a PPT algorithm K (described in Algorithm 1) that interacts with P̃ and that



7

has a non-negligible advantage ADV cdh
⟨g⟩,g(K) = Pr(P̃ ). Therefore, given y0 ← gu

and y1 ← gv algorithm K can compute guv with non-negligible probability.
More precisely, on input y0 and y1, algorithm K first assigns as the public key

of node Ni the value y0, randomly selects the secret keys for the remaining n−1
nodes and computes their corresponding public keys. Then, he runs the protocol
with P̃ , where K plays the role of the base station. Note that the challenge K
send to P̃ is the value y1. Once the protocol is finished, K can recover the correct
value of guv only if P̃ is successful into authenticate himself. Hence, the success
probability of K is the same as the one of P̃ , and thus the soundness property
is satisfied.

Algorithm 1. Algorithm K.
Input: Two elements y0 ← gu and y1 ← gv

1 Select i
$←− [1, n] and xj

$←− Z∗
q , where j ∈ [1, n] \ {i}

2 Compute zj ← gxj and set zi ← y0

3 Send z1, . . . , zn to P̃

4 Send y1 to P̃

5 Receive tc from P̃

6 Compute w ←
∏

j ̸=i y
−xj

1

7 return tc · w

The last part of our proof consists in constructing a simulator S such that
its output is indistinguishable from a genuine transcript between the nodes and
the base station. Such a simulator is described in Algorithm 2.

Algorithm 2. Simulator S.
Input: The nodes’ public keys z1, . . . , zn

1 Choose k
$←− Z∗

q

2 For each node, compute ti ← zki ·
(∏

j tj
)

, where tj are the values computed
by the current node’s children

3 return gk, t1, . . . , tn

⊓⊔

Remark 2. Note if an adversary is simulating only n′ out of n nodes of the
network, then he still has to face an CDH-Swarm protocol with n′ nodes.

Small subgroup attack. The small subgroup attack [5, 6] demonstrates that
validating ephemeral keys is a prudent and, in some cases, essential measure in
Diffie-Hellman type protocols. We further illustrate what happens in the case



8

of the CDH-Swarm protocol. For simplicity, we further assume that n = 1.
The exact details of the CDH-Swarm protocol with n = 1 are illustrated in
Figure 3.

T N1

k
$←− Z∗

q

c← gk
c−−−−−−−→

t1 ← cx1

t1←−−−−−−−

Fig. 3: The CDH-Swarm protocol.

T N1

c← h
c−−−−−−−→

t1 ← cx1

t1←−−−−−−−

Fig. 4: The small subgroup attack.

The small subgroup attack works only if the order of G is not prime. More
precisely, if p = ms where s > 1 is small. Using this assumption, the attacker
forces t1 to be from the subgroup of order s. Therefore, he is able to obtain some
information about the node’s secret key.

Let h be an element of order m. The exact details of the attack are presented
in Figure 4. Note that t1 now lies in the subgroup of order s, and thus the
attacker can learn using brute force the value x1 mod s. By iterating this attack
for each small prime factor of p, an attacker can learn µ bits of x1, where µ is
the bit length of the small factors of p. Hence, the small subgroup attack lowers
the security margin by µ. For more details, we refer the reader to [6].

As long as p is chosen such that log2 q−µ is large4, the small subgroup attack
does not affect future authentications of N1, since the attacker still needs to find
the remaining bits of x1 in order to impersonate N1.

3.3 Complexity Analysis

The number of operations5 necessary to authenticate the network depends on
the topology at hand. Note that each node performs in average only a few oper-
ations (a constant number). Precise complexity evaluations are given in Tables 1
and 2. The motivation of considering per node metrics is to show that our pro-
tocol reduces the number of operation, and hence minimizes the risk of one
node running out of batteries. We can clearly see that compared to DL-Swarm
CDH-Swarm reduces the overall complexity of authenticating the network.

4 e.g. when G = Zp, if prime p is chosen such that q = (p − 1)/2 is also prime, then
we only lower the security margin by 1 bit.

5 Random number generations are denoted by RNG.



9

Operation Number of computations
DL-Swarm [7] CDH-Swarm

Exponentiation 2n+ 1 n+ 2

Multiplications ≤ 3n ≤ 2n

Additions ≤ 2n 0

RNG 2n 1

Table 1: The computational complexity of authenticating the network.

Operation Number of computations
DL-Swarm [7] CDH-Swarm

Exponentiation 1 1

Multiplications ≤ n ≤ n− 1

Additions ≤ n 0

RNG 1 0

Table 2: The computational complexity per node.

Let d = O(log n) be the degree of the minimum spanning tree of the network.
Then, only O(d) messages are sent. Hence, throughout the authentication process
only a logarithmic number of messages is sent.

Remark that in the case of the DL-Swarm protocol we have two rounds of
messages from the base station toward the leafs and two from the leafs toward
the base station. In our proposed protocol we reduce the protocol to one round
from the base station toward the leafs and one from the leafs toward the base
station. So, we reduce by half the number of messages transmitted through the
network. The exact bandwith requirements per node are presented in Table 3.

Messages Number of bits
DL-Swarm [7] CDH-Swarm

Sent ≤ (n+ 2)⌈log q⌉+ ⌈log com⌉ ≤ 2⌈log q⌉
Received ≤ 3n⌈log q⌉+ ⌈log com⌉ ≤ (n+ 1)⌈log q⌉

Table 3: The bandwidth requirements per node.

3.4 Hash Based Variant

We further describe a CDH-Swarm variant that aims at reducing the amount
of information sent by individual nodes. Note that for this protocol to work, the
base station must know the network’s topology beforehand.

According to the birthday paradox the probability of obtaining two identical
public keys is p ≃ 1− e−n(n−1)/2q. Since q is significantly larger than n, then we



10

can safely assume that p ≃ 0. Hence, we can use a node’s public key zi as an
unique identification number. Also, the zi values can be used to induce a total
order for the nodes on a given level using the usual < operation.

Let h : {0, 1}∗ → {0, 1}ℓ be a hash function. Using the previous remark,
instead of transmitting an element ti in Step 2, we can transmit a digest ti ←
h(zi∥ti∥ (∥jtj)), where tj1 < tj2 if and only if zj1 < zj2 . In parallel, T computes
the correct response tr by using the network’s topology and the k value. After
receiving the network’s response, the base station can check if tc = tr.

From an efficiency point of view, compared to DL-Swarm, multiplications
become hash computations and instead of transmitting ⌈log q⌉ bits, each node
transmits ℓ bits. Note that this variant does not impact security, assuming that
h is an ideal hash function.

4 Conclusions

In this paper we described a distributed authentication protocol that enables
network authentication using fewer rounds per authentication than previous
proposed solutions. Thereby making it more suitable for resource-limited de-
vices such as wireless sensors and other IoT devices. To conserve energy and
bandwidth, our proposal gives a proof of integrity for the whole network at
once, instead of authenticating each individual node.

References

1. Cogliani, S., Feng, B., Ferradi, H., Géraud, R., Maimuţ, D., Naccache, D., do Canto,
R.P., Wang, G.: Public Key-Based Lightweight Swarm Authentication. In: Cyber-
Physical Systems Security, pp. 255–267. Springer (2018)

2. Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective.
Springer (2005)

3. Feige, U., Fiat, A., Shamir, A.: Zero-Knowledge Proofs of Identity. Journal of Cryp-
tology 1(2), 77–94 (1988)

4. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof Systems. SIAM J. Comput. 18(1), 186–208 (1989)

5. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An Efficient Protocol for
Authenticated Key Agreement. Des. Codes Cryptogr. 28(2), 119–134 (2003)

6. Lim, C.H., Lee, P.J.: A Key Recovery Attack on Discrete Log-based Schemes Using
a Prime Order Subgroupp. In: CRYPTO 1997. Lecture Notes in Computer Science,
vol. 1294, pp. 249–263. Springer (1997)

7. Maimuţ, D., Teşeleanu, G.: A Generic View on the Unified Zero-Knowledge Protocol
and its Applications. In: WISTP 2019. Lecture Notes in Computer Science, vol.
12024, pp. 32–46. Springer (2019)

8. Maurer, U.: Unifying Zero-Knowledge Proofs of Knowledge. In: AFRICACRYPT
2009. Lecture Notes in Computer Science, vol. 5580, pp. 272–286. Springer (2009)

9. Mooij, A.J., Goga, N., Wesselink, J.W.: A Distributed Spanning Tree Algorithm
for Topology-Aware Networks. Technische Universiteit Eindhoven, Department of
Mathematics and Computer Science (2003)



11

A Computational Bilinear Diffie-Hellman Swarm
Protocol

In this section we provide the reader with a swarm protocol based on a dif-
ferent security assumption. Namely, the computational bilinear Diffie-Hellman
assumption.

Definition 5 (Computational Bilinear Diffie-Hellman - cbdh). Let G be
a cyclic group of order q, P a generator of G and e : G×G→ GT a cryptographic
bilinear map, where GT is a cyclic group of order q. We will use the convention
of writing G additively and GT multiplicatively. Let A be a probabilistic PPT
algorithm that returns an element from GT . We define the advantage

ADV cbdh
G,g,e(A) = Pr[A(xP, yP, zP ) = e(P, P )xyz|x, y, z $←− Z∗

q ].

If ADV cbdh
G,g,e(A) is negligible for any PPT algorithm A, we say that the com-

putational bilinear Diffie-Hellman problem is hard in G.

We further assume that the group G admits a computationally efficient bi-
linear map e(·, ·) such that cbdh is hard in G. Using the same setup6 as in the
case of CDH-Swarm, we present below the full details of the bilinear version of
the swarm protocol (denoted by CBDH-Swarm):

1. Let xi, yi
$←− Z∗

q be the private keys given to nodeNi and zi ← xiP , wi ← yiP
the node’s public keys. After the network is set, T sends an authentication
request message to all the Ni nodes directly connected to it. The request
message contains a challenge c← kP , where k

$←− Z∗
q .

2. After receiving an authentication request message:
– Each Ni computes ti ← e(c, P )xiyi ;
– The Ni nodes send authentication messages to all their (existing) chil-

dren;
– After the children respond, Ni nodes compute ti ← ti ·

(∏
j tj

)
and send

the result up to their parents. Note that the tj values are sent by the
nodes’ children.

Such a construction permits the network to compute the product of all the
ti values and send the result tc to the top of the tree in d steps, where d
represents the degree of the spanning tree.

3. After receiving the response tc, T authenticates the whole network if and
only if tc = (

∏n
i=1 e(zi, wi))

k holds.

Remark 3. Note that the hash based variant of the CDH-Swarm protocol can
also be easily adapted to the CBDH-Swarm version.
6 Traditionally, in the case of cbdh, the generator is denoted by P instead of g.



12

We further link the security of the CBDH-Swarm protocol to the cbdh
assumption.

Theorem 3. The CBDH-Swarm protocol is a proof of knowledge if and only
if the cbdh assumption holds. Moreover, the protocol is zero knowledge.

Proof (sketch). We will only prove that the scheme is sound, since the remaining
security requirements are proven similarly to Theorem 2. Hence, we have

tc =

n∏
i=1

ti =

n∏
i=1

e(c, P )xiyi =

n∏
i=1

e(P, P )xiyik

=

n∏
i=1

e(xiP, yiP )k =

(
n∏

i=1

e(zi, wi)

)k

.

⊓⊔


	Lightweight Swarm Authentication

