
Information Dispersal with
Provable Retrievability for Rollups

Kamilla Nazirkhanova, Joachim Neu, and David Tse

Stanford University
{nazirk,jneu,dntse}@stanford.edu

Abstract. The ability to verifiably retrieve transaction or state data
stored off-chain is crucial to blockchain scaling techniques such as rollups
or sharding. We formalize the problem and design a storage- and com-
munication-efficient protocol using linear erasure-correcting codes and
homomorphic vector commitments. Motivated by application require-
ments for rollups, our solution departs from earlier Verifiable Information
Dispersal schemes in that we do not require comprehensive termination
properties or retrievability from any but only from some known suffi-
ciently large set of storage nodes. Compared to Data Availability Oracles,
under no circumstance do we fall back to returning empty blocks. Dis-
tributing a file of 28.8MB among 900 storage nodes (up to 300 of which
may be adversarial) requires in total ≈ 95MB of communication and
storage and ≈ 30 s of cryptographic computation on a single-threaded
consumer-grade laptop computer. Our solution requires no modification
to on-chain contracts of Validium rollups such as StarkWare’s StarkEx.
Additionally, it provides privacy of the dispersed data against honest-
but-curious storage nodes.

1 Introduction

1.1 Rollups

Ethereum, like many blockchains, suffers from poor transaction throughput and
latency. To address this issue, various consensus-layer and off-chain scaling meth-
ods were introduced. While consensus-layer solutions such as sharding [15,14] or
multi-chain protocols [2,25] aim at improving the base blockchain protocol, off-
chain ‘layer 2’ solutions such as payment channels [7,17] and rollups [12] aim at
moving transaction processing and storage off-chain. The base blockchain then
serves only as a trust anchor, rollback prevention mechanism, and arbitrator
in case of misbehavior and disputes among participants. Rollups in particular
introduce an on-chain smart contract representing certain application logic, to
and from which rollup users can transfer funds to enter and exit the rollup,
and who watches over proper execution of the state machine that describes the
rollup’s application logic. Rollup users appoint an operator whose role is to exe-
cute the contract’s state machine and keep track of updated state such as users’

KN and JN contributed equally and are listed alphabetically.

2 Kamilla Nazirkhanova, Joachim Neu, and David Tse

Zk-Rollups: Loopring,
Starkware, Matter Labs

zkSync, Aztec 2.0, Hermez
network, zkTube

Optimistic Rollups:
Optimism, Offchain Labs
Arbitrum, Fuel Network,

Cartesi, OMGX

Validium: StarkWare,
Matter Labs zkPorter,

Loopring

Plasma: OMG Network,
Polygon, Gluon,

Gazelle, LeapDAO
O
n-
C
ha
in

O
ff
-C

ha
in

D
at
a
St
or
ag
e

Validity Proofs Fraud Proofs

Ensuring State Transition Integrity

Fig. 1. Layer 2 and rollup projects grouped into four categories according to how
validity of state transitions and data availability is ensured (fraud/validity proofs vs.
data storage on/off chain). Source: https://ethereum.org/en/developers/docs/scaling/

balances. For this purpose, the operator collects transactions issued by users
and executes them off the main chain, but periodically posts a state snapshot to
the main chain in order to irrevocably confirm transaction execution and, thus,
inherit the main chain’s safety guarantee. To ensure liveness, rollup users need
to be able to enforce application logic and to exit the rollup with their funds,
even if the rollup operator turns uncooperative. To this end, if a user presents
proof of their balance according to the latest state snapshot, then the on-chain
contract will pay out their funds to the user and thus enforce the user’s exit.
Rollup designs differ in two crucial aspects. First, how to ensure that the state is
only updated in accordance with the application logic. Second, how to guarantee
that users are able to exit even if the operator turns malicious and withholds
the information necessary for users to prove their balances on-chain.

1.2 Auditability of State Transitions and Data Availability

Rollup designs can be grouped into four categories, as illustrated in Figure 1,
according to how they ensure validity of state transitions and availability of
transaction information. For the problem of ensuring that application logic is
followed, one approach is to use fraud proofs: anyone can re-execute the applica-
tion logic on the inputs at hand and check that the state transitions are correct.
If they are not, they present proof of a fraudulent state transition to the on-
chain contract which will step in as an arbitrator and enforce application logic.
Rollups using fraud proofs are called optimistic rollups. A second approach is
based on validity proofs, where instead of detecting fraud after the fact, fraud
is prevented from the get-go by requiring the operator to provide cryptographic
proof [9,3] of proper state update. This approach is used in zk-rollups.

To ensure that rollup users are able to track proper execution of application
rules and to prove their balances, there are again two approaches. The relevant
information could be made available either on the main chain, perhaps in a con-

https://ethereum.org/en/developers/docs/scaling/

Information Dispersal with Provable Retrievability for Rollups 3

Rollup Users

...

Storage Nodes

...

Rollup Operator

statetstatet−1

txst−1 txst

2

...

1
3

... ... 4

Main Chain 5

6

Fig. 2. Normal operating mode of a Validium rollup, i.e., a zk-rollup with off-chain
storage: 1 Rollup operator collects transactions from rollup users. 2 Transactions are
executed by operator off-chain and new state of rollup is calculated. 3 Transaction
and state data is dispersed to storage nodes by operator. 4 Storage nodes confirm
receipt. Operator collects sufficient number of confirmations into certificate of data
retrievability. 5 Operator sends commitment to state and certificate of retrievability
to main chain. 6 State snapshot and certificate of retrievability are verified and if valid
accepted by main chain.

densed form, or stored off the main chain but with some credible assurance that
the data is in fact available for users to retrieve. For the latter purpose, Validium
rollups, i.e., zk-rollups with off-chain storage such as StarkWare’s ‘StarkEx’, in-
troduce a committee of trusted storage nodes. For the normal operating mode
of a Validium rollup see Figure 2. The rollup operator deposits a copy of the
relevant data with each storage node, who in turn confirm receipt. A state snap-
shot is accepted by the main chain only if enough storage nodes have confirmed
receipt of the corresponding full data. As long as enough storage nodes remain
honest and available, rollup users can always turn to them to obtain the data
necessary to prove fraud or balances, should the rollup operator withhold it.

This solution, however, is not communication- or storage-efficient. The oper-
ator has to send a copy of the entire data to every storage node which in turn
stores an entire copy. Therefore, this solution is not scalable and works only for
a relatively small number of storage nodes (e.g., a current application of the
StarkWare Validium rollup uses 8 storage nodes [10]), which leads to heavy cen-
tralization. Furthermore, the privacy of user data is violated, as storage nodes
can view the entire state.

4 Kamilla Nazirkhanova, Joachim Neu, and David Tse

1.3 Information Dispersal with Provable Retrievability

A more communication- and storage-efficient solution is provided by Verifiable
Information Dispersal (VID) as embodied by Asynchronous Verifiable Informa-
tion Dispersal (AVID [5]) and its successors AVID-FP [11] and AVID-M [24].
Generally speaking, AVID schemes encode the input data block into chunks and
every storage node has to store only one chunk rather than the full block. The
correctness of the dispersal is verifiable, meaning that the consistency of chunks
is ensured.

A VID scheme consists of two protocols, Disperse and Retrieve, satisfying [11]:

(a) Termination. If Disperse(B) is initiated by an honest client, then Disperse(B)
is eventually completed by all honest storage nodes.

(b) Agreement. If some honest storage node completes Disperse(B), all honest
storage nodes eventually complete Disperse(B).

(c) Availability. If ‘enough’ honest storage nodes complete Disperse(B), an hon-
est client that initiates Retrieve() eventually reconstructs some block B′.

(d) Correctness. After ‘enough’ honest storage nodes complete Disperse(B), all
honest clients that initiate Retrieve() eventually retrieve the same block B′.
If the client that initiated Disperse(B) was honest, then B′ = B.

Although existing VID schemes can be used to ensure data availability for
rollups, they miss properties that are required for this application, while having
others that are not needed, resulting in unnecessary complexity (cf. Figure 4).
For Validium rollups, it is crucial that the on-chain rollup contract can verify (4 ,
5) the retrievability of the underlying data before accepting a new state update,
to ensure that users have access to the data required to enforce the contract (or
be able to exit) on-chain in case of an uncooperative operator. For this purpose,
consistent retrieval of ‘some’ block B′ 6= B is not enough, the retrievability
(3) of the original block B needs to be ensured. Oppositely, comprehensive
termination properties (2) such as Termination and Agreement are not needed,
and some VID schemes (here AVID) provide properties exceeding VID that are
not required for the rollup application (1)

We introduce Semi-AVID with Provable Retrievability (Semi-AVID-PR) to
capture the requirements in the rollup application. Besides Disperse and Retrieve,
Semi-AVID-PR provides Commit to succinctly and unequivocally identify data
blocks and Verify to verify certificates of retrievability. The requirements are:

(a) Binding. Commit is a binding deterministic commitment to a block of data.
(b) Correctness. If an honest client initiates Disperse(B), then eventually it

obtains a valid certificate of retrievability for Commit(B).
(c) Soundness. If an honest client invokes Retrieve(P,C) with a valid certificate

of retrievability P for commitment C, then eventually it obtains a block B
such that Commit(B) = C.

We propose a communication- and storage-efficient Semi-AVID-PR protocol
with practical computational cost, which is compatible with the established on-
chain smart contracts of and thus can be readily adopted for existing Validium

Information Dispersal with Provable Retrievability for Rollups 5

Rollup Operator

Commitments

2Data

1

C
hu

nk
i

Storage Node i

Verify consistency
of chunk i with
commitments

3

45

Fig. 3. Dispersal in Semi-AVID-PR. 1 Client arranges data in matrix and computes
vector commitments of columns. 2 Client encodes data row-wise. 3 Commitments
and chunk i are sent to storage node i. 4 If chunk i is consistent with commitments,
storage node acknowledges receipt. 5 Enough acknowledgements form certificate of
retrievability.

rollups, e.g., such as StarkWare’s StarkEx. A high-level illustration of Disperse of
our scheme is provided in Figure 3. In our protocol, the rollup operator computes
commitments to chunks of the initial data and encodes it using an erasure-
correcting code. Encoded chunks are dispersed among the storage nodes along
with the commitments. Similarly to AVID-FP, the commitments allow storage
nodes to verify the consistency of their local chunk with the file for which they are
about to acknowledge the receipt of a chunk. If their chunk is consistent, a storage
node confirms receipt to the operator. Upon collecting enough confirmations, the
operator can produce a certificate of retrievability for the respective file, which
is later verified by the main chain before accepting the new state snapshot.
Furthermore, our scheme can provide privacy of the data against honest-but-
curious storage nodes because storage nodes can only view some coded chunk of
the block, and additional blinding can be used (details in Appendix B).

1.4 Related Work

The AVID protocol [5] satisfies not only the VID properties, but furthermore
guarantees that eventually a dispersed file can be retrieved from any subset
containing k honest storage nodes (cf. Figure 4, 1), rather than from only some
fixed known subset, as for Semi-AVID-PR. This is achieved by an additional
round of echoing chunks which leads to a high communication cost for AVID (cf.
Table 1), whose communication complexity is O(n|B|+ n2|C|), where |B| is the
block size, n is the number of storage nodes, and |C| is the size of a commitment,
e.g., 32B. Semi-AVID-PR’s communication and storage complexity is O(|B| +
n2|C|).

6 Kamilla Nazirkhanova, Joachim Neu, and David Tse

AVID [5]

1 2 3 (4)

AVID-FP [11]

2 3 (4)

ACeD [21] 2 5

AVID-M [24] 2 (4)

Semi-AVID-PR
(this paper) 3 4

Fig. 4. Related protocols and supported properties: 1 Retrieval from any sufficiently
large set of storage nodes 2 Comprehensive termination guarantees 3 Retrievability
guaranteed 4 Issues certificates of retrievability 5 Dispersal verifiable on-chain

AVID-FP [11], a successor of AVID, brings the communication complexity
to O(|B| + n3|C|) (which is an improvement for large |B| and moderate n)
using homomorphic fingerprinting (as in Semi-AVID-PR) so that storage nodes
can verify their chunks without echoing them. Since chunks can be verified,
retrievability is guaranteed (3). A round of AVID (with the fingerprints) is still
used to achieve comprehensive termination properties (2).

A recent advancement of VID, AVID-M [24], improves the communication
complexity to O(|B| + n2|C|) by reducing the size of fingerprints using Merkle
trees [16]. However, chunks cannot be verified anymore, and AVID-M retrieves
as empty block any data that was maliciously encoded during dispersal, so that
retrievability is no longer guaranteed. This makes AVID-M less suitable for ap-
plication to rollups.

The situation is similar for Data Availability Oracles such as ACeD [21]. If
a block was invalidly encoded during dispersal by a malicious client, then Data
Availability Oracle ensure consistency across retrieving clients, but no guarantee
is provided about how the retrieved content relates to the dispersed content.

Furthermore, Data Availability Oracles and protocols from the VID family
differ in terms of how the rollup’s on-chain contract can verify completion of
the dispersal. While Semi-AVID-PR issues certificates of retrievability (4) that
can be independently verified (e.g., by a smart contract), and AVID, AVID-FP
and AVID-M can readily be extended with such a functionality (by collecting
signatures from storage nodes that have completed a dispersal), Data Availability
Oracles report data availability directly on-chain to the smart contract (5).

Since AVID, AVID-FP and AVID-M all perform a round of AVID to achieve
comprehensive termination properties, the AVID family is limited to an adver-
sarial resilience t < n/3, compared to t < n/2 for Semi-AVID-PR and ACeD.

Sampling Based Data Availability Checks The data availability problem is not
unique to rollups, but arises in other scaling approaches such as sharding or
light clients as well. Solutions like [1,26] provide interactive protocols based on
random sampling of chunks of erasure-coded data. A block is deemed available
if all randomly sampled chunks are available, with the assumption being that if
enough nodes’ random queries are answered, then enough chunks are available to
restore the block. However, this interactive technique is not feasible for rollups

Information Dispersal with Provable Retrievability for Rollups 7

since the on-chain contract cannot engage in random sampling to convince itself
of data availability. Instead, the assurance of data availability could either be
made on-chain (as by Data Availability Oracles) or in the form of a verifiable
certificate of retrievability.

1.5 Outline

Cryptographic essentials and erasure-correcting codes are reviewed in Section 2.
Model and formal properties of Semi-AVID-PR for the application in rollups are
introduced in Section 3. We describe our Semi-AVID-PR protocol in Section 4
and argue its security in Section 5. We close with an evaluation of storage- and
communication-efficiency in comparison to other schemes in Section 6.

Application of the Semi-AVID-PR construction to data availability sampling
is discussed in Appendix A. Use of blinding to protect privacy of dispersed data
against an honest-but-curious storage node is discussed in Appendix B.

2 Preliminaries

In this section, we briefly recapitulate tools from cryptography and erasure-
correcting codes used throughout the paper.

2.1 Basics & Notation

Let G be a cyclic group (denoted multiplicatively, i.e., with group operation ‘·’)
of prime order q ≥ 22λ with generator g ∈ G, where λ denotes the security
parameter used subsequently for all primitives. The function H(x) , gx is a
bijection between the finite field Zq (i.e., integers modulo q) and G. It has the
linear homomorphism property

∀n ≥ 1: ∀c1, ..., cn ∈ Zq : ∀x1, ..., xn ∈ Zq : H

(
n∑
i=1

cixi

)
=

n∏
i=1

H(xi)
ci , (1)

which this paper makes ample use of.
An efficiently computable hash function CRHF is collision resistant (CRHF)

if for any probabilistic poly-time (PPT) adversary A,

Pr((m0 6= m1) ∧ (CRHF(m0) = CRHF(m1)) | (m0,m1)← A) = negl(λ), (2)

where negl(λ) is a negligible function that decays faster than every polynomial.
A commitment scheme (Setup,Commit,Open,Verify) is binding if for any PPT

adversary A,

Pr

Verify(pp, C, v0) = > ∧
Verify(pp, C, v1) = > ∧
(v0 6= v1)

∣∣∣∣∣∣∣
pp← Setup(1λ)

(C, v0, v1)← A(pp)

 = negl(λ). (3)

We call a signature scheme (KeyGen,Sign,Verify) secure if it is existentially
unforgeable under a chosen message attack [4].

We denote by [x]i the i-th entry of a vector x.

8 Kamilla Nazirkhanova, Joachim Neu, and David Tse

2.2 Reed-Solomon Codes

A linear (n, k)-code is a linear mapping Zkq → Znq with n ≥ k. It can be rep-
resented by a k × n generator matrix G, with the encoding operation then
c> = G.Encode(u>) , u>G to obtain a length-n row vector of codeword sym-
bols c> from a length-k row vector of information symbols u>.

A linear code is maximum distance separable (MDS) if any k columns of its
generator matrix G are linearly independent, i.e., any k × k submatrix of G is
invertible. Thus, any set of codeword symbols cij from k distinct indices ij can
be used to uniquely decode using the relation

u>
[
gi1 ... gik

]︸ ︷︷ ︸
,Greduced

!
=
[
ci1 ... cik

]︸ ︷︷ ︸
,c>reduced

⇐⇒ u> = G.Decode(((ij , cij))
k
j=1) , c

>
reducedG

−1
reduced, (4)

where gi corresponds to the i-th column of the generator matrix G.
Reed-Solomon codes [20] are an important class of MDS codes. Here, an

information vector u> is associated with a polynomial U(X) =
∑k
j=1[u

>]iX
i−1

and the codeword vector is obtained by evaluating U(X) at n distinct locations
α1, ..., αn, c> = (U(α1), ..., U(αn))

>. This corresponds to a generator matrix
GRS with columns gRS,i = (α0

i , ..., α
k−1
i).

2.3 Linear Vector Commitment Schemes

A vector commitment (VC) scheme (Setup,Commit,OpenVector,VerifyVector,OpenEntry,VerifyEntry)
[6,16] for vectors of length L allows to commit to an element of ZLq . Later, the
commitment can be opened either for the full vector, or to individual entries of
the vector. The VC is binding if a commitment cannot be opened to values that
are inconsistent with the committed vector. Ideally, the proof for the opening of
an entry of the vector is short and computationally easy to generate and verify.

For this manuscript of particular interest are linearly homomorphic (also
simply called linear) VCs (LVC) with

∀α, β ∈ Zq : ∀v,w ∈ ZLq : Commit(αv + βw) = αCommit(v) + βCommit(w). (5)

Kate-Zaverucha-Goldberg (KZG) polynomial commitments [13] (here the
‘basic’ variant PolyCommitDL of [13] as KZG) can be readily turned into an
example linear VC, which we use subsequently and introduce here briefly. From
a vector u of length L interpolate a polynomial U(X) of degree (L − 1) such
that U(i) = [u]i for i = 1, ..., L. Commit to u by KZG.Commit(U).1 The vector
opening can be verified by recomputing the commitment. The entry [u]i can be
opened and the opening verified using KZG.CreateWitness and KZG.VerifyEval
for the corresponding U(X) at X = i, respectively.

To see that the resulting VC Commit is linear, consider this. During trusted
setup, KZG.Setup samples r R←− Zq and computes public parameters (gr

0

, ..., gr
L−1

).
1 The polynomial interpolation can be avoided by preprocessing the public parameters
of KZG to obtain them in the Lagrange polynomial basis.

Information Dispersal with Provable Retrievability for Rollups 9

KZG.Commit computes the commitment to a polynomial U(X) of degree (L−1)
with coefficients γ0, ..., γL−1 as gU(r) which, due to the linear homomorphism of
H(x) = gx discussed above, can be obtained from the public parameters as

KZG.Commit(γ0, ..., γL−1) = KZG.Commit(U) =

L−1∏
j=0

(gr
j

)γj . (6)

Since interpolation of coefficients γ = (γ0, ..., γL−1) of U(X) from a vector u
such that U(i) = [u]i for i = 1, ..., L is linear and invertible, Commit is linear.

3 Model

The system under discussion consists of n storage nodes S1, ..., Sn and some
clients. A PPT adversary can corrupt protocol participants adaptively, i.e., as
the protocol execution progresses. Corrupt participants surrender their internal
state to the adversary immediately and from thereon behave as coordinated by
the adversary. We denote by f the number of storage nodes corrupted over the
course of the execution, and by t the design resilience, i.e., our construction
is parametric in t and satisfies the desired security properties in all executions
with f ≤ t. Protocol participants can send each other messages (a priori without
sender identification) which undergo delay controlled by the adversary, subject
to the constraint that every message has to arrive eventually. We design a scheme
with the following interface and security properties.

Definition 1 (Syntax of Semi-AVID-PR). A Semi-AVID (Asynchronous
Verifiable Information Dispersal) Scheme with Provable Retrievability (Semi-
AVID-PR) consists of two algorithms, Commit and Verify, and three protocols,
Setup, Disperse and Retrieve.

– The protocol Setup is run by a temporary trusted party and all storage nodes,
at the beginning of time (i.e., before adversarial corruption). It takes as input
the security parameter 1λ and outputs global public parameters pp, and local
secret parameters sp1, ..., spn, one for each storage node.
The public parameters pp are common knowledge and input to all other algo-
rithms and protocols. The secret parameters sp1, ..., spn are part of the state
of a storage node and as such available to that node during Disperse and
Retrieve invocations. Explicit mention is subsequently omitted for brevity.

– The algorithm Commit takes as input a block B of data, and returns a com-
mitment to the data.

– The protocol Disperse is run by a client and all storage nodes. It takes as input
a block B of data at the client, and outputs ⊥ or a certificate of retrievability
for Commit(B) to the client.

– The algorithm Verify takes as input a certificate of retrievability P and a
commitment C, and returns > or ⊥.

– The protocol Retrieve is run by a client and all storage nodes. It takes as
input a certificate of retrievability P and a commitment C at the client, and
outputs ⊥ or a block B of data to the client.

10 Kamilla Nazirkhanova, Joachim Neu, and David Tse

Definition 2 (Security of Semi-AVID-PR). A Semi-AVID-PR scheme is
secure with resilience t if for all executions with f ≤ t and polynomially (in the
security parameter λ) many invocations of the scheme it satisfies (except with
probability negligible in λ):

1. Binding. Commit implements a binding deterministic commitment to a
block B of data.

2. Correctness. If an honest client invokes Disperse with a block B of data,
then eventually it outputs a certificate of retrievability P with the property
that Verify(P,Commit(B)) = >.

3. Soundness. For a certificate of retrievability P and a commitment C, if
Verify(P,C) = >, then if an honest client invokes Retrieve with P and C,
then eventually it outputs a block B of data such that Commit(B) = C.

A few remarks are due on this formulation. Unlike earlier formulations of
AVID [5,11,24], our formulation does not have independent session identifiers.
Instead, the scheme provides a binding commitment scheme which is used to
establish a link between the data in question, invocations of the protocols, and
certificates of retrievability. The completion of dispersal of a block and the pos-
sibility to retrieve content matching a commitment are tied together through
the Binding property of the commitment scheme and can be proven to a third
party using the certificate of retrievability. This can be seen as following the
paradigm shift from location-addressed to content-addressed storage and is par-
ticularly suitable for applications such as rollups or sharding where one wants
to succinctly but unequivocally identify what content is being referenced rather
than where to find it. In terms of the original four properties of AVID schemes
[5], our Correctness property takes the place of the Termination and Agreement
properties, and our Soundness property takes the place of the Availability and
Correctness properties. Above weakenings (hence the name ‘Semi’-AVID) allow
us to achieve greater resilience up to t < n/2 rather than t < n/3 as for AVID,
AVID-FP or AVID-M.

4 Protocol

We provide a construction of Semi-AVID-PR from a binding deterministic lin-
ear vector commitment scheme LVC, a maximum distance separable (n, k)-code
Code, a collision resistant hash function CRHF, and a secure digital signature
scheme Sig. Our construction satisfies the properties laid out in Section 3 as
shown in Section 5. Moreover, it is storage- and communication-efficient and in-
curs practically moderate cost for cryptographic computations as demonstrated
in Section 6. It is easy to extend our scheme with blinding such that an honest-
but-curious storage node cannot learn anything about the dispersed data from
its chunk (see Appendix B).

Pseudocode of our construction is provided in Figure 5. See also Figure 6 for
an illustration of the Disperse protocol (cf. Figure 3). Our approach is related to
AVID-FP [11] in that we also use the linear homomorphism between the LVC

Information Dispersal with Provable Retrievability for Rollups 11

Algorithm 1 Setup(1λ)

1: At the trusted party: ppLVC ← LVC.Setup(1λ)
2: At each storage node i: (pki, ski)← Sig.KeyGen(1λ)
3: return pp = (ppLVC, pk1, ..., pkk), sp1 = sk1, ..., spk = skk

Algorithm 2 Commit(B)

1: U ← AsMatrixL×k(B)
2: (h1, ..., hk)← LVC.Commit⊗k(U)
3: return CRHF(h1‖...‖hk)

Algorithm 3 Verify(P,C)

1: q̂ ←

∣∣∣∣∣
{
i

∣∣∣∣∣(i 7→ σ) ∈ P : m← (stored, C)

∧ Sig.Verify(pki,m, σ) = >

}∣∣∣∣∣
2: if q̂ ≥ q return >
3: return ⊥

Algorithm 4 Disperse(B)

1: At the client:
2: U ← AsMatrixL×k(B)
3: (h1, ..., hk)← LVC.Commit⊗k(U)
4: C ← Code.Encode⊗L(U)
5: Send ((h1, ..., hk), ci) to all storage

nodes i
6: At storage node i:
7: ĥ← [Code.Encode(h1, ..., hk)]i
8: if ĥ 6= LVC.Commit(ci) abort
9: C ← CRHF(h1‖...‖hk)
10: Store C 7→ ((h1, ..., hk), ci)
11: Send σi , Sig.Sign(ski, (stored, C)) to

client
12: At the client:
13: Wait for σij from q unique {ij}qj=1 with

Sig.Verify(pkij , (stored, C), σij) = >
14: return

⋃q
j=1{ij 7→ σij}

Algorithm 5 Retrieve(P,C)

1: At the client:
2: Extract from P any q unique{

i

∣∣∣∣∣(i 7→ σ) ∈ P : m← (stored, C)

∧ Sig.Verify(pki,m, σ) = >

}
3: Send C to all storage nodes i
4: At storage node i:
5: Load C 7→ ((h1, ..., hk), ci)
6: Send (i, (h1, ..., hk), ci) to client
7: At the client:
8: Wait for (h1, ..., hk) such that C =

CRHF(h1‖...‖hk)
9: ĥ← Code.Encode(h1, ..., hk)
10: Discarding any i with [ĥ]i 6=

LVC.Commit(ci), wait for k remaining
unique {ij}kj=1

11: return Code.Decode(((ij , cij))
k
j=1)

Fig. 5. Pseudocode of our Semi-AVID-PR construction

and the erasure-correcting code. More specifically, during Disperse, the input file
B is arranged as a matrix U and a commitment hi is taken per column ui. Vec-
torization of the k column commitments of U is denoted as LVC.Commit⊗k(U).
The matrix is encoded row-wise into a coded matrix C, of which each column ci
constitutes the chunk for storage server i. Vectorization of the L row encodings
of U is denoted as Code.Encode⊗L(U). Now, due to the linear homomorphism,
the commitment of the encodings ci is equal to the encoding of the commit-
ments hi. This allows storage nodes to easily verify the consistency of their
chunk with the uncoded data (i.e., the verifiability property in AVID). For this
check, a storage node only needs to know the commitments hi of the uncoded
data, which keeps the communication-overhead of the scheme low. Our approach
differs from AVID-FP in that AVID-FP still performs a round of AVID (for the

12 Kamilla Nazirkhanova, Joachim Neu, and David Tse

Client

...
u

1

u
2

u
3

u
k

k

L

c
1

c
2

c
3

c
i

c
n

n

L

C
o
d
e.
E
n
co
d
e⊗

L
h1h2h3

...hk

LVC.Commit⊗k

Storage Node i

[Code.Encode(h1, ..., hk)]i
?
= LVC.Commit(ci)
If not, abort. Else,

C ← CRHF(h1‖...‖hk),
Si[C]← ((h1, ..., hk), ci).

((h1, ..., hk), ci)

P =
⋃q
j=1{ij 7→ σij}

σi , Sig.Sign(ski, (stored, C))

Fig. 6. Disperse protocol of Semi-AVID-PR (cf. Figure 3). Client arranges data in L×k
matrix U , computes commitments h1, ..., hk column-wise and L × n coded matrix C
row-wise. Commitments and i-th column ci of C are sent to storage node i. Upon
verification, storage node computes commitment C to the data, stores commitments
and chunk, and acknowledges receipt of chunk to client. Client forms certificate of
retrievability P from q unique server identifiers ij and their receipts σij .

commitments) in order to satisfy the full AVID requirements (in particular Ter-
mination and Agreement), while our Semi-AVID-PR scheme satisfies only the
weaker Correctness property (cf. Figure 4).

Our construction is parametric in the design resilience t, the quorum size q
for certificates of retrievability, the code dimension k and the length of chunks L.
The analysis of Section 5 reveals that q ≤ (n− t), 0 < (q− t) and k ≤ (q− t) are
necessary. So given any t < n/2 and target file size |B| (in field elements), choose
q , (n− t), minimize storage overhead with k , n− 2t, and set L , |B|/k.

During Setup (Algorithm 1), a trusted party performs the setup of the LVC
and each storage node generates a cryptographic identity for Sig. The public
parameters of the LVC and the public keys of the storage nodes become common
knowledge, each storage node stores its secret key.

The Commitment of a block B (Algorithm 2) is computed by arranging B as
an L× k matrix U , then computing the commitments hi as LVC.Commit(ui) for
each of the k columns ui of U , and finally CRHF(h1‖...‖hk) is the commitment.

To Disperse a block B (Algorithm 4, Figures 3, 6), the client first computes
U and the commitments hi as for Commit. Then, U is encoded row-wise using
Code.Encode to obtain an L×n coded matrix C. Each column ci of C is sent to
storage node i together with (h1, ..., hk). Each storage node i verifies its chunk
using the linearly homomorphic property (aborting if violated)

[Code.Encode(h1, ..., hk)]i
?
= LVC.Commit(ci), (7)

before computing the file’s commitment C , CRHF(h1‖...‖hk) and storing com-
mitments and chunk indexed by C. The storage node then acknowledges receipt
of the chunk by sending a signature on (stored, C) to the client. Upon collecting

Information Dispersal with Provable Retrievability for Rollups 13

valid signatures σij from q unique storage nodes ij , the client collects them into
a certificate of retrievability P .

To Verify a certificate of retrievability P for a commitment C (Algorithm 3),
one counts whether P contains valid signatures on (stored, C) from at least q
unique storage nodes.

Finally, to Retrieve a file based on a certificate of retrievability P for a com-
mitment C, the client first extracts any q unique storage nodes for which P
contains a valid signature on (stored, C). The client then requests the chunks
of C from these storage nodes. The storage nodes reply with the commitments
and chunks they have stored for C. The client first waits until some commit-
ments (h1, ..., hk) satisfy C = CRHF(h1‖...‖hk). Then, the client discards any
chunks that do not satisfy the homomorphic property (7). Upon receiving valid
chunks from k unique storage nodes, the client uses Code.Decode to decode the
file.

To protect the data against honest-but-curious storage nodes (i.e., assuming
storage nodes do not collude – clearly, a sufficiently large set of storage nodes
can retrieve the data, which is a design goal of Semi-AVID-PR), a hiding LVC
scheme can be used and U can be augmented by the client with a column drawn
uniformly a random, to blind the encoded chunks.

5 Security Argument

Theorem 1. The Semi-AVID-PR construction of Section 4 is secure with re-
silience t for any t < n/2 as defined in Section 3.

Proof. Binding. Commit is deterministic because LVC.Commit and CRHF are.
For binding, assume for contradiction that Commit was not binding, i.e., there
was an adversary A that can produce blocks B 6= B′ and a commitment C
such that Commit(B) = Commit(B′) = C with non-negligible probability. Then,
A can be turned into either an adversary BCRHF against the CRHF property of
CRHF or into an adversary BLVC.Commit against the Binding property of LVC.Commit,
as follows. Since B 6= B′, for their respective representations as L × k ma-
trices, U 6= U ′. Either h , LVC.Commit⊗k(U) 6= LVC.Commit⊗k(U ′) , h′

but CRHF(h) = CRHF(h′), a break of CRHF (which BCRHF would output); or
h = h′, so that for some i, LVC.Commit(ui) = LVC.Commit(u′i) but ui 6= u′i, a
break of LVC.Commit (which BLVC would output). If BCRHF and BLVC broke their
primitives only with negligible probability, then A could not break Commit with
non-negligible probability. So either BCRHF or BLVC break the respective primitive
with non-negligible probability, a contradiction. So Commit is binding.

Correctness. Since the client is honest and LVC is linearly homomorphic,
the consistency check in Algorithm 4 l. 8 passes at all honest storage nodes.
So the client receives signatures σij (which are valid, by Correctness of Sig) of
(stored,Commit(B)) from at least (n− t) unique storage nodes ij , which it can
bundle into a certificate of retrievability P that satisfies the check of Algorithm 3
by construction, if q ≤ (n− t).

14 Kamilla Nazirkhanova, Joachim Neu, and David Tse

Soundness. Since Verify(P,C) = > by assumption, the client can extract
some q unique storage nodes ij from P in Algorithm 5 l. 2. Of these q storage
nodes, at least (q − t) remain honest. Security of Sig implies that they must
have previously executed Algorithm 4 l. 11 and hence stored (h1, ..., hk) for C =
CRHF(h1, ..., hk) in Algorithm 4 l. 10 and their chunks satisfied the consistency
check in Algorithm 4 l. 8. Note that by the CRHF property of CRHF, there can
be only one set of (h1, ..., hk) for C. As long as (q− t) > 0, the client eventually
completes the wait in Algorithm 5 l. 8, and if k ≤ (q − t), then the client
eventually also completes the wait in Algorithm 5 l. 10. Finally, since Code is an
MDS (n, k)-code, Algorithm 5 l. 11 succeeds to decode a block B, corresponding
to an L × k matrix U . It remains to show that Commit(B) = C, for which (by
CRHF) it suffices that (h1, ..., hk) = LVC.Commit⊗k(U). Note the decoder uses
that Code is an MDS (n, k)-code and thus any k × k submatrix of its generator
matrix G is invertible, and the relation[

u1 ... uk
]︸ ︷︷ ︸

=U

[
gi1 ... gik

]︸ ︷︷ ︸
,Greduced

!
=
[
ci1 ... cik

]︸ ︷︷ ︸
,Creduced

⇐⇒ U = CreducedG
−1
reduced. (8)

At the same time, by the checks in Algorithm 5 l. 10,[
h1 ... hk

]
Greduced =

[
LVC.Commit(ci1) ... LVC.Commit(cik)

]
. (9)

By the linear homomorphism of LVC,

LVC.Commit⊗k(U) = LVC.Commit⊗k(Creduced)G
−1
reduced =

[
h1 ... hk

]
. (10)

Resilience. From above analysis, we obtain the constraints q ≤ (n− t) (for
Correctness), 0 < (q − t) (for Soundness, to obtain h1, ..., hk), and k ≤ (q − t)
(for Soundness, to decode), which the choice of parameters in Section 4 satisfies,
and which lead to the resilience bound t < n/2.

6 Evaluation

In this section, we show that the cost of cryptographic computations required
for our Semi-AVID-PR scheme is low, and the communication and storage re-
quirements in comparison with AVID [5], AVID-FP [11], AVID-M [24] and ACeD
[21] are among the best-of-class (tied with AVID-M) and practically low, while
providing superior resilience (t < n/2 vs. t < n/3) and provable retrievability.

6.1 Cryptographic Computations

To examine the load caused by cryptographic computations (computing vector
commitments) for the client in our Semi-AVID-PR protocol (i.e., the Validium
rollup operator), we used the implementation of KZG commitments by [22]. The
single-threaded runtime on a consumer-grade laptop computer is plotted for
different file and network sizes in Figure 7. The throughput of ≈ 0.95MB/s is
independent of file and network size and corresponds to ≈ 4,800 tx/s (assuming
200B as typical transaction size).

Information Dispersal with Provable Retrievability for Rollups 15

0 5 10 15 20 25 30

0

10

20

30

File size [MB]

R
un

ti
m
e
[s
]

(k, n) = (300, 900) (k, n) = (30, 90)

Fig. 7. Single-threaded runtime of cryptographic computations for our protocol (com-
puting vector commitments) for two system sizes on a consumer-grade laptop computer.

Table 1. Communication and storage required to disperse 30MB among n = 900 nodes
using different solutions; resilience and whether provable retrievability is supported.

Scheme Resilience Communication Storage Retrievability

Uncoded (repetition) 0.49n 27GB 27GB 4

AVID [5] 0.33n 104GB 116MB 4

AVID-FP [11] 0.33n 31GB 125MB 4

AVID-M [24] 0.33n 116MB 90MB 8

ACeD [21] 0.33n 787MB 787MB 8

ACeD [21] 0.49n 13GB 13GB 8

Semi-AVID-PR (Sec. 4) 0.33n 99MB 99MB 4

Semi-AVID-PR (Sec. 4) 0.49n 1.5GB 1.5GB 4

6.2 Communication & Storage

Communication and storage requirements of different data availability solutions
are tabulated for a numerical example in Table 1. AVID improves over repetition
in that each node only needs to store a chunk rather than the full file. However,
nodes still echo chunks to each other, leading to a lot of communication. AVID-
FP improves in communication because storage nodes only echo fingerprints
rather than full chunks. AVID-M improves over AVID-FP in that it drastically
reduces the fingerprint size and hence the communication. ACeD introduces a
trade-off of communication and storage with adversarial resilience. In terms of
communication and storage, Semi-AVID-PR is among the best-of-class (tied with
AVID-M), while providing superior resilience (t < n/2 vs. t < n/3) and provable
retrievability (the lack thereof limits application of AVID-M to Validium rollups).
Semi-AVID-PR outperforms ACeD in communication and storage by at least 9×.

The net data throughput of ≈ 0.95MB/s corresponding to ≈ 4,800 tx/s (cf.
Section 6.1) entails ≈ 3.4MB/s communication bandwidth, which is feasible even
via consumer-grade Internet connectivity.

16 Kamilla Nazirkhanova, Joachim Neu, and David Tse

Acknowledgment

JN is supported by the Reed-Hodgson Stanford Graduate Fellowship.

References

1. Al-Bassam, M., Sonnino, A., Buterin, V.: Fraud proofs: Maximising light client se-
curity and scaling blockchains with dishonest majorities. CoRR abs/1809.09044
(2018), http://arxiv.org/abs/1809.09044

2. Bagaria, V.K., Kannan, S., Tse, D., Fanti, G.C., Viswanath, P.: Prism: De-
constructing the blockchain to approach physical limits. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2019, London, UK, November 11-15, 2019. pp. 585–602. ACM (2019).
https://doi.org/10.1145/3319535.3363213

3. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptol. ePrint Arch. p. 46
(2018), http://eprint.iacr.org/2018/046

4. Boneh, D., Shoup, V.: A Graduate Course in Applied Cryptography. https:
//cryptobook.us, version 0.5 (2021)

5. Cachin, C., Tessaro, S.: Asynchronous verifiable information dispersal. In: Dis-
tributed Computing, 19th International Conference, DISC 2005, Cracow, Poland,
September 26-29, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3724,
pp. 503–504. Springer (2005). https://doi.org/10.1007/11561927_42

6. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Public-
Key Cryptography - PKC 2013 - 16th International Conference on Practice and
Theory in Public-Key Cryptography, Nara, Japan, February 26 - March 1, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 7778, pp. 55–72. Springer
(2013). https://doi.org/10.1007/978-3-642-36362-7_5

7. Decker, C., Wattenhofer, R.: A fast and scalable payment network with Bitcoin du-
plex micropayment channels. In: Stabilization, Safety, and Security of Distributed
Systems - 17th International Symposium, SSS 2015, Edmonton, AB, Canada, Au-
gust 18-21, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9212, pp.
3–18. Springer (2015)

8. Feist, D., Khovratovich, D.: Fast amortized Kate proofs https://github.com/
khovratovich/Kate/blob/master/Kate_amortized.pdf

9. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct NIZKs without PCPs. In: Advances in Cryptology - EUROCRYPT
2013, 32nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 7881, pp. 626–645. Springer (2013).
https://doi.org/10.1007/978-3-642-38348-9_37

10. Gluchowski, A.: zkRollup vs. Validium (2020), https://medium.com/matter-labs/
zkrollup-vs-validium-starkex-5614e38bc263

11. Hendricks, J., Ganger, G.R., Reiter, M.K.: Verifying distributed erasure-coded
data. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles
of Distributed Computing, PODC 2007, Portland, Oregon, USA, August 12-15,
2007. pp. 139–146. ACM (2007). https://doi.org/10.1145/1281100.1281122

http://arxiv.org/abs/1809.09044
https://doi.org/10.1145/3319535.3363213
http://eprint.iacr.org/2018/046
https://cryptobook.us
https://cryptobook.us
https://doi.org/10.1007/11561927_42
https://doi.org/10.1007/978-3-642-36362-7_5
https://github.com/khovratovich/Kate/blob/master/Kate_amortized.pdf
https://github.com/khovratovich/Kate/blob/master/Kate_amortized.pdf
https://doi.org/10.1007/978-3-642-38348-9_37
https://medium.com/matter-labs/zkrollup-vs-validium-starkex-5614e38bc263
https://medium.com/matter-labs/zkrollup-vs-validium-starkex-5614e38bc263
https://doi.org/10.1145/1281100.1281122

Information Dispersal with Provable Retrievability for Rollups 17

12. Kalodner, H.A., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Ar-
bitrum: Scalable, private smart contracts. In: 27th USENIX Security Sym-
posium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018.
pp. 1353–1370. USENIX Association (2018), https://www.usenix.org/conference/
usenixsecurity18/presentation/kalodner

13. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to poly-
nomials and their applications. In: Advances in Cryptology - ASIACRYPT
2010 - 16th International Conference on the Theory and Application of Cryp-
tology and Information Security, Singapore, December 5-9, 2010. Proceedings.
Lecture Notes in Computer Science, vol. 6477, pp. 177–194. Springer (2010).
https://doi.org/10.1007/978-3-642-17373-8_11

14. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: Om-
niLedger: A secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE
Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA. pp. 583–598. IEEE Computer Society (2018).
https://doi.org/10.1109/SP.2018.000-5

15. Li, S., Yu, M., Yang, C., Avestimehr, A.S., Kannan, S., Viswanath, P.:
PolyShard: Coded sharding achieves linearly scaling efficiency and security si-
multaneously. In: IEEE International Symposium on Information Theory, ISIT
2020, Los Angeles, CA, USA, June 21-26, 2020. pp. 203–208. IEEE (2020).
https://doi.org/10.1109/ISIT44484.2020.9174305

16. Merkle, R.C.: A digital signature based on a conventional encryption function. In:
Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and Ap-
plications of Cryptographic Techniques, Santa Barbara, California, USA, August
16-20, 1987, Proceedings. Lecture Notes in Computer Science, vol. 293, pp. 369–
378. Springer (1987). https://doi.org/10.1007/3-540-48184-2_32

17. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and
state channels: Payment networks that go faster than Lightning. In: Finan-
cial Cryptography and Data Security - 23rd International Conference, FC 2019,
Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, Revised Selected Papers.
Lecture Notes in Computer Science, vol. 11598, pp. 508–526. Springer (2019).
https://doi.org/10.1007/978-3-030-32101-7_30

18. Mitra, D., Tauz, L., Dolecek, L.: Concentrated stopping set design for
Coded Merkle Tree: Improving security against data availability attacks
in blockchain systems. In: IEEE Information Theory Workshop, ITW
2020, Riva del Garda, Italy, April 11-15, 2021. pp. 1–5. IEEE (2020).
https://doi.org/10.1109/ITW46852.2021.9457630, https://doi.org/10.1109/
ITW46852.2021.9457630

19. Mitra, D., Tauz, L., Dolecek, L.: Overcoming data availability attacks in blockchain
systems: LDPC code design for Coded Merkle Tree. CoRR abs/2108.13332
(2021), https://arxiv.org/abs/2108.13332

20. Reed, I., Solomon, G.: Polynomial codes over certain finite fields. Journal of The
Society for Industrial and Applied Mathematics 8, 300–304 (1960)

21. Sheng, P., Xue, B., Kannan, S., Viswanath, P.: ACeD: Scalable data availability
oracle. CoRR abs/2011.00102 (2020), https://arxiv.org/abs/2011.00102

22. Tomescu, A.: How to compute all pointproofs. IACR Cryptol. ePrint Arch. p. 1516
(2020), https://eprint.iacr.org/2020/1516

23. Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., Khovratovich, D.: Ag-
gregatable subvector commitments for stateless cryptocurrencies. In: SCN. Lecture
Notes in Computer Science, vol. 12238, pp. 45–64. Springer (2020)

https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1109/SP.2018.000-5
https://doi.org/10.1109/ISIT44484.2020.9174305
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1109/ITW46852.2021.9457630
https://doi.org/10.1109/ITW46852.2021.9457630
https://doi.org/10.1109/ITW46852.2021.9457630
https://arxiv.org/abs/2108.13332
https://arxiv.org/abs/2011.00102
https://eprint.iacr.org/2020/1516

18 Kamilla Nazirkhanova, Joachim Neu, and David Tse

24. Yang, L., Park, S.J., Alizadeh, M., Kannan, S., Tse, D.: DispersedLedger: High-
throughput Byzantine consensus on variable bandwidth networks (2022)

25. Yu, H., Nikolic, I., Hou, R., Saxena, P.: OHIE: Blockchain scaling made
simple. In: 2020 IEEE Symposium on Security and Privacy, SP 2020,
San Francisco, CA, USA, May 18-21, 2020. pp. 90–105. IEEE (2020).
https://doi.org/10.1109/SP40000.2020.00008

26. Yu, M., Sahraei, S., Li, S., Avestimehr, S., Kannan, S., Viswanath, P.: Coded
Merkle Tree: Solving data availability attacks in blockchains. In: Financial
Cryptography and Data Security - 24th International Conference, FC 2020,
Kota Kinabalu, Malaysia, February 10-14, 2020 Revised Selected Papers. Lec-
ture Notes in Computer Science, vol. 12059, pp. 114–134. Springer (2020).
https://doi.org/10.1007/978-3-030-51280-4_8

A Application to Data Availability Sampling

In common blockchain designs all nodes have to download the full blockchain
and validate all included transactions (e.g., check that accounts have sufficient
balances, no funds are created out of thin air, etc.). However, if a node does
not have enough bandwidth, storage, or computational resources to do so, it
can instead participate as a so called light node.2 We assume that every block
consists of a header comprised of meta data and a body comprised of a list of
transactions. The header includes a commitment to the block content, binding
the two together. Full nodes process block headers and content, while light nodes
only process block headers. If an invalid transaction was added to a block, this
block would be rejected by full nodes but a header of this block can be accepted
by a light node, since the light node cannot inspect the block content and verify
transaction validity. To prevent light nodes from accepting (the header of) an
invalid block, full nodes can produce an invalid transaction fraud proof (i.e., a
succinct string of the evidence necessary to verify relative to the block header
that the block indeed contains an invalid transaction). To take full nodes’ ability
to issue invalid transaction fraud proofs, a malicious block producer can perform
a data availability attack and withhold parts of the block content, including the
invalid transaction. Full nodes would now temporarily reject the block (until its
content becomes fully available), but light nodes would not notice the missing
content since they do not attempt to download the block content anyway. In
this setting, the absence of an invalid transaction fraud proof can thus mean two
things: either that the block is alright, or that full nodes were not able to verify
the block due to missing data. To rule out the possibility of data unavailability (so
that finally lack of fraud proof implies the block is valid), various data availability
sampling schemes for light nodes were introduced.

Data availability schemes using Reed-Solomon codes were proposed in [1]. In
a naive scheme, a block producer encodes a list of transactions, consisting of k
chunks, with a (2k, k) Reed-Solomon code. Once a light node receives a header
2 Light nodes also occur in the context of sharding, where each node is assigned to a
shard and behaves in-shard (i.e., towards their assigned shard) as a full node and
out-of-shard (i.e., towards other shards) as a light node.

https://doi.org/10.1109/SP40000.2020.00008
https://doi.org/10.1007/978-3-030-51280-4_8

Information Dispersal with Provable Retrievability for Rollups 19

of the block, it randomly queries a few chunks of the encoded block content.
The block is accepted only if the queried chunks are available. For a block to be
widely accepted by light nodes, most of the light nodes’ queried chunks have to
be available. Quickly, light nodes’ queries cover more than 50% of coded chunks
of the block, so that any remaining missing chunks can be recovered using the
Reed-Solomon code. It is therefore no longer possible to trick light nodes into
accepting a block while withholding a chunk in an attempt to prevent full nodes
from generating an invalid transaction fraud proof. The main drawback of this
solution is that a malicious block producer could invalidly encode the block.
Decoding would then not consistently recover the original chunks’ data, even if
nominally enough chunks are available. Again, full nodes would be able to detect
invalid encoding, but light nodes would not. And again, full nodes could issue
a fraud proof to prevent light nodes from accepting an invalidly encoded block.
However, the amount of evidence needed to prove invalid encoding in this scheme
is as big as the block content itself – defying the idea of light nodes downloading
less than the full block content. For example, an invalid encoding fraud proof
consists of the full original block data, which the light node can verify with
respect to the block header, re-encode, and then check that some of the ‘encoded’
chunks received in response to data availability queries do not match the properly
encoded chunks. Subsequent works [1,26,18,19] on data availability schemes of
this flavor have thus focussed on reducing the size of invalid encoding fraud
proofs, but drawbacks remain (e.g., additional complexity, timing assumptions).

A different approach is to eliminate invalid encoding fraud proofs by making
it impossible for block producers to invalidly encode data. Such schemes can
be achieved using polynomial commitment schemes such as KZG [13]. Treated
as evaluations of a polynomial at agreed-upon locations, the k chunks of the
block content uniquely determine a polynomial of degree k − 1. A commitment
to this polynomial is included in the block header. To ensure data availability,
light nodes query for evaluations of this polynomial at random locations. Con-
sistency of every query response with the polynomial committed to in the block
header can be verified using the polynomial commitment scheme by providing
an evaluation witness. Even with few queries each, light nodes together will soon
have queried evaluations at at least k distinct locations. If the block producer
withholds any of these evaluations, light nodes will not accept the block. But
once evaluations at k distinct locations are available, the polynomial, and thus
the block content, can be reconstructed. Any invalid transaction becomes visible
and full nodes can generate corresponding fraud proofs. Schemes of this flavor
however require to compute an evaluation witness for each query, which despite
recent algorithmic improvements is still computationally heavy [8,22,23].

The Semi-AVID-PR scheme, described in Section 4 and illustrated in Fig-
ure 6, can be seen as combining ‘the best of both worlds’ in that it does not
require invalid encoding fraud proofs, but sampled chunks can be verified effi-
ciently. We assume that a block contains an alternating sequence of transactions
and commitments to resulting intermediary chain states (this is used for in-
valid transaction fraud proofs as in [1]). As illustrated in Figure 6, the block

20 Kamilla Nazirkhanova, Joachim Neu, and David Tse

producer arranges the block content U as a matrix of size L × k, where k and
L are system parameters. It commits to each of the columns u1, ...,uk of that
matrix using the linear vector commitment scheme defined in Section 2.3 (to ob-
tain commitments h1, ..., hk), and encodes the matrix U row-wise using a (n, k)
Reed-Solomon code to obtain chunks c1, ..., cn of a coded matrix C. A final
commitment to the full block content is computed as C , CRHF(h1‖...‖hk) and
used on-chain in the block’s header to uniquely reference the block content. Full
nodes receive the full block content, recompute the column commitments and
their hash, and compare it with C to verify the block content. Light nodes re-
ceive only C from the block header. Prior to accepting a new block header, a
light node samples random coded chunks ci. The response to each query is ac-
companied by purported column commitments h1, ..., hk. Every light node can
verify the column commitments by locally recomputing their hash and compar-
ing it with the commitment C in the block header. Subsequently, the light node
verifies the downloaded chunk ci using the linear homomorphic property of the
vector commitment scheme and the column commitments h1, ..., hk.

To employ the invalid transaction fraud proofs of [1], it remains to show how
a full node can open any entry of U to a light node in a verifiable manner. For
this purpose, an opening witness for value y = [uj]i at position (i, j) consists of:

– Value y = [uj]i and coordinates (i, j).
– Commitments h1, ..., hk to columns u1, ...,uk.
– A witness w for the opening of y at the i-th position in uj with respect to

the vector commitment hj .

The light client first verifies the commitments h1, ..., hk by comparing their hash
to the commitment C in the block header. The client then verifies the opening
of the value y at position i in uj with respect to the vector commitment hj .

Since in Semi-AVID-PR valid encoding can be verified by light nodes using
the homomorphic property of linear vector commitments, invalid encoding fraud
proofs are not needed needed. At the same time, verifying a chunk requires
only to compute a vector commitment (to ci) and a linear combination of the
vector commitments h1, ..., hk, which is lightweight to compute. Performance is
discussed in more detail in Section 6.

B Privacy

Semi-AVID-PR can be extended to hide the dispersed data from single honest-
but-curious storage nodes. For this purpose, with a slight abuse of notation, let Ũ
denote the (L−1)× (k−1) matrix of information to be dispersed (with columns
ũi). The dispersing client augments it first with a blinding column b R←− ZL−1q

to the right of Ũ and then with a blinding row s> R←− Zkq to the bottom of both
Ũ and b, to obtain the L× k matrix U ,

U ,

[
Ũ b
s>

]
. (11)

Information Dispersal with Provable Retrievability for Rollups 21

The coded matrix C (with columns ci) and the column commitments (h1, ..., hk)
continue to be computed as detailed in Figure 6 and Section 4. Thus, storage
node m receives (cm, h1, ..., hk) as part of the protocol (see Figure 5), and we
show that the distribution of (cm, h1, ..., hk) induced by the randomness in the
blinding b and s> is independent of Ũ , so that storage node m learns nothing
about the dispersed information.

Assume that storage node m could even compute logg(.) in G, and hence
knows the secret r sampled during trusted setup of the KZG polynomial com-
mitment scheme (see Section 2.3), as well as logg(hi) for the column commit-
ments hi. Furthermore, assume a Reed-Solomon code (see Section 2.2) is used as
part of Semi-AVID-PR so that the column gRS,m = (α0

m, ..., α
k−1
m) corresponds

to storage node m in the code’s generator matrix GRS. Then, the data obtained
by storage node m are related to the unknowns by the following equations:

[cm]1
...
[cm]L−1
[cm]L
logg(h1)
...
logg(hk−1)

logg(hk)

=

α0
m ... αk−2m αk−1m 0 ...

.
α0
m ... αk−2m ... 0 αk−1m

α0
m ... αk−2m αk−1m

r0 0 ... rL−2 0 ... rL−1 0 ...
.

... 0 r0 ... 0 rL−2 ... 0 rL−1

r0 ... rL−2 rL−1

︸ ︷︷ ︸

,M∈Z(L+k)×(Lk+(L−1)+(k−1)+1)
q

[ũ1]1
...
[ũk−1]1
...
[ũ1]L−1
...
[ũk−1]L−1
[b]1
...
[b]L−1
[s>]1
...
[s>]k−1
[s>]k

(12)

Denote by [M]>i the i-th row of M . Observe that

[M]>L+k =

L∑
i=1

ri−1α−(k−1)m [M]>i −
k−1∑
i=1

α−(k−i)m [M]>L+i. (13)

Thus, the last row of M is redundant. Striking the last row,

[cm]1
...
[cm]L−1
[cm]L
logg(h1)
...
logg(hk−1)

=

α0
m ... αk−2m

. . .
α0
m ... αk−2m

r0 0 ... rL−2 0 ...
.

... 0 r0 ... 0 rL−2

[ũ1]1
...
[ũk−1]1
...
[ũ1]L−1
...
[ũk−1]L−1

22 Kamilla Nazirkhanova, Joachim Neu, and David Tse

+

αk−1m 0 ...
. . .

... 0 αk−1m

α0
m ... αk−2m αk−1m

rL−1 0 ...
. . .

... 0 rL−1

︸ ︷︷ ︸

,M ′∈Z(L+k−1)×(L−1+k)
q

[b]1
...
[b]L−1
[s>]1
...
[s>]k−1
[s>]k

. (14)

Observe thatM ′ is full-rank. Thus, the randomness of b and s> renders the dis-
tribution of (cm, h1, ..., hk−1) uniform while hk is a function of (cm, h1, ..., hk−1),
both independent of the dispersed information Ũ .

C Calculations for Table 1

Table 1 shows communication and storage required to disperse a file of size
|F | = 30MB among n = 900 storage nodes using different schemes. We provide
the corresponding calculations here. We denote communication and storage costs
as C and S, respectively. We assume the size of a hash is H = 32B. Given
adversarial resilience t, we choose k , n− 2t.

– Uncoded (repetition) scheme: C = S = n|F |
– AVID: C =

(
|F |
k + nH

) (
n+ n2

)
and S = n

(
|F |
k + nH

)
– AVID-FP: C = n

(
|F |
k + (n+ k)H

)
+n2(n+k)H and S = n

(
|F |
k + (n+ k)H

)
– AVID-M: C = n

(
|F |
k + (1 + log2 n)H

)
+n2H and S = n

(
|F |
k + (1 + log2 n)H

)
– ACeD: C = S = t′H + |F |

nrλ + (2q−1)|F |H
nrcλ logqr

|F |
ct′r

Parameters: t′ = 16, r = 0.25, q = 8, c = 48 kB, η = 0.875, λ = 1−2t/n
ln(1

1−η)
.

As illustrated in Figure 8, the communication and storage cost of ACeD
can be decreased slightly by increasing the base layer symbol size c, at the
expense of an increased invalid encoding fraud proof size.

– Semi-AVID-PR: C = n
(
|F |
k + kH

)
+ nH and S = n

(
|F |
k + kH

)

Information Dispersal with Provable Retrievability for Rollups 23

800

900

1,000

1,100

C
om

m
un

ic
at
io
n

an
d
st
or
ag
e
co
st

[M
B
]

20 40 60 80 100

200

400

600

Base layer symbol size [kB]

In
va
lid

en
co
di
ng

fr
au

d
pr
oo

f
si
ze

[M
B
]

Fig. 8. Communication and storage cost (top) and invalid encoding fraud proof size
(bottom) as a function of the base layer symbol size c, when dispersing a file of size
30MB among 900 nodes using ACeD [21] with resilience t = 0.33n.

	Information Dispersal withProvable Retrievability for Rollups

