
Information Dispersal with Provable Retrievability for Rollups
Kamilla Nazirkhanova

nazirk@stanford.edu

Joachim Neu

jneu@stanford.edu

David Tse

dntse@stanford.edu

ABSTRACT
The ability to verifiably retrieve transaction or state data stored

off-chain is crucial to blockchain scaling techniques such as rollups

or sharding. We formalize the problem and design a storage- and

communication-efficient protocol using linear erasure-correcting

codes and homomorphic vector commitments. Motivated by appli-

cation requirements for rollups, our solution Semi-AVID-PR departs

from earlier Verifiable Information Dispersal schemes in that we do

not require comprehensive termination properties or retrievability

from any but only from some known sufficiently large set of storage

nodes. Compared to Data Availability Oracles, under no circum-

stance do we fall back to returning empty blocks. Distributing a

file of 22MB among 256 storage nodes, up to 85 of which may be

adversarial, requires in total ≈ 70MB of communication and stor-

age, and ≈ 41 s of single-thread runtime (< 3 s on 16 threads) on an

AMDOpteron 6378 processor when using the BLS12-381 curve. Our

solution requires no modification to on-chain contracts of Validium

rollups such as StarkWare’s StarkEx. Additionally, it provides pri-

vacy of the dispersed data against honest-but-curious storage nodes.

Finally, we discuss an application of our Semi-AVID-PR scheme to

data availability verification schemes based on random sampling.

1 INTRODUCTION
1.1 Rollups
Ethereum, like many blockchains, suffers from poor transaction

throughput and latency. To address this issue, various consensus-

layer and off-chain scalingmethodswere introduced.While consensus-

layer solutions such as sharding [17, 18] or multi-chain protocols

[3, 30] aim at improving the base blockchain protocol, off-chain

‘layer 2’ solutions such as payment channels [9, 22] and rollups

[14, 20] aim at moving transaction processing and storage off-chain.

The base blockchain then serves only as a trust anchor, rollback

prevention mechanism, and arbitrator in case of misbehavior and

disputes among participants. Rollups in particular introduce an

on-chain smart contract representing certain application logic, to

and from which rollup users can transfer funds to enter and exit

the rollup, and who watches over proper execution of the state

machine that describes the rollup’s application logic. Rollup users

appoint an operator whose role is to execute the contract’s state

machine and keep track of updated state such as users’ balances.

For this purpose, the operator collects transactions issued by users

and executes them off the main chain, but periodically posts a state

snapshot to the main chain in order to irrevocably confirm transac-

tion execution and, thus, inherit the main chain’s safety guarantee.

To ensure liveness, rollup users need to be able to enforce applica-

tion logic and to exit the rollup with their funds, even if the rollup

operator turns uncooperative. To this end, if a user presents proof

of their balance according to the latest state snapshot, then the

on-chain contract will pay out their funds to the user and thus

KN and JN contributed equally and are listed alphabetically.

Zk-Rollups: Loopring,
Starkware, Matter Labs

zkSync, Aztec 2.0, Hermez

network, zkTube

Optimistic Rollups:
Optimism, Offchain Labs

Arbitrum, Fuel Network,

Cartesi, OMGX

Validium: StarkWare,

Matter Labs zkPorter,

Loopring

Plasma: OMG Network,

Polygon, Gluon,

Gazelle, LeapDAO

O
n-
C
ha

in
O
ff-
C
ha

in
D
at
a
St
or
ag
e

Validity Proofs Fraud Proofs

Ensuring State Transition Integrity

Figure 1: Layer 2 and rollup projects grouped into four
categories according to how validity of state transitions
and data availability are ensured (fraud/validity proofs vs.
data storage on/off chain). Source: https://ethereum.org/en/
developers/docs/scaling/, https://twitter.com/vitalikbuterin/
status/1267455602764251138

enforce the user’s exit. Rollup designs differ in two crucial aspects.

First, how to ensure that the state is only updated in accordance

with the application logic. Second, how to guarantee that users are

able to exit even if the operator turns malicious and withholds the

information necessary for users to prove their balances on-chain.

1.2 Auditability of State Transitions and Data
Availability

Rollup designs can be grouped into four categories, as illustrated in

Figure 1, according to how they ensure validity of state transitions

and availability of transaction information. For the problem of

ensuring that application logic is followed, one approach is to use

fraud proofs: anyone can re-execute the application logic on the

inputs at hand and check that the state transitions are correct. If

they are not, they present proof of a fraudulent state transition to

the on-chain contract which will step in as an arbitrator and enforce

application logic. Rollups using fraud proofs are called optimistic
rollups. A second approach is based on validity proofs, where instead
of detecting fraud after the fact, fraud is prevented from the get-go

by requiring the operator to provide cryptographic proof [5, 11] of

proper state update. This approach is used in zk-rollups.
To ensure that rollup users are able to track proper execution

of application rules and to prove their balances, there are again

two approaches. The relevant information could be made available

either on the main chain, perhaps in a condensed form, or stored off

the main chain but with some credible assurance that the data is in

fact available for users to retrieve. For the latter purpose, Validium
rollups, i.e., zk-rollups with off-chain storage such as StarkWare’s

‘StarkEx’, introduce a committee of trusted storage nodes. For the

normal operating mode of a Validium rollup see Figure 2. The rollup

operator deposits a copy of the relevant data with each storage node,

who in turn confirm receipt. A state snapshot is accepted by the

main chain only if enough storage nodes have confirmed receipt

1

https://ethereum.org/en/developers/docs/scaling/
https://ethereum.org/en/developers/docs/scaling/
https://twitter.com/vitalikbuterin/status/1267455602764251138
https://twitter.com/vitalikbuterin/status/1267455602764251138

Kamilla Nazirkhanova, Joachim Neu, and David Tse

Rollup Users

...

Storage Nodes

...

Rollup Operator

state𝑡state𝑡−1
txs𝑡−1 txs𝑡

2

...

1

3

...
...

4

Main Chain 5

6

Figure 2: Normal operating mode of a Validium rollup, i.e., a
zk-rollup with off-chain storage: 1 Rollup operator collects
transactions from rollup users. 2 Transactions are executed
by operator off-chain and new state of rollup is calculated.
3 Transaction and state data is dispersed to storage nodes by
operator. 4 Storage nodes confirm receipt. Operator collects
sufficient number of confirmations into certificate of data
retrievability. 5 Operator sends commitment to state and
certificate of retrievability to main chain. 6 State snapshot
and certificate of retrievability are verified and if valid ac-
cepted by main chain.

of the corresponding full data. As long as enough storage nodes

remain honest and available, rollup users can always turn to them

to obtain the data necessary to prove fraud or balances, should the

rollup operator withhold it.

This solution, however, is not communication- or storage-efficient.

The operator has to send a copy of the entire data to every storage

node which in turn stores an entire copy. Therefore, this solution is

not scalable and works only for a relatively small number of storage

nodes (e.g., a current application of the StarkWare Validium rollup

uses 8 storage nodes [12]), which leads to heavy centralization.

Furthermore, the privacy of user data is violated, as storage nodes

can view the entire state.

1.3 Information Dispersal with Provable
Retrievability

A more communication- and storage-efficient solution is provided

by Verifiable Information Dispersal (VID) as embodied by Asynchro-

nous Verifiable Information Dispersal (AVID [7]) and its successors

AVID-FP [13] and AVID-M [29]. Generally speaking, AVID schemes

encode the input data block into chunks and every storage node

has to store only one chunk rather than the full block. The correct-

ness of the dispersal is verifiable, meaning that the consistency of

chunks is ensured.

A VID scheme consists of two protocols, Disperse and Retrieve,
satisfying [13], informally:

(a) Termination. If Disperse(𝐵) is initiated by an honest client,

then Disperse(𝐵) is eventually completed by all honest storage

nodes.

(b) Agreement. If some honest storage node completesDisperse(𝐵),
all honest storage nodes eventually complete Disperse(𝐵).

(c) Availability. If ‘enough’ honest storage nodes completeDisperse(𝐵),
an honest client that initiatesRetrieve() eventually reconstructs
some block 𝐵′.

(d) Correctness. After ‘enough’ honest storage nodes complete

Disperse(𝐵), all honest clients that initiate Retrieve() even-
tually retrieve the same block 𝐵′. If the client that initiated

Disperse(𝐵) was honest, then 𝐵′ = 𝐵.

Although some existing VID schemes can be used to ensure data

availability for rollups, they miss properties that are required for

this application, while having others that are not needed, resulting

in unnecessary complexity (cf. Figure 3). For Validium rollups, it

is crucial that the on-chain rollup contract can verify (4 , 5) the

retrievability of the underlying data before accepting a new state

update, to ensure that users have access to the data required to

enforce the contract (or be able to exit) on-chain in case of an

uncooperative operator. For this purpose, consistent retrieval of

‘some’ block 𝐵′ ≠ 𝐵 is not enough, the retrievability (3) of the

original block 𝐵 needs to be ensured. Oppositely, comprehensive

termination properties (2) such as Termination and Agreement are

not needed, and some VID schemes (here AVID) provide properties

exceeding VID that are not required for the rollup application (1).

We introduce the concept of Semi-AVID with Provable Retrievabil-
ity (Semi-AVID-PR) to capture the requirements in the rollup ap-

plication. Besides Disperse and Retrieve, a Semi-AVID-PR scheme

provides Commit to succinctly and unequivocally identify data

blocks and Verify to verify certificates of retrievability.

Definition (Semi-AVID-PR Security (Informal), cf. Definition 3.2).
If 𝑓 ≤ 𝑡 nodes are corrupted, then the Semi-AVID-PR scheme provides:
(a) Commitment-Binding. Commit is a binding deterministic

commitment to a block of data.
(b) Correctness. If an honest client initiatesDisperse(𝐵), then even-

tually it obtains a valid certificate of retrievability forCommit(𝐵).
(c) Availability. If an honest client invokes Retrieve(𝑃,𝐶) with

a valid certificate of retrievability 𝑃 for commitment 𝐶 , then
eventually it obtains a block 𝐵 such that Commit(𝐵) = 𝐶 .

Weprovide formal game-based definitions of commitment-binding

(cf. Definition 1) and availability (cf. Definition 2).

We propose a construction for a communication- and storage-

efficient Semi-AVID-PR scheme with practical computational cost,

which is compatible with the established on-chain smart contracts

of and thus can be readily adopted for existing Validium rollups, e.g.,
such as StarkWare’s StarkEx. Our construction relies on a collision-

resistant hash function, unforgeable signatures, and a deterministic

homomorphic vector commitment. We provide a reduction-based

security proof. A high-level illustration ofDisperse of our scheme is

provided in Figure 4. In our protocol, the rollup operator computes

commitments to chunks of the initial data and encodes it using an

erasure-correcting code. Encoded chunks are dispersed among the

2

Information Dispersal with Provable Retrievability for Rollups

AVID [7]

1 2 3 (4)

AVID-FP [13]

2 3 (4)

ACeD [26] 2 5

AVID-M [29] 2 (4)

Semi-AVID-PR

(this work)
3 4

Figure 3: Related protocols and supported properties: 1 Re-
trieval from any sufficiently large set of storage nodes 2

Comprehensive termination guarantees 3 Retrievability
guaranteed 4 Issues certificates of retrievability 5 Dispersal
verifiable on-chain

Rollup Operator

Commitments

2Data

1

C
h
u
n
k
𝑖

Storage Node 𝑖

Verify consistency

of chunk 𝑖 with

commitments

3

4

5

Figure 4: Dispersal in our Semi-AVID-PR scheme. 1 Client ar-
ranges data in matrix and computes vector commitments of
columns. 2 Client encodes data row-wise. 3 Commitments
and chunk 𝑖 are sent to storage node 𝑖. 4 If chunk 𝑖 is con-
sistent with commitments, storage node confirms receipt. 5

Enough acknowledgements form certificate of retrievability.

storage nodes along with the commitments. Similarly to AVID-FP,

the commitments allow storage nodes to verify the consistency of

their local chunk with the file for which they are about to acknowl-

edge the receipt of a chunk. If their chunk is consistent, a storage

node confirms receipt to the operator. Upon collecting enough con-

firmations, the operator can produce a certificate of retrievability

for the respective file, which is later verified by the main chain

before accepting the new state snapshot. Furthermore, additional

blinding can be used in our scheme to provide privacy against

honest-but-curious storage nodes. Finally, the core construction of

our scheme can be used to derive a data availability verification

scheme based on random sampling with practical computational

requirements.

1.4 Related Work
The AVID protocol [7] satisfies not only the VID properties, but fur-

thermore guarantees that eventually a dispersed file can be retrieved

from any subset containing 𝑘 honest storage nodes (cf. Figure 3,
1), rather than from only some subset, which can be identified

from the certificate of retrievability, as for Semi-AVID-PR. This is

achieved by an additional round of echoing chunks which leads to

a high communication cost for AVID (cf. Table 1), whose communi-

cation complexity is 𝑂 (𝑛 |𝐵 | + 𝑛3 |𝐶 |), where |𝐵 | is the block size, 𝑛

is the number of storage nodes, and |𝐶 | is the size of a commitment,

e.g., 32 B. Our Semi-AVID-PR scheme’s communication and storage

complexity is 𝑂 (|𝐵 | + 𝑛2 |𝐶 |).
AVID-FP [13], a successor of AVID, brings the communication

complexity to𝑂 (|𝐵 | +𝑛3 |𝐶 |) using homomorphic fingerprinting (as

in our Semi-AVID-PR scheme) so that storage nodes can verify their

chunks without echoing them. Since chunks can be verified, retriev-

ability is guaranteed (3). A round of AVID (with the fingerprints)

is still used to achieve comprehensive termination properties (2).

A recent advancement of VID, AVID-M [29], improves the com-

munication complexity to 𝑂 (|𝐵 | + 𝑛2 |𝐶 |) by reducing the size of

fingerprints using Merkle trees [21]. However, chunks cannot be

verified anymore, and AVID-M retrieves as empty block any data

that was maliciously encoded during dispersal, so that retrievabil-

ity is no longer guaranteed. This makes AVID-M less suitable for

application to rollups. The situation is similar for Data Availabil-

ity Oracles such as ACeD [26], and the dispersal sub-protocol of

Dumbo-MVBA [19]. If a block was invalidly encoded during disper-

sal by a malicious client, then Data Availability Oracles and Dumbo-

MVBA’s dispersal ensure consistency across retrieving clients, but

no guarantee is provided about how the retrieved content relates

to the dispersed content.

Furthermore, Data Availability Oracles and protocols from the

VID family differ in terms of how the rollup’s on-chain contract

can verify completion of the dispersal. Semi-AVID-PR issues certifi-

cates of retrievability (4) that can be independently verified (e.g.,
by a smart contract), similar to Dumbo-MVBA’s dispersal where

the dispersing client produces a ‘lock proof’ consisting of a quo-

rum of signatures from storage nodes attesting to having received

their respective chunks of the dispersed data. AVID, AVID-FP and

AVID-M can readily be extended with such a functionality. Data

Availability Oracles report data availability directly on-chain to the

smart contract (5).

Since AVID, AVID-FP and AVID-M all perform a round of AVID

to achieve comprehensive termination properties, the AVID family

is limited to an adversarial resilience 𝑡 < 𝑛/3, compared to 𝑡 < 𝑛/2
for Semi-AVID-PR and ACeD.

Sampling Based Data Availability Checks. The data availability
problem is not unique to rollups, but arises in other scaling ap-

proaches such as sharding or light clients as well. Solutions like

[1, 31] provide interactive protocols based on random sampling of

chunks of erasure-coded data. A block is deemed available if all

randomly sampled chunks are available, with the assumption being

that if enough nodes’ random queries are answered, then enough

chunks are available to restore the block. However, this interactive

technique is not feasible for rollups since the on-chain contract

cannot engage in random sampling to convince itself of data avail-

ability. Instead, the assurance of data availability could either be

made on-chain (as by Data Availability Oracles) or in the form of

a verifiable certificate of retrievability. However, techniques from

our Semi-AVID-PR scheme can be used to obtain a data availability

check where the consistency of a randomly sampled chunk can be

efficiently verified, obviating fraud proofs for invalid encoding [1].

3

Kamilla Nazirkhanova, Joachim Neu, and David Tse

1.5 Outline
Cryptographic essentials and erasure-correcting codes are reviewed

in Section 2. Model and formal properties of Semi-AVID-PR for the

application in rollups are introduced in Section 3. We describe our

Semi-AVID-PR protocol in Section 4 and prove its security in Sec-

tion 5. Use of blinding to protect privacy of dispersed data against

honest-but-curious storage nodes is discussed in Section 6. An

evaluation of computational cost and storage- and communication-

efficiency in comparison to other schemes is discussed in Section 7.

We close with comments on an application of techniques of our

Semi-AVID-PR scheme to data availability sampling in Section 8.

2 PRELIMINARIES
In this section, we briefly recapitulate tools from cryptography and

erasure-correcting codes used throughout the paper.

2.1 Basics & Notation
Let G be a cyclic group (denoted multiplicatively, i.e., with group

operation ‘·’) of prime order 𝑞 ≥ 2
2_

with generator 𝑔 ∈ G, where _
denotes the security parameter used subsequently for all primitives.

The function 𝐻 (𝑥) ≜ 𝑔𝑥 is a bijection between the finite field Z𝑞
(i.e., integers modulo 𝑞) and G. It has the linear homomorphism
property

∀𝑛 ≥ 1 : ∀𝑐1, ..., 𝑐𝑛 ∈ Z𝑞 : ∀𝑥1, ..., 𝑥𝑛 ∈ Z𝑞 :

𝐻

(
𝑛∑︁
𝑖=1

𝑐𝑖𝑥𝑖

)
=

𝑛∏
𝑖=1

𝐻 (𝑥𝑖)𝑐𝑖 , (1)

which this paper makes ample use of.

An efficiently computable hash function HF = (Gen,H), see
Definition B.1, is collision resistant if for any probabilistic poly-time

(PPT) adversary A there exists a negligible function negl(.) such
that

Pr

(
CFGHF,A (_) = true

)
= negl(_), (2)

where CFGHF,A (_) is the collision finding game recapitulated in

Alg. 13. We use CRHF𝑠 (𝑥) ≜ HF.H𝑠 (𝑥) as a notational shorthand.
A signature scheme Sig = (KeyGen, Sign,Verify), see Defini-

tion B.2, is secure under existential forgery if for any PPT adversary

A there exists a negligible function negl(.) such that

Pr

(
EFGSig,A (_) = true

)
= negl(_), (3)

where EFGSig,A (_) is the existential forgery game recapitulated in

Alg. 12.

We denote by [𝒙]𝑖 the 𝑖-th entry of a vector 𝒙 , by [𝑿]𝑖 the 𝑖-th
column of a matrix 𝑿 , and by [𝑛] ≜ {1, ..., 𝑛}.

2.2 Reed-Solomon Codes
A linear (𝑛, 𝑘)-code is a linear mapping Z𝑘𝑞 → Z𝑛𝑞 with 𝑛 ≥ 𝑘 . It can

be represented by a 𝑘 × 𝑛 generator matrix 𝑮 , with the encoding

operation then 𝒄⊤ = 𝑮 .Encode(𝒖⊤) ≜ 𝒖⊤𝑮 to obtain a length-𝑛

row vector of codeword symbols 𝒄⊤ from a length-𝑘 row vector of

information symbols 𝒖⊤.
A linear code is maximum distance separable (MDS) if any 𝑘

columns of its generator matrix 𝑮 are linearly independent, i.e.,
any 𝑘 × 𝑘 submatrix of 𝑮 is invertible. Thus, any set of codeword

symbols 𝑐𝑖 𝑗 from𝑘 distinct indices 𝑖 𝑗 can be used to uniquely decode

using the relation

𝒖⊤
[
𝒈𝑖1 ... 𝒈𝑖𝑘

]︸ ︷︷ ︸
≜�̃�

!

=
[
𝑐𝑖1 ... 𝑐𝑖𝑘

]︸ ︷︷ ︸
≜�̃�⊤

⇐⇒ 𝒖⊤ = 𝑮 .Decode(((𝑖 𝑗 , 𝑐𝑖 𝑗))𝑘𝑗=1) ≜ �̃�⊤ ˜𝑮
−1
, (4)

where 𝒈𝑖 corresponds to the 𝑖-th column of the generator matrix 𝑮 .
Reed-Solomon codes [25] are an important class of MDS codes.

Here, an information vector 𝒖⊤ is associated with a polynomial

𝑈 (𝑋) = ∑𝑘
𝑗=1 [𝒖⊤]𝑖𝑋 𝑖−1

and the codeword vector is obtained by

evaluating 𝑈 (𝑋) at 𝑛 distinct locations 𝛼1, ..., 𝛼𝑛 , such that 𝒄⊤ =

(𝑈 (𝛼1), ...,𝑈 (𝛼𝑛))⊤. This corresponds to a generator matrix 𝑮RS

with columns 𝒈
RS,𝑖 = (𝛼0𝑖 , ..., 𝛼

𝑘−1
𝑖
).

2.3 Linear Vector Commitment Schemes
Adeterministic vector commitment (VC) schemeVC = (Setup,Commit,
OpenEntry,VerifyEntry) [8, 21] for vectors of length 𝐿 allows to

commit to an element of Z𝐿𝑞 . Later, the commitment can be com-

pared to the commitment of another vector to check a vector open-

ing, and it can be opened to individual entries of the vector. Ideally,

the proof for the opening of an entry of the vector is short and

computationally easy to generate and verify. For our purposes it is

important that the VC is binding, i.e., if a commitment cannot be

opened to values that are inconsistent with the committed vector.

Specifically, we call a VC, see Definition B.3, binding if for any PPT

adversary A there exists a negligible function negl(.) such that

Pr

(
VCBGLVC,A (_) = true

)
= negl(_). (5)

where VCBGLVC,A (_) is the binding game defined in Alg. 14. We

use VC(𝒗) ≜ LVC.Commit(𝒗) as a notational shorthand.
For this manuscript of particular interest are linearly homomor-

phic (also simply called linear) VCs (LVC) with

∀𝛼, 𝛽 ∈ Z𝑞 : ∀𝒗,𝒘 ∈ Z𝐿𝑞 :
Commit(𝛼𝒗 + 𝛽𝒘) = 𝛼Commit(𝒗) + 𝛽Commit(𝒘) . (6)

Kate-Zaverucha-Goldberg (KZG) polynomial commitments [15]

(here the ‘basic’ variant PolyCommitDL of [15] asKZG) can be read-
ily turned into an example linear VC, which we use subsequently

and introduce here briefly. From a vector 𝒖 of length 𝐿 interpolate

a polynomial 𝑈 (𝑋) of degree (𝐿 − 1) such that 𝑈 (𝑖) = [𝒖]𝑖 for
𝑖 = 1, ..., 𝐿. Commit to 𝒖 by KZG.Commit(𝑈).1 The vector opening
can be verified by recomputing the commitment. The entry [𝒖]𝑖 can
be opened and the opening verified using KZG.CreateWitness and
KZG.VerifyEval for the corresponding𝑈 (𝑋) at 𝑋 = 𝑖 , respectively.

To see that the resulting VC’s Commit is linear, consider this.

During trusted setup, KZG.Setup samples 𝑟
R←− Z𝑞 and computes

public parameters (𝑔𝑟 0 , ..., 𝑔𝑟𝐿−1). KZG.Commit computes the com-

mitment to a polynomial𝑈 (𝑋) of degree (𝐿 − 1) with coefficients

𝛾0, ..., 𝛾𝐿−1 as 𝑔𝑈 (𝑟) which, due to the linear homomorphism of

1
The polynomial interpolation can be avoided by preprocessing the public parameters

of KZG to obtain them in the Lagrange polynomial basis.

4

Information Dispersal with Provable Retrievability for Rollups

𝐻 (𝑥) = 𝑔𝑥 discussed above, can be obtained from the public param-

eters as

KZG.Commit(𝛾0, ..., 𝛾𝐿−1) = KZG.Commit(𝑈) =
𝐿−1∏
𝑗=0

(𝑔𝑟
𝑗

)𝛾 𝑗 . (7)

Since interpolation of coefficients 𝜸 = (𝛾0, ..., 𝛾𝐿−1) of𝑈 (𝑋) from a

vector 𝒖 such that𝑈 (𝑖) = [𝒖]𝑖 for 𝑖 = 1, ..., 𝐿 is linear and invertible,

Commit is linear.

3 MODEL
The system under discussion consists of 𝑛 storage nodes 𝑃1, ..., 𝑃𝑛
and some clients. A PPT adversary can corrupt protocol participants

adaptively, i.e., as the protocol execution progresses. Corrupt partic-

ipants surrender their internal state to the adversary immediately

and from thereon behave as coordinated by the adversary. We de-

note by 𝑓 the number of storage nodes corrupted over the course of

the execution, and by 𝑡 the design resilience, i.e., our construction
is parametric in 𝑡 and satisfies the desired security properties in all

executions with 𝑓 ≤ 𝑡 . Protocol participants can send each other

messages (a priori without sender identification) which undergo

delay controlled by the adversary, subject to the constraint that

every message has to arrive eventually. We design a scheme with

the following interface and security properties.

Definition 3.1 (Semi-AVID-PR Syntax). A Semi-AVID (Asynchro-
nous Verifiable Information Dispersal) Scheme with Provable Retriev-
ability (ΠSAVIDPR) consists of two algorithms, Commit and Verify,
and three protocols, Setup, Disperse and Retrieve.

• Setup : 1_ ↦→ (pp, sp
1
, ..., sp𝑛): The protocol Setup is run by a

temporary trusted party and all storage nodes, at the beginning

of time (i.e., before adversarial corruption). It takes as input the
security parameter 1

_
and outputs global public parameters pp,

and local secret parameters sp
1
, ..., sp𝑛 , one for each storage

node.

The public parameters pp are common knowledge and input

to all other algorithms and protocols. The secret parameters

sp
1
, ..., sp𝑛 are part of the state of a storage node and as such

available to that node during Disperse and Retrieve invocations.
Explicit mention of these inputs is subsequently omitted for

simplicity of notation.

• Commit : 𝐵 ↦→ 𝐶 : The algorithm Commit takes as input a block
𝐵 of data, and returns a commitment 𝐶 to the data.

• Disperse : 𝐵 ↦→ 𝑃 : The protocol Disperse is run by a client and

all storage nodes. It takes as input a block 𝐵 of data at the client,

and outputs ⊥ or a certificate of retrievability 𝑃 for commitment

𝐶 = Commit(𝐵) to the client.

• Verify : (𝑃,𝐶) ↦→ 𝑏 ∈ {true, false}: The algorithm Verify takes
as input a certificate of retrievability 𝑃 and a commitment𝐶 , and

returns true or false, depending on whether the certificate is

considered valid.

• Retrieve : (𝑃,𝐶) ↦→ 𝐵: The protocol Retrieve is run by a client

and all storage nodes. It takes as input a certificate of retriev-

ability 𝑃 and a commitment 𝐶 at the client, and outputs ⊥ or a

block 𝐵 of data to the client.

Definition 3.2 (Semi-AVID-PR Security). A Semi-AVID-PR scheme

ΠSAVIDPR is secure with resilience 𝑡 if for all executions with 𝑓 ≤ 𝑡 :

Algorithm 1 Commitment-binding game (CBG)
against Semi-AVID-PR scheme ΠSAVIDPR =

(Setup,Commit,Disperse,Verify,Retrieve)

1: (pp, sp
1
, ..., sp𝑛) ← Setup(1_) ⊲ Run setup for all parties

2: (𝐵, 𝐵′) ← ACBG (pp, sp1, ..., sp𝑛) ⊲ A can simulate any party
3: return 𝐵 ≠ 𝐵′ ∧ Commit(𝐵) = Commit(𝐵′)

Algorithm 2 Availability game (AvG) with re-

silience 𝑡 against Semi-AVID-PR scheme ΠSAVIDPR =

(Setup,Commit,Disperse,Verify,Retrieve)
1: C ← ∅ ⊲ Bookkeeping of corrupted parties
2: ∀𝑖 ∈ [𝑛] : 𝑃𝑖 ← newΠSAVIDPR (∅) ⊲ Instantiate 𝑃𝑖 as ΠSAVIDPR

with blank state
3: pp← Setup𝑃1,...,𝑃𝑛 (1_) ⊲ Run setup among all parties
4: function Ocorrupt(𝑖) ⊲ Oracle for A to corrupt parties
5: assert 𝑖 ∉ C
6: C ← C ∪ {𝑖} ⊲ Mark party as corrupted
7: return 𝑃𝑖 ⊲ Hand 𝑃𝑖 ’s state to A
8: function Ointeract(𝑖,𝑚) ⊲ Oracle for A to interact with parties
9: assert 𝑖 ∉ C
10: return 𝑃𝑖 (𝑚) ⊲ Execute 𝑃𝑖 on input𝑚, return output to A
11:

(
𝑃,𝐶,

(
Onode
𝑖
(.)

)
𝑖∈C

)
← AO

corrupt (.),Ointeract (.)
AvG (pp) ⊲ A

returns certificate of retrievability 𝑃 , commitment 𝐶 , and oracle
access to corrupted nodes for retrieval

12: �̂� ← Retrieve𝑃1,...,𝑃𝑛
[
Onode
𝑖
(.)/Query(𝑖, .)

]
𝑖∈C
(𝑃,𝐶) ⊲

During retrieval, interact with corrupted nodes through oracles
13: return |C| ≤ 𝑡

∧ Verify(𝑃,𝐶) = true
∧ Commit(�̂�) ≠ 𝐶

⊲ A wins iff: while

corrupting no more than 𝑡 parties, A produces a valid certificate
of retrievability 𝑃 for 𝐶 such that retrieval does not return a file
matching 𝐶

(1) Commitment-Binding. Commit of ΠSAVIDPR implements a

binding deterministic commitment to a block 𝐵 of data. More

formally, ΠSAVIDPR is commitment-binding if for any PPT ad-

versary A there exists a negligible function negl(.) such that

Pr

(
CBGΠSAVIDPR,A (_) = true

)
= negl(_), (8)

where CBGΠSAVIDPR,A (_) is the commitment-binding game de-

fined in Alg. 1.

(2) Correctness. If an honest client invokes Disperse with a block

𝐵 of data, then eventually it outputs a certificate of retrievability

𝑃 with the property that Verify(𝑃,Commit(𝐵)) = true.
(3) Availability. For a certificate of retrievability 𝑃 and a commit-

ment𝐶 , if Verify(𝑃,𝐶) = true, then if an honest client invokes

Retrieve with 𝑃 and 𝐶 , then eventually it outputs a block 𝐵

of data such that Commit(𝐵) = 𝐶 . More formally, ΠSAVIDPR

provides availability if for any PPT adversary A there exists a

negligible function negl(.) such that

Pr

(
AvGΠSAVIDPR,A (_, 𝑡) = true

)
= negl(_), (9)

where AvGΠSAVIDPR,A (_, 𝑡) is the availability game defined in

Alg. 2.

5

Kamilla Nazirkhanova, Joachim Neu, and David Tse

Algorithm 3 Π⋆ .Setup(1_)
1: At the trusted party:
2: ppLVC ← LVC.Setup(1_)
3: ppHF ← HF.Gen(1_)
4: At each storage node 𝑖: (pk𝑖 , sk𝑖) ← Sig.KeyGen(1_)
5: return pp = (ppLVC, ppHF, pk1, ..., pk𝑛), sp1 = sk1, ..., sp𝑛 =

sk𝑛

Algorithm 4 Π⋆ .Commit(𝐵)
1: 𝑼 ← AsMatrix𝐿×𝑘 (𝐵)
2: (ℎ1, ..., ℎ𝑘) ← VC⊗𝑘 (𝑼)
3: return CRHF𝑠 (ℎ1∥...∥ℎ𝑘)

Algorithm 5 Π⋆ .Verify(𝑃,𝐶)

1: 𝑞 ←
��{𝑖 ��∃(𝑖 ↦→ 𝜎) ∈ 𝑃 : Sig.Verify(pk𝑖 , (ack,𝐶), 𝜎) = true

}��
2: if 𝑞 ≥ 𝑞 return true

3: return false

A few remarks are due on this formulation. Unlike earlier for-

mulations of AVID [7, 13, 29], our formulation does not have inde-

pendent session identifiers. Instead, the scheme provides a binding

commitment scheme which is used to establish a link between the

data in question, invocations of the protocols, and certificates of

retrievability. The completion of dispersal of a block and the possi-

bility to retrieve content matching a commitment are tied together

through the Commitment-Binding property of the commitment

scheme and can be proven to a third party using the certificate of

retrievability. This matches the Validium rollup application, where

on the one hand retrievability of content matching a certain com-

mitment needs to be verifiable on-chain, and on the other hand

validity of the block content is proved and verified with respect to

the commitment. This can also be seen as following the paradigm

shift from location-addressed to content-addressed storage and is

particularly suitable for applications such as rollups or sharding

where one wants to succinctly but unequivocally identify what
content is being referenced rather than where to find it. In terms of

the original four properties of AVID schemes [7], our Correctness

property takes the place of the Termination and Agreement proper-

ties, and our Availability property takes the place of the Availability

and Correctness properties. Above weakenings (hence the name

‘Semi’-AVID) allow us to achieve greater resilience up to 𝑡 < 𝑛/2
rather than 𝑡 < 𝑛/3 as for AVID, AVID-FP or AVID-M.

4 PROTOCOL
We provide a construction Π⋆ of Semi-AVID-PR from a binding

deterministic linear vector commitment scheme LVC, a maximum

distance separable (𝑛, 𝑘)-code Code, a collision resistant hash func-

tion CRHF𝑠 , and a secure digital signature scheme Sig. Our con-
struction satisfies the properties laid out in Section 3 as shown in

Section 5. Moreover, it is storage- and communication-efficient and

incurs practically moderate cost for cryptographic computations

and erasure-correction coding as demonstrated in Section 7. It is

Algorithm 6 Π⋆ .Disperse(𝐵)
1: At the client:
2: 𝑼 ← AsMatrix𝐿×𝑘 (𝐵)
3: (ℎ1, ..., ℎ𝑘) ← VC⊗𝑘 (𝑼)
4: 𝑪 ← Code.Encode⊗𝐿 (𝑼)
5: Send (store, (ℎ1, ..., ℎ𝑘), 𝒄𝑖) to all storage nodes 𝑖

6: At storage node 𝑖 upon receiving (store, (ℎ1, ..., ℎ𝑘), 𝒄𝑖):
7:

ˆℎ ← [Code.Encode(ℎ1, ..., ℎ𝑘)]𝑖
8: if ˆℎ ≠ VC(𝒄𝑖) abort
9: 𝐶 ← CRHF𝑠 (ℎ1∥ ...∥ℎ𝑘)
10: Store 𝐶 ↦→ ((ℎ1, ..., ℎ𝑘), 𝒄𝑖)
11: Send 𝜎𝑖 ≜ Sig.Sign(sk𝑖 , (ack,𝐶)) to client

12: At the client:
13: Wait for 𝜎𝑖 𝑗 from 𝑞 unique {𝑖 𝑗 }𝑞𝑗=1 with

Sig.Verify(pk𝑖 𝑗 , (ack,𝐶), 𝜎𝑖 𝑗) = true

14: return
⋃𝑞

𝑗=1
{𝑖 𝑗 ↦→ 𝜎𝑖 𝑗 }

Algorithm 7 Π⋆ .Retrieve(𝑃,𝐶)
1: At the client:
2: Extract from 𝑃 any 𝑞 unique{

𝑖
��∃(𝑖 ↦→ 𝜎) ∈ 𝑃 : Sig.Verify(pk𝑖 , (ack,𝐶), 𝜎) = true

}
3: Send (load,𝐶) to all storage nodes 𝑖

4: At storage node 𝑖 upon receiving (load,𝐶):
5: Load 𝐶 ↦→ ((ℎ1, ..., ℎ𝑘), 𝒄𝑖)
6: Send (𝑖, (ℎ1, ..., ℎ𝑘), 𝒄𝑖) to client

7: At the client:
8: Wait for (ℎ1, ..., ℎ𝑘) such that 𝐶 = CRHF𝑠 (ℎ1∥...∥ℎ𝑘)
9:

ˆ𝒉← Code.Encode(ℎ1, ..., ℎ𝑘)
10: Discarding any 𝑖 with [ˆ𝒉]𝑖 ≠ VC(𝒄𝑖), wait for 𝑘 remaining

unique {𝑖 𝑗 }𝑘𝑗=1
11: return Code.Decode(((𝑖 𝑗 , 𝒄𝑖 𝑗))𝑘𝑗=1)

easy to extend our scheme with blinding such that an honest-but-

curious storage node cannot learn anything about the dispersed

data from its chunk (see Section 6).

Our construction Π⋆ is provided in Algs. 3 to 7. See also Fig-

ure 5 for an illustration of the Disperse protocol (cf. Figure 4). Our
approach is related to AVID-FP [13] in that we also use the linear

homomorphism between the LVC and the erasure-correcting code.

More specifically, duringDisperse, the input file 𝐵 is arranged as an

𝐿 × 𝑘 matrix 𝑼 (using AsMatrix𝐿×𝑘) and a commitment ℎ𝑖 is taken

per column 𝒖𝑖 . Vectorization of the 𝑘 column commitments of 𝑼 is

denoted as VC⊗𝑘 (𝑼). The matrix is encoded row-wise into a coded

matrix 𝑪 , of which each column 𝒄𝑖 constitutes the chunk for storage
server 𝑖 . Vectorization of the 𝐿 row encodings of 𝑼 is denoted as

Code.Encode⊗𝐿 (𝑼). Now, due to the linear homomorphism, the

commitment of the encodings 𝒄𝑖 is equal to the encoding of the

commitments ℎ𝑖 . This allows storage nodes to easily verify the con-

sistency of their chunk with the uncoded data (i.e., the verifiability
property in AVID). For this check, a storage node only needs to

know the commitments ℎ𝑖 of the uncoded data, which keeps the

communication-overhead of the scheme low. Our approach differs

6

Information Dispersal with Provable Retrievability for Rollups

Client

...𝒖
1

𝒖
2

𝒖
3

𝒖
𝑘

𝑘

𝐿𝒄
1

𝒄
2

𝒄
3 𝒄 𝑖 𝒄 𝑛

𝑛

𝐿

C
od

e.
En

co
de
⊗𝐿

ℎ1ℎ2ℎ3
...ℎ𝑘

VC⊗𝑘

Storage Node 𝑖

[Code.Encode(ℎ1, ..., ℎ𝑘)]𝑖
?

= VC(𝒄𝑖)
If not, abort. Else,

𝐶 ← CRHF𝑠 (ℎ1 ∥... ∥ℎ𝑘) ,
𝑆𝑖 [𝐶] ← ((ℎ1, ..., ℎ𝑘), 𝒄𝑖) .

(store, (ℎ1, ..., ℎ𝑘), 𝒄𝑖)

𝑃 =
⋃𝑞

𝑗=1
{𝑖 𝑗 ↦→ 𝜎𝑖 𝑗 }

𝜎𝑖 ≜ Sig.Sign(sk𝑖 , (ack,𝐶))

Figure 5:Disperse protocol of our Semi-AVID-PR construction
Π⋆ (cf. Figure 4). Client arranges data in 𝐿 × 𝑘 matrix 𝑼 ,
computes commitmentsℎ1, ..., ℎ𝑘 column-wise and 𝐿×𝑛 coded
matrix 𝑪 row-wise. Commitments and 𝑖-th column 𝒄𝑖 of 𝑪
are sent to storage node 𝑖. Upon verification, storage node
computes commitment 𝐶 to the data, stores commitments
and chunk, and acknowledges receipt of chunk to client.
Client forms certificate of retrievability 𝑃 from 𝑞 unique
server identifiers 𝑖 𝑗 and their receipts 𝜎𝑖 𝑗 .

from AVID-FP in that AVID-FP still performs a round of AVID (for

the commitments) in order to satisfy the full AVID requirements (in

particular Termination and Agreement), while our Semi-AVID-PR

scheme satisfies only the weaker Correctness property (cf. Figure 3).
Our construction is parametric in the design resilience 𝑡 , the

quorum size 𝑞 for certificates of retrievability, the code dimension

𝑘 and the length of chunks 𝐿. The analysis of Section 5 reveals that

𝑞 ≤ (𝑛 − 𝑡), 0 < (𝑞 − 𝑡) and 𝑘 ≤ (𝑞 − 𝑡) are necessary. So given any

𝑡 < 𝑛/2 and target file size |𝐵 | (in field elements), choose 𝑞 ≜ (𝑛−𝑡),
minimize storage overhead with 𝑘 ≜ 𝑛 − 2𝑡 , and set 𝐿 ≜ |𝐵 |/𝑘 .

During Setup (Algorithm 3), a trusted party performs the setup

of the LVC and the HF, and each storage node generates a crypto-

graphic identity for Sig. The public parameters of the LVC and the

public keys of the storage nodes become common knowledge, each

storage node stores its secret key.

The Commitment of a block 𝐵 (Algorithm 4) is computed by

arranging 𝐵 as an 𝐿 × 𝑘 matrix 𝑼 , then computing the commit-

ments ℎ𝑖 as VC(𝒖𝑖) for each of the 𝑘 columns 𝒖𝑖 of 𝑼 , and finally

CRHF𝑠 (ℎ1∥ ...∥ℎ𝑘) is the commitment.

To Disperse a block 𝐵 (Algorithm 6, Figures 4, 5), the client first

computes 𝑼 and the commitments ℎ𝑖 as for Commit. Then, 𝑼 is

encoded row-wise using Code.Encode to obtain an 𝐿 × 𝑛 coded

matrix 𝑪 . Each column 𝒄𝑖 of 𝑪 is sent to storage node 𝑖 together

with (ℎ1, ..., ℎ𝑘). Each storage node 𝑖 verifies its chunk using the

linearly homomorphic property (aborting if violated)

[Code.Encode(ℎ1, ..., ℎ𝑘)]𝑖
?

= VC(𝒄𝑖), (10)

before computing the file’s commitment 𝐶 ≜ CRHF𝑠 (ℎ1∥...∥ℎ𝑘)
and storing commitments and chunk indexed by 𝐶 . The storage

node then acknowledges receipt of the chunk by sending a signature

on (ack,𝐶) to the client. Upon collecting valid signatures 𝜎𝑖 𝑗 from

𝑞 unique storage nodes 𝑖 𝑗 , the client collects them into a certificate

of retrievability 𝑃 .

To Verify a certificate of retrievability 𝑃 for a commitment 𝐶

(Algorithm 5), one counts whether 𝑃 contains valid signatures on

(ack,𝐶) from at least 𝑞 unique storage nodes.

Finally, to Retrieve a file based on a certificate of retrievability 𝑃

for a commitment 𝐶 , the client first extracts any 𝑞 unique storage

nodes for which 𝑃 contains a valid signature on (ack,𝐶). The client
then queries the chunks of𝐶 from these storage nodes. The storage

nodes reply with the commitments and chunks they have stored for

𝐶 . The client first waits until some commitments (ℎ1, ..., ℎ𝑘) satisfy
𝐶 = CRHF𝑠 (ℎ1∥...∥ℎ𝑘). Then, the client discards any chunks that

do not satisfy the homomorphic property (10). Upon receiving valid

chunks from 𝑘 unique storage nodes, the client uses Code.Decode
to decode the file.

To protect the data against honest-but-curious storage nodes

(i.e., assuming storage nodes do not collude—clearly, a sufficiently

large set of storage nodes can retrieve the data, which is a design

goal of Semi-AVID-PR), 𝑼 can be augmented by the client with a

column and a row drawn uniformly a random, to blind the encoded

chunks. Details in Section 6.

5 SECURITY PROOF
Wefirst provide a proof sketch to convey the relevant high level intu-

ition, before providing a formal reduction-based proof of Commitment-

Binding and Availability in Lemmas 5.2 and 5.3.

Theorem 5.1. The Semi-AVID-PR construction Π⋆ of Section 4
is secure with resilience 𝑡 for any 𝑡 < 𝑛/2 as defined in Section 3,
assuming HF is collision resistant, Sig is existentially unforgeable,
and LVC is binding.

Proof sketch. Commitment-Binding. Π⋆ is deterministic

because VC and CRHF𝑠 are. For binding, assume for contradiction

that Π⋆ was not commitment-binding, i.e., there was an adver-

sary A that can produce blocks 𝐵 ≠ 𝐵′ such that Commit(𝐵) =
Commit(𝐵′) with non-negligible probability. Since 𝐵 ≠ 𝐵′, for their
respective representations as 𝐿 × 𝑘 matrices, 𝑼 ≠ 𝑼 ′. Either 𝒉 ≜
VC⊗𝑘 (𝑼) ≠ VC⊗𝑘 (𝑼 ′) ≜ 𝒉′ but CRHF𝑠 (𝒉) = CRHF𝑠 (𝒉′), a colli-
sion in CRHF𝑠 , which can happen with negligible probability only

by assumption, or 𝒉 = 𝒉′, so that for some 𝑖 , VC([𝑼]𝑖) = VC([𝑼 ′]𝑖)
but [𝑼]𝑖 ≠ [𝑼 ′]𝑖 , so ([𝑼]𝑖 , [𝑼 ′]𝑖) is a pair that breaks the binding
property of VC, which can happen with negligible probability only

by assumption. Thus, Π⋆ is commitment-binding.

Lemma 5.2 below establishes Commitment-Binding formally.

Correctness. Since the client is honest and LVC is linearly ho-

momorphic, the consistency check in Algorithm 6 l. 8 passes at all

honest storage nodes. So the client receives signatures 𝜎𝑖 𝑗 (which

are valid, by correctness of Sig) of (ack,Commit(𝐵)) from at least

(𝑛 − 𝑡) unique storage nodes 𝑖 𝑗 , which it can bundle into a certifi-

cate of retrievability 𝑃 that satisfies the check of Algorithm 5 by

construction, if 𝑞 ≤ (𝑛 − 𝑡).
Availability. Since Verify(𝑃,𝐶) = true by assumption, the

client can extract some 𝑞 unique storage nodes 𝑖 𝑗 from 𝑃 in Al-

gorithm 7 l. 2. Of these 𝑞 storage nodes, at least (𝑞 − 𝑡) remain

honest. Security of Sig implies that they must have previously

executed Algorithm 6 l. 11 and hence stored (ℎ1, ..., ℎ𝑘) for 𝐶 =

7

Kamilla Nazirkhanova, Joachim Neu, and David Tse

Algorithm 8 ACFG←CBG (𝑠) constructed from ACBG

1: ppLVC ← LVC.Setup(1_) ⊲ Setup Π⋆ (cf. Alg. 3) ...
2: ∀𝑖 ∈ [𝑛] : (pk𝑖 , sk𝑖) ← Sig.KeyGen(1_)
3: ppHF ← 𝑠 ⊲ ... except use 𝑠 for ppHF
4: pp← (ppLVC, ppHF, pk1, ..., pk𝑛)
5: (𝐵, 𝐵′) ← ACBG (pp, sp1, ..., sp𝑛)
6: 𝑼 ← AsMatrix𝐿×𝑘 (𝐵)
7: 𝑼 ′ ← AsMatrix𝐿×𝑘 (𝐵′)
8: (ℎ1, ..., ℎ𝑘) ← VC⊗𝑘 (𝑼)
9: (ℎ′

1
, ..., ℎ′

𝑘
) ← VC⊗𝑘 (𝑼 ′)

10: if ℎ1∥ ...∥ℎ𝑘 ≠ ℎ′
1
∥ ...∥ℎ′

𝑘

∧ CRHF𝑠 (ℎ1∥ ...∥ℎ𝑘) = CRHF𝑠 (ℎ′
1
∥...∥ℎ′

𝑘
)

11: return (ℎ1∥...∥ℎ𝑘 , ℎ′1∥...∥ℎ
′
𝑘
) ⊲ Collision in HF.H

12: else
13: abort ⊲ No collision identified

CRHF𝑠 (ℎ1, ..., ℎ𝑘) in Algorithm 6 l. 10 and their chunks satisfied

the consistency check in Algorithm 6 l. 8. Note that by collision

resistance of CRHF𝑠 , there can be only one set of (ℎ1, ..., ℎ𝑘) for
𝐶 . As long as (𝑞 − 𝑡) > 0, the client eventually completes the wait

in Algorithm 7 l. 8, and if 𝑘 ≤ (𝑞 − 𝑡), then the client eventu-

ally also completes the wait in Algorithm 7 l. 10. Finally, since

Code is an MDS (𝑛, 𝑘)-code, Algorithm 7 l. 11 succeeds to de-

code a block 𝐵, corresponding to an 𝐿 × 𝑘 matrix 𝑼 . It remains

to show that Commit(𝐵) = 𝐶 , for which (by CRHF𝑠) it suffices that

(ℎ1, ..., ℎ𝑘) = VC⊗𝑘 (𝑼). Note the decoder uses that Code is an MDS

(𝑛, 𝑘)-code and thus any 𝑘 × 𝑘 submatrix of its generator matrix 𝑮
is invertible, and the relation[

𝒖1 ... 𝒖𝑘
]︸ ︷︷ ︸

=𝑼

[
𝒈𝑖1 ... 𝒈𝑖𝑘

]︸ ︷︷ ︸
≜ ˜𝑮

!

=
[
𝒄𝑖1 ... 𝒄𝑖𝑘

]︸ ︷︷ ︸
≜ ˜𝑪

⇐⇒ 𝑼 = ˜𝑪 ˜𝑮
−1
. (11)

At the same time, by the checks in Algorithm 7 l. 10,[
ℎ1 ... ℎ𝑘

]
˜𝑮 =

[
VC(𝒄𝑖1) ... VC(𝒄𝑖𝑘)

]
. (12)

By the linear homomorphism of LVC,

VC⊗𝑘 (𝑼) = VC⊗𝑘 (˜𝑪) ˜𝑮−1 =
[
ℎ1 ... ℎ𝑘

]
. (13)

Thus, as long as the retrieving client receives enough chunks from

honest storage nodes such that Retrieve outputs any block �̂� rather

than ⊥, Commit(�̂�) = 𝐶 for the commitment 𝐶 associated with

the certificate of retrievability 𝑃 . This insight is crucial for the

subsequent formal proof of Availability.

Lemma 5.3 below establishes Availability formally.

Resilience. From above analysis, we obtain the constraints 𝑞 ≤
(𝑛 − 𝑡) (for Correctness), 0 < (𝑞 − 𝑡) (for Availability, to obtain

ℎ1, ..., ℎ𝑘), and 𝑘 ≤ (𝑞 − 𝑡) (for Availability, to decode), which the

choice of parameters in Section 4 satisfies, and which lead to the

resilience bound 𝑡 < 𝑛/2. □

We proceed to give formal reduction-based proofs of the Com-

mitment-Binding and Availability properties of Π⋆.

Lemma 5.2. If HF is collision resistant and LVC is binding, then
Π⋆ is commitment-binding, i.e., for all PPT adversaries ACBG there

Algorithm 9 AVCBG←CBG (pp) constructed from ACBG

1: ppHF ← HF.Gen(1_) ⊲ Setup Π⋆ (cf. Alg. 3) ...
2: ∀𝑖 ∈ [𝑛] : (pk𝑖 , sk𝑖) ← Sig.KeyGen(1_)
3: ppLVC ← pp ⊲ ... except use pp for ppLVC
4: pp← (ppLVC, ppHF, pk1, ..., pk𝑛)
5: (𝐵, 𝐵′) ← ACBG (pp, sp1, ..., sp𝑛)
6: 𝑼 ← AsMatrix𝐿×𝑘 (𝐵)
7: 𝑼 ′ ← AsMatrix𝐿×𝑘 (𝐵′)
8: if ∃𝑖 ∈ [𝑘] : [𝑼]𝑖 ≠ [𝑼 ′]𝑖 ∧ VC([𝑼]𝑖) = VC([𝑼 ′]𝑖)
9: return ([𝑼]𝑖 , [𝑼 ′]𝑖)
10: else
11: abort

exists a negligible function negl(.) such that

Pr

(
CBGΠ⋆,ACBG

(_) = true
)
≤ negl(_) . (14)

Proof. Let ACBG be an arbitrary PPT CBG adversary. We con-

struct from it the adversariesACFG←CBG againstCFG andAVCBG←CBG
against VCBG. The adversaryACFG←CBG is detailed in Alg. 8. It re-

ceives a challenge 𝑠 and runs LVC.Setup(1_) and Sig.KeyGen(1_)
to produce the remaining public parameters pp and the secret

parameters (sp
1
, ..., sp𝑛) for ACBG. After ACBG outputs a pair

(𝐵, 𝐵′), ACFG←CBG computes 𝑼 ← AsMatrix𝐿×𝑘 (𝐵) and 𝑼 ′ ←
AsMatrix𝐿×𝑘 (𝐵). Next, it computes (ℎ1, ..., ℎ𝑘) ← VC⊗𝑘 (𝑼) and
(ℎ′

1
, ..., ℎ′

𝑘
) ← VC⊗𝑘 (𝑼 ′) to check whether ℎ1∥...∥ℎ𝑘 and ℎ′

1
∥...∥ℎ′

𝑘
are a collision of CRHF𝑠 . If so, it outputs (ℎ1∥...∥ℎ𝑘 , ℎ′1∥...∥ℎ

′
𝑘
); else

it aborts.

The adversary AVCBG←CBG is detailed in Alg. 9. It receives

the challenge ppLVC and runs HF.Gen(1_) and Sig.KeyGen(1_)
to produce the remaining public parameters pp and the secret

parameters (sp
1
, ..., sp𝑛) for ACBG. After ACBG outputs a pair

(𝐵, 𝐵′), AVCBG←CBG computes 𝑼 ← AsMatrix𝐿×𝑘 (𝐵) and 𝑼 ′ ←
AsMatrix𝐿×𝑘 (𝐵′). Next, it checks if there exists 𝑖 ∈ [𝑘] such that the
column [𝑼]𝑖 ≠ [𝑼 ′]𝑖 but VC([𝑼]𝑖) = VC([𝑼 ′]𝑖). If so, it outputs
the collision ([𝑼]𝑖 , [𝑼 ′]𝑖); else it aborts.

The adversaries ACFG←CBG and AVCBG←CBG run in polyno-

mial time. The input of the adversary ACBG when run as a sub-

routine of ACFG←CBG or AVCBG←CBG is distributed identically

to the input of the adversary ACBG when run in CBG.
For the subsequent arguments we define the following events:

𝐸CB ≜ {CBGΠ⋆,ACBG
(_) = true} (15)

𝐸CF ≜ {CFGHF,ACFG←CBG (_) = true} (16)

𝐸VCB ≜ {VCBGLVC,AVCBG←CBG (_) = true} (17)

𝐸 ≜ {VC⊗𝑘 (𝑼) ≠ VC⊗𝑘 (𝑼 ′) ∧ 𝑼 ≠ 𝑼 ′} (18)

𝑈 ≜ 𝐸CF ∨ 𝐸VCB (19)

Suppose𝐸CB holds andACBG outputs (𝐵, 𝐵′) such thatCommit(𝐵) =
Commit(𝐵′) but𝐵 ≠ 𝐵′. Hence,CRHF𝑠 (ℎ1∥...∥ℎ𝑘) = CRHF𝑠 (ℎ′

1
∥...∥ℎ′

𝑘
),

where𝑼 ← AsMatrix𝐿×𝑘 (𝐵),𝑼 ′ ← AsMatrix𝐿×𝑘 (𝐵′), (ℎ1, ..., ℎ𝑘) ←
VC⊗𝑘 (𝑼) and (ℎ′

1
, ..., ℎ′

𝑘
) ← VC⊗𝑘 (𝑼 ′). We consider two cases.

If 𝐸 holds, then (ℎ1, ..., ℎ𝑘) ≠ (ℎ1, ..., ℎ𝑘). Thus, in the event of

𝐸, (ℎ1∥...∥ℎ𝑘 , ℎ′1∥...∥ℎ
′
𝑘
) is a collision of CRHF𝑠 , so the event 𝐸CF

holds. In the case of ¬𝐸, (ℎ1, ..., ℎ𝑘) = (ℎ′1, ..., ℎ
′
𝑘
). Thus, there exists

8

Information Dispersal with Provable Retrievability for Rollups

𝑖 ∈ [𝑘] such that [𝑼]𝑖 ≠ [𝑼 ′]𝑖 but VC([𝑼]𝑖) = VC([𝑼 ′]𝑖). So
under ¬𝐸, the event 𝐸VCB holds.

Observe that if 𝐸 holds, then 𝐸CF holds. Hence, 𝐸 ⊆ 𝐸CF and

Pr(¬𝐸CF ∧ 𝐸) = 0. Similarly, if ¬𝐸 holds, then 𝐸VCB holds. Hence,

¬𝐸 ⊆ 𝐸VCB and Pr(¬𝐸VCB ∧ ¬𝐸) = 0.

We can now bound the probability of 𝐸CB:

Pr(𝐸CB)
(a)
= Pr(𝐸CB | 𝑈) Pr(𝑈) + Pr(𝐸CB | ¬𝑈) Pr(¬𝑈) (20)

(b)
≤ Pr(𝑈) + Pr(𝐸CB ∧ ¬𝑈) (21)

(c)
≤ Pr(𝑈) + Pr(𝐸CB ∧ ¬𝑈 ∧ 𝐸) + Pr(𝐸CB ∧ ¬𝑈 ∧ ¬𝐸) (22)

(d)
≤ Pr(𝑈) + Pr(¬𝐸CF ∧ 𝐸) + Pr(¬𝐸VCB ∧ ¬𝐸) (23)

(e)
≤ Pr(𝑈) (24)

(f)
≤ Pr(𝐸CF) + Pr(𝐸VCB) (25)

where (a) uses the law of total probability (TP) to introduce 𝑈 ; (b)

uses Pr(𝐸CB | 𝑈) ≤ 1; (c) uses TP to introduce 𝐸; (d) uses

Pr(𝐸CB ∧ ¬𝐸CF ∧ ¬𝐸VCB ∧ 𝐸) ≤ Pr(¬𝐸CF ∧ 𝐸) (26)

and

Pr(𝐸CB ∧ ¬𝐸CF ∧ ¬𝐸VCB ∧ ¬𝐸) ≤ Pr(¬𝐸VCB ∧ ¬𝐸) ; (27)

(e) uses Pr(¬𝐸CF ∧ 𝐸) = 0 and Pr(¬𝐸VCB ∧ ¬𝐸) = 0; (f) uses a

union bound.

Since by assumption HF is collision resistant and LVC is binding,

there exist negl
1
(.), negl

2
(.) such that Pr(𝐸CF) ≤ negl

1
(_) and

Pr(𝐸VCB) ≤ negl
2
(_). Thus,

Pr(𝐸CB) ≤ negl
1
(_) + negl

2
(_) ≤ negl(_) . (28)

Hence, Π⋆ is commitment-binding. □

Lemma 5.3. If HF is collision resistant, Sig is secure against exis-
tential forgery, and 𝑡 < 𝑛/2, then Π⋆ provides availability, i.e., for
all PPT adversaries AAvG there exists a negligible function negl(.)
such that

Pr

(
AvGΠ⋆,AAvG

(_, 𝑡) = true
)
≤ negl(_) . (29)

Proof. First, we modify the availability game AvG (Alg. 2) to

obtain AvG′ (Alg. 15) in which initially the index 𝐼 of a storage

node is sampled uniformly at random, and subsequently the game

is aborted if the adversary AAvG′ attempts to corrupt 𝐼 . This modi-

fication will subsequently streamline the reduction of availability

of Π⋆ to security of Sig against existential forgery.
We reduce availability of Π⋆ to availability

′
of Π⋆, i.e., if for all

PPT AAvG′ there exists negl(.) such that

Pr

(
AvG′

Π⋆,AAvG′
(_, 𝑡) = true

)
≤ negl(_), (30)

then for all PPT AAvG there exists negl(.) such that

Pr

(
AvGΠ⋆,AAvG

(_, 𝑡) = true
)
≤ negl(_) . (31)

To this end, pick any AvG adversary AAvG. Note that AAvG′ ≜
AAvG is an AvG′ adversary. Define the events:

𝐸A ≜ {AvGΠ⋆,AAvG
(_, 𝑡) = true} (32)

𝐸A′ ≜ {AvG′Π⋆,AAvG′
(_, 𝑡) = true} (33)

Algorithm 10 AEFG←AvG′ (pk) constructed from AAvG′

1: 𝐼
R←− [𝑛] ⊲ Choose random party 𝐼 to emulate using Osign (.)

2: C ← ∅ ⊲ Bookkeeping of corrupted parties C
3: ∀𝑖 ∈ [𝑛] : 𝑆𝑖 ← ∅ ⊲ Blank state for each party 𝑃𝑖
4: ppLVC ← LVC.Setup(1_) ⊲ Setup Π⋆ (cf. Alg. 3) ...
5: ppHF ← HF.Gen(1_)
6: ∀𝑖 ∈ [𝑛] \ {𝐼 } : (pk𝑖 , sk𝑖) ← Sig.KeyGen(1_)
7: pk𝐼 ← pk ⊲ ... except use pk for party 𝐼 ’s pk𝐼
8: pp← (ppLVC, ppHF, pk1, ..., pk𝑛)
9: function Ocorrupt(𝑖)
10: assert 𝑖 ∉ C
11: if 𝑖 ≠ 𝐼

12: C ← C ∪ {𝑖}
13: return (sk𝑖 , 𝑆𝑖)
14: else
15: abort ⊲ Cannot hand over 𝑃𝐼 since sk𝐼 is unknown
16: function Ointeract(𝑖,𝑚)

17: assert 𝑖 ∉ C
18: if 𝑖 ≠ 𝐼

19: return Π⋆,sk𝑖 ,𝑆𝑖 (𝑚) ⊲ Execute 𝑃𝑖 on input𝑚 and state
sk𝑖 , 𝑆𝑖 , and return output to A

20: else
21: return Π⋆,𝑆𝑖 [Osign (.)/Sig.Sign(sk𝑖 , .)] (𝑚) ⊲ Execute

𝑃𝐼 on input𝑚 and state 𝑆𝑖 , substituting Osign (.) for invocations
of Sig.Sign(sk𝑖 , .), and return output to A

22:

(
𝑃,𝐶,

(
Onode
𝑖
(.)

)
𝑖∈C

)
← AO

corrupt (.),Ointeract (.)
AvG′ (pp)

23: �̂� ← Retrieve𝑃1,...,𝑃𝑛
[
Onode
𝑖
(.)/Query(𝑖, .)

]
𝑖∈C
(𝑃,𝐶) ⊲

During retrieval, interact with corrupted nodes through oracles
24: if ∃𝜎 : (𝐼 ↦→ 𝜎) ∈ 𝑃 ∧ 𝑆𝐼 [𝐶] = ∅
25: return ((ack,𝐶), 𝜎) ⊲ Forgery for pk𝐼 = pk
26: else
27: abort ⊲ No forgery for pk𝐼 = pk identified

Obviously, 𝐸A ∧ {𝐼 ∉ C} ⊆ 𝐸A′ . Furthermore, 𝐸A implies |C| ≤ 𝑡 <

𝑛/2, so that Pr(𝐼 ∉ C | 𝐸A) ≥ 1/2. Thus, by availability
′
of Π⋆,

Pr(𝐸A′) ≥ Pr(𝐸A ∧ {𝐼 ∉ C}) (34)

≥ Pr({𝐼 ∉ C} | 𝐸A) Pr(𝐸A) ≥
1

2

Pr(𝐸A) (35)

Pr(𝐸A) ≤ 2 Pr(𝐸A′) ≤ negl(_). (36)

We proceed with the reduction of availability
′
of Π⋆ to collision

resistance of HF and security of Sig against existential forgery. Let

AAvG′ be an arbitrary PPT AvG′ adversary. We construct from

it the adversaries AEFG←AvG′ for the EFG and ACFG←AvG′ for

the CFG as detailed in Algs. 10 and 11, respectively. AEFG←AvG′

emulates the AvG′ challenger (Alg. 15), except it does not generate a
signature public/secret key pair for node 𝐼 , but instead uses the input

challenge pk, and it attempts to forge a signature for 𝐼 . It uses the

signature oracle Osign (.) provided in the EFG to produce signatures

for node 𝐼 whenever Π⋆ requires to do so. ACFG←AvG′ emulates

the AvG′ challenger (Alg. 15), except it uses the input challenge
𝑠 for HF’s key in the public parameters of Π⋆. Throughout the
protocol execution, for both dispersal and retrieval operations, the

reduction adversary keeps track of any (ℎ1, ..., ℎ𝑘) that may present

9

Kamilla Nazirkhanova, Joachim Neu, and David Tse

Algorithm 11 ACFG←AvG′ (𝑠) constructed from AAvG′

1: 𝐼
R←− [𝑛]

2: C,H ← ∅, ∅ ⊲ Bookkeeping of corrupted parties C and
image/preimage pairsH for HF.H

3: ∀𝑖 ∈ [𝑛] : 𝑆𝑖 ← ∅ ⊲ Blank state for each party 𝑃𝑖
4: ppLVC ← LVC.Setup(1_) ⊲ Setup Π⋆ (cf. Alg. 3) ...
5: ∀𝑖 ∈ [𝑛] : (pk𝑖 , sk𝑖) ← Sig.KeyGen(1_)
6: ppHF ← 𝑠 ⊲ ... except use 𝑠 for ppHF
7: pp← (ppLVC, ppHF, pk1, ..., pk𝑛)
8: function Ocorrupt(𝑖)
9: assert 𝑖 ∉ C
10: if 𝑖 ≠ 𝐼

11: C ← C ∪ {𝑖}
12: return (sk𝑖 , 𝑆𝑖)
13: else
14: abort
15: function Ointeract(𝑖,𝑚)

16: assert 𝑖 ∉ C
17: if 𝑚 parses as (store, (ℎ1, ..., ℎ𝑘), 𝒄)
18: H ← H ∪ {(CRHF𝑠 (ℎ1∥...∥ℎ𝑘) ↦→ ℎ1∥ ...∥ℎ𝑘)} ⊲

Record image/preimage pair for HF.H
19: return Π⋆,sk𝑖 ,𝑆𝑖 (𝑚) ⊲ Execute 𝑃𝑖 on input𝑚 and state

sk𝑖 , 𝑆𝑖 , and return output to A
20:

(
𝑃,𝐶,

(
Onode
𝑖
(.)

)
𝑖∈C

)
← AO

corrupt (.),Ointeract (.)
AvG′ (pp)

21: function ˜Onode
𝑖

(𝑚)

22: 𝑟 ← Onode
𝑖
(𝑚)

23: if 𝑟 parses as (𝑖, (ℎ1, ..., ℎ𝑘), 𝒄𝑖)
24: H ← H ∪ {(CRHF𝑠 (ℎ1∥...∥ℎ𝑘) ↦→ ℎ1∥ ...∥ℎ𝑘)} ⊲

Record image/preimage pair for HF.H
25: return 𝑟

26: Retrieve𝑃1,...,𝑃𝑛
[
˜Onode
𝑖
(.)/Query(𝑖, .)

]
𝑖∈C
(𝑃,𝐶) ⊲ During

retrieval, interact with corrupted nodes through wrapped oracles
27: if ∃𝑥, 𝑥 ′ : (𝐶 ↦→ 𝑥) ∈ H ∧ (𝐶 ↦→ 𝑥 ′) ∈ H ∧ 𝑥 ≠ 𝑥 ′

28: return (𝑥, 𝑥 ′) ⊲ Collision in HF.H
29: else
30: abort ⊲ No collision identified

colliding inputs for CRHF𝑠 . Clearly, the adversaries AEFG←AvG′

and ACFG←AvG′ run in time polynomial in the security parameter

_. Furthermore, the input pp of AAvG′ and its interactions through

the oracles Ocorrupt (.) and Ointeract (.) are distributed identically

when run by the challenger of AvG′ and when run as a subroutine

of AEFG←AvG′ or ACFG←AvG′ invoked by the challenger of EFG
or CFG, respectively.

For the subsequent arguments we define the following events:

𝐸E ≜ {EFGSig,AEFG←AvG′ (_) = true} (37)

𝐸C ≜ {CFGHF,ACFG←AvG′ (_) = true} (38)

𝐸 ≜ {(∃𝜎 : (𝐼 ↦→ 𝜎) ∈ 𝑃) ∧ 𝑆𝐼 [𝐶] = ∅} (39)

The following facts will be useful. Observe that if 𝐸 ∧ 𝐸A′ holds,
thenAEFG←AvG′ wins the EFG, i.e., 𝐸E holds. So 𝐸∧𝐸A′ ⊆ 𝐸E. Thus,

Pr(𝐸A′ ∧ ¬𝐸C ∧ ¬𝐸E ∧ 𝐸) = 0. Inverting the implication, ¬𝐸E ⊆

¬𝐸∨¬𝐸A′ . Thus, Pr(𝐸A′ ∧ ¬𝐸C ∧ ¬𝐸E ∧ ¬𝐸) ≤ Pr(𝐸A′ ∧ ¬𝐸C ∧ ¬𝐸),
where we have used a union bound and 𝐸A′ ∧ ¬𝐸A′ = ∅.

Finally, suppose AAvG′ as a subroutine of AEFG←AvG′ behaves

such that it would win the corresponding AvG′. Furthermore, sup-

pose no collision is identified by ACFG←AvG′ , so ¬𝐸C. Then, given
that |C| ≤ 𝑡 < 𝑞, Verify(𝑃,𝐶) = true, the only way in which

Commit(�̂�) ≠ C could be true is if there is at least one node that

is part of 𝑃 , has not been corrupted, and has not previously stored

a chunk associated with 𝐶 . This is because, as was argued earlier

in the proof sketch, if the retrieving client receives chunks from

at least 𝑘 honest storage nodes, it decodes a block that matches

the expected commitment 𝐶 . Hence, it must be the case that the

client does not receive sufficiently many valid chunks. But since 𝑃

contains 𝑞 > 𝑡 valid signatures, but at most 𝑡 ≥ |C| storage nodes
are corrupted, and 𝑘 ≤ (𝑞 − 𝑡) by design, there must be an honest

storage node whose signature on (ack,𝐶) is in 𝑃 , yet the node does
not respond to the retrieving client’s query because it has never

stored a chunk associated with 𝐶 (and hence not signed (ack,𝐶)).
Thus, Pr(𝐸 | 𝐸A′ ∧ ¬𝐸C) ≥ 1

𝑛 .

Now we can bound, with 𝑥 ≜ Pr(𝐸C) + Pr(𝐸E),

Pr(𝐸A′)
(a)
= Pr(𝐸A′ ∧ 𝐸C) + Pr(𝐸A′ ∧ ¬𝐸C) (40)

(b)
≤ Pr(𝐸C) + Pr(𝐸E) + Pr(𝐸A′ ∧ ¬𝐸C ∧ ¬𝐸E) (41)

(c)
≤ 𝑥 + Pr(𝐸A′ ∧ ¬𝐸C ∧ ¬𝐸E ∧ ¬𝐸) (42)

(d)
≤ 𝑥 + Pr(𝐸A′ ∧ ¬𝐸C ∧ ¬𝐸) (43)

= 𝑥 + Pr(¬𝐸 | 𝐸A′ ∧ ¬𝐸C) Pr(𝐸A′ ∧ ¬𝐸C) (44)

(e)
≤ 𝑥 + 𝑛 − 1

𝑛
Pr(𝐸A′) (45)

Pr(𝐸A′) ≤ 𝑛𝑥 = 𝑛 Pr(𝐸C) + 𝑛 Pr(𝐸E) (46)

where (a) uses the law of total probability (TP) to introduce 𝐸C;

(b) uses TP to introduce 𝐸E, 𝐸A′ ∧ 𝐸C ⊆ 𝐸C, 𝐸A′ ∧ ¬𝐸C ∧ 𝐸E ⊆
𝐸E; (c) uses TP to introduce 𝐸, Pr(𝐸A′ ∧ ¬𝐸C ∧ ¬𝐸E ∧ 𝐸) = 0; (d)

uses Pr(𝐸A′ ∧ ¬𝐸C ∧ ¬𝐸E ∧ ¬𝐸) ≤ Pr(𝐸A′ ∧ ¬𝐸C ∧ ¬𝐸); (e) uses
𝐸A′ ∧ ¬𝐸C ⊆ 𝐸A′ , Pr(𝐸 | 𝐸A′ ∧ ¬𝐸C) ≥ 1

𝑛 .

Since by assumption HF is collision resistant and Sig is secure
against existential forgery, there exist negl

1
(.), negl

2
(.) such that

Pr(𝐸C) ≤ negl
1
(_) and Pr(𝐸E) ≤ negl

2
(_). Furthermore, 𝑛 is a

constant independent of the security parameter _. Thus,

Pr(𝐸A′) ≤ 𝑛 negl
1
(_) + 𝑛 negl

2
(_) ≤ negl(_). (47)

Hence, Π⋆ provides availability
′
, to which availability of Π⋆ was

reduced in the first part of the proof. □

6 PRIVACY
Our Semi-AVID-PR scheme Π⋆ can be extended to hide the dis-

persed data from non-colluding honest-but-curious storage nodes,

i.e., formally, for each storage node, the distribution of the dispersed

information is independent of the data received by the storage node.

For this purpose, with a slight abuse of notation, let �̃� denote the

(𝐿−1)× (𝑘−1) matrix of information to be dispersed (with columns

�̃�𝑖). The dispersing client augments it first with a blinding column

𝒃
R←− Z𝐿−1𝑞 to the right of �̃� and then with a blinding row 𝒔

R←− Z𝑘𝑞

10

Information Dispersal with Provable Retrievability for Rollups

to the bottom of both �̃� and 𝒃 , to obtain the 𝐿 × 𝑘 matrix 𝑼 ,

𝑼 ≜

[
�̃� 𝒃
− 𝒔⊤−

]
. (48)

The codedmatrix 𝑪 (with columns 𝒄𝑖) and the column commitments

(ℎ1, ..., ℎ𝑘) continue to be computed as detailed in Figure 5 and

Section 4. Thus, storage node𝑚 receives (𝒄𝑚, ℎ1, ..., ℎ𝑘) as part of
the protocol (see Alg. 6).

Theorem 6.1. The distribution of (𝒄𝑚, ℎ1, ..., ℎ𝑘) induced by the
randomness in the blinding 𝒃 and 𝒔 is independent of �̃� , so that storage
node𝑚 learns nothing about the dispersed information.

Proof. Assume that storage node𝑚 could even compute log𝑔 (.)
in G, and hence knows the secret 𝑟 sampled during trusted setup of

the KZG polynomial commitment scheme (see Section 2.3), as well

as log𝑔 (ℎ𝑖) for the column commitments ℎ𝑖 . Furthermore, assume

a Reed-Solomon code (see Section 2.2) is used as part of Π⋆ so that

the column 𝒈
RS,𝑚 = (𝛼0𝑚, ..., 𝛼𝑘−1𝑚) corresponds to storage node

𝑚 in the code’s generator matrix 𝑮RS. Then, the data obtained by

node𝑚 is related to the unknowns by the following equations:

[𝒄𝑚]1
.
.
.

[𝒄𝑚]𝐿−1
[𝒄𝑚]𝐿
log𝑔 (ℎ1)

.

.

.

log𝑔 (ℎ𝑘−1)

log𝑔 (ℎ𝑘)

=

𝛼0

𝑚 ... 𝛼𝑘−2𝑚 𝛼𝑘−1𝑚 0 ...
.
.
.

.
.
.

𝛼0

𝑚 ... 𝛼𝑘−2𝑚 ... 0 𝛼𝑘−1𝑚

𝛼0

𝑚 ... 𝛼𝑘−2𝑚 𝛼𝑘−1𝑚

𝑟0 0 ... 𝑟𝐿−2 0 ... 𝑟𝐿−1 0 ...
.
.
.

.
.
.

.
.
.

.
.
.

... 0 𝑟0 ... 0 𝑟𝐿−2 ... 0 𝑟𝐿−1

𝑟0 ... 𝑟𝐿−2 𝑟𝐿−1

︸ ︷︷ ︸
≜𝑴∈Z(𝐿+𝑘)×(𝐿𝑘+(𝐿−1)+(𝑘−1)+1)𝑞

[�̃�
1
]
1

.

.

.

[�̃�𝑘−1]1
.
.
.

[�̃�
1
]𝐿−1
.
.
.

[�̃�𝑘−1]𝐿−1
𝒃

𝒔

(49)

Denote by [𝑴]⊤
𝑖
the 𝑖-th row of 𝑴 . Observe that

[𝑴]⊤
𝐿+𝑘 =

𝐿∑︁
𝑖=1

𝑟 𝑖−1𝛼−(𝑘−1)𝑚 [𝑴]⊤𝑖 −
𝑘−1∑︁
𝑖=1

𝛼
−(𝑘−𝑖)
𝑚 [𝑴]⊤𝐿+𝑖 . (50)

Thus, the last equation of the system is redundant. Striking it,

[𝒄𝑚]1
.
.
.

[𝒄𝑚]𝐿−1
[𝒄𝑚]𝐿
log𝑔 (ℎ1)

.

.

.

log𝑔 (ℎ𝑘−1)

=

𝛼0

𝑚
. . . 𝛼𝑘−2𝑚

.
.
.

𝛼0

𝑚
. . . 𝛼𝑘−2𝑚

𝑟0 0 . . . 𝑟𝐿−2 0 . . .

.
.
.

.
.
.

.
.
.

. . . 0 𝑟0 . . . 0 𝑟𝐿−2

[�̃�

1
]
1
.
.
.

[�̃�𝑘−1]1
.
.
.

[�̃�
1
]𝐿−1
.
.
.

[�̃�𝑘−1]𝐿−1

+

𝛼𝑘−1𝑚 0 . . .

.
.
.

. . . 0 𝛼𝑘−1𝑚

𝛼0

𝑚
. . . 𝛼𝑘−2𝑚 𝛼𝑘−1𝑚

𝑟𝐿−1 0 . . .

.
.
.

. . . 0 𝑟𝐿−1

︸ ︷︷ ︸
≜𝑴′∈Z(𝐿+𝑘−1)×(𝐿−1+𝑘)𝑞

[𝒃]
1
.
.
.

[𝒃]𝐿−1
[𝒔]

1
.
.
.

[𝒔]𝑘−1
[𝒔]𝑘

. (51)

Observe that 𝑴 ′ is full-rank. Thus, the randomness of 𝒃 and 𝒔
renders the distribution of (𝒄𝑚, ℎ1, ..., ℎ𝑘−1) uniform, while ℎ𝑘 is

a function of (𝒄𝑚, ℎ1, ..., ℎ𝑘−1), all independent of the dispersed

information �̃� . Thus, as desired,

Pr

(
�̃� = 𝒚

�� (𝒄𝑚, ℎ1, ..., ℎ𝑘) = 𝒙
)
= Pr

(
�̃� = 𝒚

)
. (52)

□

(a) (𝑛,𝑘) = (128, 32)

4 8 16 32

0.1

1

10

100

(b) (𝑛,𝑘) = (256, 64)

4 8 16 32

0.1

1

10

100

(c) (𝑛,𝑘) = (1024, 256)

4 8 16 32

1

10

100

(d) (𝑛,𝑘) = (128, 43)

8 16 32

0.1

1

10

100

(e) (𝑛,𝑘) = (256, 85)

8 16 32

1

10

100

(f) (𝑛,𝑘) = (1024, 341)

8 16 32

1

10

100

(g) (𝑛,𝑘) = (128, 58)

8 16 32 64

0.1

1

10

100

(h) (𝑛,𝑘) = (256, 115)

8 16 32 64

1

10

100

(i) (𝑛,𝑘) = (1024, 461)

8 16 32 64

1

10

100

Figure 6: Single-thread runtime (ordinate, in seconds) of dif-
ferent steps of Π⋆ on AMD Opteron 6378 processor for vary-
ing file sizes (abscissa, in 10

6 bytes; for varying𝐿) in BLS12-381
curve. Rows: code rates 𝑘/𝑛 ≈ 0.25, 0.33, 0.45 (, ,).
Columns: system sizes 𝑛 = 128, 256, 1024 (, ,). Steps of Π⋆:
Disperse: Reed-Solomon (RS) encoding (), computing vector
commitments (). Retrieve: Verifying downloaded chunks (),
RS decoding 𝑘 × 𝑘 matrix inversion (), RS decoding matrix-
matrix product (). (Aggregated: Figure 9. Note that lies on
top of in some plots.)

7 EVALUATION
In this section, we show that the computational cost required for

our Semi-AVID-PR scheme Π⋆ is low, and the communication and

storage requirements in comparison with AVID [7], AVID-FP [13],

AVID-M [29] and ACeD [26] are among the best-of-class (tied with

AVID-M) and practically low, while providing superior resilience

(up to 𝑡 < 𝑛/2 vs. 𝑡 < 𝑛/3) and provable retrievability.

7.1 Computation
To evaluate the computational requirements imposed by compu-

tation and verification of vector commitments and encoding and

decoding of the erasure-correcting code during Disperse (i.e., com-

putational burden to the Validium rollup operator) and Retrieve (i.e.,
computational burden to the Validium rollup user, in case of mali-

cious operator) of our Semi-AVID-PR scheme Π⋆, we implemented

a prototype in the Rust programming language using libraries from

11

Kamilla Nazirkhanova, Joachim Neu, and David Tse

32 64 128 256 512 1024

0.1

1

10

100

System size 𝑛

R
u
n
t
i
m
e
[
s
]

Figure 7: Single-thread runtime of steps of Π⋆ on AMD
Opteron 6378 processor for varying system size 𝑛 in BLS12-
381 curve. Fixed code rate 𝑘/𝑛 ≈ 0.33, and file size ≈ 22MB.
Disperse: RS encoding (), computing vector commitments ().
Retrieve: Verifying downloaded chunks (), RS decoding 𝑘 × 𝑘
matrix inversion (), RS decoding matrix-matrix product ().
(cf. Figure 6)

arkworks [2]. We make the source code available on Github.
2
We

used KZG commitments [15] on the BLS12-381 curve [4, 6] as vector

commitments, and Reed-Solomon codes [25] over the underlying

scalar prime field. Reed-Solomon (RS) encoding was implemented

using the fast Fourier transform (FFT). The consistency check of

chunks performed by storage nodes in Alg. 6 line 8 was imple-

mented naively, by computing a vector commitment of the received

chunk and comparing it with the corresponding ‘encoded’ combi-

nation (computed using 𝑘 exponentiations and multiplications in

the group) of the column commitments ℎ1, ..., ℎ𝑘 . Note that during

dispersal, these consistency checks are naturally parallelized across

storage nodes, but have to be computed independently.

For retrieval, on the other hand, the computation of the coded

chunks’ commitments (Alg. 6 line 9) was sped up using the FFT. RS

decoding was naive (generic for any MDS code): After downloading

𝑘 valid chunks from distinct storage nodes, the retrieving client first

inverts the corresponding 𝑘 × 𝑘 sub-matrix of the code’s generator

matrix 𝑮 , and then obtains thematrix 𝑼 of uncoded chunks from the

downloaded sub-matrix of the coded chunks 𝑪 by way of a matrix-

matrix product with the inverse. This way, the cubic complexity (in

𝑘) of naive matrix inversion via Gaussian elimination is amortized

over the decoding of 𝐿 rows (each with quadratic complexity in 𝑘 ;

in the regime of interest 𝑘 ≤ 𝐿). Note that this naive approach to RS

decoding is permissible as our experiments indicate that Retrieve’s
runtime is bottlenecked by another step (verifying downloaded

chunks), and during normal operation (when the rollup operator is

honest) only Disperse is invoked. Note that a systematic erasure-

correcting code can be used to further speed up decoding in the

realistic scenario where few storage nodes are corrupted (as long

as the privacy techniques of Section 6 are not used).

Figure 6 shows the single-thread runtime (ordinate) on an AMD

Opteron 6378 processor of the different steps of Π⋆ for varying file

sizes (abscissa), system sizes (columns), and code rates (rows). Fig-

ure 9 shows the measurements aggregated on the level of Disperse
and Retrieve, respectively. The plots reveal a minor slowdown of

Disperse with increasing system size and code rate. The runtime of

Disperse is dominated by computing the vector commitments. The

runtime of Retrieve is dominated by verifying downloaded chunks.

2
Source code: https://github.com/tse-group/semiavidpr-experiments

Table 1: Communication and storage required to disperse
30MB among 𝑛 = 900 nodes using different solutions; re-
silience and whether provable retrievability is supported.

Scheme Resilience Communication Storage Retrievability

Repetition 441 = 0.49𝑛 27GB 27GB ✔
AVID [7] 297 = 0.33𝑛 104GB 116MB ✔
AVID-FP [13] 297 = 0.33𝑛 31GB 125MB ✔
AVID-M [29] 297 = 0.33𝑛 116MB 90MB ✘
ACeD [26] 297 = 0.33𝑛 787MB 787MB ✘
ACeD [26] 441 = 0.49𝑛 13GB 13GB ✘

This work (Π⋆) 297 = 0.33𝑛 99MB 99MB ✔

This work (Π⋆) 441 = 0.49𝑛 1.5GB 1.5GB ✔

Recall that both bottlenecking steps have been optimized using the

FFT. Naive RS decoding does not introduce a performance bottle-

neck, but becomes relevant for large systems (𝑛 = 1024). Fixing file

size to ≈ 22MB and code rate to 𝑘/𝑛 ≈ 0.33 while varying system

size 𝑛 (cf. Figure 7), corroborates the earlier observations.
Concretely, the client computation for dispersing a file of 22MB

among 256 storage nodes, up to 85 of which may be adversar-

ial, requires ≈ 41 s of single-thread runtime on an AMD Opteron

6378 processor when using the BLS12-381 curve. The correspond-

ing retrieval takes ≈ 44 s of single-thread runtime. The dispersal

throughput of ≈ 0.54MB/s corresponds to ≈ 2,700 tx/s (assuming

200 B transaction size). It should be noted that we report single-

thread runtime on a seven year old processor here. The workload is

embarrassingly parallel and hence wall-clock time reduces trivially

with an increasing number of parallel workers. With 16 threads,

the Validium operator can complete dispersal and Validium users

can complete retrieval in less than 3 s, respectively.

7.2 Communication & Storage
Communication and storage required for different data availability

solutions are tabulated for a numerical example in Table 1. The cal-

culations are provided in Appendix A. Note the 𝑡 < 𝑛/2 resilience
upper bound for any scheme that simultaneously provides avail-
ability and correctness (cf. Definition 3.2). To see this, suppose the

cooperation of 𝑞 storage nodes is necessary and sufficient to com-

plete a dispersal. Correctness requires 𝑞 ≤ 𝑛 − 𝑡 (else adversarial
storage nodes can ‘block’ dispersal), and availability requires 𝑞 > 𝑡

(else adversarial storage nodes can ‘forge’ a dispersal). Combining

the two conditions yields 𝑡 < 𝑛/2, which is achieved by the naive

repetition (full replication) scheme, at high communication and stor-

age cost. Our Π⋆ recovers the same trade-off when parameterized

for resilience close to𝑛/2; but our scheme can also be parameterized

for lower resilience, in which case it achieves considerably lower

communication and storage, whereas the repetition scheme does

not allow for such parameterization. AVID improves over repetition

in that each node only needs to store a chunk rather than the full

file. However, nodes still echo chunks to each other, leading to a

lot of communication. AVID-FP improves in communication be-

cause storage nodes only echo fingerprints rather than full chunks.

AVID-M improves over AVID-FP in that it drastically reduces the

fingerprint size and hence the communication. ACeD allows for a

trade-off of communication and storage with adversarial resilience.

12

https://github.com/tse-group/semiavidpr-experiments

Information Dispersal with Provable Retrievability for Rollups

In terms of communication and storage, our Semi-AVID-PR

scheme Π⋆ (Sec. 4) is among the best-of-class (tied with AVID-

M), while providing superior resilience (𝑡 < 𝑛/2 vs. 𝑡 < 𝑛/3) and
provable retrievability (the lack thereof limits application of AVID-

M to Validium rollups). Our Semi-AVID-PR scheme outperforms

ACeD in communication and storage by at least 7×. The net data
throughput of ≈ 0.54MB/s for (𝑛, 𝑘) = (256, 85) corresponding
to ≈ 2,700 tx/s (cf. Section 7.1) entails ≈ 1.7MB/s communication

bandwidth usage, which is feasible even via consumer-grade In-

ternet connectivity. Finally, it should be noted that the VID-based

schemes in Table 1 have resilience 𝑡 at most 𝑡 < 𝑛/3. In that regime,

Π⋆ matches or exceeds the communication- and storage-efficiency

of VID-based schemes. However, like ACeD, Π⋆ also supports

higher resilience up to 𝑡 < 𝑛/2. In this regime, the overhead from

erasure coding increases, as for ACeD, but still outperforms ACeD.

8 APPLICATION TO DATA AVAILABILITY
SAMPLING

In common blockchain designs every block consists of a meta data

header and transaction content. Nodes download the full chain

and validate all transactions. However, a resource-limited node can

instead participate as a light node.3 Then, it only processes block

headers. If a block contained an invalid transaction, it would be

rejected by full nodes but its header would be accepted by a light

node unable to inspect the block content and verify transaction va-

lidity. To prevent this, full nodes can produce an invalid transaction
fraud proof [1]. To take full nodes’ ability to issue such fraud proofs,
a malicious block producer can withhold parts of the block content.

Full nodes would then reject the block until its content is fully

available, but light nodes would not notice the missing content. The

absence of an invalid transaction fraud proof can thus mean two

things: either the block is valid, or full nodes are unable to verify

the block due to missing data. To rule out the second possibility,

data availability sampling schemes for light nodes were introduced.

Data availability schemes using Reed-Solomon codes were pro-

posed in [1], where the block producer encodes the 𝑘 chunks block

content with a (2𝑘, 𝑘) Reed-Solomon (RS) code. Light nodes ran-

domly query a few chunks of the encoded block content. The block

is accepted only if the queried chunks are available. For a block to

be widely accepted by light nodes, most of the light nodes’ queried

chunks have to be available. Quickly, light nodes’ queries cover

more than 50% of coded chunks of the block and any remaining

missing chunks can be recovered using the RS code. It is there-

fore no longer possible to trick light nodes into accepting a block

while withholding data to prevent invalid transaction fraud proofs.

However, a malicious block producer could invalidly encode the

block. Decoding would then not consistently recover the original

chunks’ data. Full nodes can detect invalid encoding and issue a

fraud proof for light nodes. But, the size of such proofs in this

scheme is commensurate to the block content size—defying the

idea of light nodes downloading less than the full block. Subse-

quent works [1, 23, 24, 31] focussed on reducing the fraud proof

size, but drawbacks remain (e.g., complexity, timing assumptions).

3
Light nodes also occur in the context of sharding, where each node is assigned to a

shard and behaves in-shard as a full node and out-of-shard as a light node.

A different approach is to make it impossible for block produc-

ers to invalidly encode data. Such schemes can be achieved using

polynomial commitments [15], where the block is interpreted as a

low-degree polynomial, the commitment to which is included in

the block header and gets opened at locations randomly sampled by

light clients. This effectively enforces valid RS encoding. Schemes

of this flavor however require to compute an evaluation witness

for each query, which despite recent algorithmic improvements is

still computationally heavy [10, 27, 28].

Algorithm Π⋆ .Commit of our Semi-AVID-PR scheme is suit-

able for the application at hand. It can commit to a block 𝐵 such

that: (a) The commitment can be opened to chunks, but only of a

valid RS encoding of 𝐵. Computing and verifying these openings is

practically efficient. This enables data availability sampling. (b) The
commitment can be opened to entries of the original block 𝐵. The

openings are short and can be produced and verified practically

efficiently. This enables the invalid transaction fraud proofs of [1].
Let 𝑼 ≡ AsMatrix𝐿×𝑘 (𝐵) with columns 𝒖1, ..., 𝒖𝑘 . An opening

(𝒄𝑖 , 𝑖, (ℎ1, ..., ℎ𝑘)) to chunk 𝑖 of an RS encoding of 𝐵 is computed as:

𝒄𝑖 ← [Code.Encode⊗𝐿 (𝑼)]𝑖 (ℎ1, ..., ℎ𝑘) ← VC⊗𝑘 (𝑼) (53)

An opening (𝒄, 𝑖, (ℎ1, ..., ℎ𝑘)) to chunk 𝑖 of an RS encoding of a block
with commitment 𝐶 is verified as:

𝐶
?

= CRHF𝑠 (ℎ1∥...∥ℎ𝑘) ∧ [Code.Encode(ℎ1, ..., ℎ𝑘)]𝑖
?

= VC(𝒄) (54)
An opening ([𝒖 𝑗]𝑖 , 𝑖, 𝑗, (ℎ1, ..., ℎ𝑘),𝑤) to the entry at (𝑖, 𝑗) of the
matrix 𝑼 corresponding to 𝐵 is computed as:

(ℎ1, ..., ℎ𝑘) ← VC⊗𝑘 (𝑼) 𝑤 ← VC.OpenEntry(pp, 𝒖 𝑗 , 𝑖) (55)

An opening (𝑦, 𝑖, 𝑗, (ℎ1, ..., ℎ𝑘),𝑤) to entry [𝒖 𝑗]𝑖 of a block with

commitment 𝐶 is verified as:

𝐶
?

= CRHF𝑠 (ℎ1∥...∥ℎ𝑘) ∧ VC.VerifyEntry(pp, ℎ 𝑗 , 𝑖, 𝑦,𝑤)
?

= true (56)

For more details on the application of Π⋆ to data availability

sampling see Appendix E.

ACKNOWLEDGMENT
The authors thank Mohammad Ali Maddah-Ali and Dionysis Zin-

dros for fruitful discussions. KN is supported by a gift from IOG

(Input-Output Global) and a grant from the National Science Foun-

dation Center for Science of Information. JN is supported by the

Reed-Hodgson Stanford Graduate Fellowship.

REFERENCES
[1] Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi. 2021.

Fraud and Data Availability Proofs: Detecting Invalid Blocks in Light Clients.

In Financial Cryptography (2) (Lecture Notes in Computer Science, Vol. 12675).
Springer, 279–298.

[2] arkworks contributors. 2022. arkworks zkSNARK ecosystem. https://arkworks.rs

[3] Vivek Kumar Bagaria, Sreeram Kannan, David Tse, Giulia C. Fanti, and Pramod

Viswanath. 2019. Prism: Deconstructing the Blockchain to Approach Physical

Limits. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019, London, UK, November 11-15, 2019. ACM,

585–602. https://doi.org/10.1145/3319535.3363213

[4] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. 2002. Constructing Elliptic

Curves with Prescribed Embedding Degrees. In SCN (Lecture Notes in Computer
Science, Vol. 2576). Springer, 257–267.

[5] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Scalable,

transparent, and post-quantum secure computational integrity. IACR Cryptol.
ePrint Arch. (2018), 46. http://eprint.iacr.org/2018/046

[6] Sean Bowe. 2017. BLS12-381: New zk-SNARK Elliptic Curve Construction. (2017).

https://electriccoin.co/blog/new-snark-curve/

13

https://arkworks.rs
https://doi.org/10.1145/3319535.3363213
http://eprint.iacr.org/2018/046
https://electriccoin.co/blog/new-snark-curve/

Kamilla Nazirkhanova, Joachim Neu, and David Tse

[7] Christian Cachin and Stefano Tessaro. 2005. Asynchronous Verifiable Information

Dispersal. In Distributed Computing, 19th International Conference, DISC 2005,
Cracow, Poland, September 26-29, 2005, Proceedings (Lecture Notes in Computer
Science, Vol. 3724). Springer, 503–504. https://doi.org/10.1007/11561927_42

[8] Dario Catalano and Dario Fiore. 2013. Vector Commitments and Their Appli-

cations. In Public-Key Cryptography - PKC 2013 - 16th International Conference
on Practice and Theory in Public-Key Cryptography, Nara, Japan, February 26 -
March 1, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7778). Springer,
55–72. https://doi.org/10.1007/978-3-642-36362-7_5

[9] Christian Decker and Roger Wattenhofer. 2015. A Fast and Scalable Payment

Network with Bitcoin Duplex Micropayment Channels. In Stabilization, Safety,
and Security of Distributed Systems - 17th International Symposium, SSS 2015,
Edmonton, AB, Canada, August 18-21, 2015, Proceedings (Lecture Notes in Computer
Science, Vol. 9212). Springer, 3–18.

[10] Dankrad Feist and Dmitry Khovratovich. [n.d.]. Fast Amortized Kate Proofs.

([n. d.]). https://github.com/khovratovich/Kate/blob/master/Kate_amortized.pdf

[11] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. 2013. Qua-

dratic Span Programs and Succinct NIZKs without PCPs. In Advances in Cryp-
tology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.
Proceedings (Lecture Notes in Computer Science, Vol. 7881). Springer, 626–645.
https://doi.org/10.1007/978-3-642-38348-9_37

[12] Alex Gluchowski. 2020. zkRollup vs. Validium. (2020). https://medium.com/

matter-labs/zkrollup-vs-validium-starkex-5614e38bc263

[13] James Hendricks, Gregory R. Ganger, and Michael K. Reiter. 2007. Verifying

distributed erasure-coded data. In Proceedings of the Twenty-Sixth Annual ACM
Symposium on Principles of Distributed Computing, PODC 2007, Portland, Oregon,
USA, August 12-15, 2007. ACM, 139–146. https://doi.org/10.1145/1281100.1281122

[14] Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. MatthewWeinberg, and Ed-

wardW. Felten. 2018. Arbitrum: Scalable, private smart contracts. In 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018. USENIX Association, 1353–1370. https://www.usenix.org/conference/

usenixsecurity18/presentation/kalodner

[15] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. 2010. Constant-Size

Commitments to Polynomials and Their Applications. In Advances in Cryptology
- ASIACRYPT 2010 - 16th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings
(Lecture Notes in Computer Science, Vol. 6477). Springer, 177–194. https://doi.org/

10.1007/978-3-642-17373-8_11

[16] Jonathan Katz and Yehuda Lindell. 2014. Introduction to Modern Cryptography,
Second Edition. CRC Press.

[17] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa

Syta, and Bryan Ford. 2018. OmniLedger: A Secure, Scale-Out, Decentralized

Ledger via Sharding. In 2018 IEEE Symposium on Security and Privacy, SP 2018,
Proceedings, 21-23 May 2018, San Francisco, California, USA. IEEE Computer

Society, 583–598. https://doi.org/10.1109/SP.2018.000-5

[18] Songze Li, Mingchao Yu, Chien-Sheng Yang, Amir Salman Avestimehr, Sreeram

Kannan, and Pramod Viswanath. 2020. PolyShard: Coded Sharding Achieves

Linearly Scaling Efficiency and Security Simultaneously. In IEEE International
Symposium on Information Theory, ISIT 2020, Los Angeles, CA, USA, June 21-26,
2020. IEEE, 203–208. https://doi.org/10.1109/ISIT44484.2020.9174305

[19] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. 2020. Dumbo-MVBA:

Optimal Multi-Valued Validated Asynchronous Byzantine Agreement, Revisited.

In PODC. ACM, 129–138.

[20] Patrick McCorry, Chris Buckland, Bennet Yee, and Dawn Song. 2021. SoK:

Validating Bridges as a Scaling Solution for Blockchains. IACR Cryptol. ePrint
Arch. (2021), 1589.

[21] Ralph C. Merkle. 1987. A Digital Signature Based on a Conventional Encryption

Function. In Advances in Cryptology - CRYPTO ’87, A Conference on the Theory
and Applications of Cryptographic Techniques, Santa Barbara, California, USA,
August 16-20, 1987, Proceedings (Lecture Notes in Computer Science, Vol. 293).
Springer, 369–378. https://doi.org/10.1007/3-540-48184-2_32

[22] Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick Mc-

Corry. 2019. Sprites and State Channels: Payment Networks that Go Faster

Than Lightning. In Financial Cryptography and Data Security - 23rd International
Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, Revised
Selected Papers (Lecture Notes in Computer Science, Vol. 11598). Springer, 508–526.
https://doi.org/10.1007/978-3-030-32101-7_30

[23] Debarnab Mitra, Lev Tauz, and Lara Dolecek. 2020. Concentrated Stopping

Set Design for Coded Merkle Tree: Improving Security Against Data Availabil-

ity Attacks in Blockchain Systems. In IEEE Information Theory Workshop, ITW
2020, Riva del Garda, Italy, April 11-15, 2021. IEEE, 1–5. https://doi.org/10.1109/

ITW46852.2021.9457630

[24] Debarnab Mitra, Lev Tauz, and Lara Dolecek. 2021. Overcoming Data Availability

Attacks in Blockchain Systems: LDPC Code Design for Coded Merkle Tree. CoRR
abs/2108.13332 (2021). arXiv:2108.13332 https://arxiv.org/abs/2108.13332

[25] I. Reed and G. Solomon. 1960. Polynomial Codes Over Certain Finite Fields.

Journal of The Society for Industrial and Applied Mathematics 8 (1960), 300–304.

0

500

1,000

C
o
m
m
u
n
i
c
a
t
i
o
n

a
n
d
s
t
o
r
a
g
e
c
o
s
t
[
M
B
]

20 40 60 80 100

200

400

600

Base layer symbol size [kB]

I
n
v
a
l
i
d
e
n
c
o
d
i
n
g

f
r
a
u
d
p
r
o
o
f
s
i
z
e
[
M
B
]

Figure 8: Communication and storage cost (top) and invalid
encoding fraud proof size (bottom) as a function of the base
layer symbol size 𝑐, when dispersing a file of size 30MB among
900 nodes using ACeD [26] with resilience 𝑡 = 0.33𝑛.

[26] Peiyao Sheng, Bowen Xue, Sreeram Kannan, and Pramod Viswanath. 2021. ACeD:

Scalable Data Availability Oracle. In Financial Cryptography (2) (Lecture Notes in
Computer Science, Vol. 12675). Springer, 299–318.

[27] Alin Tomescu. 2020. How to compute all Pointproofs. IACR Cryptol. ePrint Arch.
(2020), 1516. https://eprint.iacr.org/2020/1516

[28] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist, and

Dmitry Khovratovich. 2020. Aggregatable Subvector Commitments for Stateless

Cryptocurrencies. In SCN (Lecture Notes in Computer Science, Vol. 12238). Springer,
45–64.

[29] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram Kannan, and David Tse.

2022. DispersedLedger: High-Throughput Byzantine Consensus on Variable

Bandwidth Networks. (2022).

[30] Haifeng Yu, Ivica Nikolic, Ruomu Hou, and Prateek Saxena. 2020. OHIE:

Blockchain Scaling Made Simple. In 2020 IEEE Symposium on Security and Pri-
vacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 90–105. https:

//doi.org/10.1109/SP40000.2020.00008

[31] Mingchao Yu, Saeid Sahraei, Songze Li, Salman Avestimehr, Sreeram Kannan,

and Pramod Viswanath. 2020. Coded Merkle Tree: Solving Data Availability

Attacks in Blockchains. In Financial Cryptography and Data Security - 24th
International Conference, FC 2020, Kota Kinabalu, Malaysia, February 10-14, 2020
Revised Selected Papers (Lecture Notes in Computer Science, Vol. 12059). Springer,
114–134. https://doi.org/10.1007/978-3-030-51280-4_8

A CALCULATIONS FOR TABLE 1
Table 1 shows communication and storage required to disperse

a file of size |𝐹 | = 30MB among 𝑛 = 900 storage nodes using

different schemes. We provide the corresponding calculations here.

We denote communication and storage costs as𝐶 and 𝑆 , respectively.

We assume the size of a hash or signature is 𝐻 = 32 B. Given

adversarial resilience 𝑡 , we choose 𝑘 ≜ 𝑛 − 2𝑡 .
• Repetition (uncoded) scheme:

𝐶 = 𝑆 = 𝑛 |𝐹 | (57)

• AVID:

𝐶 =

(
|𝐹 |
𝑘
+ 𝑛𝐻

) (
𝑛 + 𝑛2

)
(58)

𝑆 = 𝑛

(
|𝐹 |
𝑘
+ 𝑛𝐻

)
(59)

• AVID-FP:

𝐶 = 𝑛

(
|𝐹 |
𝑘
+ (𝑛 + 𝑘)𝐻

)
+ 𝑛2 (𝑛 + 𝑘)𝐻 (60)

14

https://doi.org/10.1007/11561927_42
https://doi.org/10.1007/978-3-642-36362-7_5
https://github.com/khovratovich/Kate/blob/master/Kate_amortized.pdf
https://doi.org/10.1007/978-3-642-38348-9_37
https://medium.com/matter-labs/zkrollup-vs-validium-starkex-5614e38bc263
https://medium.com/matter-labs/zkrollup-vs-validium-starkex-5614e38bc263
https://doi.org/10.1145/1281100.1281122
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1109/SP.2018.000-5
https://doi.org/10.1109/ISIT44484.2020.9174305
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1109/ITW46852.2021.9457630
https://doi.org/10.1109/ITW46852.2021.9457630
https://arxiv.org/abs/2108.13332
https://arxiv.org/abs/2108.13332
https://eprint.iacr.org/2020/1516
https://doi.org/10.1109/SP40000.2020.00008
https://doi.org/10.1109/SP40000.2020.00008
https://doi.org/10.1007/978-3-030-51280-4_8

Information Dispersal with Provable Retrievability for Rollups

Algorithm 12 Existential forgery game (EFG) against Sig =

(Sig.KeyGen, Sig.Sign, Sig.Verify)
1: M ← ∅
2: (pk, sk) ← Sig.KeyGen(1_)
3: function Osign(m)

4: M ←M ∪ {𝑚}
5: return Sig.Sign(sk,𝑚)
6: (𝑚,𝜎) ← AO

sign (.)
EFG (pk)

7: return𝑚 ∉M ∧ Sig.Verify(pk,𝑚, 𝜎) = true

Algorithm 13 Collision finding game (CFG) against HF =

(HF.Gen,HF.H)

1: 𝑠 ← HF.Gen(1_)
2: (𝑥, 𝑥 ′) ← ACFG (𝑠)
3: return 𝑥 ≠ 𝑥 ′ ∧ CRHF𝑠 (𝑥) = CRHF𝑠 (𝑥 ′)

Algorithm 14 Binding game (VCBG) against LVC =

(LVC.Setup, LVC.Commit)

1: pp← LVC.Setup(1_)
2: (𝒗, 𝒗 ′) ← AVCBG (pp)
3: return 𝒗 ≠ 𝒗 ′ ∧ LVC.Commit(𝒗) = LVC.Commit(𝒗 ′)

𝑆 = 𝑛

(
|𝐹 |
𝑘
+ (𝑛 + 𝑘)𝐻

)
(61)

• AVID-M:

𝐶 = 𝑛

(
|𝐹 |
𝑘
+ (1 + log

2
𝑛)𝐻

)
+ 𝑛2𝐻 (62)

𝑆 = 𝑛

(
|𝐹 |
𝑘
+ (1 + log

2
𝑛)𝐻

)
(63)

• ACeD:

𝐶 = 𝑆 = 𝑛

(
𝑡 ′𝐻 + |𝐹 |

𝑛𝑟_
+ (2𝑞 − 1) |𝐹 |𝐻

𝑛𝑟𝑐_
log𝑞𝑟

|𝐹 |
𝑐𝑡 ′𝑟

)
(64)

Parameters:

𝑡 ′ = 16 𝑟 = 0.25 𝑞 = 8 𝑑 = 8 (65)

𝑐 = 48 kB [= 0.875 _ =
1 − 2𝑡/𝑛

ln

(
1

1−[

) (66)

As illustrated in Figure 8, the communication and storage cost

of ACeD can be decreased slightly by increasing the base layer

symbol size 𝑐 , at the expense of an increased invalid encoding

fraud proof size.

• Semi-AVID-PR:

𝐶 = 𝑛

(
|𝐹 |
𝑘
+ 𝑘𝐻 + 𝐻

)
(67)

𝑆 = 𝑛

(
|𝐹 |
𝑘
+ 𝑘𝐻

)
(68)

B PRELIMINARIES
Definition B.1 (Hash Function). A hash function is a pair of PPT

algorithms (Gen,H) [16], such that:

• Gen : 1_ ↦→ 𝑠 : takes as input a security parameter _ and outputs

a randomly sampled key 𝑠 ,

• H : (𝑠, 𝑥) ↦→ ℎ: takes as input a key 𝑠 and a string 𝑥 ∈ {0, 1}∗
and outputs a string ℎ ∈ {0, 1}_ .

Definition B.2 (Digital Signature Scheme). A digital signature

scheme Sig = (KeyGen, Sign,Verify) [16] consists of three PPT

algorithms, such that:

• KeyGen : 1_ ↦→ (pk, sk): takes as input a security parameter _

and outputs a public key pk and a secret key sk,
• Sign : (sk,𝑚) ↦→ 𝜎 : takes as input a secret key sk and a message

𝑚 and outputs a signature 𝜎 ,

• Verify : (pk,𝑚, 𝜎) ↦→ 𝑏 ∈ {true, false}: takes as input a public
key pk, a message𝑚 and a signature 𝜎 and outputs a boolean 𝑏

indicating whether the signature is valid.

Definition B.3 (Deterministic Vector Commitment Scheme). A de-

terministic vector commitment scheme VC = (Setup,Commit,
OpenEntry,VerifyEntry) [8, 15] consists of four PPT algorithms,

such that:

• Setup : 1_ ↦→ pp: takes as input a security parameter _ and

outputs some public parameters pp,
• Commit : (pp, 𝒗) ↦→ 𝐶: takes as input the public parameters pp

and a vector 𝒗 and outputs a commitment 𝐶 ,

• OpenEntry : (pp, 𝒗, 𝑖) ↦→ 𝜋𝑖 : takes as input the public parame-

ters pp, a vector 𝒗, a position 𝑖 and returns a proof 𝜋𝑖 attesting

to the fact that [𝒗]𝑖 is the 𝑖-th entry of 𝒗,
• VerifyEntry : (pp,𝐶, 𝑖, 𝑦, 𝜋) ↦→ 𝑏 ∈ {true, false}: takes as input

the public parameters pp, a commitment 𝐶 , a position 𝑖 , a value

𝑦, and an opening proof 𝜋 , and returns a boolean 𝑏 indicating

whether 𝜋 is a proof attesting to the fact that𝐶 is a commitment

to a vector 𝒗 such that [𝒗]𝑖 = 𝑦.

C ADDITIONAL EVALUATION PLOTS
The runtime measurements for different steps of Π⋆ shown in

Figure 6 are aggregated for Disperse and Retrieve in Figure 9.

Figures 6 and 9 use curve BLS12-381. Corresponding plots for

curve BN254 are provided in Figures 10 and 11. The plots show a

slight speedup, due to faster operations in BN254.

D PROOF DETAILS
Wemodify the availability gameAvG (Alg. 2) to obtainAvG′ (Alg. 15)
in which initially the index 𝐼 of a storage node is sampled uniformly

at random, and subsequently the game is aborted if the adversary

AAvG′ attempts to corrupt 𝐼 .

E DETAILS ON APPLICATION TO DATA
AVAILABILITY SAMPLING

In common blockchain designs all nodes have to download the

full blockchain and validate all included transactions (e.g., check
that accounts have sufficient balances, no funds are created out

of thin air, etc.). However, if a node does not have enough band-

width, storage, or computational resources to do so, it can instead

participate as a so called light node.4 We assume that every block

consists of a header comprised of meta data and a body comprised

of a list of transactions. The header includes a commitment to the

4
Light nodes also occur in the context of sharding, where each node is assigned to

a shard and behaves in-shard (i.e., towards their assigned shard) as a full node and

out-of-shard (i.e., towards other shards) as a light node.

15

Kamilla Nazirkhanova, Joachim Neu, and David Tse

(a) (𝑛,𝑘) = (128, 32)

4 8 16 32

10

(b) (𝑛,𝑘) = (256, 64)

4 8 16 32

10

(c) (𝑛,𝑘) = (1024, 256)

4 8 16 32

100

(d) (𝑛,𝑘) = (128, 43)

8 16 32

(e) (𝑛,𝑘) = (256, 85)

8 16 32

(f) (𝑛,𝑘) = (1024, 341)

8 16 32

100

(g) (𝑛,𝑘) = (128, 58)

8 16 32 64

100

(h) (𝑛,𝑘) = (256, 115)

8 16 32 64

100

(i) (𝑛,𝑘) = (1024, 461)

8 16 32 64

100

Figure 9: Single-thread runtime (ordinate, in seconds) of
Disperse () and Retrieve () on AMD Opteron 6378 processor
for varying file sizes (abscissa, in 10

6 bytes; for varying 𝐿) in
BLS12-381 curve. Rows: code rates 𝑘/𝑛 ≈ 0.25, 0.33, 0.45 (,

,). Columns: system sizes 𝑛 = 128, 256, 1024 (, ,).
(Disaggregated: Figure 6)

block content, binding the two together. Full nodes process block

headers and content, while light nodes only process block headers.

If an invalid transaction was added to a block, this block would be

rejected by full nodes but a header of this block can be accepted

by a light node, since the light node cannot inspect the block con-

tent and verify transaction validity. To prevent light nodes from

accepting (the header of) an invalid block, full nodes can produce

an invalid transaction fraud proof (i.e., a succinct string of the evi-

dence necessary to verify relative to the block header that the block

indeed contains an invalid transaction). To take full nodes’ ability

to issue invalid transaction fraud proofs, a malicious block producer

can perform a data availability attack and withhold parts of the

block content, including the invalid transaction. Full nodes would

now temporarily reject the block (until its content becomes fully

available), but light nodes would not notice the missing content

since they do not attempt to download the block content anyway.

In this setting, the absence of an invalid transaction fraud proof

can thus mean two things: either that the block is alright, or that

full nodes were not able to verify the block due to missing data. To

rule out the possibility of data unavailability (so that finally lack

of fraud proof implies the block is valid), various data availability

sampling schemes for light nodes were introduced.

Data availability schemes using Reed-Solomon codes were pro-

posed in [1]. In a naive scheme, a block producer encodes a list of

transactions, consisting of 𝑘 chunks, with a (2𝑘, 𝑘) Reed-Solomon

code. Once a light node receives a header of the block, it randomly

queries a few chunks of the encoded block content. The block is

accepted only if the queried chunks are available. For a block to be

(a) (𝑛,𝑘) = (128, 32)

4 8 16 32

0.1

1

10

(b) (𝑛,𝑘) = (256, 64)

4 8 16 32

0.1

1

10

(c) (𝑛,𝑘) = (1024, 256)

4 8 16 32

1

10

(d) (𝑛,𝑘) = (128, 43)

8 16 32

0.1

1

10

(e) (𝑛,𝑘) = (256, 85)

8 16 32

1

10

(f) (𝑛,𝑘) = (1024, 341)

8 16 32

1

10

(g) (𝑛,𝑘) = (128, 58)

8 16 32 64

0.1

1

10

(h) (𝑛,𝑘) = (256, 115)

8 16 32 64

1

10

(i) (𝑛,𝑘) = (1024, 461)

8 16 32 64

1

10

100

Figure 10: Single-thread runtime (ordinate, in seconds) of
different steps of Π⋆ on AMD Opteron 6378 processor for
varying file sizes (abscissa, in 10

6 bytes; for varying 𝐿) in
BN254 curve. Rows: code rates 𝑘/𝑛 ≈ 0.25, 0.33, 0.45 (, ,

). Columns: system sizes 𝑛 = 128, 256, 1024 (, ,). Steps
of Π⋆: Disperse: Reed-Solomon (RS) encoding (), comput-
ing vector commitments (). Retrieve: Verifying downloaded
chunks (), RS decoding 𝑘 × 𝑘 matrix inversion (), RS decod-
ing matrix-matrix product (). (Aggregated: Figure 11. Note
that lies on top of in some plots.)

widely accepted by light nodes, most of the light nodes’ queried

chunks have to be available. Quickly, light nodes’ queries cover

more than 50% of coded chunks of the block, so that any remaining

missing chunks can be recovered using the Reed-Solomon code. It

is therefore no longer possible to trick light nodes into accepting

a block while withholding a chunk in an attempt to prevent full

nodes from generating an invalid transaction fraud proof. The main

drawback of this solution is that a malicious block producer could

invalidly encode the block. Decoding would then not consistently

recover the original chunks’ data, even if nominally enough chunks

are available. Again, full nodes would be able to detect invalid en-

coding, but light nodes would not. And again, full nodes could issue

a fraud proof to prevent light nodes from accepting an invalidly

encoded block. However, the amount of evidence needed to prove

invalid encoding in this scheme is as big as the block content itself –

defying the idea of light nodes downloading less than the full block

content. For example, an invalid encoding fraud proof consists of

the full original block data, which the light node can verify with

16

Information Dispersal with Provable Retrievability for Rollups

(a) (𝑛,𝑘) = (128, 32)

4 8 16 32

10

(b) (𝑛,𝑘) = (256, 64)

4 8 16 32

10

(c) (𝑛,𝑘) = (1024, 256)

4 8 16 32

10

(d) (𝑛,𝑘) = (128, 43)

8 16 32

10

(e) (𝑛,𝑘) = (256, 85)

8 16 32

10

(f) (𝑛,𝑘) = (1024, 341)

8 16 32

10

100

(g) (𝑛,𝑘) = (128, 58)

8 16 32 64

10

(h) (𝑛,𝑘) = (256, 115)

8 16 32 64

10

(i) (𝑛,𝑘) = (1024, 461)

8 16 32 64

100

Figure 11: Single-thread runtime (ordinate, in seconds) of
Disperse () and Retrieve () on AMD Opteron 6378 processor
for varying file sizes (abscissa, in 10

6 bytes; for varying 𝐿)
in BN254 curve. Rows: code rates 𝑘/𝑛 ≈ 0.25, 0.33, 0.45 (,

,). Columns: system sizes 𝑛 = 128, 256, 1024 (, ,).
(Disaggregated: Figure 10)

respect to the block header, re-encode, and then check that some

of the ‘encoded’ chunks received in response to data availability

queries do not match the properly encoded chunks. Subsequent

works [1, 23, 24, 31] on data availability schemes of this flavor

have thus focussed on reducing the size of invalid encoding fraud

proofs, but drawbacks remain (e.g., additional complexity, timing

assumptions).

A different approach is to eliminate invalid encoding fraud proofs

by making it impossible for block producers to invalidly encode

data. Such schemes can be achieved using polynomial commitment

schemes such as KZG [15]. Treated as evaluations of a polynomial at

agreed-upon locations, the 𝑘 chunks of the block content uniquely

determine a polynomial of degree 𝑘 − 1. A commitment to this poly-

nomial is included in the block header. To ensure data availability,

light nodes query for evaluations of this polynomial at random lo-

cations. Consistency of every query response with the polynomial

committed to in the block header can be verified using the polyno-

mial commitment scheme by providing an evaluation witness. Even

with few queries each, light nodes together will soon have queried

evaluations at at least 𝑘 distinct locations. If the block producer

withholds any of these evaluations, light nodes will not accept the

block. But once evaluations at 𝑘 distinct locations are available, the

polynomial, and thus the block content, can be reconstructed. Any

invalid transaction becomes visible and full nodes can generate

corresponding fraud proofs. Schemes of this flavor however require

to compute an evaluation witness for each query, which despite

recent algorithmic improvements is still computationally heavy

[10, 27, 28].

Algorithm 15 Modified availability game (AvG′) with

resilience 𝑡 against Semi-AVID-PR scheme ΠSAVIDPR =

(Setup,Commit,Disperse,Verify,Retrieve)

1: 𝐼
R←− [𝑛]

2: C ← ∅ ⊲ Bookkeeping of corrupted parties
3: ∀𝑖 ∈ [𝑛] : 𝑃𝑖 ← newΠSAVIDPR (∅) ⊲ Instantiate 𝑃𝑖 as ΠSAVIDPR

with blank state
4: pp← Setup𝑃1,...,𝑃𝑛 (1_) ⊲ Run setup among all parties
5: function Ocorrupt(𝑖) ⊲ Oracle for A to corrupt parties
6: assert 𝑖 ∉ C
7: if 𝑖 ≠ 𝐼

8: C ← C ∪ {𝑖} ⊲ Mark party as corrupted
9: return 𝑃𝑖 ⊲ Hand 𝑃𝑖 ’s state to A
10: else
11: abort
12: function Ointeract(𝑖,𝑚) ⊲ Oracle for A to interact with parties
13: assert 𝑖 ∉ C
14: return 𝑃𝑖 (𝑚) ⊲ Execute 𝑃𝑖 on input𝑚, return output to A
15:

(
𝑃,𝐶,

(
Onode
𝑖
(.)

)
𝑖∈C

)
← AO

corrupt (.),Ointeract (.)
AvG′ (pp) ⊲ A

returns certificate of retrievability 𝑃 , commitment 𝐶 , and oracle
access to corrupted nodes for retrieval

16: �̂� ← Retrieve𝑃1,...,𝑃𝑛
[
Onode
𝑖
(.)/Query(𝑖, .)

]
𝑖∈C
(𝑃,𝐶) ⊲

During retrieval, interact with corrupted nodes through oracles
17: return |C| ≤ 𝑡

∧ Verify(𝑃,𝐶) = true
∧ Commit(�̂�) ≠ 𝐶

⊲ A wins iff: while

corrupting no more than 𝑡 parties, A produces a valid certificate
of retrievability 𝑃 for 𝐶 such that retrieval does not return a file
matching 𝐶

The Semi-AVID-PR scheme, described in Section 4 and illustrated

in Figure 5, can be seen as combining ‘the best of both worlds’ in

that it does not require invalid encoding fraud proofs, but sampled

chunks can be verified efficiently. We assume that a block contains

an alternating sequence of transactions and commitments to result-

ing intermediary chain states (this is used for invalid transaction

fraud proofs as in [1]). As illustrated in Figure 5, the block producer

arranges the block content 𝑼 as a matrix of size 𝐿 × 𝑘 , where 𝑘
and 𝐿 are system parameters. It commits to each of the columns

𝒖1, ..., 𝒖𝑘 of that matrix using the linear vector commitment scheme

defined in Section 2.3 (to obtain commitments ℎ1, ..., ℎ𝑘), and en-

codes the matrix 𝑼 row-wise using a (𝑛, 𝑘) Reed-Solomon code to

obtain chunks 𝒄1, ..., 𝒄𝑛 of a coded matrix 𝑪 . A final commitment

to the full block content is computed as 𝐶 ≜ CRHF𝑠 (ℎ1∥...∥ℎ𝑘)
and used on-chain in the block’s header to uniquely reference the

block content. Full nodes receive the full block content, recompute

the column commitments and their hash, and compare it with 𝐶 to

verify the block content. Light nodes receive only 𝐶 from the block

header. Prior to accepting a new block header, a light node samples

random coded chunks 𝒄𝑖 . The response to each query is accom-

panied by purported column commitments ℎ1, ..., ℎ𝑘 . Every light

node can verify the column commitments by locally recomputing

their hash and comparing it with the commitment 𝐶 in the block

header. Subsequently, the light node verifies the downloaded chunk

17

Kamilla Nazirkhanova, Joachim Neu, and David Tse

𝒄𝑖 using the linear homomorphic property of the vector commit-

ment scheme and the column commitments ℎ1, ..., ℎ𝑘 . To employ

the invalid transaction fraud proofs of [1], it remains to show how

a full node can open any entry of 𝑼 to a light node in a verifiable

manner. For this purpose, an opening witness for value 𝑦 = [𝒖 𝑗]𝑖
at position (𝑖, 𝑗) consists of:
• Value 𝑦 = [𝒖 𝑗]𝑖 and coordinates (𝑖, 𝑗).
• Commitments ℎ1, ..., ℎ𝑘 to columns 𝒖1, ..., 𝒖𝑘 .
• A witness𝑤 for the opening of 𝑦 at the 𝑖-th position in 𝒖 𝑗 with

respect to the vector commitment ℎ 𝑗 .

The light client first verifies the commitments ℎ1, ..., ℎ𝑘 by compar-

ing their hash to the commitment 𝐶 in the block header. The client

then verifies the opening of the value 𝑦 at position 𝑖 in 𝒖 𝑗 with
respect to the vector commitment ℎ 𝑗 .

Since in Semi-AVID-PR valid encoding can be verified by light

nodes using the homomorphic property of linear vector commit-

ments, invalid encoding fraud proofs are not needed needed. At

the same time, verifying a chunk requires only to compute a vector

commitment (to 𝒄𝑖) and a linear combination of the vector commit-

ments ℎ1, ..., ℎ𝑘 , which is lightweight to compute. Performance is

discussed in more detail in Section 7.

18

	Abstract
	1 Introduction
	1.1 Rollups
	1.2 Auditability of State Transitions and Data Availability
	1.3 Information Dispersal with Provable Retrievability
	1.4 Related Work
	1.5 Outline

	2 Preliminaries
	2.1 Basics & Notation
	2.2 Reed-Solomon Codes
	2.3 Linear Vector Commitment Schemes

	3 Model
	4 Protocol
	5 Security Proof
	6 Privacy
	7 Evaluation
	7.1 Computation
	7.2 Communication & Storage

	8 Application to Data Availability Sampling
	References
	A Calculations for Table 1
	B Preliminaries
	C Additional Evaluation Plots
	D Proof Details
	E Details on Application to Data Availability Sampling

