
A preliminary version of this paper appears in the proceedings of the 22nd Privacy Enhancing
Technologies Symposium (PETS 2022).

SoK: Plausibly Deniable Storage

Chen Chen1, Xiao Liang1, Bogdan Carbunar2, and Radu Sion1

1 Stony Brook University, NY, USA
{cynthia.us12,xiao.crpyto}@gmail.com, r@zxr.io

2 Florida International University, FL, USA
carbunar@gmail.com

Abstract. Data privacy is critical in instilling trust and empowering the societal pacts of modern
technology-driven democracies. Unfortunately, it is under continuous attack by overreaching or out-
right oppressive governments, including some of the world’s oldest democracies. Increasingly-intrusive
anti-encryption laws severely limit the ability of standard encryption to protect privacy. New defense
mechanisms are needed.

Plausible deniability (PD) is a powerful property, enabling users to hide the existence of sensitive
information in a system under direct inspection by adversaries. Popular encrypted storage systems
such as TrueCrypt and other research efforts have attempted to also provide plausible deniability.
Unfortunately, these efforts have often operated under less well-defined assumptions and adversarial
models. Careful analyses often uncover not only high overheads but also outright security compromise.
Further, our understanding of adversaries, the underlying storage technologies, as well as the available
plausible deniable solutions have evolved dramatically in the past two decades. The main goal of this
work is to systematize this knowledge. It aims to:

1. identify key PD properties, requirements, and approaches;

2. present a direly-needed unified framework for evaluating security and performance;

3. explore the challenges arising from the critical interplay between PD and modern system layered
stacks;

4. propose a new “trace-oriented” PD paradigm, able to decouple security guarantees from the under-
lying systems and thus ensure a higher level of flexibility and security independent of the technology
stack.

This work is meant also as a trusted guide for system and security practitioners around the major
challenges in understanding, designing, and implementing plausible deniability into new or existing
systems.

Table of Contents

1 Introduction . 1
1.1 Challenges . 1
1.2 Contributions. 3

2 Model . 3
2.1 The Plausible Deniability Problem . 3
2.2 System Model . 4
2.3 Adversary Model . 4

3 Unified PD Definition . 6
3.1 Independence of Storage Layers . 6
3.2 Unified Definition . 7

4 Comparison . 10
4.1 Single vs. Multi-snapshot Adversary . 11
4.2 ORAM-Based PD Schemes . 12
4.3 Replacing Randomization with Canonical Forms . 14
4.4 Device-Specific Mechanisms . 15
4.5 Access Pattern Hiding Techniques . 17
4.6 Performance Metrics . 18

5 Key Insights . 18
6 Future Directions . 19

6.1 Trace-Oriented Security . 19
6.2 Invisible PD . 20
6.3 Explore Adversary Model Changes . 20
6.4 Synthetic Operations . 21

7 Conclusion . 21
8 Acknowledgements . 21
References . 23
A Unified PD Definition Equivalence . 23
B Write-Only ORAMs from Trace-Oriented PDs . 24

B.1 Write-Only ORAMs . 24
B.2 Write-Only ORAMs from Trace-Oriented PD . 24

1 Introduction

Data privacy has become essential maybe more so than at any other time in human history. En-
cryption can be used to defend against unauthorized disclosure of sensitive data, yet is not enough
to handle adversaries empowered by law or rubber-hose (e.g. oppressive governments) to coerce the
user into revealing encryption keys.

Unfortunately, numerous real-life examples show that protecting sensitive data in the presence
of such coercive adversaries is often a matter of life and death. The Human Rights Group Net-
work for Human Rights Documentation at Burma (ND-Burma) [34] documented large numbers
of human rights violations. Proof was carried out of the country on mobile devices by ND-Burma
activists, risking exposure at checkpoints and border crossings. In 2012, a videographer could smug-
gle evidence of human rights violations out of Syria by hiding a micro-SD card in a wound on his
arm [31] etc. Threats of coercive attacks are not merely an Orwellian fantasy, but a real concern
[46,3,25,49,36,37,43].

To address this, plausible deniability (PD) has been proposed. It is a powerful property, enabling
users to hide the existence of sensitive information on a system under inspection by overreaching
or coercive adversaries, democratically elected or otherwise.

In the context of secure storage3, PD refers to the ability of a user to plausibly deny the existence
of certain data stored on a storage device even when an adversary has access to the device. Since
adversaries cannot conclude anything about the existence of sensitive data, they have no good
excuse to perform the coercion further, thus leaving those data in safety.

PD was first proposed in 1998 [3]. Since then, popular encrypted file systems (FSes) such as
TrueCrypt [2] (first released in 2004) and other PD research results have emerged [30,33,42,4,34,24]
attempting to balance the ever present security-efficiency trade-off.

Unfortunately, existing efforts were designed for very specific adversaries and contexts, and
under sometimes unclear security models and device assumptions. However, to achieve strong PD
guarantees, it is important to understand and evaluate these contexts and limitations properly.
This work aims to systematize knowledge and provide a more in-depth understanding for today’s
practitioners, and future research.

1.1 Challenges

Before diving in, it is important to understand some of high-level challenges facing plausibly deniable
systems researchers and practitioners.

Security-Efficiency Trade-Off. Real-Life Adversaries. Previous PD literature has been focus-
ing on single-snapshot adversaries who can check the storage device only once, and multi-snapshot
adversaries who can checks the device at several different time points. While the former are rela-
tively easy to handle (proof being practical systems such as TrueCrypt [2]), practical PD systems
resilient against multi-snapshot adversaries turns out to be more difficult to design.

Ideally, researchers would like to obtain multi-snapshot security against all probabilistic poly-
nomial time (PPT) adversaries4 (referred to as “full security”). However, until today, only a few
constructions [4,9,14] achieve this level of security, but are unfortunately significantly slower than
the underlying storage device. Other solutions seek better performance by relaxing the security

3 PD has been first formalized in a (mostly theoretical) context of encryption [7,32], often involving small amounts
of data and sometimes read-only. This work focuses on applied aspects as they relate to efficient, modern, high-
capacity data storage.

4 Security against all PPT adversaries is the golden rule for most cryptographic primitives and security tasks,
e.g. one-way functions, encryption schemes, digital signatures etc.

1

requirements. For example, some of them assume that a small area on the device is hidden from
the adversary, and some put certain restrictions on the adversarial behavior (see Sec. 4 for details).

Overall, unfortunately, no practically efficient construction achieves multi-snapshot PD with
full security. This may be also because existing adversarial models and associated solutions have
been developed mostly ad-hoc and not designed to answer more general, fundamental questions
regarding the security-efficiency trade-off. For example, is there a performance bottleneck inherent
to the concept of PD? Are wORAMs necessary to achieve fully-secure PD? Are there multiple
dimensions along which the PD security-efficiency trade-off can be optimized? We believe that
answers to these questions are critical for both practitioners of today aiming to build in plausible
deniability into modern system stacks, as well as for upcoming research in PD.

Dependency on System Layers. To complicate things further, modern systems feature layered
structures all of which persist state and can compromise any security guarantees aimed for by other
layers. Consider that ubiquitous stack of a typical FS, FS caches, LVM layers, LVM caches, block-
devices (BD), block device caches, and flash translation layers (FTL) (see Sec. 2.2 for additional
details). Existing PD works consider only a specific layer, e.g., DEFY [34] builds PD in the FS
layer, TrueCrypt [2] works in the BD layer, DEFTL [24] works in the FTL layer.

Further, most schemes make ad-hoc case-specific assumptions about the devices and the adver-
sary behavior, accordingly achieving PD in a restricted sense.

Such a layered structure complicates the security analysis. Schemes designed for a specific layer
may lose their security guarantees if deployed at a “wrong” layer. As will be shown in Sec. 3.1,
this fact can sometimes be overlooked unintentionally. Further, the existence of state in the other
layers cannot be ignored since it often contains compromising information breaking the security of
the overall scheme.

In most cases, a realistic adversary with visibility into the state of one or more ad-
ditional layers, may immediately compromise single-layer designs since the additional
state can reveal access patterns and other security-sensitive information that a single-
layer model simply cannot capture.

It is thus critical to investigate the interplay between PD security and layers, and provide con-
structions and definitions with reduced or zero dependency on layers. Ideally, such an investigation
can isolate PD as an independent security concept, and not only a layer/device-dependent property
(Sec. 3.1 and Sec. 3).

Lack of Unified Security Framework. As discussed, full security as defined in [4] is achieved
by only a few constructions which feature prohibitive performance overheads. Most other schemes
restrict adversaries significantly and do not provide strong security or allow even for a comparative
analysis of security. Very often also, the security arguments for such schemes contain heuristics,
a very dangerous practice. For example, the security of DEFY [34] relied on the authors’ claim
that the hidden pages in their scheme were indistinguishable from secure-deleted public pages.
However, with no formal proof given, it was not clear whether the asserted indistinguishability
really held against all PPT coercive adversaries. Subsequently Jia et al. [24] showed that DEFY
can be easily compromised with very little effort (if adversaries make several attempts to exhaust
writing capacity).

Moreover, due to the lack of a unified security framework, different papers customize the def-
inition of PD to serve their specific application or devices, making comparisons between systems
difficult or outright impossible. This further leads to an unnecessary proliferation of threat mod-
els and definitions, with a polymorphous-yet-confusing naming style. For example, PD schemes
deployed in the FS layer are called “steganographic file system” or “deniable file system”, while

2

schemes designed for the BD layer are named “hidden volume encryption” or “deniable encryp-
tion”. In selecting a proper plausible deniability mechanism for their application, practitioners end
up bewildered by such multifarious names, and the lack of structure or relationships among the
security guarantees provided by those schemes. It is essential to unify these adversarial definitions
and application scenarios, and thus enable comparison-based evaluations.

1.2 Contributions.

This work synthesizes existing ideas into a guide for system and security practitioners helping to
understand, design or implement plausible deniability into new or existing systems. Concretely:

1. We observe that a key point of PD lies in concealing users’ hidden data access patterns. Often
this happens using randomized (ORAMs) or canonical form I/O. We examine how these ap-
proaches affect the security and efficiency of the resulting PD schemes. We also survey another
approach appeared recently—basing the secrecy of access patterns on inherent properties of
storage systems/devices. This approach usually leads to lightweight solutions that are “native”
to the underlying systems/devices.

2. We investigate the interplay between security assurances, adversarial models and modern multi-
layer storage stacks. This reveals a set of general principles and definitions that can be deployed
for better security-efficiency trade-offs.

3. We propose the concept of trace-oriented security to enable the design and evaluation of
schemes providing layer-independent security guarantees. We show that trace-oriented secu-
rity was achieved (though not claimed explicitly) by a few existing constructions [4,9,14]. We
show that this stronger security notion comes with a price—equivalence to write-only ORAMs.

4. We provide a way to unify and evaluate solutions under a single framework, where the main
differences are expressed as constraints on the power of the adversary. Saliently, this unified
point of view provides a framework for the comparison and evaluation of PD solutions. We
present a taxonomy of security for existing constructions.

5. Finally, we identify important under-explored areas, and suggest new directions for future re-
search.

2 Model

In this section, we provide the problem setup for PD, then describe the system and adversary
model.

2.1 The Plausible Deniability Problem

Plausibly deniable storage systems need to allow users to store public data, and sensitive hidden
data. Public data does not require protection, and is potentially known by the adversary. Hidden
data needs to be protected against coercive adversaries who can compel the user to hand over secret
information (e.g. encryption keys). Under duress, the user may need to provide some information
(e.g. keys to public data) that dismisses the adversary’s suspicions, while most importantly denying
the existence of the hidden data.

3

2.2 System Model

Modern storage systems comprise multiple layers that link the physical storage medium and the user
applications. Example layers include the file system (FS), block device layer (BD), device mapper,
flash translation layer (FTL), and the physical device, e.g., NAND flash or block device. The File
System (FS) layer is mandatory. It organizes data as files for better management. The Block Device
(BD) layer provides abstractions for block devices and maps multiple “virtual volumes” onto one
block device, where a volume can be, for instance, a file system. It is optional and needed only
if a block device is deployed as the storage media (e.g., the device mapper in the Linux kernel).
Another optional layer is the Flash Translation (FT) layer, needed if NAND flash is used as the
physical device.

Not every storage system contains all the above layers. For example, if the physical storage
medium is a NAND flash, then the storage system could consist of an FS layer only, or both an FS
layer and an FTL layer.

Operation Traces. The storage device allows Read and Write operations. An operation trace
is an ordered sequence of operations the system performs on the physical device, independent of
layers or device properties. For instance, the operation trace (Read, l1), (Write, l1, d1), (Write, l2,
d2) first reads the data from location l1, then writes data d1 into l1 and d2 into location l2.

In the following, we assume that Read operations do not modify the storage medium. Since only
Write operations leave traces on the storage medium, Write is the only type of operation that the
trace-oriented definition introduced in Sec. 3 needs to consider.

Mount and Unmount. Several PD systems require users to Mount and Unmount volumes or
partitions in order to switch between accessing public and hidden data [24,15,16], and even require
them to Unmount the hidden partition before handing the device to the adversary.

2.3 Adversary Model

We first detail common adversary assumptions. We then provide a classification of adversaries
based on their capabilities, and introduce a novel, trace-oriented adversary. Further, we describe
the standard, CPA game-inspired, plausible deniability definition.

Adversary Assumptions and Capabilities. Adversaries are assumed to be able to access the
device of a user, and attempt to compromise deniability, i.e., determine if the user is storing any
secret data. Adversaries are generally assumed to be computationally bounded.

Adversaries are assumed to know the design of the deployed PD solution. They are also assumed
not to know how many keys are used in the system, and to not have access to hidden user passwords
or encryption keys. However, they can request the user to reveal passwords and encryption keys.
The user is assumed in this case to reveal public passwords (including providing root privilege) and
public keys. Adversaries can use such information to access and decrypt stored data. In addition,
adversaries can use password cracking programs and perform forensics on the disk image.

Additional assumptions have been introduced to accommodate the applications or to trade
for better performance. Those that significantly affect the design choices for PD are discussed as
follows.

– A1: Adversaries are rational. Namely, an adversary will stop further coercion if it cannot prove
the existence of any unrevealed data.

– A2: Adversaries cannot observe run-time system state (e.g., DRAM, caches).

4

– A3: Adversaries cannot perform malicious code injection on the system used by the user.

Assumption A1 draws a line on the adversary’s coercive behavior, and was made (sometimes im-
plicitly) in the majority of exiting work. Assumptions A2 and A3 limit PD to disk states only.
This captures a wide class of application scenarios, including the motivational examples in the
introduction.

Adversary Classification. Adversaries can be classified based on the data they can access on the
user device:

– Snapshot-Oriented Adversary. The typical adversary is snapshot-oriented. Such an adver-
sary can only access snapshots of the physical device.

– Trace-Oriented Adversary. We introduce a novel, trace-oriented adversary, that can access
not only device snapshots, but also the operation traces (Sec. 2.2) that produce them.

Traces are the result of probabilistic polynomial time (PPT) run-time computations on user re-
quests, i.e., sequences of compliant logical instructions to be executed at a layer (Sec. 2.2). For
instance, traces at the BD layer traces may include block Read and block Write instructions, while
at the FTL layer, traces may include page Read, page Write, and block Erase instructions. This is
in contrast to run-time system state that includes the contents of memory and caches.

An example where an adversary can capture trace data is in flash. SSDs implement an FTL layer
inside-the-box that sees all operation traces (e.g., which inode pages are updated) before they are
executed on the actual flash cells. However, the complex wear-leveling logic inside the FTL maintains
state both as meta information and on the device itself (e.g., un-mapped not-yet-Erased blocks
containing compromising old data) that, when inspected, can directly reveal critical information
about past traces or even the traces themselves.

Snapshot-oriented adversaries can be further classified based on their number of opportunities
to inspect the user device:

– Single-Snapshot Adversary. Such an adversary can see the device only once before eventually
confronting the user and demanding access to information. This makes the design of efficient PD
schemes significantly easier. Indeed, a single snapshot (i.e., of a randomized encrypted device)
does not leak much (if any) information beyond its size. For PD then, it may be sufficient to
hide the sensitive data “encrypted”5, e.g., indistinguishable from random “free” device areas.

– Multi-Snapshot Adversary. Such an adversary can take multiple snapshots of the device at
different time points [17]. Examples multi-snapshot adversaries include customs officers or hotel
personnel with regular access. Data center servers may also face inspections by overreaching
authorities empowered by rubberhose or ill-devised laws. For multi-snapshot PD, it is exponen-
tially more difficult to balance the security-efficiency trade-off. Exploring this will be one of the
main themes of Sec. 3.1 and Sec. 4.

Standard, CPA-Game for PD. We now briefly describe the first formal definition of PD intro-
duced by Blass et al. [4] and refined in [9]. The definition of PD is provided through a cryptographic
game, analogous to the one used to define encryption against chosen-plaintext attacks (CPA). We
expand this to provide a unified definition of PD in Sec. 3.

The security game is played between a coercive adversary and a challenger running the
underlying PD scheme Σ. The adversary holds the credentials needed to access the public data,

but is ignorant of the ones for hidden data. At the beginning, picks a random bit b
$
←←←←←←← {0, 1}.

5 The double quotation marks are due to the fact that although most schemes use standard encryption, there are
some schemes (e.g. [3]) using primitives such as secret-sharing instead.

5

is allowed to interact with for polynomial-many rounds. In each round, issues access patterns
0 and 1 that share the same access requests to public data, but may contain different access
requests to the hidden data. will always execute b. At the end of these interactions, gets
the snapshot of the physical device. wins if it can guess the value b correctly. The scheme Σ is
said to achieve single-snapshot PD if the winning probability of is ≤ 1

2 + negl(�), where negl(�)
is a negligible function on the security parameter �.6 This game extends to capture multi-snapshot
security by allowing to access the device state at the end of each round.

3 Unified PD Definition

3.1 Independence of Storage Layers

The layered structure of modern storage systems (Sec. 2.2) complicates the design of PD schemes.
Yet, this is often overlooked and has not been studied in a systematic way. In the following we
investigate how the security of PD solutions is affected by storage layers. We also introduce a new
“trace-oriented” definition for PD. In the standard PD definition (Sec. 2.3) the adversary gets to
see snapshots of devices; A trace-oriented notion allows the adversary to also learn operation traces.
Trace-oriented PD provides stronger security guarantees and more flexible deployment choices due
to its reduced dependence on storage layers.

Layer-Specific PD Solutions are Vulnerable. Because of the layered nature of modern tech-
nology stacks, PD solutions are often designed for a target layer , e.g., could be FS, BD or
FTL. Then, in the security analysis, even the very existence of the underlying layers is often simply
ignored. Unfortunately this results in designs that can be easily compromised by an adversary with
access to operation traces (see example of trace-oriented compromise in Sec. 2.3).

In general, an adversary with visibility into the state of one or more other layers, can com-
promise single-layer designs since that state can reveal access patterns and other security-sensitive
information that a single-layer model simply cannot consider.

Trace-Oriented PD: Removing Layer Dependency. The above discussion leads to the fol-
lowing question:

Is it possible to achieve a stronger PD whose security is independent of individual technology
stack layers?

Layer-independence is preferable. First, it enables modularity and ensures across-the-layers se-
curity. Second, it enables the evaluation of different schemes based on overall security strength.
Performance metrics (e.g. time/space efficiency) also make better sense when they are least in-
terwoven with stack layers. Otherwise, it is difficult to compare PD solutions operating on two
different layers. Third, the fewer dependencies on implementation specifics, the better the security
abstraction. PD can now be compared with other security constructs such as ORAMs; Such a
connection is hard to establish for layer-dependent PD.

We can then define trace-oriented plausible deniability by modifying the CPA-style security
game of Sec. 2.3 in the following way: instead of device snapshots, the adversary will receive the
operation traces as the reply to its challenge requests in the security game (along with the device
snapshots). Namely, it is stipulated that the adversary cannot tell which of the two challenge
sequences were executed, even if it gets to learn the outputs of the PD logic (aka operation traces)
before they are physically executed on the storage medium. Intuitively, this is a stronger requirement

6 The term 1∕2 reflects the fact that the can guess randomly and win the game with probability 1∕2.

6

than that of standard PD because operation traces may contain more information than snapshots—
it is totally possible that two different sequences of operation traces lead to the same snapshot.

Operation traces are comprised of Read and Write operations. As mentioned in Sec. 2.2, only
Write operations leave traces on the storage medium. Thus, Write is the only type of operation
that the trace-oriented definition needs to consider. Namely, it only requires that the Write traces
reveal no information of the access requests to a PD scheme. Removing Read operations from traces
is also preferable because an analogue of Lem. 2 will show that including Read will lead to a trace-
oriented PD definition that is equivalent to ORAMs (instead of write-only ORAMs), thus suffering
ORAMs’ efficiency lower-bounds [20,5,27,47,22].

To achieve this we consider a function WOnly(⋅) that filters out the Read operations but passes
the Write operations; The above security game can then be modified to return to the adversary
the result of applying WOnly(⋅) on operation traces. This constitutes the final definition of trace-
oriented PDs.

A PD scheme meeting the trace-oriented definition also satisfies the standard, CPA-style PD
definition of Sec. 2.3. Indeed, Write traces (the output of WOnly) contain all the information to
induce storage medium snapshots; If they are oblivious of the input access request, so are the
snapshots. Furthermore, it resolves the issue of layer dependency: notice that lower-layer traces
are always obtained from higher-layer traces, via an implementation-specific PPT procedure. Since
indistinguishable operation traces remain indistinguishable after being processed by arbitrary PPT
procedures, trace-oriented PD schemes allow the existence of extra layers between the PD logic and
the physical devices.

Equivalence between Trace-Oriented PDs and Write-Only ORAMs. Blass et al. [4] con-
structed a trace-oriented PD scheme from wORAM. Further, in Appx. B we show that wORAM can
also be constructed from trace-oriented PDs. This implies the following lemma:

Lemma 1. Write-only ORAMs are both sufficient and necessary for trace-oriented PDs.

3.2 Unified Definition

The CPA-Game for PD from [4,9] defined in Sec. 2.3 is deeply integrated with the underlying
application. New solutions have to repurpose this game to define PD at different system layer
with specific underlying devices. Further, several constructions restricted the adversary’s power in
exchange for better efficiency, making it unclear how they fit into this game definition.

In this section we introduce a unified definition that

1. generalizes the CPA game in Sec. 2.3, thus inherits all its advantages, e.g. secure against CPA-
style coercion attacks, applicable for both multi-snapshot and single-snapshot settings;

2. it encompasses existing constructions and admits comparisons among them (shown in Sec. 4);

3. it can be instantiated for both the traditional device-oriented security model and the trace-
oriented one proposed in Sec. 3.1.

We present the definition for both device-oriented and trace-oriented settings, with multi-
snapshot adversaries. We use the parameter (e.g., can be FS, BD, FTL) to restrict the game to
the scenario where the adversary is attacking a storage device used at layer (i.e., the device is
directly connected to the layer).

The security game captures restrictions on the adversary’s power through two parameters: (1)
the number of rounds r (single-snapshot when r = 1, multi-snapshot when r > 1), and (2) a new
parameter , which can be instantiated by the designer. This leads to a more unified point of view,

7

as all PD schemes indeed share the same abstraction modulo the parameters and . Further,
comparisons of security strength among different schemes become possible by investigating the
restrictiveness of their respective parameters.

Layer-Specific Notations. An -request is a legitimate access (Read or Write) request to layer
. An -pattern is an ordered sequence of -requests. Let 1 ∪ 2 denote the concatenation
of requests in patterns 1 and 2. We define the function OpTrace(,) that, for a layer and
access request , outputs a sequence of operations that are meant to be executed on the underlying
physical device (i.e., the “operation traces”).

Definition 1. For a device and layer , an -layer PD (-PD) scheme Σ consists of the following
two algorithms (Setup,Oper):
– Setup(�,): this function provides the initial setups. It takes as input the security parameter �

and the device . It outputs the tuple (init,Kpub,Khid), where init is the initialized device, Kpub

is the key used to protect the public data and Khid is the key used to protect the hidden data.

– Oper(st, ,Kpub,Khid): Oper is a stateful algorithm, i.e., it may maintain internal state across
consecutive invocations7. It takes as input the current state st, an -pattern , and the key-
pair (Kpub,Khid). If is not a valid -pattern, the algorithm outputs ⊥ and halts; Otherwise, it
generates a new state ′ accordingly, and updates the current state to st ∶= ′. It outputs the
updated state st:

st ← Oper(st, ,Kpub,Khid).

Device and Trace-Oriented -Layer PD. The security for a PD scheme can now be formalized
through the CPA-style game in Fig. 1. This game is played between a coercive adversary and a
challenger running a PD scheme Σ. only knows Kpub (for the public data that the scheme is
not trying to hide), but not Khid

8. The game is played for r rounds: when r = 1 the game models a
single-snapshot adversary, when r = poly(�) it models a multi-snapshot adversary.

At each round i = [1..r], is allowed to send two patterns 0 and 1. 0 is the concatenation
of two public parts 1

pub
and 2

pub
,9 while 1 is the concatenation of 1

pub
and an arbitrary hidden

request pattern hid (up to some restrictions that will be discussed soon). The challenger executes
b by picking public and hidden requests in an order of its choice. The challenger then sends back
the snapshot of the device and/or the operation traces.

The adversary should not be able to tell which patterns are executed. More specifically, we
define the advantage of the adversary in the game to be Adv() ∶= |Pr[PD

Σ,(�, r) = 1] − 1∕2|.
This captures the exact requirement of PD—the execution of hidden requests hid now can be
interpreted as some other public requests 2

pub
. Indeed, cannot tell the difference by investigating

the snapshots and/or operation traces.
As discussed in Sec. 3.1, the WOnly(⋅) function needs to be applied to screen out the Read

operations from the traces before they are sent to . Lem. 2 states that if a PD solution is secure
in a setup where Read instructions do not leave traces, it can be converted to a secure write-only
ORAM. However, if a PD solution is provably secure even if Read instructions leave traces on the
storage device, then it can be converted to a full ORAM via an analog of Lem. 2. Thus, it will

7 This internal state should not be confused with the device state st in the input to Oper.
8 Otherwise, there is nothing to protect.
9 Note that in the CPA game in [9], 0 is also allowed to contain hidden requests. While this seems to make our

definition weaker, we show in Appx. A that the CPA game defined in Fig. 1 is actually equivalent to that in [9] in
this aspect.

8

Denote this game as PD
Σ,(�, r). It is parameterized by a security parameter �, an -PD scheme Σ = (Setup,Oper),

an adversary , and a number of rounds r.
Initialization: The challenger executes the setup algorithm to get (init,Kpub,Khid) ← Setup(�,). Kpub is given to

. The current state is set as st ∶= init.

Challenge: picks a random bit b
$
←←←←←← {0, 1} and then executes the following steps for r rounds with (i = [1..r]):

1. The adversary sends to two -patterns:

0 ∶= 1
pub ∪ 2

pub and 1 ∶= 1
pub ∪ hid,

where (1
pub
,2

pub
,hid) satisfy the following requirements:

(a) 1
pub

and 2
pub

contain only public requests;

(b) hid contains only hidden requests;

(c) 2
pub

must be ∅ if hid is ∅;

(d) 1
pub

and 2
pub

additionally satisfy some scheme-specific requirements 1 and 2 respectively;

2. Based on the selected bit b, executes the request pattern b on the device, in an order of its choice, and
updates the current device state as:

st ← Oper(st,b,Kpub,Khid).

3. sends st and/or WOnly(OpTrace(,bi)) to .

Output: Finally, outputs a bit b∗. The game then terminates with the output defined as PD
Σ,(�, r) ∶= (b == b

∗).

Fig. 1: Security game for multi-snapshot, device and trace-oriented plausible deniable system. The
game involves r rounds to model both single and multi-snapshot adversaries.

suffer from ORAMs’ efficiency lower bound [20,5,27,47,22]. For example, HIVE [4] can be proven
secure even if Read leaves traces; indeed, it employs this actively by explaining a hidden access as
a public Read. Unsurprisingly, HIVE is constructed based on fully-secure ORAMs.

The Adversary Requests. Note the requirements put on the adversary’s request patterns. First, 0
and 1 must share the same 1

pub
, as otherwise (with Kpub) can always win the game by checking

the public data in the received snapshot. For a similar reason, requirement (c) (Fig. 1) is also
necessary.

An essential difference between this security game and previous ones lies in requirement (d)
(Fig. 1). Ideally, a scheme should be secure against all PPT adversaries. However, this is usually
not easy to achieve in practice. Instead, previous attempts proved the security of their solutions
by making various additional assumptions on the adversary. In this paper we show that these
assumptions can be viewed as requirements on the 1

pub
and 2

pub
part of the adversary’s requests

in the security game. Thus, the game in Fig. 1 generalizes them as two parameters 1 and 2.
In Sec. 4 we show that by instantiating these two parameters properly, the game can capture
the security requirements of all existing PD systems. Moreover, this approach provides a way to
compare different PD solutions, where schemes with less restrictive 1 and 2 are preferable in
terms of security. We choose not to provide restrictions for 1 and 2. Such guidelines are not
possible nor useful since 1 and 2 are solution-dependent.

Definition 2 (Device/Trace-Oriented -Layer PD). For a layer , a PDS Σ = (Setup,Oper)
is device/trace-oriented -Layer PD if for any PPT adversary in the game of Fig. 1, it holds that
Adv() ≤ negl(�), where Adv() ∶= |Pr[PD

Σ,(�, r) = 1] − 1∕2|.

9

Table 1: Comparison of existing PD solutions. An empty circle signifies that the solution does not
satisfy the property at the top, while a black circle denotes that the solution satisfies the property.
A half-full circle in the Invisible column denotes that the respective solution (StegFS, INFUSE)
tried to be invisible but did not completely succeed.

Schemes Year Snapshot
Security
Type

Layer
I/O
Perf.

(Pub/Hid)

Space
Util.

Data
Loss

No
Add’l.
Space

Invisible Device

StegFS98 [3] 1998 Sin device FS - ≈15% ● ● ○ General

StegFS99 [30] 1999 Sin device FS 0.86/0.06 - ● ● ◒ General

StegFS03 [33] 2003 Sin device FS 0.06 >80% ● ● ○ General

TrueCrypt [2] 2004 Sin device BD - 100% ● ● ○ General

MobiFlage [41] 2013 Sin device BD 0.95 100% ● ● ○ General

MobiPluto [12] 2015 Sin device BD - 100% ● ● ○ General

DEFTL [24] 2017 Sin device FTL - 100% ○ ● ○
NAND
flash

DEFY [34] 2015 Mul device FS - 100% ● ○ ○
NAND
flash

MobiCeal [13] 2018 Mul device BD 0.78 - ● ● ○ General

INFUSE [15] 2020 Mul device FS 0.94/0.03 >100% ● ● ◒
Certain
NAND
flash

PEARL [16] 2021 Mul device FTL 0.6/0.15 80% ● ● ○
NAND
flash

HIVE [4] 2014 Mul trace BD - 50% ○ ● ○ General

HIVE-B [4] 2014 Mul trace BD 0.004 50% ○ ○ ○ General

DataLair [9] 2017 Mul trace BD 0.19/0.01 50% ○ ○ ○ General

ECD [51] 2017 Mul trace FTL ∗ 52.5% ● ○ ○
NAND
flash

PD-DM [14] 2019 Mul trace BD 0.10/0.07 ≈50% ○ ● ○ General

4 Comparison

In this section we compare the security and performance of existing PD schemes. We leverage the
unified definition in Sec. 3.2 to provide a framework for comparing the security of existing solutions.
We further perform the comparison from a variety of aspects (summarized in Table 1), to provide
a comprehensive understanding of these schemes.

Security Metrics. The security guarantees of PD schemes are related to the assumptions made
on adversaries, which can be captured by the unified definition. Specifically, the snapshot frequency
and the type of security (listed in Table 1) categorize the scheme in coarse granularity, and the
constraints 1 and 2 are used to characterize the power of adversaries in a finer way. Before
presenting the constraints on each scheme, let us interpret the meaning of these constraints:

10

– The ideal scheme should be secure against all PPT adversaries (corresponding to empty 1 and
2). No existing solutions achieve this level of security. 1 and 2 can be viewed as specifying
a subset of all PPT adversaries against which a PD scheme is secure. Thus, they provide a
criterion for security comparison: the more constrictive, the fewer adversarial behaviors are
ruled out, resulting in a more powerful adversary and a more secure scheme.

– The constraints also define under which conditions hidden operations can be executed safely.
For example, the 1

DEFTL
and 2

DEFTL
for DEFTL below essentially say that the hidden operations

can be performed with any public operation, as long as an Unmount is performed (together with
the trigger post-processing), before the device is handed over to the coercive adversary. The
constraints for other schemes can also be interpreted similarly. Thus, the less constrictive the
constraints, the more flexibility a scheme has in performing hidden operations.

The following interprets the security of existing schemes by specifying their corresponding con-
straints, and draw comparisons along the way.

4.1 Single vs. Multi-snapshot Adversary

To achieve single-snapshot security, existing solutions explore two major directions. The first di-
rection is inspired by classical steganography, i.e., embedding relatively small messages within large
cover-texts, such as adding imperceptible echoes at certain places in an audio recording [35]. Ander-
son et al. [3] explored steganographic file systems and proposed two approaches for hiding data. The
first approach defines the target file as the (password-derived) linear combination of a set of cover
files. The second approach encrypts the target file using a block cipher with password-derived secret
keys, and then stores it at the location determined by a cryptographic hash of the filename. In both
approaches, an adversary without the correct password can get no information about whether the
protected file ever exists. The latter approach was later implemented and optimized by McDonald
et al. [30] and Pang et al. [33]. Unfortunately, such approaches are not extremely space-effective,
and come with potential data loss and high performance overheads. They are not suited for building
modern systems handling large amounts of data at high speed.

The StegFS series [3,30,33] have the same model and share the same constraints in the unified
definition:

– 1
StegFS

: no restrictions (1
pub

can be any pattern);

– 2
StegFS

: 2
pub

must be an empty pattern.

The second direction [2,41,24] handles PD at block-device level by designing disk encryption
tools that help users embed “hidden volumes” (together with “public volumes”) within the device
(e.g., in the free space regions), while preventing adversaries from learning how many such volumes
the device actually contains. Different keys are used to encrypt different volumes using randomized
encryption indistinguishable from pseudo-random free space noise. Upon coercion, a user can pro-
vide the encryption keys for the public volumes, thus providing a plausible non-hidden use case for
the disk. The adversary does not have any evidence for the existence of additional volumes.

TrueCrypt [2] successfully implemented this idea. It stores hidden volumes in the free space of pub-

lic volumes. To hide their existence, TrueCrypt fills all free space with random data and encrypts
the hidden data with a semantically secure encryption scheme that has pseudo-random ciphertexts.
Upon coercion, the user can reveal the keys for the public volumes, and claim that the remaining
space contains random free space. Rubberhose [23], MobiFlage [42] and DEFTL [24] are implemen-
tations following similar ideas targeted to different use cases (mobile devices, NAND flash).

In the unified security definition, the constraints of TrueCrypt and MobiFlage are the following:

11

– 1
Tc&Mf

: no restrictions;

– 2
Tc&Mf

: 2
pub

must be an empty pattern.

Further, DEFTL has the following constraints:

– 1
DEFTL

: the last operation in 1
pub

must be Unmount;

– 2
DEFTL

: 2
pub

must be an empty pattern.

Highlights: Single-snapshot security can be achieved with low overheads and high performance.
Although these schemes are designed in different storage layers (FS vs BD), they share the same
restrictions on the adversaries’ choice of patterns, thus achieving identical security guarantee. How-
ever, all the aforementioned schemes fail to protect against multi-snapshot adversaries. For example,
when TrueCrypt writes hidden data, the device “free space” changes unexplainably. When observed
by a multi-snapshot adversary this cannot be plausibly explained away. After all, why did the disk
free area change without corresponding substantial changes to the public data?

Thus, to protect against multi-snapshot adversaries, one needs to hide not only the existence of
hidden data, but also associated access patterns.

Given this insight, progress in this area centers mainly around mechanisms that can consistently
explain updates to both the public and hidden data across multiple snapshots. Currently, three
major approaches exist: (i) using oblivious RAM mechanisms (Sec. 4.2), (ii) using canonical forms
(Sec. 4.3) and (iii) relying on device/deployment-specific properties (Sec. 4.4). The remainder of this
section will explore these approaches, aiming to understand the fundamentals and distill insights
to guide future designs.

4.2 ORAM-Based PD Schemes

Multi-snapshot secure PD requires mechanisms that hide users’ access patterns to hidden data.
ORAMs [20] are natural tools for this task.
ORAMs. Roughly, an ORAM ensures a database-hosting server cannot determine which database
(the “RAM”) entries are accessed by one of its client. Access patterns of any same-length access
sequences are designed to be indistinguishable. As a simple example, a (highly inefficient yet secure)
ORAM (with O(n) asymptotic complexity per access) can be constructed by filling the database
with randomized encrypted data; To access one of the elements, the client reads the entire database,
re-encrypts it and writes it back to the server. More efficient solutions exist that enable complexities
much lower than O(n) [44,45,8,10,11]. An exhaustive treatment is out of scope here. The following
summarizes how ORAMs were employed to obtain PD solutions.

HIVE [4] was the first to deploy ORAMs. It introduced hidden volume encryption. The main idea

was similar to a previous work [2], i.e., to divide the storage into a public volume and a hidden
volume10, each volume being accessed using an ORAM mechanism. Additionally, for every access to
a volume (either public or hidden), the system also executes dummy accesses to the other volume.
Since ORAM accesses are indistinguishable from each other (whether dummy or not), adversaries
cannot tell the difference between 1) accesses to the public volume and 2) accesses to the hidden
volume, which satisfies the exact requirement of the CPA game for PD.

Moreover, HIVE leveraged the observation that Read operations are not visible to adversaries,
since such operations do not leave any discernible traces (Sec. 2.2). Thus, it is sufficient to use write-
only ORAM schemes (see Def. 3 in Appx. B) that only hide Write operations. HIVE [4] designed

10 The original HIVE scheme supports multiple volumes. W.l.o.g., only the two-volume case is considered here (for
simplicity).

12

a specific write-only ORAM with a small stash of pending blocks in memory, i.e., where blocks
are stored to be written later when a free block becomes available. The write-only ORAM stash
can also behave as a queue for caching hidden data, and hidden volume accesses can be performed
together with existing (if any) public volume accesses to minimize the need for additional dummy
accesses. In this case, the adversary cannot tell the difference between 1) accesses to the public
volume only and 2) accesses to both public and hidden volumes. The only associated requirement
now becomes the need for enough plausible public accesses to pair with the hidden data in the
stash when written to disk.

In the unified definition, HIVE has the following constraints:

– 1
HIVE

: 1
pub

and hid must be of equal length;

– 2
HIVE

: 2
pub

must be an empty pattern.

HIVE-B [4] is another PD scheme proposed in the same paper as HIVE. It provides the same

security guarantee as HIVE, but with different constraints:

– 1
HIVEB

∶ no restrictions;

– 2
HIVEB

∶ 2
pub

and hid must be of equal length (i.e. containing the same number of requests).

DataLair [9] extends these ideas and observes that operations on public data do not need to be hid-

den since they are anyway public. In fact, revealing operations on public data reinforces deniability
as it shows plausible non-hidden device use. Therefore, DataLair only uses wORAMs for the hidden
volumes, while allowing public data to be accessed (almost) directly without any oblivious access
mechanism. Moreover, it designs a specific throughput-optimized wORAM. Following the strategy
of HIVE, it pairs the operations on hidden data with those on public data, and ensures that such
executions are indistinguishable from the operations on public data alone. Compared with its pre-
decessors, DataLair accelerates public operations by two orders of magnitude, and also speeds up
hidden operations.

In the unified definition, DataLair introduces a parameter � in the constraints:

– 1
DataLair

: 1
pub

should contain at least � × k public Write operations where k is the length of hid

and � is a pre-defined parameter;

– 2
DataLair

: 2
pub

must be an empty pattern.

We note that DataLair’s 1 constraints are stronger than, e.g., StegFS. However, this does not
imply that StegFS provides stronger security because the security game models the adversary’s
power also through the r parameter: StegFS is designed for single-snapshot, while DataLair is
designed for multi-snapshot adversaries.

MobiCeal [13] implements PD at the BD layer, and supports a broad deployment of any block-based

file systems for mobile devices. MobiCeal improves performance by replacing wORAMs with dummy
write operations coupled to public writes. In the unified definition, MobiCeal has the following
constraints, where f ∈ (0, 1) is a random number and � is a rate parameter:

– 1
MobiCeal

: For each public write in 1
pub

, also perform a dummy write with a certain probability. The

dummy write contributes m dummy block writes, where m is chosen according to an exponential
distribution, m = ⌊−(ln(1 − f))∕�⌋.

– 2
MobiCeal

: 2
pub

must be an empty pattern.

13

Where to Write. An important factor affecting both the security and efficiency of ORAM-based
PD approaches [4,9] is free-block allocation (FBA), i.e. the mechanism to keep track of free blocks
to store new incoming data.

Note that HIVE uses separate ORAMs on public and hidden storage spaces, and DataLair uses
ORAM only for hidden space. A naive approach would be to have separate FBA mechanisms for
public and hidden spaces. Unfortunately, this can lead to storage capacity waste, as the hidden
space must be allocated even if it is never used. Instead, a better solution uses a “global” FBA
algorithm across all the storage space. In this case, both the public and the hidden volume can be
of the same logical size as the underlying partition, and use all the available space for either hidden
or public data.

However, this turns to be a delicate task due to the existence of hidden data. On the one hand,
the FBA should avoid overwriting existing hidden data; On the other hand, such avoidance should
be strategically hidden to not raise doubts from the adversary about the existence of hidden data.

Moreover, since it is in the data path, FBA must be efficient. Significant amount of work has
been devoted [4,9] to the design of FBA algorithms that meet the above criteria. The reader is
referred to the original papers for details.

4.3 Replacing Randomization with Canonical Forms

ORAMs are used in PD designs because they can hide both the locations and contents of each access,
mostly via inherently high-overhead randomization. Yet, randomization is not really necessary to
achieve plausible deniability[14]. Simple canonical forms – e.g., such as used in log-structured file
systems [18] always writing data sequentially, treating the logical address space as a circular buffer
– may be enough to decouple the user’s logical from physical access patterns.

Since canonical forms ensure pre-defined physical device write traces, an adversary is prevented
from inferring the logical layer access patterns, of which the traces are independent of.

Further, importantly, an advantage of certain canonical forms (e.g., sequential) is the ability
to retain data locality and thus result in significantly higher efficiency than randomization-based
ORAM approaches.

PD-DM [14] is the first work that explicitly notes the above idea. Its design ensures that all writes

to the physical device are located at sequentially increasing physical addresses, similar to Append

operations in log-structure file systems. PD-DM stipulates that whenever a public data record Dpub

is written on the device, an additional random string R (the “payload”) is written immediately in
the immediately adjacent next block. To store hidden data, PD-DM will first encrypt it (indistin-
guishably from random) and then write it as the payload of some public data write Dpub. In this
case, device snapshots look like the following:

Dpub R Dpub R ⋯ Dpub R ⋯

Since the encrypted hidden data looks indistinguishable from the random “payload” of public
writings, adversaries are unable to distinguish whether any hidden data exists or not.

In terms of the unified definition constraints, PD-DM has similar constraints to DataLair [9].
However, while DataLair requires a fixed-value parameter �, in PD-DM the value of � is system
specific.

ECD [51] works in a related manner. The idea is to partition the device into a public and a

hidden volume. The public volume is managed by the system in the standard way, independent
of the hidden one. The hidden volume is divided into equal-size sequential segments, denoted as

14

{s1, s2,… , sN}. Each si contains some free blocks containing random strings, while other blocks may
be occupied by encrypted hidden data. ECD keeps moving data from si−1 to si at a predetermined
rate. During this procedure, any free blocks will be re-randomized, while existing hidden data
blocks will be re-encrypted. To a polynomial adversary this looks like all of si is re-randomized.
New hidden data is written encrypted into a free block during the migration from si−1 to si. Overall
this can be viewed as creating an artificial canonical form on the hidden volume, where segment
si is periodically overwritten by its immediate predecessor si−1. In the unified model, ECD has the
following constraints:

– 1
ECD

: no restrictions;

– 2
ECD

: 2
pub

must be an empty pattern.

ECD has the least restrictive rules compared with other schemes. This is because it employs a
regular system behavior which periodically modifies the state of the device to cover up the hidden
operation; Such a periodic system update is general enough to cover any type of hidden operations.
In contrast, other schemes use public operations to cover up hidden operations, which naturally
introduces constraints to ensure that the public and hidden operations are “paired” properly.

We conclude that HIVE, DataLair and PD-DM provide multi-snapshot security at the BD layer,
with comparable constraints. They all achieve the stronger trace-oriented security.

4.4 Device-Specific Mechanisms

In pursuit of performance, a recent line of work emerged building plausible deniability guaran-
tees on device-specific properties, e.g., electric charge levels in flash memories. This enjoys certain
advantages over previous work: 1) it may avoid heavy machinery (e.g., ORAMs) and may lead
to lightweight solutions; 2) resulting mechanisms may be closer or even native to the underlying
device, allowing for higher performance and better plausibility.

This approach was often implicit in the literature. This section seeks to sublimate the essence
of such constructions in a unified perspective. First, consider several existing constructions.

INFUSE [15] builds a PD scheme in the flash FTL layer. The main idea is to modulate additional

information in charges and voltage levels of individual NAND cells, the minimal storage unit for
NAND. A cell can hold one (SLC, single-level cell) or more (MLC, multiple-level cell) data bits. Bits
are encoded and decoded by using a programmable threshold voltage Vth and a predefined reference
voltage Vr. For example, an SLC cell with threshold voltage Vth = 3V will be interpreted as a logical
“1” when the reference voltage level is Vr = 3.5V , and as a “0” if either (i) the reference voltage
level drops below Vr = 2.5V or (ii) the threshold voltage is increased to e.g., Vth = 4V . MLC work
similarly, with multiple levels to encode multiple values.

Some recent flash controllers are able to operate the same cell in both SLC and MLC mode [28].
This provides an opportunity to hide bits. Multiple bits can be stored in a particular cell using an
“MLC-style” encoding but on inspection the system can claim that the cell is in SLC mode and
provide only a single bit. Care needs to be taken to ensure device-wide indistinguishability between
sets of cells in either SLC or MLC mode. This constitutes the core idea of INFUSE.

Under the (mostly empirical) assumption that an adversary cannot distinguish which cells are
used in which mode or whether there are any inconsistencies in the distribution of SLC vs MLC cells,
this scheme provides significant speedups. Public data operations are orders of magnitude faster
than existing multi-snapshot resilient PD systems, and only 15% slower than a standard non-PD
baseline and hidden data operations perform comparably to the-state-of-the-art PD systems.

In the unified definition, INFUSE has the following constraints:

15

– 1
INFUSE

: the last operation in 1
pub

must be Unmount;

– 2
INFUSE

: 2
pub

must be an empty pattern.

PEARL [16] is also operating in the FTL layer, but relies on a new smart write-once memory (WOM)

encoding that does not require custom voltage programming.

Unfortunately, once written to, a NAND flash cell cannot be reprogrammed before an Erase

of its containing block. Further, NAND flash is reliable only for a limited number of Erase cycles.
This can severely limit device lifespan. Complex wear leveling algorithms are deployed to “even
out” wear and maximize lifespan.

WOM codes [38] have been proposed to further optimize this wear. They use an important
property of NAND flash: previously-unwritten-to cells can be written to even if they are in pages
that have been written to before. WOM codes encode with enough redundancy (e.g. using 3 cells to
store 2 bits) to allow multiple writes to the same page (i.e., with different data each time) without
requiring an Erase.

At a high level, in the subsequent (e.g., second) Write, the idea is to modify only the bits that
have not been written-to in the first Write. A well-designed encoding allows the second logical
Write to be encoded in the resulting physical state with no ambiguity.

For example, consider the case of an encoding with 2-bit logical data records encoded onto 3
physical bits. For each 2-bit logical record s ∈ {0, 1}2 the encoding defines two possible physical
3-bit configurations E1(s) and E2(s). When logical record s is stored for the first time, E1(s) is
stored physically. If the logical record s needs to be replaced with a new value s′ (at the same
location) writing simply converts the physical value E1(s) to E2(s′). The WOM encoding is designed
unambiguously and in such a way that any such conversion does not require overwriting an existing
written-to cell. Since such a code allows two Write operations per erasure, it is called a 2-write
WOM code11.

PEARL [16] hides information by modulating the written public data according to the data to be
hidden. To this end, it re-purposes WOM codes. When public data is written, the codeword is chosen
based on the bits of the data that need to be hidden. This enables PEARL to surreptitiously hide
information even in the presence of a powerful multi-snapshot adversary. The end-result is device
state that is indistinguishable from the case of a device that was simply writing data multiple
times using a WOM code. Much care needs to be taken in the design of the specific WOM code
to not introduce device-wide bias. Overall however, the fact that WOM codes are widely deployed
on NAND flash further strengthens plausibility. Most importantly, the resulting performance is
comparable to the non-PD baseline on real-world workloads!

In the unified definition, PEARL has the following constraints:

– 1
PEARL

: the last operation in 1
pub

must be Unmount;

– 2
PEARL

: 2
pub

needs to generate k 1st invalid pages where k is the length of hid.

A pattern that can generate a 1st invalid page can be: 1) one public Write followed by a public
Delete to the same page; 2) one public Write which has a correspondingly public Write in 1

pub
.

DEFY [34] is a log-structured FS for NAND flash that offers PD with a newly proposed secure

deletion technology. It is based on WhisperYAFFS [48], a log structured FS which provides full disk
encryption for flash. Log-structured FSes have two relevant properties:

11 W.l.o.g., for simplicity this work focuses on 2-write WOM codes. There exist k-write WOM codes that admit k
writings per erasure [19,50,40].

16

1. Data (e.g., files, directories, links) and metadata are stored sequentially within the logical ad-
dress space, and any access to data (including Read) can cause the update of its corresponding
metadata;

2. Updates/deletes of data and metadata will not cause an actual deletion. Instead, a new address
will be assigned to the updated version, and the old data/metadata is just marked as old;
Subsequent garbage collection handles it.

DEFY achieves PD by exploiting the above properties in the following way. In DEFY, modifica-
tions to hidden data will cause the allocation of new records. Such allocations can be claimed as the
results of metadata updating due to public Read/Write, since such updating can also lead to the
assignment of new records. Once these records (for hidden data) become obsolete (i.e. succeeded
by newly allocated records), the system can claim that they were due to public accesses and are
now securely deleted. Due to the irreversibility of secure deletion, the adversary has no choice but
to believe that these records were due to public accesses. The system thus denies the existence of
hidden data successfully.

DEFY enjoys impressive efficiency. Read operation can be as fast as the Linux EXT4 file system.
Further, in the unified definition, DEFY offers PD conditioned on constraints:

– 1
DEFY

: 1
pub

should contain some public operations, and the last operation in 1
pub

must be
Unmount;

– 2
DEFY

: 2
pub

should contain public accesses that generate enough deleted pages to cover accesses
in hid.

Unfortunately DEFY is not secure, and it can be compromised in a few attempts to exhaust
the writing capacity [24]. Also, as hidden data are stored masqueraded as securely deleted obsolete
(public) data, to maintain plausibility, the space occupied by them must be plausibly and frequently
enough overwritten by public data. This results in data loss.

In addition, DEFY assumes the existence of a special, “tag storage area” on the device that
is hidden from the adversary. This breaks security against multi-snapshot adversaries. Thus, the
security provided by DEFY is considered weaker than the schemes that do not assume the existence
of such a hidden area.

In summary, these schemes are optimized for specific deployment cases. INFUSE and PEARL
exploit voltage variation and properties of WOM codes respectively, to encode hidden data together
with public data at the same locations. DEFY plausibly encodes hidden data as securely-deleted
obsolete public data. The resulting solutions are specific to the underlying devices but achieve
performance comparable to the non-PD baseline on real-world workloads. Such efficiency is clearly
out of the reach of ORAM-based solutions. Importantly, WOM code-based schemes provide an
unusually favorable combination of strong security and high performance.

4.5 Access Pattern Hiding Techniques

As mentioned earlier, a key point of PD schemes is to conceal access patterns to hidden data. In
order to hide the existence of hidden data, a PD scheme should prevent adversaries from learning not
only which hidden access happens, but also how many hidden accesses happen. This is in contrast to
ORAMs where only that the access patterns of logical requests are not revealed, while the number
of accesses can be public.

To hide which hidden access happens, existing PD schemes leverage one of the following two
strategies: 1) randomizing the write trace on physical devices; 2) enforcing the write trace to follow
certain canonical form (the commonly used one is log-structure). HIVE, DataLair and MobiCeal

17

follow the first strategy; PD-DM, ECD, DEFY, INFUSE and PEARL follow the second strategy.
The last 3 schemes are designed for NAND flash devices, where the device is written sequentially
by default. To hide the number of hidden accesses, the first strategy is to make the change of device
state due to a hidden access to be indistinguishable from that of some non-hidden accesses. Thus,
any changes on the devices can be attributed to certain public accesses, and the number of hidden
accesses can be claimed as 0. Note that the public accesses used to “explain” hidden accesses do
not need to happen in reality. The PD schemes that use this strategy are HIVE, DEFY, PEARL
and ECD. HIVE explains a hidden access as a public Read. DEFY and PEARL explains it either as
a public Write or Delete, while ECD explains a hidden access as a system behavior that happens
at a pre-defined rate.

Another strategy to hide the number of hidden accesses is to “pair” hidden accesses with some
public accesses and ensure that the write trace of the public accesses alone is indistinguishable
from that of both the public accesses and hidden accesses. As a result, for an adversary, only public
accesses happen. Examples include HIVE-B, DataLair, PD-DM, Mobiceal and INFUSE.

4.6 Performance Metrics

Table 1 also looks at existing solutions from a performance standpoint.

I/O Performance. PD comes with both throughput and space overheads. Some schemes report
performance separately for public operations and hidden operations – shown in Table 1 in the form
of “x/y”. It means that the public throughput is x times of the non-PD baseline, and the hidden
throughput is y times of the baseline. Some other schemes reported only one overall performance
number, and some schemes did not provide any explicit performance number or even have not been
evaluated at all since they are designed in theory and no implementation is completed (shown as
“-” in Table 1). ECD is a special case whose performance (marked with “∗” in the table) depends
on a system parameter. Recall that ECD covers up hidden operations by periodically updating the
device state at a prefixed rate r. Thus, the number of hidden operations that the system is able to
perform is determined by the updating rate r, rather than the public operations.

Space Utilization. The column “Space Util.” shows how efficiently the storage capacity of
physical devices can be exploited by each PD scheme. It is computed as the ratio between the max
size of data (both public and hidden) that can be stored in one device and the total capacity of the
storage device as a metric for space utilization in Table 1 (space required by meta-data is excluded
for simplicity). Note that INFUSE enjoys a space utilization larger than 100%. That is because
INFUSE encodes hidden bits at physical storage cells that already contain some public data (see
Sec. 4.4).

Additional Safe Space, Data Loss. As discussed earlier, some PD solutions assume the existence
of an area on the devices that remains hidden from adversaries (e.g., the TSA block in DEFY, or
the stash in HIVE). Some schemes suffer from data loss, i.e., the hidden data may be overwritten
(maybe by public data) in some use cases. Table 1 also lists these caveats for each scheme.

5 Key Insights

PD solutions deployed in a layer do not necessarily ensure PD for the entire system (Sec. 3.1).
However, we have shown that trace-oriented PD implies the standard PD security, and trace-
oriented PD secure mechanisms can provide PD for the entire system. More specifically, since

18

traces at a layer are converted through a PPT algorithm into traces at at lower layer (Sec. 3.1),
indistinguishability of traces at a layer implies indistinguishability of traces and snapshots at any
lower-layers. This addresses the issue of the SSD/FTL example in Sec. 2.3: if the PD solution is
BD layer trace-oriented secure, it achieves plausible deniability even though the SSD has an FTL
layer below.

A key point of multi-snapshot resilient PD systems lies in hiding access patterns to hidden data
(Sec. 4.1). ORAMs have been used to build PD schemes that hide access patterns (Sec. 4.2). How-
ever, ORAM-based solutions are inefficient due to the inherently heavy randomization machinery.
Further, ORAMs require carefully-designed free-block allocation algorithms.

To improve performance, existing work has explored two directions, canonical form and device-
specific solutions. Canonical form-based PD solutions can hide user access patterns, and significantly
increase throughput (Sec. 4.3). In particular, sequential approaches can preserve data locality and
make good use of locality-optimized systems deploying caching and read-ahead mechanisms. Fur-
ther, lightweight, device-specific PD solutions have been developed, that exploit specific devices
and deployment settings to achieve efficiency comparable to the non-PD baselines, that does not
always come at the expense of strong security (Sec. 4.4).

We also note that several PD solutions impose 2
pub

to be empty. This is because to conceal

hidden accesses, some PD schemes make the device state associated with a hidden access be indis-
tinguishable from that of some non-hidden accesses.

6 Future Directions

We leverage these insights to propose several promising directions for future work.

6.1 Trace-Oriented Security

Most existing PD solutions exploit the possibility that different traces may result in the same snap-
shot, which allows users to interpret hidden operations as public ones. However, such an advantage
is lost in the trace-oriented setting, as the adversary obtains actual traces. Thus, it is necessary
to remove any clues of the user’s operations from the traces. Lem. 1 establishes the equivalence of
trace-oriented PD to wORAMs. Thus, this goal is hard to achieve without relying on wORAMs.

Established lower-bounds for ORAMs can be viewed as a signal of the inefficiency of wORAMs,
which translates into clues to the inefficiency of robust PD. More specifically, strongly-secure PD
solutions feature inherent fundamental efficiency limits, and achieving efficient PD requires layer-
dependency.

However, future progress on wORAM lower-bounds will also apply to trace-oriented PDs. Im-
portantly, there is no established lower-bound for wORAMs yet. Thus, the optimistic interpretation
of Lem. 1 encourages us to seek efficient trace-oriented PDs. Given that all exiting trace-oriented
PD solutions are built on top of wORAMs, it will be interesting to have constructions that do not
make explicit use of wORAMs. Such constructions may circumvent the ORAM lower-bound (if it
turns out it applies to wORAMs). Thus, while it is challenging to build schemes achieving both
trace-based security and good efficiency, this also yields the following insight: Instead of striving
for trace-based PD, a more promising direction may be to take the approach illustrated in Sec. 4.4,
and design PDs directly for the “right” layer.

More specifically, a careful selection of the layer at which the PD solution is implemented,
if secure for traces from lower layers, may provide both trace-oriented security and efficiency. For
example, for an HDD device whose block device manager does not shuffle the FS layout, an efficient
FS-layer PD solution may be a better option than a trace-oriented PD solution. For an SSD device,

19

or an HDD with a block device manager that shuffles the FS layout, an efficient PD solution may
be implemented at the BD or FTL layers.

6.2 Invisible PD

Typically, PD systems only intend to hide the existence of hidden data, not the fact that the system
in use is PD. However, the deployment of a PD system already raises suspicion about the existence
of sensitive data. A similar issue also exists for deniable encryption [7,6].

To equip the user with more credibility in the face of coercive authorities, future work may
focus on invisible PD schemes that hide not only contents but also the evidence that the system
is being used to hide data. This can be done by, e.g., making the scheme look indistinguishable to
a off-the-shelf storage system. For instance, as shown in the “invisible” column of Table 1, StegFS
[30] was designed to be indistinguishable to EXT2. However, StegFS [30] needs to also maintain a
bitmap. Future efforts may look into making this scheme fully indistinguishable by removing the
bitmap, while not compromising security.

INFUSE [15] was designed to be indistinguishable from YAFFS [1]. However, INFUSE has
a limited capacity for hidden data: If too much hidden data is stored, the distribution of cell
voltages may become suspicious. Further, INFUSE requires the firmware support which allows
precise manipulation on flash cell voltages. However, current NAND flash chips do not have the
corresponding interface admitting such manipulations.

A promising direction is work on WOM codes [16] (Sec. 4.4), where information is surreptitiously
hidden in the WOM codes of public data. While WOM codes are widely deployed on NAND
flash, making it possible to deny the use of a PD solution, PEARL is based on customized “PD-
friendly” WOM codes. Nevertheless, PEARL [16] suggests that WOM codes have great potential
for efficient PD constructions. Future research may focus on finding other PD-friendly WOM codes
with improved efficiency, and further our understanding of PD-friendly WOM codes, e.g., proving
necessary and efficient conditions for WOM codes to be PD-suitable, and lower-bounds on code
rates for such codes.

6.3 Explore Adversary Model Changes

As discussed in Sec. 2, designing PD schemes secure against multi-snapshot adversaries is chal-
lenging. Existing solutions are still too slow. To design a new PD scheme against multi-snapshot
adversaries, one can either come up with a new strategy to hide the number of hidden accesses, or
a new strategy to hide which hidden access happens, and then combine it with some of the exiting
strategies listed in Sec. 4.5. Finding new strategies for hiding the number of hidden accesses seems
more promising as there could be different ways to interpret the disk changes resulting from hidden
accesses.

A further promising direction is to design solutions secure against more realistic, bounded
adversaries. Examples worth exploring include (lower) bounds on the number of operations that
the user needs to perform between adversary-captured snapshots, or the total number of snapshots
that an adversary can capture.

We also note however that assumptions A2 and A3 (Sec. 2.3) underestimate the power of realistic
adversaries, who can perform attacks that include cold boot attacks, access swap files and core
dumps. Real-time access to, e.g., caches, allows inference of some Read operations. Unfortunately,
existing work ignores caches. Extending deniability to other parts of the system stack represents an
interesting future direction. For instance, future work may treat caches and the DRAM as another
layer in the storage hierarchy. We note however that a PD solution that is provably secure when

20

Read instructions leave traces on the storage device, can be converted to a full ORAM via an analog
of Lem. 2, thus will suffer from ORAMs’ efficiency lower bound [20,5,27,47,22] (Sec. 3.2).

6.4 Synthetic Operations

Existing PD schemes try to match hidden operations to public ones. This makes hidden operations
rather passive: to perform a hidden operation, the system has to wait until the occurrence of the
related public operation. It also restricts the types of allowed hidden operations.

Instead, an active approach is to let the system generate synthetic public operations whenever
the user wants to perform hidden operations. Existing AI/ML solutions, e.g., variational autoen-
coders [26] and generative adversarial networks [21], trained on large sets of real-user operations,
may be used to generate synthetic public operations that are difficult to distinguish from real public
operations.

7 Conclusion

Plausible deniability can provide strong privacy guarantees that impacts millions of users in a world
increasingly encroaching on encryption and personal privacy. Yet, building secure plausibly deniable
efficient systems is far from trivial. This work systematizes existing knowledge for researchers and
practitioners alike aiming to understand, deploy, or design plausible deniability systems. We believe
plausible deniability to be an important property on the cusp of efficient mainstream practicality.
This work is meant as a concise yet reasonably-complete guide on this journey.

8 Acknowledgements

We thank the shepherd, Diogo Barradas, and the anonymous reviewers for their feedback. This
work has been supported by the National Science Foundation (award 2052951) and the Office of
Naval Research (award N000142112407).

References

1. A robust flash file system since 2002. "https://yaffs.net/". 20
2. TrueCrypt. "http://truecrypt.sourceforge.net/". 1, 2, 10, 11, 12
3. Ross Anderson, Roger Needham, and Adi Shamir. The steganographic file system. In Information Hiding, pages

73–82. Springer, 1998. 1, 5, 10, 11
4. Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarlioglu. Toward robust hidden volumes using

write-only oblivious ram. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 203–214. ACM, 2014. 1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 24

5. Elette Boyle and Moni Naor. Is there an oblivious ram lower bound? In Proceedings of the 2016 ACM Conference
on Innovations in Theoretical Computer Science, pages 357–368, 2016. 7, 9, 21

6. Ran Canetti, Sunoo Park, and Oxana Poburinnaya. Fully deniable interactive encryption. In Daniele Micciancio
and Thomas Ristenpart, editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part I, volume 12170
of Lecture Notes in Computer Science, pages 807–835. Springer, 2020. 20

7. Rein Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryption. In Advances in Cryptology
– CRYPTO’97, pages 90–104. Springer, 1997. 1, 20

8. Anrin Chakraborti, Adam J. Aviv, Seung Geol Choi, Travis Mayberry, Daniel S. Roche, and Radu Sion. ro-
ram: Efficient range ORAM with o(log2 N) locality. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019. The Internet Society, 2019. 12

9. Anrin Chakraborti, Chen Chen, and Radu Sion. Datalair: Efficient block storage with plausible deniability
against multi-snapshot adversaries. Proceedings on Privacy Enhancing Technologies, 2017(3):179–197, 2017. 1,
3, 5, 7, 8, 10, 13, 14, 23, 24

21

"https://yaffs.net/"
"http://truecrypt.sourceforge.net/"

10. Anrin Chakraborti and Radu Sion. Concuroram: High-throughput stateless parallel multi-client ORAM. In 26th
Annual Network and Distributed System Security Symposium, NDSS 2019, San Diego, California, USA, February
24-27, 2019. The Internet Society, 2019. 12

11. Anrin Chakraborti and Radu Sion. Sqoram: Read-optimized sequential write-only oblivious RAM. Proc. Priv.
Enhancing Technol., 2020(1):216–234, 2020. 12

12. Bing Chang, Zhan Wang, Bo Chen, and Fengwei Zhang. Mobipluto: File system friendly deniable storage for
mobile devices. In Proceedings of the 31st Annual Computer Security Applications Conference, ACSAC 2015,
page 381–390, New York, NY, USA, 2015. Association for Computing Machinery. 10

13. Bing Chang, Fengwei Zhang, Bo Chen, Yingjiu Li, Wen-Tao Zhu, Yangguang Tian, Zhan Wang, and Albert
Ching. MobiCeal: Towards secure and practical plausibly deniable encryption on mobile devices. In 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pages 454–465. IEEE,
2018. 10, 13

14. Chen Chen, Anrin Chakraborti, and Radu Sion. Pd-dm: An efficient locality-preserving block device mapper
with plausible deniability. Proceedings on Privacy Enhancing Technologies, 2019(1), 2019. 1, 3, 10, 14

15. Chen Chen, Anrin Chakraborti, and Radu Sion. Infuse: Invisible plausibly-deniable file system for nand flash.
Proceedings on Privacy Enhancing Technologies, 4:239–254, 2020. 4, 10, 15, 20

16. Chen Chen, Anrin Chakraborti, and Radu Sion. PEARL: Plausibly deniable flash translation layer using WOM
coding. In 30th USENIX Security Symposium (USENIX Security 21), Vancouver, B.C., August 2021. USENIX
Association. 4, 10, 16, 20

17. Alexei Czeskis, David J. St. Hilaire, Karl Koscher, Steven D. Gribble, Tadayoshi Kohno, and Bruce Schneier.
Defeating encrypted and deniable file systems: Truecrypt v5.1a and the case of the tattling os and applications.
In Proceedings of the 3rd Conference on Hot Topics in Security, HOTSEC’08, pages 7:1–7:7, Berkeley, CA, USA,
2008. USENIX Association. 5

18. Fred Douglis and John Ousterhout. Log-structured file systems. In COMPCON Spring’89. Thirty-Fourth IEEE
Computer Society International Conference: Intellectual Leverage, Digest of Papers., pages 124–129. IEEE, 1989.
14

19. Philippe Godlewski. Wom-codes construits à partir des codes de hamming. Discrete mathematics, 65(3):237–243,
1987. 16

20. Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams. Journal of the
ACM (JACM), 43(3):431–473, 1996. 7, 9, 12, 21

21. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing systems, 27, 2014.
21

22. Pavel Hubáček, Michal Kouckỳ, Karel Král, and Veronika Sĺıvová. Stronger lower bounds for online oram. In
Theory of Cryptography Conference, pages 264–284. Springer, 2019. 7, 9, 21

23. R. P. Weinmann J. Assange and S. Dreyfus. Rubberhose:cryptographically deniable transparent disk encryption
system. "http://marutukku.org". 11

24. Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. Deftl: Implementing plausibly deniable encryption in flash
translation layer. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 2217–2229. ACM, 2017. 1, 2, 4, 10, 11, 17

25. Gabriela Kennedy. Encryption policies: Codemakers, codebreakers and rulemakers: Dilemmas in current encryp-
tion policies. Computer Law & Security Review, 16(4):240–247, 2000. 1

26. Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
21

27. Kasper Green Larsen and Jesper Buus Nielsen. Yes, there is an oblivious ram lower bound! In Annual Interna-
tional Cryptology Conference, pages 523–542. Springer, 2018. 7, 9, 21

28. Sungjin Lee, Keonsoo Ha, Kangwon Zhang, Jihong Kim, and Junghwan Kim. Flexfs: A flexible flash file system
for mlc nand flash memory. In USENIX Annual Technical Conference, pages 1–14, 2009. 15

29. Lichun Li and Anwitaman Datta. Write-only oblivious ram-based privacy-preserved access of outsourced data.
International Journal of Information Security, 16(1):23–42, 2017. 24

30. Andrew D McDonald and Markus G Kuhn. StegFS: A steganographic file system for Linux. In Information
Hiding, pages 463–477. Springer, 1999. 1, 10, 11, 20

31. J. Mull. How a syrian refugee risked his life to bear witness to atrocities. toronto Star Online, posted 14-March-
2012, 2012. 1

32. Adam O’Neill, Chris Peikert, and Brent Waters. Bi-deniable public-key encryption. In Annual Cryptology
Conference, pages 525–542. Springer, 2011. 1

33. HweeHwa Pang, Kian-Lee Tan, and Xuan Zhou. Stegfs: A steganographic file system. In Data Engineering,
2003. Proceedings. 19th International Conference on, pages 657–667. IEEE, 2003. 1, 10, 11

22

"http://marutukku.org"

34. Timothy Peters, Mark Gondree, and Zachary N. J. Peterson. DEFY: A deniable, encrypted file system for
log-structured storage. In 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San
Diego, California, USA, February 8-11, 2014, 2015. 1, 2, 10, 16

35. Fabien AP Petitcolas, Ross J Anderson, and Markus G Kuhn. Information hiding-a survey. Proceedings of the
IEEE, 87(7):1062–1078, 1999. 11

36. Denver Post. Password case reframes fifth amendment rights in context of digital world. "http://www.

denverpost.com/news/ci_19669803". 1
37. The Register. Youth jailed for not handing over encryption password. 2010. 1
38. Ronald L Rivest and Adi Shamir. How to reuse a “write-once memory”. Information and control, 55(1-3):1–19,

1982. 16
39. Daniel S Roche, Adam Aviv, Seung Geol Choi, and Travis Mayberry. Deterministic, stash-free write-only oram.

In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages 507–521,
2017. 24

40. Amir Shpilka. New constructions of wom codes using the wozencraft ensemble. IEEE Transactions on Information
Theory, 59(7):4520–4529, 2013. 16

41. Adam Skillen and Mohammad Mannan. Mobiflage: Deniable storage encryptionfor mobile devices. IEEE Trans-
actions on Dependable and Secure Computing, 11(3):224–237, 2013. 10, 11

42. Adam Skillen and Mohammad Mannan. On implementing deniable storage encryption for mobile devices. 2013.
1, 11

43. Toronto Star. How a syrian refugee risked his life to bear witness to atrocities. 2012. 1
44. Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical oblivious ram. arXiv preprint arXiv:1106.3652,

2011. 12
45. Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.

Path oram: an extremely simple oblivious ram protocol. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 299–310. ACM, 2013. 12

46. M Weaver. Developer tortured by raiders with crowbars. 31 October 97. 1
47. Mor Weiss and Daniel Wichs. Is there an oblivious ram lower bound for online reads? In Theory of Cryptography

Conference, pages 603–635. Springer, 2018. 7, 9, 21
48. WhisperSystems. Github: Whispersystems/whisperyaffs: Wiki, 2012. "https://github.com/WhisperSystems/

WhisperYAFFS/wiki". 16
49. Wikipedia. Key disclosure law. "http://en.wikipedia.org/wiki/Key_disclosure_law". 1
50. Eitan Yaakobi, Scott Kayser, Paul H Siegel, Alexander Vardy, and Jack Keil Wolf. Codes for write-once memories.

IEEE Transactions on Information Theory, 58(9):5985–5999, 2012. 16
51. Aviad Zuck, Udi Shriki, Donald E Porter, and Dan Tsafrir. Preserving hidden data with an ever-changing disk.

In Proceedings of the 16th Workshop on Hot Topics in Operating Systems, pages 50–55, 2017. 10, 14

A Unified PD Definition Equivalence

We now show that the unified PD definition in Sec. 3.2 is equivalent to the one in [9], which allows
both 0 and 1 to contain hidden requests.

First, it is easy to see that the definition in [9] is no weaker than the one defined in Sec. 3.2,
because allowing hidden requests in both 0 and 1 only grants the adversary more power in the
CAP game. So, the only thing left is to show that the definition in Sec. 3.2 is no weaker than
that in in [9]. Roughly speaking, this is true for the following reason. Consider a pair of [9]-type
challenge 1 ∶= 1

pub
∪ hid and ′1 ∶= 1

pub
∪ ′

hid
, both of which contain hidden requests (but

share the same public part). The security guaranteed by Fig. 1 says that a 0 ∶= 1
pub

∪ 2
pub

should be indistinguishable with 1, and also with ′1. Thus, it must the case that 1 and ′1 are
indistinguishable. In the following, we formalize the above intuition.

To prove it formally, we need to show that if a PPT adversary can win the CPA game defined
in [9] with non-negligible probability, then it can be efficiently converted into another PPT ′ that
wins the CPA game defined in Fig. 1 with non-negligible probability. We construct ′ as follows. ′

begins by picking a random bit b′
$
←←←←←←← {0, 1} and then runs internally. In the i-th (i ∈ {1,… , r})

round, will send a pair of challenge requests 0 and 1 (we emphasize that both 0 and 1

23

"http://www.denverpost.com/news/ci_19669803"
"http://www.denverpost.com/news/ci_19669803"
"https://github.com/WhisperSystems/WhisperYAFFS/wiki"
"https://github.com/WhisperSystems/WhisperYAFFS/wiki"
"http://en.wikipedia.org/wiki/Key_disclosure_law"

contain hidden requests). When this happens, ′ sets ′1 ∶= b′ ; and ′ sets ′0 to the public part

of 0 (or equivalently, the public part of 1). ′ uses ′0 and ′1 as its itℎ-round challenge requests
for its own CPA game (i.e., the game defined Fig. 1), and forwards the response from its challenger
to the internal . At the end, if guesses ′’s b′ correctly, ′ will output 1; otherwise, ′ outputs
0.

It is easy to see that if the b picked by ′’s challenger (in the game specified in Fig. 1) equals
1, then the view of the internal is identical to the case when it is participating in the CPA game
in [9]. Since Pr[b = 1] = 1∕2, it follows that with probability 1∕2, the internal will “think” that
it is participating in the CPA game from [9]. Recall that we assume that wins the [9] CPA game
with some non-negligible probability p. Therefore, ′ will win its own Fig. 1 game with probability
p∕2, which is also non-negligible.

B Write-Only ORAMs from Trace-Oriented PDs

B.1 Write-Only ORAMs

Notations. A data request is a tuple (op, addr, d), where op ∈ {Read, Write} denotes a Read(addr)
or a Write(addr, d) operation, addr denotes the identifier of the block being read or written, and d
denotes the data being written. For an ORAM scheme Π and a sequence y⃗ = {r1,… , rn} of data
requests, let PhysicalAccΠ(y⃗) denote the the physical access pattern that is produced by executing
Π on y⃗.

Definition 3 (Write-Only ORAMs [4,39,29]). An ORAM scheme is write-only oblivious if
for any two sequences of data requests y⃗0 and y⃗1 containing the same number of Write requests, it
holds that

WOnly(PhysicalAccΠ(y⃗0))
c
≈ WOnly(PhysicalAccΠ(y⃗1)),

where WOnly(⋅) filters out the read physical accesses, and
c
≈ denotes computational indistinguisha-

bility.

Remark 1. In Def. 3 y⃗0 and y⃗0 may have different length12; they are only required to contain the
same number of Write requests. This stipulates that the execution of Read requests does not incur
any physical writes: otherwise two sequences with different number of Read requests might be easily
distinguished by checking the number of resulted physical writes.

B.2 Write-Only ORAMs from Trace-Oriented PD

The High-Level Idea. In the security game of trace-oriented PDs, it is guaranteed that the
writing traces resulted from two adversarially chosen access patterns 1

pub
∪ hid and 1

pub
∪ 2

pub
are computationally indistinguishable. In particular, this implies the existence of two “universal”
public patterns 1

pub
and 2

pub
with the following property: for any hidden patterns hid, the Write

traces resulted from 1
pub
∪hid are indistinguishable with that from 1

pub
∪2

pub
Given a PD scheme

under the above restriction, a wORAM can be implemented as follows: to perform a target operation
� = (op, addr, d), it first loads � into hid, and then executes the PDS access algorithm on 1

pub
∪hid,

where 1
pub

is the aforementioned universal public pattern. Thanks to the security of the PDS,

12 This is in contrast to standard ORAMs, which considers y⃗0 and y⃗1 of equal length, and requires the indistinguisha-
bilty between the execution results without applying WOnly(⋅).

24

Alg. 1: Write-Only ORAM from Trace-Oriented PDS

1: procedure ORAM.Setup(1�)
2: Kpub,Khid, init ← PDS.Setup(1�)
3: Initialize the device/memory blocks by executing init
4: end procedure

5: procedure ORAM.Access(op, addr, d)
6: hid ∶= (r1,… , rn)← HiddenGen(n, op, addr, d)
7: if op == Read then ⊳ if this is a Read request
8: ∶={Rdummy} ∪hid

9: else ⊳ if this is a Write request
10: ∶= 1

pub
∪ hid

11: end if
12: ← PDS.Oper(Kpub,Khid,)
13: return
14: end procedure

15: procedure HiddenGen(n, op, addr, d)
16: r1 = (op, addr, d)
17: for i = 1 to n do
18: ri = Rdummy ⊳ Pad the access pattern with dummy requests
19: end for
20: return (r1,… , rn)
21: end procedure

the Write traces of the execution of 1
pub
∪ hid are indistinguishable from those of the execution

of 1
pub
∪ 2

pub
, whichever � is hidden inside hid. This provides the hiding of Write operations as

required by wORAMs. This idea is formalized in Alg. 1.

ORAM Setup. The setup procedure (Line 1) simply runs the PDS.Setup to get the keys for public
and hidden PD requests, and a sequence of commands init that is meant to initialize the PD
scheme. Once the commands in init are executed on the underlying device/memory blocks, the
ORAM system is ready to work.

ORAM Access. On input a request � = (op, addr, d), the ORAM.Access procedure first invokes a
sub-procedure called HiddenGen (Line 15), which pads � with n− 1 (same) dummy request Rdummy.
This “padding” is necessary for the following reasons. Recall that the construction wishes to execute
� by loading it in the hidden part of some input pattern to PDS.Oper. To leverage the security of
PDS, the hidden part must have length n. This is exactly the purpose of HiddenGen. Now, the
procedure can create a pattern = 1

pub
∪ hid by concatenating the “universal” 1

pub
with output

hid of HiddenGen; the writing traces for will be indistinguishable with that for 1
pub
∪ 2

pub
, due

to the security of PDS.

As mentioned in Rmk. 1, write-only ORAMs inherently require that Read request should not
lead to physical writings. However, this condition may not be satisfied by the underlying PDS. To
see that, consider a Read request �. Following the above strategy, the procedure will load � into hid

and set = 1
pub
∪ hid. Since hid contains only � and some dummy requests, we can assume that

25

hid does not cause any physical writings. However, the 1
pub

part may contain some requests which

incur physical writes. To resolve this issue, replace 1
pub

with (the sequence of) a single dummy

operation (Line 8), if � is a Read request. Since a dummy operation does not cause any writes, �
can be executed without incurring physical writes.

Lemma 2. If PDS = (Setup,Op) is a secure PD scheme, then Alg. 1 is a secure write-only ORAM.

Proof. Let y⃗0 and y⃗1 be two arbitrary data request sequences that contain the same number of
Write operations. Note that it is possible that |y⃗0| ≠ |y⃗1|. For b ∈ {0, 1}, let Outb denote the
sequence of traces resulted from executing Alg. 1 sequentially on each requests in y⃗b. The following
shows that WOnly(Out0) and WOnly(Out1) are computationally indistinguishable.

Let m denote the number of write operations in y⃗0 (or y⃗1). Note that Out0 and Out1 may have
different length, because the length of Outb depends on y⃗b. But it is clear that |WOnly(Out0)| =
|WOnly(Out1)| = m due to the following two facts:

1. by construction (specifically, Line 7 and Line 8), Read requests do not cause any writing traces;

2. both y⃗0 and y⃗1 contain exactly m Write requests.

Moreover, by the security of PDS, running Alg. 1 on any Write request has the same effect of
executing PDS.Oper(Kpub,Khid,1pub ∪ 2

pub
). Therefore, it follows that for any b ∈ {0, 1},

(

WOnly(∗),… ,WOnly(∗)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
repeat m times

c
≈ WOnly(Outb), (1)

where ∗ denotes the output of the following operation:

PDS.Oper(Kpub,Khid,1pub ∪ 2pub).

It then follows immediately from Equation (1) that WOnly(Out0)
c
≈ WOnly(Out1).

26

	Introduction
	Challenges
	Contributions.

	Model
	The Plausible Deniability Problem
	System Model
	Adversary Model

	Unified PD Definition
	Independence of Storage Layers
	Unified Definition

	Comparison
	Single vs. Multi-snapshot Adversary
	ORAM-Based PD Schemes
	Replacing Randomization with Canonical Forms
	Device-Specific Mechanisms
	Access Pattern Hiding Techniques
	Performance Metrics

	Key Insights
	Future Directions
	Trace-Oriented Security
	Invisible PD
	Explore Adversary Model Changes
	Synthetic Operations

	Conclusion
	Acknowledgements
	References
	Unified PD Definition Equivalence
	Write-Only ORAMs from Trace-Oriented PDs
	Write-Only ORAMs
	Write-Only ORAMs from Trace-Oriented PD

