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Abstract

We study the computational problem of finding a shortest non-zero vector in a rotation of Zn, which
we call ZSVP. It has been a long-standing open problem to determine if a polynomial-time algorithm for
ZSVP exists, and there is by now a beautiful line of work showing how to solve it efficiently in certain
special cases. However, despite all of this work, the fastest known algorithm that is proven to solve ZSVP
is still simply the fastest known algorithm for solving SVP (i.e., the problem of finding shortest non-zero
vectors in arbitrary lattices), which runs in 2n+o(n) time.

We therefore set aside the (perhaps impossible) goal of finding an efficient algorithm for ZSVP and
instead ask what else we can say about the problem. E.g, can we find any non-trivial speedup over the
best known SVP algorithm? And, what consequences would follow if ZSVP actually is hard? Our results
are as follows.

1. We show that ZSVP is in a certain sense strictly easier than SVP on arbitrary lattices. In particular,
we show how to reduce ZSVP to an approximate version of SVP in the same dimension (in fact,
even to approximate unique SVP, for any constant approximation factor). Such a reduction seems
very unlikely to work for SVP itself, so we view this as a qualitative separation of ZSVP from SVP.
As a consequence of this reduction, we obtain a 20.802n-time algorithm for ZSVP, i.e., a non-trivial
speedup over the best known algorithm for SVP on general lattices.

2. We show a simple public-key encryption scheme that is secure if (an appropriate variant of) ZSVP
is actually hard. Specifically, our scheme is secure if it is difficult to distinguish (in the worst case)
a rotation of Zn from either a lattice with all non-zero vectors longer than

√
n/ logn or a lattice

with smoothing parameter significantly smaller than the smoothing parameter of Zn. The latter
result has an interesting qualitative connection with reverse Minkowski theorems, which in some
sense say that “Zn has the largest smoothing parameter.”

3. We show a distribution of bases B for rotations of Zn such that, if ZSVP is hard for any input
basis, then ZSVP is hard on input B. This gives a satisfying theoretical resolution to the problem
of sampling hard bases for Zn, which was studied by Blanks and Miller [BM21]. This worst-case
to average-case reduction is also crucially used in the analysis of our encryption scheme. (In recent
independent work that appeared as a preprint before this work, Ducas and van Woerden showed
essentially the same thing for general lattices [DvW21a], and they also used this to analyze the
security of a public-key encryption scheme.)

4. We perform experiments to determine how practical basis reduction performs on different bases of
Zn. These experiments complement and add to those performed by Blanks and Miller, as we work
with a larger class of reduction algorithms (i.e., larger block sizes) and study the “provably hard”
distribution of bases described above. We also observe a threshold phenomenon in which “basis
reduction algorithms on Zn nearly always find a shortest non-zero vector once they have found a
vector with length less than

√
n/2,” and we explore this further.
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1 Introduction

God made the integers; all the rest is the work of man.

Leopold Kronecker

A lattice L ⊂ Rn is the set of all integer linear combinations of linearly independent basis vectors
B := (b1, . . . , bn) ∈ Rn×n, i.e.,

L = L(B) = {z1b1 + · · ·+ znbn : zi ∈ Z} .

Lattices have recently played a central role in cryptography, as many powerful cryptographic schemes have
been constructed using lattices. (See [Pei16] and the references therein.) These schemes’ security rests on
the hardness of (worst-case) computational problems related to lattices, such as the Shortest Vector Problem
(SVP), in which the goal is to find a non-zero lattice vector whose `2 norm is minimal, given a basis B for
the lattice.

Perhaps the simplest example of a lattice is the integer lattice Zn, which has the identity matrix as a
basis. Of course, the shortest non-zero vectors in Zn are simply the standard basis vectors and their negations
±e1, . . . ,±en, which have length one. So, it is trivially easy to find a shortest non-zero vector in Zn, and
other computational lattice problems are also easy when the relevant lattice is Zn.

However, suppose that we are given some basis B for a rotation of Zn, i.e., a basis B such that the lattice
L(B) generated by this basis is RZn for some orthogonal matrix R ∈ On(R). Of course, if the basis B is
simply R itself, then it is still easy to find a short vector in Zn. (E.g., any column of R will do.) But, it does
not need to be so easy. For example, the lovely matrix

B :=


3
√

3898 −5382
√

2
1949

31195√
3898

15857
3 ·

√
2

1949

0
√

682378
1949 −110727

√
2

664977361
676011√

1329954722

0 0
√

64221
682378

67240
3 ·

√
2

21911498769

0 0 0 1
3
√

128442


is a basis for a rotation of Z4, but it is not immediately clear how to find a vector of length one in the lattice
generated by B.1 We write ZSVP for the problem of finding vectors of length one in a rotation L of Zn,
given a basis for L.

Indeed, this is a well known problem, and it has been a long-standing open problem to settle the com-
plexity of ZSVP, leading to a beautiful line of work [GS02, Szy03, GS03, LS14, LS17, CGG17, Hun19].
Frustratingly, despite all of this wonderful work, the fastest known algorithm that is proven to solve ZSVP
is still simply the fastest known algorithm that is proven to solve SVP on arbitrary lattices, a 2n+o(n)-time
algorithm [ADRS15]. So, we do not even know whether ZSVP is any easier than SVP on arbitrary lattices,
let alone whether there exists, e.g., a polynomial-time algorithm!

1.1 Our results

In this paper, we set aside the question of whether a polynomial-time algorithm for ZSVP exists and instead
ask what else we can say about ZSVP. Specifically, we study the following questions.

1. Can we at least solve ZSVP in time better than 2n+o(n)? (In other words, can we at least do better
than just plugging in an algorithm that solves SVP on all lattices?)

2. If it is hard to solve ZSVP (or variants of it), does this imply any interesting cryptography?

1Of course, this is not actually a hard problem for a computer, since it is only four-dimensional and SVP can be solved
efficiently when the dimension n is constant. Indeed, one example of a unit length vector in this lattice is Bz, where z :=
(59, 396, 225,−326)T .
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3. In particular, is there some (efficiently sampleable) distribution of instances of ZSVP such that these
instances are provably hard if ZSVP is hard in the worst case? I.e., is there a “hardest possible”
distribution of bases?

4. Do known algorithms perform any differently on rotations of Zn empirically?

We essentially give positive answers to all of these questions, giving a richer perspective on ZSVP and related
problems, as we detail below.

Provably faster algorithms for Zn. Our first main result, presented in Section 5, is an exponential-time
algorithm for ZSVP that is faster than the fastest known algorithm for SVP over arbitrary lattices. In
fact, we show something significantly stronger: an efficient dimension-preserving reduction from ZSVP to
γ-approximate SVP over general lattices for any constant γ = O(1). In other words, we show that in order
to find an exact shortest vector in a rotation of Zn, it suffices to find an approximate shortest vector in an
arbitrary lattice. (In fact, we reduce to the γ-unique Shortest Vector Problem, which is SVP in which the
shortest vector is guaranteed to be a factor of γ shorter than “the second shortest vector,” appropriately
defined.)

Theorem 1.1 (Informal. See Corollary 5.3). There is an efficient reduction from ZSVP to γ-approximate
SVP (in fact, to γ-unique SVP, a potentially easier problem) in the same dimension for any constant γ =
O(1).

If we plug in the fastest known algorithm for O(1)-approximate SVP, we immediately obtain a 20.802n-
time provably correct algorithm for ZSVP [LWXZ11, WLW15, AUV19]. (And, under a purely geometric
conjecture, we obtain a running time of (4/3)n+o(n) ≈ 20.415n [Ste20].)

However, the specific running times are perhaps less interesting than the high-level message: solving
exact SVP over rotations of Zn is no harder than solving approximate (or even unique) SVP over arbitrary
lattices in the same dimension. We certainly do not expect such a reduction to work for arbitrary lattices,
so this proves that there is something inherently “easier” about Zn.

In fact, there is nothing particularly special about polynomial-time reductions in this context, and we
more generally achieve a smooth trade-off between the running time of the reduction and the approximation
factor γ in the resulting SVP instance. In particular, we can reduce ZSVP to γ-SVP in time roughly (n/γ2)γ

2

for any γ ≤
√
n/2 (using roughly (n/γ2)γ

2

queries to a γ-SVP oracle).
Indeed, our reduction solves SVP over any lattice L that has “remarkably few approximately shortest

points.” The running time depends on exactly how many γ-approximate shortest vectors L has. For example,
this yields essentially the same trade-off for any (rotation of a) lattice that is the direct sum of many low-
dimensional lattices, and any small perturbation of Zn. The key tool that we use here is lattice sparsification,
which was originally developed by Khot (in a rather different context) [Kho05].

We also present (in Section 5.1) a simple reduction from ZSVP to
√

2-SVP. (Notice that a reduction
from ZSVP to γ-SVP for γ <

√
2 is trivial, but a reduction for γ ≥

√
2 is non-trivial.) This reduction is

formally weaker than the one described in Theorem 1.1 (since it only works for the approximation factor√
2), but it is simpler and more intuitive (and it also has the benefit of being deterministic). We hope

that future authors might generalize it to work for larger approximation factors, perhaps even superconstant
approximation factors. (In fact, we know how to extend it to the approximation factors

√
3 and 2 =

√
4, but

our proof relies on tedious case analysis, so we do not bother to include this result.)
Our reduction can also potentially be viewed as a sort of hardness proof for unique SVP (uSVP), which is a

key problem in lattice cryptography. Despite its importance, little is known about its hardness under standard
complexity-theoretic assumptions: uSVP is not even known to be NP-hard for any constant approximation
factor greater than 1 [AD16, Ste16b]. However, our reduction shows that uSVP is hard for any constant
approximation factor if ZSVP is hard. (We show essentially the same result for the Bounded Distance
Decoding problem (BDD), which is closely related to uSVP via known reductions [LM09, BSW16].) We
emphasize that hardness of ZSVP is a non-standard and perhaps even overly strong assumption, and so,
while notable as the first of its kind, this result by itself should be viewed as relatively weak evidence that
approximate uSVP is hard.
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A public-key encryption scheme. Our next main result, presented in Section 4, is a public-key encryp-
tion scheme whose security can be based on the (worst-case) hardness of variants of ZSVP. To be clear, we
do not recommend using this scheme in practice, as its security rests on the hardness of problems that might
very well turn out to be easy!

Specifically, we show an encryption scheme that is secure if it is difficult to distinguish a rotation Zn either
from (1) a lattice with no non-zero vectors with length less than roughly γ for γ ≈

√
n/ log n; or (2) from a

lattice with smoothing parameter ηε(L) smaller than ηε(Zn)/α for any α > ω(1). (See Section 2.2 for the
definition of the smoothing parameter.) We call these problems γ-ZGapSVP and α-ZGapSPP, respectively.

Theorem 1.2 (Informal, see Theorem 4.8). There is a public-key encryption scheme that is secure if either
γ-ZGapSVP or α-ZGapSPP is hard, for γ ≈

√
n/ log n and any α > ω(1).

We stress that both ZGapSVP and ZGapSPP are worst-case problems. In particular, our encryption
scheme is secure unless there is a polynomial-time algorithm that distinguishes all bases of rotations of Zn
from all lattices that either have no short vectors or have small smoothing parameter. (A critical step in
our proof is a worst-case to average-case reduction showing how to sample a basis for a rotation of Zn that
is provably as secure as any basis. We discuss this more below.)

We note that the approximation factor γ ≈
√
n/ log n might look quite impressive at first. Specifically,

prior work shows public-key encryption schemes that are secure if γ′-GapSVP (as opposed to γ-ZGapSVP)
is hard for γ′ ≈ n3/2, where γ′-GapSVP asks us to distinguish a lattice with a non-zero vector with length
at most one from a lattice with no non-zero vectors with length less than γ′. So, our approximation factor
γ ≈

√
n/ log n seems much better. (And, perhaps it is. In particular, we do not know algorithms that solve

γ-ZGapSVP faster than γ′-GapSVP or even γ-GapSVP.)
Of course, our reduction only works for γ-ZGapSVP, which is potentially a much easier problem that

γ-GapSVP, or even than γ′-GapSVP. (Indeed, we are certainly not even willing to conjecture that ZSVP
is hard, let alone γ-ZGapSVP.) And, from another perspective, the approximation factor of γ ≈

√
n/ log n

seems rather weak. Specifically, since Zn (and any rotation of Zn) has determinant one, it is trivial by
Minkowski’s theorem to distinguish a rotation of Zn from a lattice with no non-zero vectors with length less
than roughly

√
n. So, from this point of view, our approximation factor γ is just a factor of

√
log n from

trivial.
The approximation factor α for ZGapSPP is harder to interpret, in part because computing the smoothing

parameter is not nearly as well studied as computing the length of the shortest non-zero vector. (But,
see [CDLP13].) However, a recent series of works [DR16, RS17, ERS21, RS21] has shown that there is a
certain sense in which “Zn has the largest smoothing parameter of any lattice.” (E.g., up to a pesky factor of
2, Zn is known to have the largest smoothing parameter of any determinant-one lattice whose gram matrix
is integral [RS21].) So, there is a certain vague sense in which α-ZGapSPP is the problem of “recognizing Zn
by one of its most distinguishing features,” and we therefore think of it as an approximate analogue of the
problem of simply recognizing a rotation of Zn (i.e., distinguishing a rotation of Zn from any other lattice).
See Section 4.4.

In fact, we note in passing that our cryptographic scheme can be adapted to work with other lattices, but
it seems that Zn offers distinct advantages here (setting aside the question of whether the scheme is actually
secure).

Sampling provably secure bases. Our next main result, presented in Section 3, is a way to sample a
“hardest possible” basis B for a rotation of Zn. For example, we show an explicit (efficiently sampleable)
distribution of bases B for rotations of Zn such that, if it is hard to solve ZSVP in the worst case, then it is
hard to solve ZSVP on input B. The basic idea is to use the discrete Gaussian sampling algorithm of [GPV08]
to use any basis of a rotation L of Zn to obtain many discrete Gaussian samples from L, sufficiently many
that we have a generating set of L. We can then apply any suitable algorithm that converts a generating set
into a basis. (A similar idea was used in [HR14] in a different context. More recently, in independent work
that was published on eprint before this work, [DvW21a] used more-or-less the same idea in a very similar
context. See Section 1.2.)
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This gives a theoretically rigorous answer to the question studied by Blanks and Miller [BM21], who
considered the relative hardness of solving ZSVP for different input bases. We show that there is a relatively
simple input distribution that is provably as hard as any other.

Indeed, we have already implicitly mentioned this result, as it is crucially used in the security reductions
for our encryption scheme.

Experimental results for ZSVP Our final contribution, presented in Section 6, consists of a number of
experimental results showing how practical heuristic lattice algorithms perform on Zn.

Our first such set of experiments ran state-of-the-art basis reduction algorithms on bases of Zn that
were generated in different ways and compared their effectiveness.2 These experiments complement similar
experiments performed by Blanks and Miller [BM21]. Our experiments differ from those of Blanks and
Miller in that we used the BKZ algorithm with larger block sizes; performed more trials; and performed
experiments on the distribution of bases resulting from our worst-case to average-case reduction.

Here, our results were broadly comparable to those of [BM21]. See Section 6.1 for the details. However,
we note that our new experiments on the distribution of bases resulting from worst-case to average-case
reductions suggest that these bases achieve comparable security to the bases studied in [BM21] with much
shorter vectors.

In conducting these experiments, we noticed a curious threshold phenomenon exhibited by basis reduction
algorithms when run on Zn. Specifically, we noticed that the output of these algorithms nearly always either
contained a vector of length one or contained no vectors with length less than roughly

√
n/2. This suggests

that, once a basis reduction finds a vector in Zn with length significantly less than
√
n/2, it nearly always

finds a shortest vector.
Our second set of experiments therefore studies this phenomenon specifically. Indeed, we show that the

behavior is quite striking. See Section 6.2. We offer some rough intuition for why this might happen when
one performs basis reduction on bases of Zn, and [DvW21a] predict essentially the same phenomenon more
generally (for any “unusual” lattice).

1.2 Related work

As we mentioned above, there is by now a beautiful sequence of works showing polynomial-time algorithms
for certain special cases of ZSVP [GS02, GS03, LS14, LS17, CGG17]. A summary of their results is beyond
the scope of this work, but we note that their techniques are very different from those in this work with
the exception of Szydlo’s heuristic algorithm [Szy03]. In particular, Szydlo presented a heuristic algorithm
that solves ZSVP by finding many vectors of length roughly c

√
n (where the constant c > 0 is unspecified),

which can be viewed as a heuristic reduction from ZSVP to c
√
n-SVP. In contrast, we give an efficient

reduction with a proof of correctness from ZSVP to γ-uSVP for any constant γ (and, more generally, a

roughly (n/γ2)γ
2

-time reduction for γ ≤
√
n/2).

Our public-key encryption scheme is quite similar to a scheme recently proposed by Ducas and van
Woerden [DvW21a], in a beautiful independent work that appeared as a preprint before the present work
was finished. On one hand, Ducas and van Woerden’s construction is more general than ours—it works with
any “remarkable” lattice, of which Zn is an example. (We do note in passing that our constructions make
sense for a more general class of lattices, but we do not attempt to make this precise.) On the other hand,
because we specialize to Zn, our scheme is arguably simpler, and the hardness assumptions that we require
for security, while formally incomparable, are arguably weaker.

Perhaps the biggest difference is that in [DvW21a], the ciphertext is a target point that is very close to
the lattice, effectively within the unique decoding radius of Zn, i.e., 1/2 (or for more general lattices, within
whatever radius one can efficiently decode, uniquely). And, the [DvW21a] decryption algorithm recovers the
unique lattice vector within this distance of the target point. In this context, Zn is not a particularly good
lattice because its unique decoding radius is rather small (relative to, e.g., its determinant). (Of course, Ducas

2Note that we ran these experiments directly on bases of Zn, rather than on rotations of bases of Zn because the algorithms
themselves are rotation invariant.
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and van Woerden list many “remarkable” lattices.) In contrast, our ciphertext is a target point that is quite
far away from the lattice, at distance Θ(

√
n) (well above the radius at which unique decoding is possible), and

our decryption algorithm simply determines whether the target is closer or farther than a certain threshold
value. Because of this difference, our scheme achieves security under arguably weaker hardness assumptions
(because we work at much larger radii), but each of our ciphertexts encodes just a single-bit plaintext,
while [DvW21a] encode many plaintext bits in each ciphertext (or, more accurately, they construct a KEM).
The assumptions are not directly comparable, however, as [DvW21a]’s hardness assumptions concern the
lattice Zn ⊕ αZn for a cleverly chosen scaling factor α, whereas our hardness assumptions work with Zn
directly. Ducas and van Woerden also show a signature scheme and a zero-knowledge proof, while we do
not.

Ducas and van Woerden’s work also contains more-or-less the same worst-case to average-case reduction
that we describe in Section 3, and therefore also more-or-less the same distribution of bases that we propose.
Indeed, in this case their work is essentially strictly more general than ours. (Similar ideas also appeared
in [HR14], though in a different context. Our proofs in Section 3 immediately generalize to other lattices.)

Blanks and Miller introduced two of the basis-generating procedures that we study, and performed
experiments on them to determine if basis reduction algorithms could break them [BM21]. Our empirical
work on different bases for Zn is best viewed as follow-up work to [BM21]. In particular, we perform more
trials and run BKZ with larger block sizes. Additionally, we perform experiments on the discrete Gaussian
bases described above, which were not considered in [BM21].

1.3 A brief note on using rotated bases as opposed to, e.g., Gram matrices

Throughout this paper, we work with bases B that are rotations of bases of Zn, or more precisely, orthogonal
transformations of bases of Zn. And, we sometimes even work with uniformly random orthogonal transfor-
mations. We do this largely because it is convenient for our presentation and proofs. Of course, to be fully
formal, we must specify exactly the input format that we use for these bases, which in general will not be
rational. Indeed, a true sample from the uniform distribution over orthogonal transformations will not even
admit a finite description. We adopt the convention, common in the literature on lattices, of ignoring these
issues. They can be resolved by appropriately discretizing the space.

There are at least two alternative approaches, which admittedly have some major advantages. In partic-
ular, neither approach runs into the representation issues described above.

One alternative approach is to work with the Gram matrix G := BTB instead of the basis B itself.
Notice that the Gram matrix is rotation independent—i.e., if R ∈ On(R) is an orthogonal matrix, then
BTB = (RB)TRB, so that working with the Gram matrix effectively removes the need to discuss rotations.
And, with some care, one can move freely between Gram matrices and bases. The Gram matrix is also easy
to represent in bits, because the Gram matrix is always an integer matrix when B generates a rotation of
Zn. In fact, we do explicitly work with the Gram matrix when we present our cryptographic scheme, since
in that case we are actually proposing an explicit construction. However, most of the literature (and most of
the results from prior work that we rely on) is written in terms of bases, not Gram matrices. So, we (mostly)
stick to working with bases.

Another approach is to work with some canonical rotation. For example, for any basis B, there is a
unique upper-triangular matrix B′ with positive entries along the diagonal such that B′ = RB for some
orthogonal transformation R ∈ On(R). This is the QR-decomposition of the basis (where, confusingly, Q in
the QR-decomposition is an orthogonal transformation and R is an upper-triangular matrix with positive
entries along the diagonal) or equivalently as the Cholesky decomposition of the Gram matrix. So, rather
than work with arbitrary rotations, we could work with these canonical rotations. Indeed, this has a lot of
appeal because many lattice algorithms (e.g., LLL) compute the QR-decomposition anyway, and though it
does not consist of integers, it does consist of square roots of rational numbers. This would likely be our
preferred approach if it did not require extra background knowledge for the reader.
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2 Preliminaries

We write In for the identity matrix. We write On(R) for the set of all orthogonal linear transformations.
That is On(R) is the set of matrices R ∈ Rn×n with the property that RTR = In. We often informally refer
to orthogonal transformations as “rotations.” We refer to integer-valued matrices with determinant ±1 (i.e,
matrices in GLn(Z)) as unimodular.

2.1 Basic lattice definitions

We say that a lattice L = L(B) ⊂ Rn with basis B = (b1, . . . , bn) ∈ Rn×n has dimension n. We use λ1(L)
to denote the minimum distance of L (equivalently, the length of the shortest non-zero vector in L). I.e.,
λ1(L) := minx∈L\{0}‖x‖. More generally, we define the ith successive minimum λi(L) for 1 ≤ i ≤ n (where
n is the dimension of the lattice) to be the smallest value of r > 0 such that L contains at least i linearly
independent vectors of length r:

λi(L) := min{r > 0 : dim(span(L ∩ rBn2 )) ≥ i} .

Here Bn2 denotes the Euclidean unit ball in n dimensions.
Given a lattice L with basis B, we define the Gram matrix of B to be G := BTB. We define the

determinant of such a lattice L to be det(L) := |det(B)| =
√

det(G). We note that det(L) is well-defined
because all bases of L are equivalent up to multiplication by unimodular matrices. Minkowski’s Theorem
upper bounds the minimum distance of a lattice in terms of its determinant, thereby relating the two most
important lattice invariants. In particular, if L is a lattice of dimension n, Minkowski’s Theorem asserts that

λ1(L) ≤ C
√
n · det(L)1/n (1)

for some explicit constant C > 0.

2.2 The continuous and discrete Gaussian distributions and the smoothing pa-
rameter

For a vector y ∈ Rn and parameter s > 0, we write

ρs(y) := exp(−π‖y‖2/s2)

for the Gaussian mass of y with parameter s. We write Dn
s for the symmetric continuous Gaussian distri-

bution on Rn, that is, the distribution with probability density function given by

Pr
X∼Dn

s

[X ∈ S] =
1

sn
·
∫
S

ρs(y)dy .

We simply write Ds for D1
s .

We prove the following lemma in Appendix A.

Lemma 2.1. For any s > 0, positive integer n, and ε > ε0

Pr
X∼Dn

s

[|dist(X,Zn)2 − ν| > εn] ≤ 2 exp(−(ε− ε0)2n/10) ,
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where

ν :=
n

12
− exp(−πs2)

2π2
· n ,

and

ε0 :=
exp(−4πs2)

6
· (1 + 1/s2) .

The Gaussian mass of a lattice L ⊂ Rn with parameter s > 0 is then given by

ρs(L) :=
∑
y∈L

ρs(y) .

The discrete Gaussian distribution DL,s is the distribution over L induced by this measure, i.e., for any
y ∈ L,

Pr
X∼DL,s

[X = y] = ρs(y)/ρs(L) .

We will need the following theorem from [BLP+13], which is a slight strengthening of a result in [GPV08].

Theorem 2.2. There is an efficient algorithm that takes as input a basis B = (b1, . . . , bn) ∈ Rn×n for a
lattice L ⊂ Rn and a parameter s ≥

√
log(2n+ 4)/π ·maxi ‖bi‖ and outputs a sample from DL,s.

For ε > 0, the smoothing parameter of a lattice L ⊂ Rn is the unique parameter s > 0 such that

ρ1/s(L∗) = 1 + ε .

Lemma 2.3 ([MR07, Lemma 4.1]). For any lattice L ⊂ Rn and parameter s > ηε(L) for some ε ∈ (0, 1), if
X ∼ Dn

s , then X mod L is within statistical distance ε/2 of the uniform distribution modulo L.

Lemma 2.4 ([MR07, Lemma 3.2]). For any lattice L ⊂ Rn and any ε > 2−n

ηε(L) ≤
√
n/λ1(L∗) .

We say that y1, . . . ,ym ∈ L generate a lattice L if L = {z1y1 + · · ·+zmym : zi ∈ Z}. In particular, when
m = n, a generating set is simply a basis. We will need the following result due to Haviv and Regev [HR14],
here applied for L = Zn for simplicity. (The more general result works for lattices with determinant one and
parameters s such that the lattice has a basis consisting of vectors with length at most s.)

Lemma 2.5 ([HR14, Lemma 5.4]). For any s ≥ 1 and m ≥ n2 + n log(s
√
n)(n + 20 log log(s

√
n)), if

y1, . . . ,ym ∼ DZn,s are sampled independently from DZn,s, then y1, . . . ,ym is a generating set except with
probability 2−Ω(n).

2.3 Lattice problems

Definition 2.6. For γ = γ(n) ≥ 1, the γ-approximate Shortest Vector Problem (γ-SVP) is the search
problem defined as follows. Given a basis B ∈ Rn×n of a lattice L as input, output a non-zero vector v ∈ L
with ‖v‖ ≤ γ · λ1(L).

Definition 2.7. For γ = γ(n) ≥ 1, the unique Shortest Vector Problem with gap γ (γ-uSVP) is the search
problem defined as follows. Given a basis B ∈ Rn×n of a lattice L satisfying γ · λ1(L) < λ2(L) as input,
output a vector v ∈ L with ‖v‖ = λ1(L).

We note that there is an almost trivial dimension-preserving reduction from γ-uSVP to γ-SVP. (Here and
throughout the paper, we use dimension-preserving to mean that the reduction maps problem instances of
dimension n to problem instances of dimension n.)

Fact 2.8. For every γ ≥ 1, there is a dimension-preserving Cook reduction from γ-uSVP to γ-SVP.
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Proof. Given an instance B ∈ Qn×n of γ-uSVP as input, the reduction calls the γ-SVP oracle on B,
receiving a vector v = Bx as output for some coefficient vector x = (x1, . . . , xn). The reduction returns
v/ gcd(x1, . . . , xn). It is clear that this reduction is efficient. It is correct because 0 < ‖v‖ ≤ γ · λ1(L(B)) <
λ2(L(B)), and so v must be a non-zero integer multiple of the unique (up to sign) shortest vector in L(B).

We next note the existence of useful approximation algorithm for SVP. Namely, the following result,
due to Liu, Wang, Xu, and Zheng [LWXZ11], gives an algorithm for γ-SVP for constant γ that is substan-
tially faster than the fastest known algorithm for exact SVP, which runs in 2n+o(n) time [ADRS15]. See
also [WLW15, AUV19, EV20]. In particular, [EV20, Theorem 3.2], gives a cleanly-stated generalization of
the theorem below.

Theorem 2.9 ([LWXZ11]). For every constant ε > 0 there exists a constant γ = γ(ε) ≥ 1 depending only on
ε such that there is a randomized algorithm that solves γ-SVP on lattices of dimension n in 2(0.802+ε)n·poly(n)
time.

Let TuSVP(γ, n) and TSVP(γ, n) denote the fastest runtimes of (possibly randomized) algorithms for γ-
uSVP and γ-SVP on lattices of dimension n. Then Fact 2.8 and Theorem 2.9 together show that for every
constant ε > 0 there exists a constant γ ≥ 1 such that

TuSVP(γ, n) ≤ TSVP(γ, n) ≤ 2(0.802+ε)n · poly(n) . (2)

2.3.1 Lattice problems on rotations of Zn

We say that two lattices L1, L2 of dimension n are isomorphic, which we denote by L1
∼= L2, if there exists

R ∈ On(R) such that R(L1) = L2. We call lattices L satisfying L ∼= Zn “rotations of Zn.” We define
γ-ZSVP to be γ-SVP (as defined in Definition 2.6) with the additional requirement that the input basis B
satisfy L(B) ∼= Zn.

Definition 2.10. For γ = γ(n) ≥ 1, the γ-approximate Shortest Vector Problem on rotations of Zn (γ-
ZSVP) is the search problem defined as follows. Given a basis B ∈ Rn×n of a lattice L satisfying L ∼= Zn as
input, output a non-zero vector v ∈ L with ‖v‖ ≤ γ · λ1(L).

When γ = 1, we simply write γ-ZSVP as ZSVP.
We also define the problem of recovering a rotation of Zn, i.e., of recovering an orthonormal basis of a

lattice L ∼= Zn. Because this problem is equivalent to the search version of the so-called Lattice Isomorphism
Problem when one lattice is fixed to be Zn, we call it ZLIP.

Definition 2.11. The Lattice Isomorphism Problem on rotations of Zn (ZLIP) is the promise problem
defined as follows. Given a basis B ∈ Rn×n of a lattice L ∼= Zn as input, output R ∈ On(R) such that
R(Zn) = L(B).

We conclude this section by noting that ZSVP and ZLIP are polynomial-time equivalent under dimension-
preserving Cook reductions, and as such we will generally work with ZSVP, which is somewhat simpler. (We
note in passing that such a relationship is unknown and unlikely to hold for the corresponding problems
SVP and LIP on general lattices.)

Fact 2.12. The problems ZSVP and ZLIP are polynomial-time equivalent under dimension-preserving Cook
reductions.

Proof. The reduction from ZSVP to ZLIP works as follows. It calls its oracle for ZLIP on the input instance
of ZSVP, receiving as output a matrix R ∈ On(R). It then returns the first column of R. Efficiency and
correctness are both immediate.

We show that a Cook reduction from ZLIP to ZSVP exists by induction on n. Specifically, we prove
that there exists such a reduction that, on input an instance B of ZLIP of dimension n, outputs n pairwise-
orthogonal, unit-length vectors v1, . . . ,vn. The base case of n = 1 is trivial. For n > 1, the reduction calls
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its ZSVP oracle on the input instance of ZLIP, receiving as output a vector v1 with ‖v1‖ = 1. It then
recurses on (a basis of) the orthogonal projection πspan(v1)⊥(L) of L onto span(v1)⊥, receiving as output
n − 1 vectors v2, . . . ,vn. Finally, it outputs (v1, . . . ,vn). The reduction is efficient because computing a
basis of πspan(v1)⊥(L) given B and v1 is efficient. Correctness follows by noting that πspan(v1)⊥(L) ∼= Zn−1,
v1 ⊥ span(v2, . . . ,vn), and by the induction hypothesis.

2.4 Vector counting and lattice sparsification

Given a lattice L, a vector x ∈ L is called primitive if x /∈ aL for any integer a > 1. Note that 0 is not
primitive regardless of L. Let Lprim denote the set of primitive vectors in L. For a lattice L and r > 0, let
N(L, r) := |{x ∈ L : ‖x‖ ≤ r}| and let Nprim(L, r) := |{x ∈ Lprim : ‖x‖ ≤ r}| /2, where the latter expression
counts primitive ±x as a single vector.

We next state the main sparsification result that we will use.

Theorem 2.13 ([Ste16a, Theorem 4.1]). For any lattice L ⊆ Rn with basis B, r > 0, primitive lattice
vectors x0,x1, . . . ,xN ∈ Lprim satisfying ‖xi‖ ≤ r for all i and xi 6= ±x0 for all i > 0, and prime p ≥ 101,
if Nprim(L, r) ≤ p/(20 log p) then

1

p
− N

p2
≤ Pr[〈a, B−1x0〉 ≡ 0 (mod p) and 〈a, B−1xi〉 6≡ 0 (mod p) ∀i > 0] ≤ 1

p
,

where a ∈ Znp is chosen uniformly at random.

We will use the following upper bound from [Ste17] on the number of integer points in Zn ∩ rBn2 for
various r, where Bn2 denotes the closed Euclidean unit ball. In fact, there are quite tight bounds of this form,
as shown in [MO90].

Proposition 2.14 ([Ste17, Proof of Proposition 2.8.2]). For any n ≥ 1 and any radius 1 ≤ r ≤
√
n/2 with

r2 ∈ Z,

|Zn ∩ rBn2 | ≤ (2ne1+s/2/r2)r
2

≤ (20n/r2)r
2

,

where s :=
√
π/ log(2n/r2).

2.5 Probability

Lemma 2.15 (Chernoff-Hoeffding bound [Hoe63]). Let X1, . . . , XM ∈ [0, 1] be independent and identically
distributed random variables. Then, for s > 0,

Pr
[∣∣∣M E[Xi]−

∑
Xi

∣∣∣ ≥ sM] ≤ 2e−Ms2/10 .

2.6 On bit lengths, input formats, and representing real numbers

Throughout this work, we adopt the common convention of expressing the running times of lattice algorithms
in terms of the dimension n only, ignoring any dependence on the bit length ` of the entries of the input
matrix. Formally, we should specify a particular input format for the lattice basis (e.g., by restricting our
attention to rational numbers and using the natural binary representation of a rational matrix, or by working
with algebraic numbers represented by their minimal polynomials), and our running time should of course
have some dependence on `. Consideration of the bit length would simply add a poly(`) factor to the running
time for the algorithms and reductions considered in this paper for any reasonable input format.

Similarly, our reductions sometimes apply random orthogonal linear transformations R ∼ On(R), without
worrying about how we represent such a linear transformation. There are at least two solutions to this
problem: one can either use a suitable discretization of On(R), or one can simply switch from working
directly with a basis B to working with the associated Gram matrix G := BTB or some canonical rotation
of B such as the QR-decomposition, as discussed in Section 1.3.
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3 How to sample a provably secure basis

In this section, we show how to sample a basis B for a rotation of Zn that is “provably at least as secure as
any other basis.” In particular, we show a distribution of bases B of rotations of Zn that can be sampled
efficiently given any basis of a rotation of Zn in such a way that together with the orthogonal transformation
R mapping the original lattice to the new lattice. This implies that “if a computational problem can be
solved efficiently given a basis from this distribution, then it can be solved efficiently given any basis.” Similar
ideas appeared in [HR14, DvW21a].

In fact, we give a class of distributions, one for each efficient rotation-invariant algorithm that converts a
generating set to a basis. Such an algorithm A takes as input vectors y1, . . . ,ym ∈ L that form a generating
set of a lattice L and outputs a basis B of L, with the property that for any orthogonal transformation
R ∈ On(R), A(Ry1, . . . , Rym) = RA(y1, . . . ,ym). (Here, for simplicity, we are assuming that A is a
deterministic algorithm. We could generalize this definition to randomized algorithms and simply require
that the distribution of A(Ry1, . . . , Rym) be statistically close to the distribution of RA(y1, . . . ,ym).) One
can equivalently consider algorithms that work with the gram matrix G ∈ Rm×m of the generating set, given
by Gi,j := 〈yi,yj〉, which is invariant under rotations. For example, the LLL algorithm yields an efficient
rotation-invariant algorithm that converts a generating set to a basis.

Given such an A, our distribution is then the following.

Definition 3.1. For any efficient rotation-invariant algorithm A that converts a generating set to a basis
and parameter s = s(n) ≥ 1 the distribution (A, s)-ZDGS is sampled as follows. For i = 1, 2, 3, . . . , sample
zi ∼ DZn,s. Let B := A(y1, . . . ,yi). If B ∈ Rn×n is full rank and |det(B)| = 1, then sample a uniformly
random orthogonal matrix R ∼ On(R) and output B′ := RB. Otherwise, continue the loop.

Notice that the resulting basis is in fact a basis of a rotation of Zn, specifically, RZn. By Lemma 2.5,
the above procedure terminates in polynomial time except with negligible probability.3

Theorem 3.2. For any efficient rotation-invariant algorithm A that converts a generating set into a basis,
there is an efficient randomized algorithm that takes as input a basis B = (b1, . . . , bn) ∈ Rn×n for a rotation
L of Zn and a parameter s ≥

√
log(2n+ 4)/π · max ‖bi‖ and outputs a basis B′ ∈ Rn×n generating L′

that is distributed exactly as (A, s)-ZDGS together with an orthogonal transformation R ∈ On(R) such that
RL = L′.

Proof. The algorithm behaves as follows. For i = 1, 2, 3, . . ., the algorithm uses the procedure from Theo-
rem 2.2 to sample yi ∼ DL,s, where L is the lattice generated by B. It then computes B† := A(y1, . . . ,yi).
If the lattice generated by B† has full rank and determinant one, then the algorithm outputs B′ := RB†

and R, where R ∼ On(R) is a uniformly random rotation. Otherwise, it continues.
To see why this is correct, let R′ ∈ On(R) be an orthogonal transformation such that Zn = R′L. Let

y′i := R′yi, and notice that the y′i are distributed as independent samples from DZn,s. It follows from the
fact that A is rotation invariant that R′B† = A(y′1, . . . ,y

′
i). Clearly B† is full rank and has determinant

one if and only if R′B† has this same property. Therefore, B′ is distributed exactly as R(R′)−1A(y′1, . . . ,y
′
i)

(conditioned on the rank and determinant conditions being satisfied). Since R is a uniformly random
orthogonal transformation, this is distributed identically to R′′A(y′1, . . . ,y

′
i) for R′′ ∼ On(R). Notice that

this is exactly the ZDGS distribution.
Finally, as we observed above, Lemma 2.5 implies that after poly(n, log s) samples, y′1, . . . ,y

′
i will generate

Zn with high probability, in which case y1, . . . ,yi will generate L. Therefore, the algorithm terminates in
polynomial time (with high probability).

The following corollary shows that we can achieve the same result for a fixed parameter s (regardless of
the length of the input basis).

3One can also use an alternative optimized sampling procedure that “runs the algorithm A iteratively.” I.e., we can
maintain a running basis B = (b1, . . . , bk), which starts as the empty basis. And, after sampling yi, we can simply update B
to A(b1, . . . , bk,yi), continuing in this fashion until k = n and det(B) = ±1. E.g., if A is the LLL algorithm, then this will
significantly improve performance in practice.
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Corollary 3.3. For any efficient rotation-invariant algorithm A that converts a generating set into a basis,
there is an efficient randomized algorithm that takes as input any basis B ∈ Rn×n for a rotation L of Zn
and outputs a basis B′ ∈ Rn×n generating L′ and rotation R such that B′ is distributed as (A, s)-ZDGS and
RL = L′, where s = 2n.

Proof. The algorithm simply runs the LLL algorithm on B, receiving as output some basis B† = (b†1, . . . , b
†
n)

for L with ‖b†i‖ ≤ 2n/2. It then runs the procedure from Theorem 3.2 and outputs the result.

Using Corollary 3.3, we can easily reduce worst-case variants of lattice problems on Zn to variants in
which the input basis is sampled from ZDGS. As an example, we show a random self-reduction for SVP over
rotations of Zn below. (We also use this idea in Section 4.)

Definition 3.4. For any γ = γ(n) ≥ 1 and any efficient rotation-invariant algorithm A, the (A, γ)-acZSVP
problem is defined as follows. The input is a basis B ∈ Rn×n sampled from (A, 2n)-ZDGS generating a
rotation L of Zn. The goal is to output y ∈ L with 0 < ‖y‖ ≤ γ.

Theorem 3.5. For any efficient rotation-invariant algorithm A and any γ ≥ 1, there is an efficient reduction
from γ-ZSVP to (A, γ)-acZSVP.

Proof. The reduction takes as input a basis B ∈ Rn×n for a rotation L of Zn and simply runs the procedure
from Corollary 3.3, receiving as output a basis B′ sampled from (A, 2n)-ZDGS generating L′ together with a
rotation R such that RL = L′. It then calls its (A, γ)-acZSVP on input B′, receiving as output some vector
y′ ∈ L′. Finally, it outputs y := R−1y′.

4 We have an encryption scheme to sell you

We now consider the possibility that it actually is “hard to recognize Zn” (where we must formalize what
this means rather carefully), and we show that this implies the existence of a relatively simple public-key
encryption scheme.

The encryption scheme itself is described below. There are public parameters s > 0, r > 0, and d > 0,
which are all functions of the security parameter n (i.e., s = s(n), r = r(n), and d = d(n)), as well as an
algorithm A which is an efficient rotation-invariant algorithm for converting a generating set to a basis, as
in Definition 3.1. In particular, the parameter s will control the length of the basis used as the public key,
the parameter r is a noise parameter (which we will take as large as possible, roughly r ≈

√
log n while still

allowing for decryption), and the parameter d ≈ n/12 · (1− e−r2) is a distance threshold that the decryption
algorithm will use to distinguish encryptions of zero from encryptions of one.

• Gen(1n): Sample vectors z1, z2, z3, . . . independently from DZn,s until z1, . . . ,zk generate Zn. Let
B := A(z1, . . . ,zk) and let G := BTB. Output sk := B and pk := G.

• Enc(pk, b ∈ {0, 1}): If b = 0, sample X from a continuous Gaussian distribution with covariance matrix
r2G−1,4 and output c := X mod 1 (i.e., the coordinates of c are the fractional parts of the coordinates
of X). Otherwise, output uniformly random c ∼ [0, 1)n.

• Dec(sk, c): Set t = (t1, . . . , tn)T := Bc. Output 1 if
∑

(ti − btie)2 > d and 0 otherwise.

We first concern ourselves with the correctness of this scheme. In particular, the following lemma tells us
that the decryption will answer correctly except with probability roughly exp(−e−πr2n). For security, we will
want to take r to be as big as possible, so we will take r to be slightly smaller than

√
(log n− log log n)/π,

4In other words, X is sampled from the probability distribution with probability density function

rn det(G)−1/2 · exp(−πxTGx/r2) =
rn

det(B)
· exp(−π‖Bx‖2/r2) .

Notice that we would get an identical distribution if we were to sample Y ∼ Dn
r and set X := B−1Y .
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in order to make this failure probability negligible. E.g., we can take r =
√

(log n− (log log n)2)/π. This is

essentially the maximal choice for r that still maintains correctness, since if we took, e.g, r &
√

log(4n)/π,
then ciphertexts of zero would be within statistical distance 1/2 of ciphertexts of one, making decryption
failures unreasonably common.

Lemma 4.1. For r ≥ 1, let δ := exp(−πr2) and

d :=
n

12
− δ

4π2
· n .

Then, the decryption algorithm described above outputs the correct bit b except with probability at most

2 exp(−cδ2n) .

for some constant c > 0.

Proof. For the case b = 1, we simply notice that t is uniformly random in a fundamental domain of Zn. It
follows that ti−btie is uniformly random in the interval [−1/2, 1/2) and independent of the other coordinates.
In particular E[(ti − btie)2] = 1/12. It then follows from the Chernoff-Hoeffding bound (Lemma 2.15) that

Pr
[∑

(ti − btie)2 ≤ d
]
≤ exp(−δ2n/1000)

We now consider the case b = 0. Write c = X + z for z ∈ Zn. Then, t = Bc = BX + Bz = BX mod 1.
(Here, we crucially rely on the fact that B is an integer matrix.) Notice that BX is distributed exactly as a
continuous Gaussian with covariance B(r2G−1)BT = r2, i.e., as Dn

r . Therefore,
∑

(ti − btie)2 is distributed
identically to dist(Y ,Zn)2, where Y ∼ Dn

r . By Lemma 2.1,

Pr[dist(Y ,Zn)2 > d] ≤ 2 exp(−(d− ν − εn)2/10) ,

where

ν :=
n

12
− δ

2π2
· n ,

and ε := δ4/3. Notice that
d− ν − εn

n
=

δ

4π2
− δ4/3 > δ/100 .

The result follows.

4.1 Basic security

We now observe that the above scheme is semantically secure if (and only if) the following problem is
hard. The only distinction between this problem and the problem of breaking the semantic security of the
encryption scheme is that in the problem below the underlying lattice is specified by a worst-case basis B
instead of an average-case Gram matrix G. We will reduce between the two problems using the ideas from
Section 3.

(Here and below, we have an additional parameter ρ, which is a bound on the lengths of the input basis
vectors. If we set s = 2n in our encryption scheme, then we could remove ρ by using the LLL algorithm,
as we did in Section 3. However, we choose to keep the parameter ρ to allow for the possibility of smaller
choices of s, which yield smaller entries in the Gram matrix G and therefore a smaller public key.)

Definition 4.2. For parameters ρ = ρ(n) > 0 and r = r(n) > 0, the (ρ, r)-ZGvU problem (Gaussian versus
Uniform mod Zn) is the promise problem defined as follows. The input is a basis B = (b1, . . . , bn) ∈ Rn×n
such that ‖bi‖ ≤ ρ that generates a rotation of Zn, and a vector y ∈ [0, 1)n, where y is sampled as follows.
A bit b ∼ {0, 1} is sampled uniformly at random. If b = 0, y = B−1X mod 1 for X ∼ Dr, and if b = 1,
y ∼ [0, 1)n. The goal is to output b.

We say that (ρ, r)-ZGvU is hard if no probabilistic polynomial-time algorithm A can solve this problem
with probability better than 1/2 + negl(n).
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Theorem 4.3. If (ρ, r)-ZGvU is hard for some ρ, r, then the above encryption scheme is semantically secure
with parameters s :=

√
log(2n+ 4)/π · ρ and r.

Proof. Suppose that there is a probabilistic polynomial-time adversary B that has non-negligible advantage
in breaking the semantic security of the encryption scheme. We construct an efficient algorithm E that solves
ZGvU with probability non-negligibly larger than 1/2.

The algorithm E takes as input a basis B ∈ Rn×n generating a lattice L, and y ∈ [0, 1)n. It then uses
the procedure from Theorem 3.2 (using the same algorithm A used in the cryptosystem) to convert this into
a basis B′ for a rotation of L and sets G := (B′)TB′. It then sets c := (B′)−1By mod 1. Finally, E calls B
on input G and c and outputs whatever B outputs.

It is clear that E is efficient. Furthermore, if y is uniformly random modulo 1, then clearly c is also
uniformly random modulo 1. On the other hand, if y = B−1X mod 1 for X ∼ Dr, then

c = (B′)−1By mod 1 = (B′)−1X mod 1 .

Notice that (B′)−1X is distributed exactly as a Gaussian with covariance r2G−1. Therefore, when b = 0, c
is distributed exactly like an encryption of zero, and when b = 1, c is distributed exactly like an encryption
of one.

4.2 A worst-case to average-case reduction (of a sort)

Of course, ZGvU is a rather artificial problem. Below, we show reductions to it from worst-case problems
that ask us to distinguish Zn from a lattice that is different from Zn in a specific way. These can be thought
of as “Zn versions” of the traditional worst-case lattice problems GapSPP and GapSVP.

Recall that ηε(Zn) ≈
√

log(2n/ε)/π for small ε.

Definition 4.4. For any approximation factor α = α(n) ≥ 1, ε ∈ (0, 1/2), and a length bound ρ = ρ(n) > 0,
the problem (α, ε, ρ)-ZGapSPP is defined as follows. The input is a basis B = (b1, . . . , bn) ∈ Rn×n for a
lattice L satisfying ‖bi‖ ≤ ρ. The goal is to output YES if L ∼= Zn and to output NO if ηε(L) < ηε(Zn)/α.

The below reduction shows that if (α, ε, ρ)-ZGapSPP is hard, then our encryption scheme with

r :=
√

(log n− (log log n)2)/π

is secure for any ε < n−ω(1) and α ≤ ηε(Zn)/r ≈
√

log(n/ε)/ log n.

Theorem 4.5. For any efficiently computable ε = ε(n) ∈ (0, 1) and integer ` = `(n) ≥ 100n/(δ − ε)2, there
is a reduction from (α, ε, ρ)-ZGapSPP to (ρ, r)-ZGvU that runs in time poly(n) · ` and answers correctly
except with probability at most 2−n, where α := ηε(Zn)/r and the success probability of the ZGvU oracle is
1/2 + δ, provided that δ > ε.

In particular, if (α, ε, ρ)-ZGapSPP is hard for any negligible ε = ε(n) < n−ω(1), then (ρ, r)-ZGvU is hard.

Proof. The reduction takes as input a basis B for a lattice L ⊂ Rn and behaves as follows. For i = 1, . . . , `,
it samples a uniformly random bit bi ∼ {0, 1}. If bi = 0, it samples Xi ∼ Dn

r and sets yi := B−1Xi mod 1,
and if bi = 1, it samples yi ∼ [0, 1)n. It then calls the ZGvU oracle on input B and yi, receiving as output
some bit b∗i ∈ {0, 1}.

Let p be the fraction of indices i such that bi = b∗i . The algorithm outputs YES if p ≥ 1/2 + ε+
√

20n/`.
Otherwise, it outputs NO.

The running time is clear. To prove correctness, we first notice that in the YES case, the input to the
ZGvU oracle is distributed identically to the ZGvU input. It follows that for each i, Pr[b∗i = bi] = 1/2 + δ.
Furthermore, these events are independent. Therefore, by the Chernoff-Hoeffding bound (Lemma 2.15),

Pr[p < 1/2 + ε+
√

20n/`] ≤ 2 exp(−`(δ − ε−
√

20n/`)2/10) ≤ 2−n ,

as needed.
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On the other hand, in the NO case, by Lemma 2.3, yi is within statistical distance ε of a uniformly random
element in [0, 1)n. It follows that, regardless of the behavior of the oracle, for each i, Pr[b∗i = bi] ≤ 1/2 + ε,
and again these events are independent. Therefore, by the Chernoff-Hoeffding bound again,

Pr[p ≥ 1/2 + ε+
√

20n/`] ≤ 2 exp(−2n) ≤ 2−n ,

as needed.

Notice that the following definition works with the dual lattice L∗ for convenience.

Definition 4.6. For parameters ρ = ρ(n) > 0 and γ = γ(n) ≥ 1, the problem (ρ, γ)-ZGapSVP is defined as
follows. The input is a basis B ∈ Rn×n for a lattice L ⊂ Rn. The goal is to output YES if L ∼= Zn and to
output NO if λ1(L∗) > γ.

Theorem 4.7. For any ε = ε(n) with 2−n < ε < 1/2, ρ = ρ(n) > 0, and γ = γ(n) ≥ 10
√
n/ log(n/ε), there

is an efficient reduction from (ρ, γ)-ZGapSVP to (α, ε, ρ)-ZGapSPP for α := γ
√

log(n/ε)/n/10.

Proof. The reduction simply calls its ZGapSPP oracle on its input, and outputs whatever the oracle outputs.
To see that this reduction is correct, it suffices to consider the NO case. Indeed, by Lemma 2.4 if λ1(L∗) > γ,
then ηε(L) <

√
n/γ ≤ 10

√
n/ log(n/ε) · ηε(Zn)/γ = ηε(Zn)/α, so that the oracle must output NO.

4.3 Putting everything together

Finally, we put the reductions above together to obtain a correct public-key encryption scheme that is secure
assuming that ZGapSVP (or even ZGapSPP) is hard.

Theorem 4.8. Let r :=
√

(log n− (log log n)2)/π, and let d be as in Lemma 4.1. Then, the above en-
cryption scheme is correct, and for any s = s(n) > 0 and any 2−n < ε < n−ω(1) the scheme is secure
either if (α, ε, ρ)-ZGapSPP is hard for α := ηε(Zn)/r ≈

√
log(n/ε)/ log n and ρ := s/

√
(log 2n+ 4)/π or if

(ρ, γ)-ZGapSVP is hard for γ := 10
√
n/ log(n/ε) · α ≈

√
n/ log n.

4.4 Is Zn the best lattice for cryptography? (with a connection to reverse
Minkowski theorems)

Much of the analysis that we did above could replace Zn with a different lattice L. Indeed, we are not willing
to conjecture that it is hard to solve SVP on a rotation of Zn, so we are certainly not conjecturing that
the encryption scheme described above is actually secure because we are not willing to conjecture that even
ZSVP is hard (let alone the variants described above).

Setting that gigantic caveat aside for the moment, we present an interesting argument that Zn might
actually be the best lattice for cryptographic purposes.

First, notice that we show security of our scheme assuming the hardness of ZGapSVP with an approxima-
tion factor γ ≈

√
n/ log n. If this were a reduction from GapSVP, rather than the exotic problem ZGapSVP,

then this would be truly remarkable. Indeed, the best security results that we have for public-key encryption
schemes still require hardness of γ-GapSVP for γ & n3/2. So, in some sense, we achieve a much better
worst-case approximation factor than what is known for, e.g., LWE-based public-key encryption. (Of course,
this is quite misleading, since ZGapSVP is actually trivial for γ ≥

√
n by Minkowski’s theorem. So, one

could also argue that the approximation factor γ ≈
√
n/ log n is “only slightly better than trivial.”)

The relationship with ZGapSPP is more interesting. In particular, there is a certain precise sense in
which Zn “has the largest smoothing parameter of any lattice.” Such a statement can be made formal in
a reverse Minkowski theorem [DR16, RS17]. In particular, recent work [RS17, RS21] comes quite close to
proving a statement of the form “any lattice L ⊂ Rn with determinant one and an integral Gram matrix G
has ηε(L) ≤ ηε(Zn), with equality if and only if L ∼= Zn.”5 Such a statement would suggest that (1) Zn is the

5Such lattices are called unimodular. Specifically, [RS21] prove that ηε(L) ≤ (2 + o(1))ηε(Zn) for any unimodular lattice.
Furthermore, [RS17] proves that ηε(L) ≤ ηε(Zn) with equality if and only if L ∼= Zn for very small ε ≤ 2−Cn, and [ERS21]
proves a similar statement for a non-Gaussian test function.
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best lattice (among those with integral Gram matrices) for the purposes of decoding (since taking r above
smoothing makes decoding impossible by definition); and (2) that solving ZGapSPP might be more-or-less
as hard as simply recognizing a rotation of Zn. In particular, it is trivial to check that the input lattice has
an integral Gram matrix and determinant one, so recognizing Zn is equivalent to distinguishing Zn from
any other such lattice. If all such lattices have smaller smoothing parameter than Zn, then distinguishing
Zn from a lattice with significantly smaller smoothing parameter is closely related to the problem of simply
distinguishing Zn from any lattice.

Of course, the above argument is not quantitative. There exist unimodular lattices that are distinct from
Zn with ηε(L) > ηε(Zn)/α for rather small α, and we do not show that our encryption scheme is secure
even under the assumption that it is hard to distinguish a rotation of Zn from such a lattice L. Instead,
we are noting that α-ZGapSPP amounts to the problem of “recognizing Zn by identifying one of its most
distinguishing features.”

4.5 Concerning the genus of Zn

We note that there exist certain efficiently computable arithmetic lattice invariants (i.e., arithmetic properties
of a lattice that are invariant under rotation) that can sometimes be used to determine that two lattices are
not isomorphic. The equivalence class of lattices with the same arithmetic invariants is called a genus. The
authors do not know whether there exist lattices L in the genus of Zn that have λ1(L) &

√
n/ log n, and it

seems like proving the existence of such a lattice (or that they do not exist) might be difficult. If no such
lattices exist, then ZGapSVP can be solved efficiently for the parameters in Theorem 4.8 by simply checking
whether the input lattice is in the same genus as Zn. It is, however, known that there exist lattices with very
large minimum distance that share some of the simplest arithmetic invariants with Zn—specifically, there
exist odd unimodular lattices with λ1(L) & (n/(2πe))n/2 [MH73, Theorem 9.5].

In fact, the authors do not even know if there exist lattices L in the same genus as Zn with ηε(L) .
ηε(Zn)/

√
log n ≈

√
log(1/ε)/ log n for ε < n−ω(1). If such lattices do not exist, then ZGapSPP can also be

solved efficiently for the parameters in Theorem 4.8. However, given the discussion above and the rather
small approximation factor of α ≈

√
log n, it seems likely that such lattices exist.

5 Reductions and provable algorithms

In this section, we give reductions from ZSVP to approximate (unique-)SVP. In particular, our main result
yields a randomized polynomial-time reduction from ZSVP to γ-uSVP for any constant γ ≥ 1. By combining
this reduction with a known approximation algorithm for SVP, we show that for any constant ε > 0 there
is a (2(0.802+ε)n · poly(n))-time algorithm for ZSVP.6 This improves exponentially over the fastest known
algorithm for SVP on general lattices [ADRS15], which runs in 2n+o(n) time and was previously the fastest
known algorithm even for the special case of ZSVP.

Interpreted differently, our main reduction also shows conditional hardness of uSVP. Namely, if one were
to hypothesize that there is no (possibly randomized) polynomial-time algorithm for ZSVP, then it implies
that there is no randomized polynomial-time algorithm for solving γ-uSVP for any constant γ ≥ 1. This
is notable because uSVP is not known to be NP-hard for any constant factor greater than 1. We also note
that our main reduction generalizes to arbitrary lattices with few short vectors and may be of independent
interest.

5.1 A simple projection-based reduction

Before giving our main reduction, we start with a simple reduction from ZSVP to
√

2-SVP using a determin-
istic, “projection-based” approach. More specifically, we start by querying our

√
2-SVP oracle on the input

lattice L, and if the vector v that it returns does not have unit length then we recurse on the orthogonal

6We note again in passing that under a purely geometric conjecture we would in fact obtain a running time of (4/3)n+o(n) ≈
20.415n [Ste20].
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projection πv⊥(L) of L onto v⊥. Although the results in Section 5.2 largely subsume it, we choose to present
it because of its simplicity and the fact that the projection technique seems likely to generalize. (Indeed,
we know similar reductions that work for

√
3-SVP and even 2-SVP, but our analysis of those involves sub-

stantial case analysis. We hope that there might be some more general reduction of which these are simply
special cases, perhaps even a reduction that works for superconstant approximation factors.) It also has the
advantage of only making at most two oracle queries.

Theorem 5.1. There is a deterministic Cook reduction from ZSVP to
√

2-SVP.

Proof. Let B ∈ Rn×n be the input instance of ZSVP with L := L(B), and assume without loss of generality
that n ≥ 3.

The reduction works as follows. First, it calls its
√

2-SVP oracle on the input basis B, receiving as
output a vector v. If ‖v‖ = 1, the reduction returns v. Otherwise, it computes a basis B′ of the orthogonal
projection L′ := πv⊥(L) of L onto v⊥, and calls its

√
2-SVP oracle on B′, receiving as output a vector w. If

‖w‖ = 1, the reduction returns w. Otherwise, it outputs v/2 + w.
The reduction is clearly efficient. It remains to analyze its correctness. The algorithm is clearly correct

if ‖v‖ = 1, so assume not.
Fix an arbitrary orthogonal basis R = (r1, . . . , rn) of L for analysis. Because L ∼= Zn, if v is not a unit

vector then it must be of the form ±ri ± rj for some i 6= j. Indeed, any vector Rx ∈ L whose coefficient
vector x has a coordinate of magnitude at least 2 will have norm at least 2, and any such vector such that x
has at least 3 non-zero coordinates will have norm at least

√
3, so this is the only possibility. It follows that

L′ ∼= ((1/
√

2) · Z)⊕ Zn−2, and therefore that λ1(L′) = 1/
√

2. So, on input B′, a
√

2-SVP oracle will output
a vector w of one of two types: (1) a unit-length vector w = ±rk for k /∈ {i, j}, or (2) w = (±ri ± rj)/2
satisfying v ⊥ w. Indeed, these are the only two types of vectors of norm at most

√
2 · λ1(πv⊥(L)) = 1. In

the former case, we’re done since w has unit length and w ∈ L. In the latter case, because v = ±ri ± rj ,
w = (±ri ± rj)/2, and v ⊥ w, we have that v/2 + w is equal to either ±ri or ±rj , all of which are again
unit-length vectors in L, as needed.

5.2 Sparsification

We next present our main algorithm, which works via repeated random lattice sparsification, a technique for
sampling a random sublattice L′ of the input lattice L of fixed index originally due to Khot [Kho05]. More
specifically, at each iteration our algorithm sparsifies the input lattice L and then calls its γ-uSVP oracle on
the resulting lattice L′. The algorithm succeeds if

λ1(L′) = λ1(L) and γ · λ1(L′) < λ2(L′) , (3)

since then the γ-uSVP oracle is guaranteed (with high probability, if the oracle is randomized) to output a
shortest non-zero vector in the original lattice L since L′ ⊆ L

The crux of the analysis of this algorithm is to upper bound the number of times we need to “sparisfy and
call the γ-uSVP oracle” before the condition in Equation (3) holds. We upper bound this number by roughly
A/G, where G := Nprim(L, λ1(L)) and A := Nprim(L, γ ·λ1(L)) are (up to a multiplicative factor of 2 arising
from Nprim counting ±x as a single vector) the number of primitive vectors of norm at most λ1(L) and
norm at most γ · λ1(L), respectively. We note in passing that 2G is the so-called kissing number of L. (We
have used the standard mnemonic of G representing “good” vectors and A representing “annoying” vectors,
although here A representing “all” primitive vectors shorter than γ · λ1(L), including the good vectors, is
more appropriate.)

The following theorem presents our algorithm. Intuitively, it says that exact SVP is not much harder
than approximate uSVP on lattices with few short vectors. Namely, it says that there is an algorithm for
solving exact SVP in roughly A/G · TuSVP(γ, n) time, where TuSVP(γ, n) denotes the fastest runtime of a
(possibly randomized) algorithm for γ-uSVP on lattices of rank n.

Theorem 5.2. Let γ = γ(n) ≥ 1 and let L be a lattice of rank n. Let G := Nprim(L, λ1(L)) and let
A := Nprim(L, γ · λ1(L)). Then there is a randomized algorithm that solves (exact) SVP on L in (A/G) ·
TuSVP(γ, n) · poly(n) time.
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Proof. It suffices to prove the claim for γ ≤ 2n/2. Indeed, suppose that the claim is true for γ = 2n/2. Then
for any γ > 2n/2, we can solve SVP on L in time

Nprim(L, 2n/2 · λ1(L)) · TuSVP(2n/2, n) · poly(n) ≤ Nprim(L, 2n/2 · λ1(L)) · poly(n)

≤ Nprim(L, γ · λ1(L)) · TuSVP(γ, n) · poly(n) ,

where the first inequality uses TuSVP(2n/2, n) ≤ poly(n), which holds by the LLL algorithm [LLL82].
The algorithm for solving exact SVP works as follows. It uses a γ-uSVP oracle, which we assume without

loss of generality always outputs a non-zero lattice vector even if the input lattice L does not satisfy the
promise that γ · λ1(L) < λ2(L). Let B be the input basis of L.

1. Guess A′ satisfying A ≤ A′ ≤ 2A, and sample a prime p satisfying 60A′ logA′ ≤ p ≤ 120A′ logA′.

2. Repeat the following K := d720A′ logA′/Ge · n times:

(a) Sample a ∼ Znp uniformly at random and compute a basis B′ of the sublattice

L′ := {x ∈ L : 〈B−1x,a〉 ≡ 0 (mod q)} .

(b) Call the γ-uSVP oracle on B′. Let w be the oracle’s output.

3. Return a shortest vector among all vectors w found in Step 2b.

We start by proving correctness. Let x1, . . . ,xA ∈ Lprim be the unique (up to sign) primitive lattice
vectors satisfying ‖xi‖ ≤ γr, xi 6= ±xj for i 6= j ordered so that ‖xi‖ = λ1(L) for i ∈ [G]. For a fixed
iteration of Step 2, define the events

Ei := [〈a,B−1xi〉 ≡ 0 (mod p) and 〈a,B−1xj〉 6≡ 0 (mod p) ∀j 6= i]

for i = 1, . . . , A. We note that if Ei holds for some i ∈ [G] then the algorithm succeeds. Indeed, then L′
satisfies λ1(L′) = λ1(L) and λ1(L′) < λ2(L′)/γ so that B′ is a valid instance of γ-uSVP. In that case, the
vector w output in Step 2b will satisfy w ∈ L, ‖w‖ = λ1(L), which in turn implies that the vector output
in Step 3 will be a shortest non-zero vector of L.

We have that 60A logA ≤ p ≤ 120A′ logA′ ≤ 480A logA, and so for all A ≥ 480,

p

20 log p
≥ 60A logA

20(log 480 + logA+ log logA)
≥ A .

(If A < 480, then a very similar argument works when p is set to be a sufficiently large fixed prime in Step 1.)
Therefore, by the lower bound in Theorem 2.13 (with xi taking the role of x0 and A− 1 taking the role of
N there), it holds that

Pr[Ei] ≥
1

p
− A

p2
≥ 1

120A′ logA′
− A

(60A′ logA′)2
≥ 1

180A′ logA′
≥ 1

720A logA
,

where we have used the bounds on A′ and p from Step 1. Because the events Ei are disjoint, we further have
that the probability of success in a single iteration of Step 2 is at least

Pr
[ ⋃
i∈[G]

Ei

]
=
∑
i∈[G]

Pr[Ei] ≥
G

720A logA
.

The overall probability of success across all K iterations is then at least

1−
(

1− G

720A logA

)K
≥ 1− exp(−KG/(720A logA)) ≥ 1− e−n .
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We next turn to upper bounding the algorithm’s runtime. In Step 1, guessing A′ can be done by setting
A′ := 2` for integers ` satisfying 1 ≤ ` ≤ log2(2γ + 1) · n. Indeed, this suffices because a straightforward
packing argument shows that A := Nprim(L, γ · λ1(L)) ≤ (2γ + 1)n. Finding p can be done efficiently, say,
by repeatedly sampling a uniformly random integer in [60A′ logA′, 120A′ logA′] and testing whether it is
prime. Additionally, the bases B′ computed in Step 2a can be computed efficiently given B and a (see, e.g.,
[Ste16a, Claim 2.15]). So, the algorithm’s overall runtime is dominated by TuSVP(γ, n) times the product
of the number of guesses needed for A′ in Step 1 and the number of calls to the γ-uSVP oracle in Step 2b.
Because K = O(A logA/G) and logA ≤ (log2(2γ + 1) · n) ≤ poly(n), the runtime is therefore at most

(log2(2γ + 1) · n) ·K · TuSVP(γ, n) · poly(n) ≤ (A/G) · TuSVP(γ, n) · poly(n) ,

as needed.

By combining Theorem 5.2 with the point counting bound for Zn in Proposition 2.14 we immediately
get the following corollary.

Corollary 5.3. Let 1 ≤ γ ≤
√
n/2 and let L be a lattice satisfying L ∼= Zn. Then there is a randomized

algorithm that solves SVP on L in TuSVP(γ, n)·(20n/γ2)γ
2 ·poly(n) time with probability at least 1−exp(−n).

Proof. By the rotational invariance of the `2 norm and Proposition 2.14,

A := Nprim(L, γ · λ1(L)) = Nprim(Zn, γ · λ1(Zn)) ≤ N(Zn, γ) ≤ (20n/γ2)γ
2

.

The result then follows immediately from Theorem 5.2.

Combining Corollary 5.3 with the fast algorithm for (large) constant factor approximate SVP from
Theorem 2.9 leads to a roughly 20.802n-time algorithm for ZSVP. We again emphasize that this substantially
improves over the roughly 2n-time SVP algorithm for general lattices from [ADRS15], which was also the
previous fastest known algorithm for ZSVP.

Corollary 5.4. Then for every constant ε > 0 there is a randomized algorithm that solves SVP on lattices
L satisfying L ∼= Zn in 2(0.802+ε)n · poly(n) time with probability at least 1− exp(−n).

Proof. The result follows from Corollary 5.3 together with the upper bound on TuSVP in Equation (2) and

the fact that (20n/γ2)γ
2 ≤ poly(n) for constant γ.

As mentioned, one may interpret the algorithm in Theorem 5.2 as a Turing reduction from ZSVP to
γ-uSVP. Using this interpretation leads to a new hardness result for approximate uSVP. Namely, if one
assumes that there is no randomized polynomial time algorithm for ZSVP then there is also no randomized
polynomial time algorithm for solving γ-uSVP for any constant γ ≥ 1. This is notable since γ-uSVP is
not known to be NP-hard (or to the best of our knowledge, known to be hard under any other generic
complexity-theoretic assumption) for any constant γ > 1. Indeed, it is only known to be NP-hard (under
randomized reductions) for γ = 1 + 1/ poly(n); see [AD16, Ste16b]. We get similar hardness for the α-
Bounded Distance Decoding Problem (α-BDD), the problem in which, given a (basis of a) lattice L and a
target point t satisfying dist(t,L) ≤ α · λ1(L) as input, the goal is to output a closest lattice point to t (i.e.,
x ∈ L satisfying ‖t−x‖ = dist(t,L)). Indeed, this additional hardness for BDD follows almost immediately
from a known reduction from uSVP to BDD [LM09].

Corollary 5.5. Suppose that there is no randomized poly(n)-time algorithm ZSVP. Then there is no
randomized poly(n)-time algorithm for γ-uSVP for any constant γ ≥ 1 or for α-BDD for any constant
α > 0.

Proof. The contrapositive of the claim for uSVP follows immediately from Corollary 5.3. The claim for BDD
follows from this by additionally noting that [LM09] gives an efficient reduction from γ-uSVP to (1/γ)-BDD
for any γ = γ(n) ≤ poly(n), and that α′-BDD trivially reduces to α-BDD for α′ ≤ α.
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We also note that our main reduction is related to an interesting question of Ducas and van Woer-
den [DvW21a], which asks whether there is a reduction from exact SVP on “f -unusual” lattices—essentially
lattices for which Minkowski’s Theorem (or, more-or-less equivalently, the Gaussian heuristic) is loose by a
factor of at least f—to (approximate) uSVP. Rotations of Zn are Θ(

√
n)-unusual in this sense, and so our

reduction can be viewed as answering a special case of this question. (The reduction does not work from
general f -unusual-SVP.)

Exponential-time variants of the corollaries above. Finally, we remark that there are interesting
“exponential-time variants” of the algorithmic result in Corollary 5.4 and the hardness result in Corollary 5.5.
These follow from analyzing N(Zn, γ) with γ = γ(n) ≈

√
n. Namely, by Proposition 2.14 it holds that for

every constant c > 0 there exists a constant c′ > 0 such that N(Zn, c′
√
n) ≤ 2cn.

Indeed, this bound on N(Zn, c′
√
n) together with Corollary 5.3 implies that if TuSVP(γ, n) = 2cn ·poly(n)

holds for some γ = o(
√
n) and constant c > 0, then for every constant ε > 0 there exists a (2(c+ε)n ·poly(n))-

time algorithm for ZSVP. I.e., any exponential-time algorithm for γ-uSVP with γ = o(
√
n) can be turned into

an algorithm with a similar runtime for ZSVP. On the other hand, this bound together with Corollary 5.3
implies that if there is no 2o(n)-time algorithm for ZSVP then there is no 2o(n)-time algorithm for γ-uSVP
with γ = o(

√
n). I.e., exponential hardness of ZSVP implies exponential hardness of γ-uSVP with γ = o(

√
n).

6 Experiments

The code and raw data for our experiments can be found at [BGPS21].

6.1 Experiments on different procedures for generating bases

In this section, we present experimental results examining the effectiveness of standard basis reduction
algorithms for solving ZSVP. Specifically, we generate bases of Zn (which we then treat as instances of ZSVP)
using three procedures: discrete-Gaussian-based sampling, unimodular-matrix-product-based sampling, and
Bézout-coefficient-based sampling. Using each of these procedures, we generate bases in dimensions n = 128,
256, and 512 with a variety of settings for procedure-specific parameters.7 These results extend those
in [BM21], which included experiments on bases generated using the second two procedures.

For each basis generating procedure (and corresponding set of parameters), we run the LLL algorithm
and BKZ reduction algorithm (as implemented in fplll [FPL]) with different block sizes. For BKZ, we use
block sizes 3, 4, 5, 10, and 20—though in dimension 512, we left out block size 20 for most of our experiments
due to computational constraints. We run these algorithms sequentially. That is, we run BKZ with block
size 3 on the matrix returned by the LLL algorithm, we run BKZ with block size 4 on the matrix returned
by BKZ with block size 3, and so forth.

For each parameter set of each basis generation procedure, we performed this experiment twenty times
(except in a few cases in which we only performed nineteen), and we report below on the smallest block size
that found a shortest non-zero vector in the lattice (where we think of LLL as BKZ with block size 2), if
one was found. More data, such as the running times of our experiments, the squared length of the shortest
vector found in each trial, and the code used, can be found in the associated repository [BGPS21].

At a high level, the data tell a relatively simple story. We were able to find a shortest vector in all cases
in dimension 128 (often with block size 10). In dimensions 256 and 512, we were generally unable to find
shortest vectors when the basis was generated with “reasonable parameters,” where the definition of which
parameters settings are reasonable of course depends on the procedure used to generate the basis.

7We note that these experiments were actually performed on bases of Zn itself—not rotations of Zn—because this allows
us to work with bases with integer entries. Of course, it is not actually hard to find a short vector in this case—simply ignore
the input and output e1. However, the experiments that we perform use algorithms that are rotation-invariant—that is, their
performance is unchanged if we apply a rotation to the input basis. The results of our experiments would therefore be essentially
identical if we had run them on rotations of Zn, though the experiments were performed on Zn itself.
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We note that the “reasonable parameter” regime for the discrete Gausian-based generating procedure
yields significantly shorter vectors than the other procedures, which might be considered an advantage, as
it allows for more efficient representations.

6.1.1 Discrete Gaussian-based sampling

We start by presenting the results of experiments performed on bases generated essentially as described in
Section 3 (which is also what we use for our encryption scheme in Section 4). However, we make three minor
modifications. First, instead of sampling vectors one at a time until we find a generating set of Zn, we simply
sample n + 10 vectors. (There is nothing special about the number 10 here.) Empirically, we found that
this yielded a generating set with high probability. Notice that this is much better than what is proven in
Lemma 2.5. See also [NP21].

Second, recall that the basis sampling procedure in Section 3 requires an algorithm A that converts such
a generating set into a basis (and is rotation invariant), as does our description of the sampling technique
below. Since LLL is such an algorithm, and since we intend to run LLL anyway, we simply skip this step and
run LLL directly on the generating set. Third, we do not bother to apply a rotation to the basis, because
the algorithms that we are running are invariant under rotation (as noted in Footnote 7).

Basis Generating Procedure 1: Discrete Gaussian-based sampling

Input: A dimension n, a parameter s > 0.

Algorithm:

1. For all 1 ≤ i ≤ n and 1 ≤ j ≤ n + 10 sample mi,j from a discrete Gaussian with parameter s
and set M← (mi,j).

2. Apply an algorithm A that converts a generating set into a basis B, as in Definition 3.1.

3. If det(B) 6= ±1, start over.

In our experiments, we took s ∈ {1, 10, 1000}. See Table 1. Setting s = 1 is not a “reasonable” parameter
choice, as the resulting vectors are quite sparse. (Each coordinate of each vector in the generating set is zero
with probability roughly 0.92.) In particular, we would certainly not recommend using parameter s = 1
for cryptography, and we include data with s = 1 only for completeness. Nevertheless, interestingly, in all
twenty runs, we were actually unable to find a shortest vector even for s = 1 in dimension n = 512.

For s = 10 and s = 1000, we found shortest vectors in dimension n = 128 (as we did in all experiments
in n = 128 dimensions) and failed to find shortest vectors in dimensions n = 256 and n = 512. The data
suggest that there was not too much difference between parameter s = 10 and parameter s = 1000. E.g., in
dimension n = 128, there is no obvious difference between the block size needed to break the s = 10 case
and the block size needed to break the s = 1000 case. (In contrast, LLL was able to break the s = 1 case.)

6.1.2 Unimodular matrix product

The second basis sampling technique that we analyze was proposed in [BM21], where it is called Algorithm
3.8 To introduce it, we start by discussing a family of embedding maps φk1,...,kd : Rd×d → Rn×n for size d
subsets of indices {k1, . . . , kd} ⊆ {1, . . . , n} that embed a smaller d× d matrix H into a larger n× n matrix
φ(H):

(φk1,...,kd(H))i′,j′ =

{
Hi,j if i′ = ki and j′ = kj for some i, j ≤ d;

1i′=j′ otherwise,

8Algorithm 1 in [BM21] is not a polynomial-time algorithm, and is not intended to be used. Algorithm 2 is essentially
(though not quite) the special case of Algorithm 3 with d = 2. This is why we do not consider Algorithms 1 and 2 in this work.
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where H = (Hi,j) ∈ Rd×d and φk1,...,kd(H) = H ′ = (H ′i′,j′) ∈ Rn×n. With this, we can define the next basis
sampling technique:

Basis Generating Procedure 2: Unimodular matrix product

Input: A dimension n, a block size 2 ≤ d ≤ n, a size bound B ≥ 1, a word length L ≥ 1.

Algorithm:

1. Set a matrix A← In.

2. For all 1 ≤ i ≤ d and 1 ≤ j ≤ d sample the integer mi,j uniformly at random from [−B,B].

3. Set M← (mi,j).

4. If det(M) 6= ±1:

• Then repeat steps two and three.

• Otherwise sample distinct integers k1, . . . , kd uniformly at random from [1, n], then set
M′ ← φk1,...,kd(M) and reassign A← AM′

5. Repeat steps two through four a total of L times then output A.

In our experiments, we considered all combinations of parameters d ∈ {2, 3, 4}, B = 1, and L ∈
{10n, 20n, 30n, 40n, 50n}, except that we did perform experiments with some of the larger parameter choices
when n = 512 when our experiments failed to find short vectors with smaller parameters. See Table 2.
(These parameter settings are roughly in line with those studied in in [BM21].)

As in all of our experiments, we were able to find a shortest non-zero vector for all choices of parameters
in dimension 128. For all but the smallest parameter settings, the required block size to do so was broadly
comparable to what we saw for the Gaussian—typically block size 10 was required, but occasionally smaller
block sizes sufficed.

We include the case of d = 2 and L = 10n for completeness, but we note that this is a rather silly example,
as bases generated in this way often contain quite short vectors. Indeed, the expected number of vectors in
the resulting basis that have length exactly one is at least n(1 − 4/(5n))L ≈ n/3000, and indeed the data
show that the generated basis often itself contains a shortest non-zero vector in this case. (Asymptotically,
one should clearly take L ≥ λn, where λ is the security parameter.)

More generally, the data make clear that the success of our experiments depended heavily on the param-
eters. E.g., even in dimension 512, the LLL algorithm was able to break the d = 2 and L = 20n case, but
none of our experiments broke larger parameter settings.

A strange anomaly. We note that our data differ from the data in [BM21] in a surprising way. Specifically,
in dimension n = 500, with parameters d = 2, B = 1, and L = 30n = 15000, [BM21] successfully recovered
a shortest non-zero vector in their (single-trial) experiment. In dimension n = 512 with parameters d = 2,
B = 1, and L = 30n = 15360, we failed to find a shortest non-zero vector in all twenty trials of our
experiment. Similarly, for d = 3, B = 1, and L = 10n, we failed to find a shortest non-zero vector in all
twenty trials of our experiment, while [BM21] did find a shortest non-zero vector. This is in spite of the fact
that we run BKZ with block size 10 (in addition to block sizes 2, 3, 4, and 5), while [BM21] only uses block
sizes 2, 3, and 4.

One might argue that this is due to the slightly different choice of dimension—we performed the relevant
experiments in dimension n = 512, while [BM21] performed them in dimension 500. However, we ran the
first experiment (i.e., d = 2, B = 1, and L = 30n) again with n = 500 and found the same result. So, this
does not offer an explanation.
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We suspect that the most likely explanation is that the specific implementation of basis reduction used
in [BM21] happens to perform significantly better than the implementation we used. Specifically, [BM21]
used Magma’s basis reduction algorithms, while we used fplll.

We do not, however, feel that this anomaly changes the high-level message of these experiments.

6.1.3 Bézout-coefficient-based construction

Given the matrix M = (m1, . . . ,mn−1) ∈ Rn×(n−1), if (and only if) all the minors in M of size n− 1 have
no non-trivial common factor, then there exists a vector a for which the matrix M ′ := (m1, . . . ,mn−1,a)
is unimodular. Moreover, if this is the case, then we can find such a vector a efficiently using the extended
Euclidean algorithm.

This procedure was suggested by Joseph Silverman and studied in [BM21]. Indeed, [BM21] noted that the
resulting vector mn will typically be quite large, and for this reason, they performed a least-squares-based
procedure to find an integer linear-combination y of m1, . . . ,mn−1 such that m′n := mn−y is not as large.
They then output the basis with m′n instead of mn. We do not bother with this step, as we note that the
LLL algorithm will behave identically on the basis with mn and the basis with m′n. Indeed, because our
experiments start by running the LLL algorithm on M ′, this step is unnecessary for our experiments.

Basis Generating Technique 3: Bézout-coefficient-based construction

Input: A dimension n, a size bound B ≥ 1.

Algorithm:

1. For all 1 ≤ i ≤ n and 1 ≤ j ≤ n− 1 sample the integer mi,j uniformly at random from [−B,B].

2. Set M := (mi,j) = (m1, . . . ,mn−1), and for 1 ≤ k ≤ n let Mk refer to the submatrix of M
obtained by removing its k-th row.

3. If gcd(det(M1), . . . ,det(Mn)) 6= 1:

• Then repeat steps one and two.

• Otherwise run the Euclidean Algorithm to find the Bézout coefficients a1, . . . , an such that∑n
k=1 ak · det(Mk) = ±1 (where the sign of the sum is chosen uniformly at random).

4. Output M ′ := (m1, . . . ,mn−1,a) ∈ GLn(Z), where aT = (a1, . . . , an).

In our experiments, we took B ∈ {1, 10, 100}. See Table 3.
We found that the effect of the parameter B was not discernible in our experiments. Indeed, for dimen-

sions 256 and 512, our algorithms failed to find a shortest vector for all choices of B, including B = 1. And,
in dimension 128, we found a shortest vector in all cases (as we always did), but the block size needed shows
no obvious dependence on B. These results are quite similar to those in [BM21].

6.2 An interesting threshold phenomenon

In our data, we noticed a curious phenomenon. We found that the shortest vector in the bases returned by
our algorithms almost always had either length one or had length larger than roughly

√
n/2. (We provide

much more detail below.) The algorithms rarely found vectors in between. We refer to this as a threshold
phenomenon, i.e., there is some threshold length r ≈

√
n/2 such that, if a basis reduction algorithm finds a

vector with length less than r, then it typically will find the shortest vector.
To determine whether this was a true phenomenon, we conducted 1000 additional experiments with bases

generated as described in Section 6.1.1 in dimension n = 128 and with parameter s = 1000. In order to get
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block size
n s 2 3 4 5 10 20 unbroken
128 1 20 0 0 0 0 0 0
128 10 0 0 1 1 18 0 0
128 1000 0 0 0 3 17 0 0

256 1 2 2 1 0 3 3 9
256 10 0 0 0 0 0 0 20
256 1000 0 0 0 0 0 0 20

512 1 0 0 0 0 0 0 20
512 10 0 0 0 0 0 0 20
512 1000 0 0 0 0 0 0 20

Table 1: Experimental results for basis reduction performed on bases generated using the discrete-Gaussian-
based construction described in Section 6.1.1. The entries under each block size represent the number of
times (out of a total of twenty experiments) that a shortest non-zero vector was found with a given block
size (but no smaller block size), and the entries in the “unbroken” column represent the number of times
that we failed to find a shortest non-zero vector. Non-zero entries are highlighted.

more fine-grained results than those from Section 6.1, we ran LLL and then sequentially ran BKZ with all
block sizes between 3 and 10. For these experiments, we were not particularly interested in the block size
that was needed to find a shortest non-zero vector.9 Instead, we were interested in the length of the shortest
vector found by a run of BKZ when it did not find a vector with length one.

The results are striking. See Figure 1 and Figure 2. In particular, in 1000 experiments, our algorithms
never returned a basis whose shortest vector had length between

√
3 and

√
28. (Strangely, there are four

examples when the shortest vector in the basis had length
√

2. We have no explanation for this.) And, e.g.,
there are only fifteen examples in which this length was less than

√
35.

Similar phenomena are well documented and well understood in the case of unique SVP, or more generally
when the lattice has remarkably short vectors which together span a lower-dimensional sublattice (e.g., in
NTRU lattices) [KF17, AGVW17, DvW21b, AD21]. In both of these cases, one can argue that BKZ should
find a short vector once it finds a lower-dimensional sublattice that is guaranteed to contain any short vectors.
For Zn, this phenomenon seems at least a little bit different, as Zn is spanned by its shortest vectors—so
there is no strict sublattice containing all of them. However, Ducas and van Woerden predict [DvW21a]
that a phenomenon like this should occur for all “unusual” lattices—that is, lattices for which λ1(L) �√
n det(L)1/n— of which Zn is an example, with a precise quantitative prediction that seems to match our

experiments.
One might also draw an analogy here with our reduction in Section 5.1, which showed how projecting

orthogonally to a vector with length
√

2 can aid in finding a shortest non-zero vector. Indeed, as we mention
there, we know (rather complicated) generalizations that work for

√
3 and 2 =

√
4, and we suspect that one

can generalize this much further. Perhaps one can view the BKZ algorithm as doing something similar? One
might also try to draw an analogy here with Szydlo’s heuristic algorithm [Szy03].

9We found a shortest non-zero vector eventually in all experiments, and only 8 of the 1000 trials required block size 10 to
find a shortest non-zero vector. See [BGPS21] for the raw data.
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block size
n B L d 2 3 4 5 10 20 unbroken
128 1 1280 2 20 0 0 0 0 0 0
128 1 2560 2 0 0 1 3 16 0 0
128 1 3840 2 0 0 1 5 14 0 0
128 1 5120 2 0 0 1 3 16 0 0
128 1 6400 2 0 0 0 2 18 0 0
128 1 1280 3 0 0 2 5 13 0 0
128 1 2560 3 0 0 0 4 16 0 0
128 1 3840 3 0 0 1 5 14 0 0
128 1 5120 3 0 0 1 4 15 0 0
128 1 6400 3 0 0 1 4 15 0 0
128 1 1280 4 0 0 1 5 14 0 0
128 1 2560 4 0 0 3 5 12 0 0
128 1 3840 4 0 0 2 4 14 0 0
128 1 5120 4 0 1 3 2 14 0 0
128 1 6400 4 0 0 0 4 16 0 0

256 1 2560 2 20 0 0 0 0 0 0
256 1 5120 2 0 0 0 0 0 0 20
256 1 7680 2 0 0 0 0 0 0 20
256 1 10240 2 0 0 0 0 0 0 20
256 1 12800 2 0 0 0 0 0 0 20
256 1 2560 3 0 0 0 0 0 0 20
256 1 5120 3 0 0 0 0 0 0 20
256 1 7680 3 0 0 0 0 0 0 20
256 1 10240 3 0 0 0 0 0 0 20
256 1 12800 3 0 0 0 0 0 0 20
256 1 2560 4 0 0 0 0 0 0 20
256 1 5120 4 0 0 0 0 0 0 20
256 1 7680 4 0 0 0 0 0 0 20
256 1 10240 4 0 0 0 0 0 0 20
256 1 12800 4 0 0 0 0 0 0 20

512 1 5120 2 20 0 0 0 0 0
512 1 10240 2 20 0 0 0 0 0
512 1 15360 2 0 0 0 0 0 20
512 1 20480 2 0 0 0 0 0 20
512 1 25600 2 0 0 0 0 0 20
512 1 5120 3 0 0 0 0 0 20
512 1 10240 3 0 0 0 0 0 19
512 1 15360 3 0 0 0 0 0 19
512 1 5120 4 0 0 0 0 0 19

Table 2: Experimental results for basis reduction performed on bases generated using the product of sparse
unimodular matrices method described in Section 6.1.2. The entries under each block size represent the
number of times (out of a total of twenty trials—except for the last four rows, where we did nineteen trials)
that a shortest non-zero vector was found with a given block size (but no smaller block size), and the entries
in the “unbroken” column represent the number of times that we failed to find a shortest non-zero vector.
Non-zero entries are highlighted. Cells that are grayed out represent block sizes that were not tested.
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block size
n B 2 3 4 5 10 20 unbroken
128 1 0 0 0 3 17 0 0
128 10 0 0 1 2 17 0 0
128 100 0 0 1 6 13 0 0

256 1 0 0 0 0 0 0 20
256 10 0 0 0 0 0 0 20
256 100 0 0 0 0 0 0 20

512 1 0 0 0 0 0 20
512 10 0 0 0 0 0 20
512 100 0 0 0 0 0 20

Table 3: Experimental results for basis reduction performed on bases generated using the Bézout-coefficient-
based construction described in Section 6.1.3. The entries under each block size represent the number of
times (out of a total of twenty experiments) that a shortest non-zero vector was found with a given block
size (but no smaller block size), and the entries in the “unbroken” column represent the number of times
that we failed to find a shortest non-zero vector. Non-zero entries are highlighted. Cells that are grayed out
represent block sizes that were not tested.
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Figure 1: On the left is a histogram of the squared norm of the shortest vector found by BKZ with block
size ≤ 5 for discrete Gaussian bases with n = 128 and s = 1000. On the right is the same histogram without
the trials where this norm was 1.
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Figure 2: A histogram of the minimal squared length of a basis vector found before finding a vector with
length one after 1000 trials on discrete Gaussian bases with n = 128 and s = 1000. E.g., if in one experiment
BKZ with block size 6 finds a vector with length one, but the shortest vector found by BKZ with block sizes
2 through 5 had squared norm 40, then this experiment would count as 40.
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A Proof of Lemma 2.1

We first study the expectation of (X mod Z)2 for X ∼ Ds. We then use the Chernoff-Hoeffding (Lemma 2.15)
bound to obtain the result. For t ∈ (−1/2, 1/2], let p(t) := (1/s) ·

∑
z∈Z ρs(t+ z) be the probability density

function of X mod Z ∈ (−1/2, 1/2]. By the Poisson summation formula, we have

p(t) =
∑
w∈Z

ρ1/s(w) cos(2πwt) = 1 + 2 cos(2πt) exp(−πs2) + 2

∞∑
w=2

cos(2πwt)ρ1/s(w) .
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We write f(t) := 2
∑∞
w=2 cos(2πwt)ρ1/s(w) It follows that

E
X∼Ds

[(X mod Z)2] =

∫ 1/2

−1/2

t2p(t) dt = 1/12− exp(−πs2)

2π2
+

∫ 1/2

−1/2

t2f(t) dt .

Notice that

|f(t)| < 2 exp(−4πs2) + 2

∫ ∞
2

ρ1/s(w) dw ≤ 2 exp(−4πs2) +

∫ ∞
2

wρ1/s(w) dw = exp(−4πs2)(2 + 1/(2πs2)) .

Therefore,

µ := E
X∼Ds

[(X mod Z2)] =
1

12
− exp(−πs2)

2π2
+ χ ,

for some χ with

|χ| ≤ exp(−4πs2) · (2 + 1/(2πs2))

∫ 1/2

−1/2

t2 dt =
exp(−4πs2)

12
· (2 + 1/(2πs2)) ≤ ε0 .

By the Chernoff-Hoeffding bound (Lemma 2.15),

Pr
X∼Dn

s

[|dist(X,Zn)2 − µn| ≥ δn] = Pr
[∣∣∣∑(Xi mod Z)2 − µn

∣∣∣ ≥ δn] ≤ 2 exp(−δ2n/10) .

It follows that

Pr
X∼Dn

s

[|dist(X,Zn)2 − ν| ≥ εn] ≤ Pr
X∼Dn

s

[|dist(X,Zn)2 − µn| ≥ (ε− ε0)n] ≤ 2 exp(−(ε− ε0)2n/10) ,

as needed.
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