
Kicking-the-Bucket: Fast Privacy-Preserving Trading Using
Buckets

Mariana Botelho da Gama1 ID , John Cartlidge2 ID , Antigoni Polychroniadou3,

Nigel P. Smart1 ID , and Younes Talibi Alaoui1 ID

1 imec-COSIC, KU Leuven, Leuven, Belgium.
2 University of Bristol, Bristol, UK.

3 J.P. Morgan AI Research, New York, USA.
mariana.botelhodagama@kuleuven.be

john.cartlidge@bristol.ac.uk,

antigoni.polychroniadou@jpmorgan.com,

nigel.smart@kuleuven.be,

younes.talibialaoui@kuleuven.be

Abstract. We examine bucket-based and volume-based algorithms for privacy-preserving asset trading
in a financial dark pool. Our bucket-based algorithm places orders in quantised buckets, whereas the
volume-based algorithm allows any volume size but requires more complex validation mechanisms. In
all cases, we conclude that these algorithms are highly efficient and offer a practical solution to the
commercial problem of preserving privacy of order information in a dark pool trading venue.

1 Introduction

The majority of major stock exchanges are now electronic order-driven markets, where investors
submit orders to buy or sell a quantity of stock at a particular price. Orders that are not immedi-
ately filled (i.e., those that do not immediately result in a trade) are publicly displayed in a limit
order book (LOB), which presents a price-ordered view of the instantaneous demand and supply in
the market. With each order in the book acting as an advertisement of an investor’s willingness to
commit to a particular trade, the LOB is an efficient method for finding counterparties with whom
to trade. However, sometimes it is beneficial for an investor to hide their trading intention. In par-
ticular, when attempting to trade in large volume (i.e., when wanting to buy or sell a large quantity
of stock), exposing one’s intention will likely lead to adverse price movement as the information
contained in the large order causes other investors to re-evaluate market price. This effect is known
as price impact, or market impact, and it can be extremely costly to a large-volume investor. To
reduce impact, an investor will often “salami slice” one large order into multiple smaller orders and
drip feed these into the market slowly over time. So common is this approach that many exchanges
offer an “iceberg” order type that automates a similar process. When an iceberg order is submitted,
only a small proportion of the full order volume (the “tip of the iceberg”) is displayed in the order
book at any given time, while the bulk of the remaining order remains hidden (“submerged” out
of view). However, while the use of icebergs to disguise order volumes can help limit the effects
of market impact, icebergs are exposed to the risk that other investors will anticipate the hidden
iceberg volume from information leaking from the visible tip.

To counter this, some trading venues hide all pre-trade order information. Commonly referred to
as “dark pools” to contrast with the “lit” order books of an exchange, these trading venues ensure
that all order information is non-displayed. As other investors have no access to the information in

https://orcid.org/0000-0002-2759-043X
https://orcid.org/0000-0002-3143-6355
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0002-7947-9450

a dark pool, so market impact can be significantly reduced, or avoided entirely. Hidden away from
viewing eyes, orders in a dark pool tend to take longer to fill than equivalent orders submitted to
an exchange. However, in most cases, the potential savings available to large volume institutional
investors will significantly outweigh the desire for trading urgency. That is, volume investors are
usually prepared to wait as long as the final deal they make is fair. As a result, dark pool trading
has risen in popularity, with more than 15% of all US equities, and more than 8% of all EU equities,
trading on dark pools in 2017 [17]. Yet, dark pools persistently suffer from negative reputation as
some operators have taken advantage of their privileged access to the non-displayed orders in their
systems. Indeed, between 2011-2018, dark pool operators paid more than $217 million to the SEC
in penalty settlements for misusing customer order information or operating the dark pool in a way
that disadvantaged their customers [6]. In the shadowy world of the dark pool, it is easier for a
market manipulator to hide. As such, it is perhaps unsurprising that many investors have a fear of
the dark.

There is now a strong commercial drive from financial institutions, such as JPMorgan [?,?], to
offer investors a secure dark pool trading venue. To be commercially viable, such a platform would
require guaranteed order privacy, the ability to handle imbalanced order-flows from around 1000
active investors or more, and periodic order matching at regular intervals, where execution price
is determined by some reference value such as the mid-point of the National Best Bid and Offer
(NBBO). To address this problem, we consider algorithms for implementing fast privacy-preserving
trading protocols such that nobody, not even the system operator, can access (and therefore misuse)
order information. These algorithms are designed to stop fraudulent behaviour but can also benefit
honest dark pool operators as they offer customers a guarantee that does not rely solely on trust.
Using multi-party computation (MPC) based protocols, the investors secret share their orders across
several entities who emulate the dark pool operator. As long as these entities do not collude, nobody
can access the system information. In [5], Cartlidge et al. used MPC to present a proof-of-concept
implementation of three dark pool trading mechanisms, showing that “volume matching” can be
viably executed in a privacy-preserving manner with order throughput similar to that required by a
real world dark pool trading venue. Further, in [6], Cartlidge et al. demonstrated how to use MPC
to run multiple auctions in parallel, offering simultaneous trading across thousands of stocks such
that the identity of the stock being traded is also hidden and secure. The throughput per MPC
engine is however significantly lower than that of the volume matching from [5] due to the use of
a more complex matching algorithm.

In this paper, we build upon the work from [5] and introduce two matching algorithms using
MPC: (i) “bucket match”, and (ii) a “volume match” with a more efficient clearing phase. For
both mechanisms, we trade one financial instrument (i.e., one stock) such that orders are matched
according to volume only and price is determined by some external reference value. In bucket match,
buy and sell orders placed in the same auction must have the same volume, which is determined
by the bucket size. To hide the volume that each investor wishes to buy or sell (or the fact that the
investor is even interested in trading a given stock), orders with zero volume may also be submitted.
Multiple auctions with different sized buckets can be run in parallel, after which unfilled orders
remaining in the different bucket lists may be matched against each other. In volume match, there
is no bucketing and investors may submit orders of any volume they wish (including zero volume
orders), similar to the volume trading algorithm presented in [5]. However, we extend the previous
volume trading protocol by simplifying the clearing phase. Namely, all the orders in the direction
with less total volume are opened simultaneously, instead of being checked one by one before

2

opening. We also increase privacy by no longer revealing the direction of an order (i.e., it is not
possible to tell whether the order is to buy or to sell). Both algorithms were implemented with the
Scale-Mamba Framework [1] using Shamir Secret Sharing based MPC, which provides security with
abort against active adversaries for an honest majority. We empirically evaluate the case where
three MPC parties emulate the dark pool operator.

Related work: Work in secure privacy-preserving auction mechanisms can be roughly categorised
into two broad categories: those involving a public bulletin board (e.g., a blockchain), for verifying
auction correctness, or as a secure communication channel between parties; and those where MPC
is used to implement an auction or dark pool using a set of operators. We briefly review these,
below.

In 2021, Ngo et al. [15] introduced a framework for secure financial trading that uses a pub-
lic bulletin board (e.g., a permissionless blockchain) hidden behind an anonymous network (e.g.,
Tor) for privacy-preserving communication between investors. The authors introduce witness-key-
agreement (WKA), a cryptographic scheme that allows counterparties to securely agree on a secret
using publicly committed information that meets some desired relation. Parties negotiate securely
by publishing partial zk-SNARK proofs on the public bulletin board to reach a trade agreement.
This process emulates a secure distributed over-the-counter (OTC) dark pool, such that trade price
and volume is negotiated directly between counterparty pairs. Therefore, there is no need for an
auctioneer (or dark pool operator) to match orders. The runtimes for each protocol step are below
15 seconds, the average block generation time in Ethereum.

Also in 2021, Galal and Youssef [11] introduced a publicly verifiable and secrecy preserving
periodic auction protocol that makes use of a smart contract deployed on the Ethereum blockchain.
Investors first commit to their orders in the smart contract using Bulletproofs to generate an
aggregate range proof. The auction (or dark pool) operator then privately receives orders from
investors, each encrypted with the operator’s public key. The operator decrypts orders and calculates
clearing price and volume for the auction, before publishing a proof of correctness to the smart
contract. The smart contract serves as a secure bulletin board and enables public verification of
the submitted zero-knowledge proofs. Constantinides and Cartlidge [?] introduced a similar smart
contract for validating the honesty of the operator. Again, orders are submitted in encrypted form
to the smart contract, the operator matches orders off-chain in unencrypted form, and the result of
the auction is published to the smart contract. This enables investors to verify whether their own
orders were handled correctly, while preserving the privacy of all unexecuted orders. In addition,
since the smart contract logic only handles order flow and is independent of the matching logic, the
operator can use any double auction matching rules without altering the smart contract.

In 2019, Bag et al. [2] presented a protocol to perform a first-price sealed-bid auction without a
central “auctioneer” entity. Decentralised bidders engage in the protocol to determine the winning
bidder with the highest bid. The protocol consists of a committing phase, where every bidder sends
an order commitment to a public bulletin board, then a second phase where bidders jointly compute
the highest bid without leaking the other bids. This computation is performed using a modified
version of the Anonymous Veto network protocol proposed in [12]. Following this, the winning
bidder can come forward to prove they had the highest bid, and everyone else can verify their
claim. The computation and communication have a linear complexity on the bit length of the bids
throughout all phases; and the verification phase has linear complexity on the number of parties.

3

While this protocol has efficient time complexity, it is not obvious how it could be extended to a
double auction, where buyers and sellers are matched.

In 2006, Parkes et al. [16] proposed a secure protocol to perform a sealed-bid auction using
homomorphic encryption, where only one auctioneer carries out the auction. The auctioneer pub-
lishes his/her public key, and the auction is performed by bidders committing to their bids and
then sending the commitments to the auctioneer. Bidders then submit their bids to the auctioneer
who verifies first if the bids are consistent with the commitments, before running the auction on
clear bid data. Subsequently, the auctioneer posts the winner of the auction along with proofs that
the computation was performed according to the specified protocol. One thing to note here is that,
while the protocol prevents the auctioneer from cheating, the unmet orders are revealed to the pub-
lic and so the trading intentions of these bidders are leaked. This work was extended in 2007 [19] to
cope with continuous double auctions (where orders to buy and sell can be submitted and matched
at any time), by checking whether orders can be matched with existing orders as soon as they are
entered. In 2009 [20], protocols were further extended to enable trading in baskets of securities;
and in 2012 [21], rule-based trading was introduced. The works of [?,?] offer a privacy preserving
double auction mechanism and a volume matching mechanism, respectively, without any leakage
based on fully homomorphic encryption using a single operator.

In 2006, seminal work by Bogetoft et al. [4] introduced an MPC protocol to perform a one-shot
double auction among a set of auctioneers, such that investors secret share their orders with the
auctioneers and orders are obliviously addressed using Shamir Secret Sharing with passive security.
This work was deployed in 2008 [3], to secure the Danish sugar beet auction between farmers and
the company Danisco, the only sugar beet processor in Denmark. In this auction, farmers provide
the amount of sugar beet they are willing to sell for every potential price. Similarly, buyers provide
the amounts they are willing to buy for every potential price. The clearance price is then calculated
as the point that supply equals demand. The auction was successfully run by three auctioneers,
namely, Danisco; DKS, the sugar beet growers’ association; and SIMAP, the research team. Since
then, the auction has taken place every year.

In 2015, Jutla [13] introduced an MPC based protocol for periodic double auctions, with five
entities playing the role of the auctioneers; four brokers and one regulating authority. Investors first
submit orders during an open-auction period. Orders are then cleared at a single price and unmet
orders remain in the auction for the following rounds. Making the assumption that the strategies of
investors do not have to be kept secret, Jutla suggests that a passively secure protocol is sufficient,
as long as the auctioneers wait a reasonable amount of time (e.g., one month) before releasing
transcripts of the computations for audit. Jutla does not report an implementation of the protocol,
but claims that the MPC technology at that time (in 2015) would be capable of executing the day’s
first auction in 30 minutes and subsequent auctions every 15 minutes; with additional 5 minute
breaks between auctions, to allow bidders to digest results.

Cartlidge et al. [5] proposed an MPC based protocol for performing auctions in dark pools,
where a set of l = 2 or l = 3 auctioneers can emulate the dark pool operator. Cartlidge et al.
considered three common matching mechanisms: (i) a continuous double auction, where buyers
and sellers can submit orders at any time and a limit order book is used for matching; (ii) a
periodic double auction, where the clearance price is determined by maximising quantity matched;
and (iii) a volume matching algorithm, which simply matches buy and sell volume and price is
taken from some reference exchange. Investors submit orders by secret sharing them among the
auctioneers, thus auctioneers learn nothing about the orders, except for the direction of the order

4

(i.e., whether the order is to sell or to buy), as this information is sent to auctioneers on clear data.
The protocols proposed are actively secure with abort and were implemented using the Scale-Mamba
framework [1], with l = 2 using the SPDZ protocol [10], and l = 3 using Shamir Secret Sharing
based MPC. The runtimes reported show that the volume matching is the fastest algorithm, capable
of processing a throughput of around 1000 orders per second for the case where l = 3, and around
2000 orders per second for the case where l = 2. In 2020, Cartlidge et al. [6] introduced a follow-
up work to secure a system inspired by the London Stock Exchange Group’s Turquoise Plato
Uncross algorithm (TPU for short). The TPU manages dark pool trading across 4500 different
instruments, thus Cartlidge et al. considered running the auction on multiple engines, where each
engine addresses a sub-set of instruments, so as to cope with the amount of orders that TPU receives
in real life. The challenge consisted of distributing instruments across engines without leaking the
instruments that each engine is dealing with, as this would reveal information about the trading
activity of each instrument. Cartlidge et al. [6] concluded that assigning 16 instruments to each
engine (and thus 281 engines are needed)1 would cope with the real world throughput that TPU
needs to address. The worst case throughput for each of these engines is of around 8 orders per
second for l = 2, and around 5 orders per second for l = 3.

2 Preliminaries

2.1 Multiparty Computation

MPC allows a set of distrustful parties to perform computation on their inputs without having to
reveal them. We distinguish two types of adversaries in MPC protocols: semi-honest adversaries,
and malicious adversaries. Semi-honest adversaries are assumed to follow the exact description of
the protocol, however, they may try to infer information from their view of the protocol about other
players’ inputs. On the other hand, malicious adversaries may deviate from the protocol. Protocols
that are secure against semi-honest adversaries and malicious adversaries are called passively secure
protocols and actively secure protocols, respectively.

In this work, we will consider active security with abort. Roughly speaking, the adversary
here can deviate from the protocol however this will be caught, with overwhelming probability, by
honest parties who will abort the computation once this happens. We present in Figure 1 the formal
description of the MPC functionality we are considering when processing an arithmetic circuit over
the finite field Fp.

2.2 Shamir Secret Sharing based MPC

We will consider Shamir Secret Sharing to realize the functionality of Figure 1, where a secret s
is shared by giving player i the tuple {i, fs(i)}, for a polynomial fs of degree t with coefficients in
a prime field Fp, such that fs(0) = s. A value s being shared as such will be denoted by 〈s〉 from
now on. Clearly, if at least t + 1 players combine their shares, they can recover the secret s, and
no set of at most t players can recover it. In our protocols we will require t < n/2, i.e. an honest
majority, so as to enable efficient mechanism to perform multiplications.

1 Plus one engine that serves as an entry gateway for orders; therefore a total of 282 engines required.

5

MPC functionality FP [MPC]

The functionality runs with P = {P1, . . . ,Pl} and an ideal adversary A, that statically corrupts a set A of
parties. Given a set I of valid identifiers, all values are stored in the form (varid , x), where varid ∈ I.

Initialize: On input (init , p) from all parties, where p is a prime, the functionality stores (domain, p),
Input: On input (input ,Pi, varid , x) from party Pi and (input ,Pi, varid , ?) from all other parties, with varid a

fresh identifier and x ∈ Fp, the functionality stores (varid , x) in memory.
Add: On command (add , varid1, varid2, varid3) from all parties, where varid1, varid2 are present in memory

and varid3 is not, the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x+ y) in memory.
Multiply: On input (multiply , varid1, varid2, varid3) from all parties, where varid1, varid2 are present in mem-

ory and varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x ·y) in memory.
Output: On input (output , varid , i) from all honest parties, where varid is present in memory, the functionality

retrieves (varid , y) and outputs it to the environment. The functionality waits for an input from the envi-
ronment. If this input is Deliver then y is output to all parties if i = 0, or y is output to party i if i 6= 0. If
the adversarial input is not equal to Deliver then ∅ is output to all parties.

Figure 1: MPC functionality FP [MPC]

Scale-Mamba: Scale-Mamba is a framework that implements various MPC protocols, including
actively secure Shamir Secret Sharing based MPC with abort. Scale-Mamba adopts an offline-
online methodology. That is, the computation can be split into two phases, a function independent
offline phase where we pre-process data that will then be used in the function dependent online
phase. This pre-processed data mainly consists of so-called Beaver triples. These are secret shared
triples of the form {〈a〉, 〈b〉, 〈c〉}, such that c = a · b. The production of these Beaver triples is
performed using the protocols of [14,18], which reduces the total amount of communication needed
per multiplication, compared to the traditional protocols. The protocols work since t < n/2.

Basic Arithmetic: Opening a secret shared value 〈x〉 can be performed by simply revealing
the shares which make up 〈x〉 to all parties. The validity of this sharing can be checked, since
t < n/2, using the error-detection properties of the Reed-Solomon code underlying the Shamir
sharing. However, in [14,18], a more efficient methodology for opening is given, which results in less
communication. In particular, each player must only send just enough information to reconstruct
the shared value. The checking of the values for correctness is performed by each player maintaining
a running hash of the complete set of shares determining the sharing 〈x〉. These hashes are then
compared with each other at the end of the computation. As a shorthand, we denote such a global
opening corresponding to the Output command of Figure 1 by x← Open(〈x〉).

Addition comes for free with this secret sharing, that is, it consists of a local computation, as
fx(i) + fy(i) = (fx + fy)(i) for two secrets x and y. Indeed, any linear operation can be performed
purely using local computation. We write such functions evaluations, for ease of expression, as
〈z〉 ← α · 〈x〉+β · 〈y〉+γ. To multiply two secrets, we consume one of the pre-processed triples from
the offline phase. That is, to multiply 〈x〉 with 〈y〉, one can take a triple {〈a〉, 〈b〉, 〈c〉} and compute
〈ε〉 ← 〈x − a〉 and 〈γ〉 ← 〈y − b〉, then opening them so as to get the product 〈z〉 ← 〈x〉 · 〈y〉 by
having the players compute 〈z〉 ← 〈c〉 + ε · 〈b〉 + γ · 〈a〉 + ε · γ which is a local computation. For
shorthand we denote multiplication by 〈z〉 ← 〈x〉 · 〈y〉.

Comparison: A key operation in our work will be to take two shared values 〈x〉 and 〈y〉 for
x, y ∈ Fp and ‘think’ of the values x and y as representing integers in the range (−p/2, . . . , p/2).

6

In particular we think of x and y in the range [−2k−1, . . . , 2k−1] for some k such that 2k � p. We
will then wish to obtain a sharing 〈b〉 of the bit which represents the comparison of x and y, an
operation that we will denote by 〈b〉 ← 〈x〉 < 〈y〉. To perform such comparisons, Scale-Mamba uses
the protocols of [7–9]. At a high level, these protocols require that we additively mask a value x in
[−2k−1, . . . , 2k−1] by a random number r, then open the result y ← Open(〈x〉+ 〈r〉). The number y
will leak information about x if r is not chosen to be big enough. The statistical distance between
the distribution from which y is drawn and the uniform distribution is 2−sec, if r is chosen from
the interval [−2sec+k−1, . . . , 2sec+k−1]. Thus, sec has to be big enough to ensure an overwhelmingly
small statistical distance. For our experiments, we chose k to be 64, and sec to be 40. Moreover, in
order to guarantee that no overflows occur during computation, we require sec + k < log2(p). For
our experiments, we choose p of size 128.

2.3 The FRand() Functionality

We also require a functionality FRand() which allows the parties to agree on random values in Fp.
In practice this can be implemented by all parties committing to a seed, then the parties open the
seeds. The seeds are then XOR’d together to produce a single shared seed, which is passed as the
key to a PRF to produce the shared random value. We present this as an ideal functionality in
Figure 2.

The Functionality FRand()

1. On input (Rand, cnt) from all parties, if the counter value is the same for all parties and has not been used
before, the functionality samples r ∈ Fp.

2. The value r is sent to the adversary, and the functionality waits for an input.
3. If the input is Deliver then the value r is sent to all parties, otherwise the functionality aborts.

Figure 2: The Functionality FRand()

2.4 Description of the Algorithms for Auctions

Both of the proposed algorithms follow the scheduled cross methodology, where the matching occurs
at fixed points in time and is based on volume only. Trade price is determined by reference to an
external lit market value, thus the orders for both algorithms do not contain price information. Each
order contains the identity of the investor who submitted it, the direction of the order (i.e., whether
it is a buy or a sell order), and, in the volume match case, the volume to be traded. A separate
auction is run for each tradable instrument (i.e., each stock). The output of each auction consists
of a list of all filled orders (although some orders might be partially filled, as will be explained at
the end of this section).

A textual description of the bucket match and the volume match in the clear can be found below.
Our goal is to adapt these algorithms to prevent revealing information besides what is absolutely
essential for the trades to take place. As such, any hint about the volume or direction in which a
given investor wishes to trade will be considered as an information leakage (as long as the orders are
still waiting to be filled). In Section 3, we present secure versions of the algorithms and in Section
4 we analyse the corresponding leakage.

7

Bucket match: We consider an auction in which orders can only be executed in a given number
y of bucket sizes. For each j ∈ [1, . . . , y] we define the fixed bucket size as unitj , and the algorithm
maintains a list Lj of the orders with list Lj containing only buy and sell orders of size unitj . Order
i in list j is of the form [idji , direction

j
i], where idji is the identity of the investor, and directionji is the

direction of the order, i.e., whether the order is a sell (directionji = 1) or buy order (directionji = 0).
Therefore, if an investor wishes, for instance, to sell a volume v, the investor has to submit gj

distinct orders to list j, where gj ≥ 0, such that v =
∑j=y

j=1 g
j · unitj , with the direction of each of

these orders indicating that they consist of sell orders, i.e., directionji = 1 for all orders.
Orders are placed in their lists in order of arrival, and orders that arrived first will be matched

first. The clearing of all orders is then run at periodic intervals. Unless the number of sell orders is
identical to the number of buy orders in a given list, there will be leftover unmatched orders after
this same list is cleared. After every list is cleared, we can check the direction of the leftover orders
from each of them. If there are leftover orders with different directions (e.g., leftovers from L1 are
buy orders, and leftovers from L2 are sell orders), then there will be another clearing period where
the leftover orders of all lists are matched among each other. Recall that orders from different lists
have different volume and hence we must now take into consideration their unit volume, in addition
to their direction.

For ease of exposition, we will consider in our work only the cases of y = 1 and y = 2; i.e., we
will either have one bucket size or two bucket sizes. As a shorthand, we will refer to these as bucket-1
and bucket-2, respectively; bucket-z will refer to the general case of multiple lists, i.e., where y > 1.

Volume match: In this algorithm, the auction runs over one list L that contains orders of different
sizes. Order i is thus of the form [idi, directioni, volumei], where idi is the identity of the investor,
directioni is the direction of the order, and volumei is the volume of the order. Note that, in this
situation, if one wishes to trade a volume v, it is enough to submit a single order of volume v
(though it is also possible to split the volume into multiple smaller orders). The procedure is then
similar to the bucket match case, except that here we consider only one list and therefore the
cross-list matching does not take place.

Table 1: Intuitive comparison of bucket match with 1 list, multiple lists, and volume match.

Algorithm Total Additional Leakage Loss in
Orders Computation Potential Volume Submitted

Bucket-1 Most - Low Low
Bucket-z Medium Cross-list matching Cross-list match leakage Low
Volume Least Input correctness check Lowest No loss

Intuitive Comparison: Bucket-1 will tend to receive more orders than bucket-z or volume match,
as multiple orders must be submitted for trading large volumes. Therefore, as more orders need to be
processed, runtimes for bucket-1 are likely to be longer. Bucket-z solves this problem by introducing
multiple bucket sizes, thus allowing orders of different volumes. However, it will usually require an
additional cross-list matching period to find all possible matches between different bucket sizes.

8

Moreover, we would like the volume of unmatched orders to remain secret, which might not be
possible when matching orders of different volumes. If an order can only be partially matched,
the leftover volume will become public. Therefore, bucket-z has potential for greater leakage than
bucket-1. Regarding the total submitted volume, note that one cannot always submit the exact
volume they wish, since all orders must fit the predefined bucket size(s). Thus, investors might
need to submit a lower total volume than intended.

Volume match allows orders to be submitted with any volume, so there is additional uncertainty
about the volume of unopened orders. There is also no need to implement an additional cross-list
matching period, therefore preventing the leakage of leftover volume of partially matched orders.
However, checking the correctness of input orders will be slower than in bucket-1 and bucket-z,
with the runtime growing linearly with the number of input bits representing the volume.

3 Secure implementations of the algorithms

3.1 Setup

The setup consists of a number of servers S = {S1, . . . , Sl} emulating the auctioneer, where the
orders entering the auction will be secret shared among these servers.

3.2 Bucket match:

We aim to hide as much about the intention of the investors as possible, especially for unmet orders.
Thus we allow investors to enter ‘dummy’ orders, i.e., orders which are neither buy or sell. We will
discuss later the precise number of dummy orders which should be entered, and how this number
affects the privacy and performance of the auction. Note that investors can submit dummy orders
to stocks they do not wish to trade, thus hiding their trading activity in each stock.

For i = 1, . . . , n, each order i will of be the form ordji = [〈idji 〉, 〈b
j
i 〉, 〈s

j
i 〉], where bji and sji are bits

indicating the direction of the order, that is, a sell order will have bji = 0, sji = 1 and a buy order

will have bji = 1, sji = 0. To allow dummy orders, orders can also contain bji = 0 and sji = 0. Every

order for which (bji , s
j
i) 6∈ {(0, 0), (0, 1), (1, 0)} will be rejected. Each list j will contain nj orders,

among which mj are dummy. For instance, if an investor j wants to sell a volume V , they need to

enter the orders {ord11, . . . , ord1g1 , . . . , ord
y
1, . . . , ord

y
gy} such that V =

∑j=y
j=1

∑i=gj

i=1 (sji − b
j
i) · unit

j .
To ensure that the conditional operation 〈c〉 > 0 can be executed we need to ensure that

c ∈ [−2k−1, . . . , 2k−1]. For the case of one list we simply need to ensure that the total number of
orders n is less than 2k−1. For the case of more than one list we need to ensure that n ·unity < 2k−1.

Bucket-1 match: For ease of exposition we first examine the case when we have only one bucket
size, i.e. y = 1. The formal description of the algorithm is given in Figure 3. We distinguish 3
phases:

1. The input phase, where orders are entered into the auction and a check is run to discard invalid
orders. In the input orders for this algorithm, the buy and sell entries b and s must be bits.
Additionally, at least one of these two entries must be zero. To verify this, we draw three
numbers α, β, γ ∈ Fp at random and calculate

〈t〉 = α · (〈b〉 · 〈b〉 − 〈b〉) + β · (〈s〉 · 〈s〉 − 〈s〉) + γ · (〈b〉 · 〈s〉).

9

Afterwards, we open 〈t〉 and check whether t = 0. The first two terms are zero only if b and s
are bits, except with probability 1/p. The last term is zero only if either b = 0 or s = 0, except
with probability 1/p. If more than one term is different from zero, their sum will be zero with
probability 1/p.

2. The clearing phase one, where we open the orders in the direction that will be completely
cleared. First, we need to check which list has largest total volume. To do so, we first calculate

〈c〉 ←
n∑

i=1

〈bi〉 − 〈si〉.

Then, we perform the comparison 〈c〉 > 0 and open the output. If c is greater than zero, there
are more buy orders than sell orders and so we open the 〈si〉 share of every order i. Otherwise,
we open the 〈bi〉 shares. The 〈id〉 of non-dummy orders is also opened.

3. The clearing phase two, where we open the orders in the direction that will be only partially
cleared. The orders are opened one by one, and the 〈id〉 of non-dummy orders is also opened.
For each opened order, we check whether the opposite direction has been completely cleared.
When that is the case, we exit the algorithm.

Bucket-1: match on one list

Input phase: On input ordi = [〈idi〉, 〈si〉, 〈bi〉], where idi, si, bi ∈ Fp:
1. αi, βi, γi ← FRand().
2. 〈ti〉 ← αi · (〈bi〉 · 〈bi〉 − 〈bi〉) + βi · (〈si〉 · 〈si〉 − 〈si〉) + γi · (〈bi〉 · 〈si〉)
3. ti ← Open(〈ti〉)
4. If ti = 0 then add ordi to a list L, otherwise reject ordi.

Clearing phase one: On input L = [ord1, . . . , ordn], the list of orders that will be cleared on the same round
1. 〈c〉 ←

∑n
i=1〈bi〉 − 〈si〉

2. 〈d〉 ← (〈c〉 > 0)
3. d← Open(〈d〉)
4. If d = 1

I. For all i, execute si ← Open(〈si〉)
II. For all i such that si = 1, execute idi ← Open(〈idi〉).

III. σ ←
∑n

i=1 si
IV. Move all orders with si = 0 to a list Lb

5. Else
I. For all i, execute bi ← Open(〈bi〉)

II. For all i such that bi = 1, execute idi ← Open(〈idi〉).
III. σ ←

∑n
i=1 bi

IV. Move all orders with bi = 0 to a list Ls

Clearing phase two: On input a List Lb = [ord1, . . . , ordo] (or Ls = [ord1, . . . , ordo]), and the sum σ:
1. c← 0
2. For i in {1, . . . , o}

I. bi ← Open(〈bi〉) if d = 1 (or si ← Open(〈si〉 if d = 0)
II. If bi = 1 (or si = 1)

i. idi ← Open(〈idi〉)
ii. c← c+ 1

iii. If c = σ then break.
Output the set of completely opened orders from Lb (resp. Ls).

Figure 3: Bucket-1: match on one list

10

We illustrate this algorithm through an example in Table ??. We begin (Table ??) with a list of
9 orders submitted by 3 s, one buyer (T2) and two sellers (T1, T3). Clearing phase one is executed
(Table ??), which indicates that we have more sells than buys, thus the buy direction for all orders
is opened. The directions opened indicate that we have 2 buy orders, namely #3 and #7, for which
we open the corresponding investors (T2). Finally, clearing phase two is executed (Table ??), such
that we iteratively open the sell direction of orders until the the number of sells sums to 2. The
corresponding investors (T1) of the non-dummy orders are opened (orders #1 and #4).

Table 2: Bucket-1 match example.

(a) Initial order book

Order id b s

#1 〈T1〉 〈0〉 〈1〉
#2 〈T1〉 〈0〉 〈0〉
#3 〈T2〉 〈1〉 〈0〉
#4 〈T1〉 〈0〉 〈1〉
#5 〈T3〉 〈0〉 〈1〉
#6 〈T2〉 〈0〉 〈0〉
#7 〈T2〉 〈1〉 〈0〉
#8 〈T3〉 〈0〉 〈0〉
#9 〈T1〉 〈0〉 〈1〉

(b) After clearing phase one

Order id b s

#1 〈T1〉 0 〈1〉
#2 〈T1〉 0 〈0〉
#3 T2 1 〈0〉
#4 〈T1〉 0 〈1〉
#5 〈T3〉 0 〈1〉
#6 〈T2〉 0 〈0〉
#7 T2 1 〈0〉
#8 〈T3〉 0 〈0〉
#9 〈T1〉 0 〈1〉

(c) After clearing phase two

Order id b s

#1 T1 0 1

#2 〈T1〉 0 0

#3 T2 1 〈0〉
#4 T1 0 1

#5 〈T3〉 0 〈1〉
#6 〈T2〉 0 〈0〉
#7 T2 1 〈0〉
#8 〈T3〉 0 〈0〉
#9 〈T1〉 0 〈1〉

Bucket-2 match: We now examine the case with two bucket sizes, i.e., y = 2. The size of the
first bucket is unit1 and the size of the second bucket is unit2. We present in Figure 4 the formal
description of the algorithm. We distinguish the following phases of the algorithm:

1. The input phase, the clearing phase one and the clearing phase two are exactly as in the bucket
match with one bucket size. Each of the two lists is cleared individually, and then we check
whether the leftover orders from both lists have different directions. If so, we can proceed
to matching orders from different lists. If all the orders have the same direction, we exit the
algorithm. Note that, while we know the direction of the leftover orders, we do not know which
of them might be dummy orders.

2. The clearing phase three, where we open the orders in the direction that will be completely
cleared. First, we need to check which direction has largest total volume. To do so, we first
calculate

〈c〉 ←
n′2∑
i=1

〈dir2i 〉 · unit2 −
n′1∑
i=1

〈dir1i 〉 · unit1,

where dirj is bj if the leftovers from list j are buy orders, or sj if the leftovers from list j are
sell orders. Then, we perform the comparison 〈c〉 > 0 and open the output. If c is greater than
zero, there is more volume in direction dir2 and so we open all the 〈dir1〉 shares. Otherwise, we
open the 〈dir2〉 shares. The 〈id〉 of non-dummy orders is also opened.

11

3. The clearing phase four, where we open the orders in the direction that will be only partially
cleared. The orders are opened one by one, and the 〈id〉 of non-dummy orders is also opened.
For each opened order, we check whether the opposite direction has been completely cleared.
When that is the case, we exit the algorithm.

Note, the last opened order from the clearing phase four will not be necessarily completely matched.
The unmatched volume from this last order will therefore be leaked. This source of leakage is further
discussed in Section 4

Bucket-2: match on two lists

Given two different buckets of sizes unit1 and unit2, we take as inputs the orders ord1i = [〈idi〉, 〈si〉, 〈bi〉] of volume
unit1, and the orders ord2i = [〈idi〉, 〈si〉, 〈bi〉] of volume unit2. For both bucket sizes, idi, si, bi ∈ Fp.

Run Single Bucket Match Algorithm: First an instance of the bucket match algorithm on one list (Figure 3)
is called for each bucket size:
1. Run the input phase of Figure 3 for each bucket size and put the valid orders in the lists L1 and L2

resp.
2. Run the clearing phases one and two from Figure 3 on L1 and L2. After clearing phase one, we should

have for each list j that either 〈bj〉 or 〈sj〉 have been opened for every order. Thus, after clearing phase
two, we know that the remaining unopened orders are either orders in the unopened direction (if the
unopened direction bit is 1) or dummy orders (if the unopened direction bit is 0).

3. If the leftover orders from lists L1 and L2 have different directions, put in R1 and R2 resp. the orders that
were not matched from lists L1 and L2. List Rj is of size n′j and its orders are of the form [〈idj〉, 〈dirj〉],
where dirj is sj if the unopened direction from Lj is sell (or dirj is bj if the unopened direction from Lj

is buy).
4. If they have the same direction then exit the algorithm.

Clearing phase three: On input R1 = [ord11, . . . , ord
1
n′1] and R2 = [ord21, . . . , ord

2
n′2]

1. 〈c〉 ←
∑n′2

i=1〈dir
2
i 〉 · unit2 −

∑n′1

i=1〈dir
1
i 〉 · unit1

2. 〈d〉 ← (〈c〉 > 0)
3. d← Open(〈d〉)
4. If d = 1

I. For all i, execute dir1i ← Open(〈dir1i 〉)
II. σ ←

∑n′1

i=1 dir
1
i · unit1

III. For all i such that dir1i = 1, execute idi ← Open(〈idi〉)
IV. σ ← σ/unit2

5. Else
I. For all i, execute dir2i ← Open(〈dir2i 〉)

II. σ ←
∑n′2

i=1 dir
2
i · unit2

III. For all i such that dir2i = 1, execute idi ← Open(〈idi〉)
IV. σ ← σ/unit1

Clearing phase four: On input a List R2 = [ord11, . . . , ord
1
n′1] (or R1 = [ord21, . . . , ord

2
n′2]), and the sum σ:

1. c← 0
2. For i in {1, . . . , n′2} (or i in {1, . . . , n′1})

I. dir2i ← Open(〈dir2i 〉) if d = 1 (or dir1i ← Open(〈dir1i 〉) if d = 0)
II. If dir2i = 1 (or dir1i = 1)

i. id2i ← Open(〈id2i 〉) (or id1i ← Open(〈id1i 〉))
ii. c← c+ 1

iii. If c = σ then break.

Figure 4: Bucket-2: match on two lists

12

We provide an example for bucket-2 match in Table ??. We assume here that the Clearing
phases one and two are already executed (Table ??), resulting in a list R1 of buys from buckets of
size unit1 = 10, and a list R2 of sells from buckets of size unit2 = 1. At the end of the clearing phase
three (Table ??), all sell directions are opened, which sum up to 2. Finally, in clearing phase four
(Table ??), we open the buy direction of the first order of the list R1, which reveals a non-dummy
order, thus we open the corresponding investor (T2). This buy order volume of 10 is sufficient to
match the total sell volume of 2. Note that the buy order will not be fully matched, which will leak
the information that the investor who submitted it was left with 2 unmatched volume units.

Table 3: Bucket-2 match example.

(a) After clearing phases 1 & 2

R1(unit1 = 10) R2(unit2 = 1)

id b s id

〈T2〉 〈1〉 〈0〉 〈T1〉
〈T2〉 〈0〉 〈1〉 〈T1〉
〈T2〉 〈0〉 〈0〉 〈T3〉
〈T2〉 〈0〉 〈1〉 〈T1〉
〈T2〉 〈0〉 〈0〉 〈T3〉

(b) After clearing phase three

R1(unit1 = 10) R2(unit2 = 1)

id b s id

〈T2〉 〈1〉 0 〈T1〉
〈T2〉 〈0〉 1 T1

〈T2〉 〈0〉 0 〈T3〉
〈T2〉 〈0〉 1 T1

〈T2〉 〈0〉 0 〈T3〉

(c) After clearing phase four

R1(unit1 = 10) R2(unit2 = 1)

id b s id

T2 1 0 〈T1〉
〈T2〉 〈0〉 1 T1

〈T2〉 〈0〉 0 〈T3〉
〈T2〉 〈0〉 1 T1

〈T2〉 〈0〉 0 〈T3〉

3.3 Volume match:

Similarly to the bucket match, we will hide here the direction of orders and we will allow dummy
orders. Each order i will be of the form ordi = [〈idi〉, 〈vi〉, 〈dirbi〉, 〈dirsi 〉], where vi is the volume of
the order, dirbi = 0 if ordi is a sell order, dirsi = 0 if ordi is a buy order, and dirbi = dirsi = 0 if ordi
is a dummy order. The list of orders from all the investors will contain n orders, m of which are
dummy orders. If an investor wants to sell volume V , they need to enter orders ord1, . . . , ordg such

that V =
∑i=g

i=1(vi · (dirsi − dirbi))
The formal description of this algorithm is presented in Figure 5. Again we distinguish 3 phases

of the algorithm:

1. The input phase, where orders are entered into the auction and a check is run to discard invalid
orders. To ensure investors enter values vi that are valid non-negative numbers less than some
bound B (which we assume is an exact power of two, i.e. B = 2`), they enter the value as
a sequence of ` bits, vi,j , for j = 0, . . . , ` − 1. Additionally, they enter two bits dirbi and dirsi
that indicate the direction of the order. All these values are checked to be bits, using the same
check used in the bucket matching algorithm, and then the actual values of the volume in each
direction are formed from vbi = dirbi ·

∑`−1
j=0 vi,j · 2j and vsi = dirsi ·

∑`−1
j=0 vi,j · 2j . We still need to

check that at least one of dirbi or dirsi is zero, so we calculate

〈ti〉 = 〈dirbi〉 · 〈dirsi 〉,

open 〈ti〉 and check whether ti = 0. Clearly, that happens if and only if either dirbi = 0 or
dirsi = 0. To ensure the comparison 〈c〉 > 0 can be evaluated correctly we simply need to pick
parameters so that n ·B < 2k−1.

13

2. The clearing phase one, where we open the orders in the direction that will be completely
cleared. First, we need to check which list has largest total volume. To do so, we first calculate

〈c〉 ←
n∑

i=1

〈vbi 〉 − 〈vsi 〉.

Then, we perform the comparison 〈c〉 > 0 and open the output. If c is greater than zero, the
total buy volume is greater than the total sell volume and so we open the 〈vsi 〉 share of every
order i. Otherwise, we open the 〈vbi 〉 shares. The 〈id〉 of non-dummy orders is also opened. We
then calculate the total volume σ of the opened orders. Suppose the 〈vsi 〉 shares were opened.
For every vsi = 0, we calculate the cumulative buy volume of the first i orders, 〈wi〉 =

∑i
h=1〈vbh〉.

If the 〈vbi 〉 shares were opened, the cumulative sell volume is calculated instead. This cumulative
volume will be used in the next clearing phase to avoid leaking the unmatched volume of the
last opened order.

3. The clearing phase two, where we open the orders in the direction that will be only partially
cleared. First, we run a binary search on the cumulative volume calculated previously to find
the highest index u such that 〈wu〉 < σ. Then, the first u orders are opened, as well as the 〈id〉
of non-dummy orders. At this point, we still did not completely clear the orders opened during
clearing phase one. However, if we open ordu+1, part of its volume will remain unmatched and
there will be an information leakage. To avoid this, we simply subtract the volume σ− 〈wu〉 we
still need from ordu+1 and open 〈idu+1〉.

We illustrate volume match using a worked example shown in Table ??, where one buyer
(T2) submitted a total volume of 20, and two sellers (T1,T3) submitted a total volume of 22
(Table ??). Thus, in the Clearing Phase 1, the buys are opened (Table ??). Afterwards, sells are
iteratively opened until we reach a cumulative volume of at least 20 (Table ??), which was reached
after opening order #6. Sell order #7 has volume 6 and so is only partially matched against the
remaining available buy volume of 4. This volume is subtracted from the order without opening it,
since otherwise the leftover volume would be leaked. The identity of the investor must be revealed
so that the trade can be performed.

Table 4: Volume match example.

(a) Initial order book

Order id V b V s

#1 〈T1〉 〈0〉 〈4〉
#2 〈T1〉 〈0〉 〈0〉
#3 〈T2〉 〈10〉 〈0〉
#4 〈T1〉 〈0〉 〈8〉
#5 〈T3〉 〈0〉 〈4〉
#6 〈T2〉 〈0〉 〈0〉
#7 〈T1〉 〈0〉 〈6〉
#8 〈T3〉 〈0〉 〈0〉
#9 〈T2〉 〈10〉 〈0〉

(b) After clearing phase one

Order id V b V s

#1 〈T1〉 0 〈4〉
#2 〈T1〉 0 〈0〉
#3 T2 10 〈0〉
#4 〈T1〉 0 〈8〉
#5 〈T3〉 0 〈4〉
#6 〈T2〉 0 〈0〉
#7 〈T1〉 0 〈6〉
#8 〈T3〉 0 〈0〉
#9 T2 10 〈0〉

(c) After clearing phase two

Order Investor V b V s

#1 T1 0 4

#2 〈T1〉 0 0

#3 T2 10 〈0〉
#4 T1 0 8

#5 T3 0 4

#6 〈T2〉 0 0

#7 T1 0 〈2〉
#8 〈T3〉 0 〈0〉
#9 T2 10 〈0〉

14

Volume match

Input phase: On input ord′i = [〈idi〉, 〈vi,j〉, 〈dirbi 〉, 〈dirsi 〉], where id, vi,j , dir
b
i , dir

s
i ∈ Fp:

1. 〈vsi 〉 ← dirsi ·
∑`−1

j=0〈vi,j〉 · 2
j .

2. 〈vbi 〉 ← dirbi ·
∑`−1

j=0〈vi,j〉 · 2
j .

3. ordi = [〈idi〉, 〈vsi 〉, 〈vbi 〉]
4. αi,j ← FRand() for j = 0, . . . , `− 1.
5. βi,1, βi,2 ← FRand().
6. γi ← FRand().
7. 〈ti〉 ←

∑`−1
j=0

(
αi,j · (〈vbi,j〉 · 〈vbi,j〉 − 〈vbi,j〉)

)
+βi,1 · (〈dirbi 〉 · 〈dirbi 〉− 〈dirbi 〉) +βi,2 · ((〈dirsi 〉 · 〈dirsi 〉− 〈dirsi 〉) +

γi · (〈dirbi 〉 · 〈dirsi 〉)
8. ti ← Open(〈ti〉)
9. If ti = 0 then add ordi to a list L, otherwise reject ord′i.

Clearing phase one: On input L = [ord1, . . . , ordn], the list of orders that will be cleared on the same round
1. 〈c〉 ←

∑n
i=1〈v

b
i 〉 − 〈vsi 〉

2. 〈d〉 ← (〈c〉 > 0)
3. d← Open(〈d〉)
4. If d = 1

I. For all i, execute vsi ← Open(〈vsi 〉)
II. For all i such that vsi > 0, execute idi ← Open(〈idi〉)

III. σ ←
∑n

i=1 v
s
i

IV. For all i such that vsi = 0, execute 〈wi〉 ←
∑i

h=1〈v
b
h〉 and move 〈wi〉 to a list W .

V. Move all orders with vsi = 0 to a list Lb

5. Else
I. For all i, execute vbi ← Open(〈vbi 〉)

II. For all i such that vbi > 0, execute idi ← Open(〈idi〉)
III. σ ←

∑n
i=1 v

b
i

IV. For all i such that vbi = 0, execute 〈wi〉 ←
∑i

h=1〈v
s
h〉 and move 〈wi〉 to a list W .

V. Move all orders with vbi = 0 to a list Ls

Clearing phase two:
On input a list Lb = [ord1, . . . , ordo] (or Ls = [ord1, . . . , ordo]), a list W = [〈w1〉, . . . 〈wo〉] and the sum σ:
1. Run a binary search on list W to find the highest u satisfying 〈wu〉 < σ.
2. For i in {1, . . . , u}

I. vbi ← Open(〈vbi 〉) if d = 1 (or vsi ← Open(〈vsi 〉) if d = 0)
II. If vbi > 0 (or vsi > 0), execute idi ← Open(〈idi〉)

3. 〈vbu+1〉 ← 〈vbu+1〉 − 〈wu〉+ σ (or 〈vsu+1〉 ← 〈vsu+1〉 − 〈wu〉+ σ)
4. idu+1 ← Open(〈idu+1〉)

Figure 5: Volume match

15

4 Leakage

There are two possible sources of information leakage in the described algorithms: (i) leakage from
partially unmatched orders; and (ii) leakage from opening orders. Each of these sources is discussed
below. All the analyses are equivalent when the buy orders have the largest total volume, thus we
consider always the case when the total sell volume is more than the total buy volume.

Leakage from partially matched orders: This type of leakage can happen in both the volume
match and the bucket-2 match, since in both of these algorithms there are orders with different
volumes. In the bucket-1 match, every non-dummy order has exactly the same volume, so every
opened order is completely matched and this type of leakage never happens.

In the volume match, orders from the direction with largest total volume are opened until the
next order to be opened would finish clearing the other direction. We will then remove the volume
we need to finish the clearing from this next order without opening its volume share. This means
that the last order might still have some leftover volume, though it is also possible that all its
volume was matched. Since it was at least partially matched, we need to reveal the investor who
submitted the order so that the trade can be processed. We will therefore know that this investor
might still have some volume left to trade and, if that is the case, we also know the direction of
the order. Take for example the case of Table ??. After clearing phase two, order #7 was not fully
matched, and thus we reveal the fact that investor T1 might have some volume left to sell.

In the bucket-2 match, the clearing phases one and two are the same as the bucket-1 match,
and hence there is no leakage. For example, as in the worked example of Table ??. As for clearing
phases three and four, since the orders in each direction will have different volumes, the situation is
similar to the volume match. Let unit1 and unit2 be the bucket sizes of the buy and the sell orders,
respectively, in the clearing phases three and four. Considering unit1 = k · unit2 for some k ∈ N, if
the sell orders have larger total volume, then there will be no leakage. If the buy orders have larger
total volume, the unmatched volume will be leak = h · unit2, for h ∈ {0, ..., k − 1}.

In case gcd(unit1, unit2) = k, for some k /∈ {unit1, unit2}, then the unmatched volume will be
either leak ∈ {0, k, 2k, ..., unit1 − k}, when the buy orders have largest total volume, or leak ∈
{0, k, 2k, ..., unit2 − k}, when the sell orders have largest total volume.

Note that for this algorithm the maximum leakage that can occur from unmatched orders is
known, and the investors can plan how to divide their orders into the two lists according to this
information. For instance, in the worked example of Table ??, we had that unit1 = 10 · unit2, and
the buy orders have larger volume, thus the leakage will be leak = h · 1 for h ∈ {0, . . . , 10 − 1}.
Namely h = 8 when we run the clearing phase four.

Leakage from opening orders: Consider the bucket-1 match and suppose there are no dummy
orders in a given auction. Let the sell orders be the ones with largest total volume, and hence the
buy orders are the first ones to be opened. For each 〈bi〉 that is revealed to be bi = 0, we learn that
this must be a sell order of unit volume. This means that as soon as we finish the clearing phase
one, all the information about the orders’ volume has been revealed.

Suppose now that the probability of having a dummy order is pd, with the total number of
dummy orders being m = pd · n. Let the buy orders be the first ones to be opened, and let the
number of buy orders be B = pb · (n −m) (note that here we must have pb ≤ 1/2 since there are
less buy orders than sell orders). After clearing phase one, we will have n−B orders which might

16

be either dummies or sells, and the probability of finding a sell order is n−B−m
n−B . For each newly

opened sell order, we learn whether an order is a sell or a dummy. Let i be the number of opened
sell orders, and j the number of opened dummies, then the probability of the next opened order
being a sell is:

Pr(“order is sell”) =
n−B −m− i
n−B − (i+ j)

.

Assuming an even distribution of dummy orders within the buy orders.

By the end of clearing phase two, we should have opened a total of B sell orders plus m′

dummy orders. At this moment, even if pd is unknown, an adversary might use the information
about previously opened orders and consider p′d = m′/(2B +m′). The expected amount of leftover
sell orders will then be (n − 2B − m′) · (1 − p′d). Note that, since we are in the bucketed case,
knowing the amount of leftover sells implies knowing the total leftover sell volume. For instance, in
the example presented in Table ??, we were left with four orders. Thus an adversary would assume
that the non-matched volume of sells, is between 0 and 4 · unit2. Moreover, given that B = 2 and
m′ = 1 in this case, the adversary would calculate p′d = 1/5, and thus the expected sells among the
leftover orders is (9− 2 · 2− 1) · (1− 1/5) ≈ 3.

In the bucket-2 match, the situation for the clearing phases one and two is identical to the
bucket-1 match. For clearing phases three and four, we also know exactly the volume of each buy
and sell order (even if this volume is different for buys and sells). However, note that these orders
have a different format, i.e., they only contain the ID and either the sell or the buy volume, and
so opening one of the directions does not leak information about the other. Therefore, the leakage
associated with the opening of each of these lists will be the same as if we were continuing the
clearing phase two openings.

The case for the volume match is similar, except that since each non-dummy order might have
any positive volume, the uncertainty about the volume of unopened orders increases. For instance,
for the example of Table ??, there were two orders left, however, the adversary will not have an
upper bound on the size of the remaining buys unlike the case of the bucketed match.

Summary The bucket-1 match has no leakage from partially matched orders, but there is some
leakage from opening orders. In order to mitigate this effect, the investors must submit more dummy
orders. The bucket-2 match does have leakage from partially matched orders (although this does
not necessarily occur), in addition to the leakage from opening orders, which is similar to bucket-1
match. Once again, submitting dummy orders reduces this last type of leakage. Note also that
when we have two lists, usually less non-dummy orders need to be submitted, so we can increase
the proportion of dummy orders without getting worse runtimes than when using one list only.

Runtimes for different amounts of dummy orders are presented in Section 5. Note that for the
chosen bucket sizes, bucket-2 match with 9 dummy orders per non-dummy order has faster runtimes
than bucket-1 match with 5 dummy orders per non-dummy order. However, using bucket-2 match
means we might get leakage from partially matched orders, depending on the balance between buy
and sell orders in each list.

Volume match results in the least leakage. The leakage from partially matched orders corre-
sponds only to the direction of a (possibly empty) order. The leakage from opening orders is minor
when compared to bucket match, because of the uncertainty introduced by fact that orders can
have any possible volume. This means that even if investors submit only 1 (or fewer) dummy order
per non-dummy order, the leakage will remain low.

17

5 Runtimes

To provide runtimes of our algorithms, we model the situation where T investors participate in the
auction, each of whom has one volume to submit drawn from the distribution (N (0, 1) + 5) · 106,
and places the same order in three different auctions, each of which utilizes one of our three
algorithms presented, namely volume match, bucket-1 match, and bucket-2 match. We varied T
in {10, 100, 1000, 10000}, as well as the number of dummy orders submitted per non-dummy order
(which we call d) in {0, 1, 5, 9}. Buy, sell, and dummy orders (when they exist) are evenly distributed
in the lists of orders. We also assume that there is an order imbalance such that 2/5 of the investors
are buyers and 3/5 are sellers.

This order imbalance was suggested through discussions with JPMorgan, a tier one US invest-
ment bank who operate in this space and have observed a tendency of investors to have a buy:sell
imbalance in the ratio of 2:3. This conforms with evidence that informed investors tend to trade in
the same direction (e.g., [22]). Here we model a sell imbalance (3/5 of investors are sellers), how-
ever buy imbalances (where 3/5 of investors are buyers) also occur, depending on the mood of the
market. For the protocols we have presented, results are symmetric such that a buy:sell imbalance
of 2:3 has the same run time as a buy:sell imbalance of 3:2.

As a simplification, we present runtimes for the situation where there is only one auction trading
one stock. However, a real world venue would allow trading in many stocks, so many auctions
would be required. For instance, if the venue is trading 5000 different stocks then 5000 auctions
are required. These auctions can be run sequentially, in which case the runtime for all auctions to
complete is 5000 times the runtime of a single auction. Alternatively, multiple MPC engines can be
used to run auctions in parallel. In the extreme case, where we have 5000 engines (i.e., one engine
per stock), all auctions run in parallel and hence the total runtime for all auctions to complete is
the same as the runtime presented for a single auction.

5.1 Setting

We used Scale-Mamba with Shamir secret sharing between l = 3 parties. All the parties run identical
machines with an Intel i-9900 CPU and 128GB of RAM. The ping time between the machines is
1.003 ms.

5.2 Online phase of volume match

The average time for input phase depends on the bound B that is set for the volume of the orders.
Recall that the orders’ volumes are entered as a sequence of bits, and we must confirm that every
one of them really is a bit. Therefore, the more bits we allow for the input volume, the longer it
will take to run this check. Here we assume that the volume of each order can have at most 32 bits,
and we obtain an average time for the input phase of 0.00062 seconds (0.62 ms) per order, with a
standard deviation of 0.00005 seconds (0.05 ms).

Runtimes are provided in Table 2. One can notice that clearing phase 1 is faster than clearing
phase 2. This is mainly due to the fact that the operation of opening directions can be vectorized
for the case of clearing phase 1, as we are opening the direction of all orders, while for the case of
clearing phase 2, this operation has to be sequential, as we do not know for how many orders we
should open the direction.

18

Table 5: Volume match runtimes in seconds. Each investor submits a single non-dummy order with
volume drawn from the distribution (N (0, 1)+5) ·106. d is the number of dummy orders submitted
per non-dummy order and n is the total number of orders submitted by all the investors.

Investors d n Clearing 1 Clearing 2 Traded Volume

10

0 10 0.0008 0.0025

2.25e+07
1 20 0.0008 0.0033

5 60 0.0009 0.0053

9 100 0.001 0.0062

100

0 100 0.0021 0.0064

1.98e+08
1 200 0.0023 0.0096

5 600 0.0032 0.019

9 1000 0.0041 0.0276

1000

0 1000 0.0143 0.03

1.99e+09
1 2000 0.0157 0.0496

5 6000 0.0258 0.1325

9 10000 0.0344 0.2079

10000

0 10000 0.1344 0.2409

1.99e+10
1 20000 0.1537 0.4416

5 60000 0.2493 1.2372

9 100000 0.3382 2.038

Comparison with the volume matching from [5]: We compare here between our algorithm
for the volume match, and the one from [5], with respect to the functionalities provided, the leakage
induced, and the online time required.

- Functionalities: Both algorithms take a set of orders and match them. However, we also
implemented a step where we check the correctness of the orders, and we did not omit opening
the id’s of the orders when they are matched. Besides, we provided to investors the possibility
of inserting dummy orders. We will see the impact of this in the leakage comparison.

- Leakage: To properly compare the leakage induced in both algorithms, we will split the analysis
into 3 parts: Leakage prior to the clearing phase (i.e., clearing phases 1 and 2 in our case);
Leakage during the clearing phase; and Leakage after the clearing phase.

Prior to the clearing phase, in our algorithm, orders are entered without leaking their direction,
and these orders will be placed in the same list, while in the volume match of [5], investors need
to specify whether their orders are sell or buy orders, so as to put them in the corresponding lists.
Besides, as we allow dummy orders, an adversary will not be able to identify non-dummy orders
from the ones inserted, while in [5] dummy orders were not considered. During the clearing
phase, [5] does not leak anything, while in our case, we leak either the sell or the buy orders will
be fully matched. However, we argue that tolerating this minor leakage, was one of the reasons
for which we obtained better runtimes for the clearing phases as we will see in online time
comparison. After the clearing phase, as dummy orders were not considered in [5], an adversary
will know how many orders remain, as well as the corresponding directions, while in our case,
the leakage we induce is strictly less than in [5] thanks to the usage of dummy orders, as we
have shown in the leakage analysis in section 4.

19

- Online time: We have implemented our volume match under the setting of 3 players using
Shamir Secret Shamir based MPC. This setting was also considered in [5]. We have used better
machines to implement our algorithm, but we argue that this does not contribute much to the
difference of the runtimes between the two implementations.
To compare the runtimes between the two algorithms, we can take for instance the case where
n = 1000 orders with no dummies, which is equivalent to having two lists (a sell list and a
buy list) in [5] that sum up to 1000 orders. For this setting, we can execute the clearing phase
with all the orders being matched (which results in the slowest runtime we can obtain) in 0.044
seconds, while in [5], the runtime will not depend on the number of cleared orders, and will be
0.9 seconds.
However, taking advantage of our reduced leakage compared to [5], requires inserting dummy
orders, thus one would expect a bigger list for our case. As it is shown in our experiments, if
we consider for instance the investors submitting 9 dummy orders for each non-dummy order,
for T = 1000 we obtain 0.355 seconds for the case where all orders are matched, which is about
three times faster than the case of [5].
Finally, the input phase in our case will require 6.2 seconds for n = 10000. This step was omitted
in [5], where one would expect the usage of a similar trick as ours to input orders, that is, the
investors will input the bits corresponding to the volume to be traded, which will be summed
up and checked for correctness. We estimate the runtime of the input phase of [5] for one order
to be 0.44 ms (with a standard deviation of 0.08 ms), and therefore 0.44 seconds for n = 1000.
Thus, the overall summary is that we provided more functionalities, with less leakage, and faster
runtimes for the clearing phase. This was feasible due to avoiding the heavy use of comparisons
in our volume match, which are expensive with MPC. However, our input phase will penalise
our runtimes more than the ones of [5], as we have more checks to perform due to dummy inputs
as well as the form of our orders. That is, our input phase is 40 % slower than the one of [5].
Besides, assuming that we would expect more orders than the case of [5], this will slow down
our input phase by a factor of d+ 1.

5.3 Online phase of bucket-1 match

The average time of the input phase is 0.00013 seconds (0.13 ms) per order, with a standard
deviation of 0.00001 seconds (0.01 ms). Note that the order format check is similar to the one used
for the volume match, but here the volume of each order consists of a single bit, resulting in a faster
input phase.

However, unlike what happens in the volume match, every order must now have the same fixed
volume. This means that each investor must submit different non-dummy orders that sum up to
the desired volume. When this volume is not a multiple of the chosen bucket size unit, we round
the volume down to the closest multiple. Thus, we will generally have more orders than in the
volume match, depending on the exact value of unit. If unit is small, more orders will be needed
and the total submitted volume will be closer to the volume match case. If we choose unit to be
large, we will not need as many orders, but the investors will submit significantly less volume than
in the volume match case. The average number of orders and the average total submitted volume
for different bucket sizes can be found in Table 4 .

In our case, 99.7% of the investors will submit a volume between 2 ·106 and 8 ·106. If we choose
e.g. unit = 106, the volume submitted by each investor will be rounded down to the closest multiple
of 106. This will result in an average submitted volume of 4.49 · 106, as opposed to the average

20

volume of 5 · 106 obtained in the volume match, where no rounding is needed. We will also have
around 4.5 orders for each order in the volume match case.

We present in Table 3 the runtimes corresponding to the bucket match for one list with unit =
106. One can make the same remark as the volume match for the runtimes. That is, clearing phase
1 is faster than clearing phase 2 due to the fact that we can vectorise computation for the case of
clearing phase 1.

Table 6: Bucket-1 match runtimes in seconds. Each investor submits a total volume drawn from the
distribution (N (0, 1) + 5) · 106, rounded down to the closest multiple of the bucket size unit = 106.
d is the number of dummy orders submitted per non-dummy order and n is the total number of
orders submitted by all the investors.

Investors d resulting n Clearing 1 Clearing 2 Traded Volume

10

0 47 0.0014 0.0013

2.10e+07
1 94 0.0013 0.0023
5 282 0.0016 0.0067
9 470 0.002 0.011

100

0 439 0.0063 0.0102

1.76e+08
1 878 0.007 0.0186
5 2634 0.01 0.0538
9 4390 0.0133 0.0906

1000

0 4473 0.0586 0.1046

1.79e+09
1 8946 0.0675 0.2002
5 26838 0.0946 0.5522
9 44730 0.129 0.8971

10000

0 45022 0.5856 1.0515

1.79e+10
1 90044 0.6554 1.9466
5 270132 0.9379 5.5058
9 450220 1.2819 9.0969

Table 7: Average number of submitted orders and volume according to the bucket size unit.
Bucket Size # Orders Average Submitted Volume

Volume match n
(
5 · 106

)
· n

1 · 105 49.4n
(
4.94 · 106

)
· n

5 · 105 9.5n
(
4.74 · 106

)
· n

1 · 106 4.5n
(
4.49 · 106

)
· n

2 · 106 2n
(
3.99 · 106

)
· n

5.4 Online phase of bucket-2 match

Let unitk denote the bucket size associated with list Lk. We assume that unit1 (the small bucket)
is smaller than unit2 (the big bucket).

Similar to bucket-1 match, the volume to be traded in bucket-2 match will be divided into multi-
ple orders according to the bucket sizes. If the volume cannot be fully obtained with a combination

21

of the two buckets, we round it down to the closest possible combination. We assume that the
investors will divide their volume such that they use as many big buckets as possible. The average
number of orders in each list and the average total submitted volume for different bucket sizes can
be found in Table 6.

Clearing phases 1 and 2 of step 1-II of Figure 4 are the same as bucket-1, except that now
we run them on two lists. If we can run these two clearing phases in parallel (i.e., with two MPC
engines) for the two lists, then it will be beneficial to have both lists with approximately the same
number of orders. One thing to note is that clearing phases 3 and 4 were never performed. This is
due to the fact that the order imbalance distribution we are considering always results in both lists
having leftover orders of the same direction (i.e., sells), and clearing phases 3 and 4 take place only
if the leftovers are from opposite directions.

Table 5 presents runtimes for bucket-2 match, with unit1 = 106 and unit2 = 3 ·106. Note that the
table contains only the time taken by clearing phases 1 and 2. One can notice that the runtimes of
clearing phases 1 and 2 combined are similar for the two lists. This results from how we distributed
orders among the lists. That is, as it was shown in Table 6 , we would expect the same size on
average for the two lists in the case of unit1 = 106 and unit2 = 3 ·106. However, the slight differences
in runtimes result from not only the size of the lists, but also how many orders were opened during
the execution.

Table 8: Runtimes for bucket-2 match in seconds. Each investor submits a total volume drawn from
the distribution (N (0, 1) + 5) · 106, and the volume is divided such that as many big buckets as
possible are used. The bucket sizes are unit1 = 106 and unit2 = 3 · 106. d is the number of dummy
orders submitted per non-dummy order and n is the total number of orders submitted by all the
investors.

n for Clearing n for Clearing
Investors d list 1 phases 1 + 2 list 2 phases 1 + 2 Traded Volume

10

0 8 0.0009 13 0.0012

2.10e+07
1 16 0.001 26 0.0015
5 48 0.0015 78 0.0027
9 80 0.0021 130 0.004

100

0 112 0.0044 109 0.0048

1.76e+08
1 224 0.0066 218 0.0073
5 672 0.0156 654 0.0176
9 1120 0.0238 1090 0.0271

1000

0 1101 0.0403 1124 0.0428

1.79e+09
1 2202 0.0643 2248 0.0687
5 6606 0.1585 6744 0.1699
9 11010 0.2506 11240 0.2705

10000

0 10918 0.4001 11368 0.4145

1.79e+10
1 21836 0.671 22736 0.6929
5 65508 1.6081 68208 1.6681
9 109180 2.5474 113680 2.6297

22

Table 9: Average number of submitted orders and volume according to the bucket sizes unit1 and
unit2.

Bucket Bucket Average
Size 1 Size 2 # Orders 1 # Orders 2 Submitted Volume

Volume match n (single list)
(
5 · 106

)
· n

1 · 105 1 · 106 4.5n 4.5n
(
4.94 · 106

)
· n

5 · 105 1 · 106 0.5n 4.5n
(
4.74 · 106

)
· n

5 · 105 2 · 106 1.5n 2n
(
4.74 · 106

)
· n

1 · 106 2 · 106 0.5n 2n
(
4.49 · 106

)
· n

1 · 106 3 · 106 1.1n 1.1n
(
4.49 · 106

)
· n

5.5 Online runtimes comparison

Regarding the input phase, the volume match is about four times slower than the bucket match.
This results from the fact that an order for the volume match has the same form as an order for
the bucket match, in addition to l = 32 bits specifying volume, which all have to be checked for
correctness. For both algorithms, the input phase takes significantly more time than the clearings, so
the fourfold time increase in the volume match will have a big impact on the total runtime. However,
if the investors for the auction in question tend not to trade big volumes, one can dedicate fewer
bits, l, for the size of the volumes to be traded, which will decrease the time needed for the input
phase of volume match.

If we consider an equal number of orders, dummies and matches, clearing phase one of bucket-1
match is identical to clearing phase one of bucket-2 match. However, this will be executed twice for
the latter as we have two lists. As for phase one of the volume match, it has an extra calculation
that consists of computing the cumulative volumes of the orders that will be cleared in clearing
phase 2. This, however, does not have a significant impact on the runtimes.

Clearing phase two is identical for bucket-1 match and bucket-2 match. However, it will be
executed twice for bucket-2. Clearing phase two for volume match is also similar, except that we
execute at the beginning a binary search that performs comparisons on the volumes of orders. This
induces a slowdown in the runtimes compared to clearing phase 2 of the bucket match, however, the
extra time produced is not significant as we only perform log(n) comparisons, which is negligible
to the amount of computation performed afterwards.

Clearing phases three and four exist only in bucket-2 match, when the leftover orders from each
list are in opposite directions. The runtime of these phases depends of course on the way buy and
sell orders are distributed in the two initial lists. Although this adds an extra component to the
total runtime, the impact is small when compared to the input phase runtime.

Note, however, that if we consider an equal number of orders, dummies and matches, the volume
traded in each algorithm will generally not be the same. Hence, to provide an accurate analysis,
we consider a fixed number of investors that generate their orders according to the distribution
we considered for the experiments, namely (N (0, 1) + 5) · 106. As before, investors also have an
imbalanced ratio of 3 sellers to 2 buyers.

In the volume match, since one can submit orders of any volume, trading large volumes becomes
easier. Besides, investors will be capable of placing the exact volumes they wish. The number of
dummies should also decrease because the uncertainty about the volume of each unopened order is
higher than the bucket case.

23

For the bucket-1 match, the chosen bucket size should not be very large, so that both small and
large volumes can be submitted by each investor. For trading large volumes, several orders must
be submitted, and hence there will be typically more orders than in the bucket-2 match or in the
volume match. Additionally, more dummies must also be submitted to decrease the leakage from
opening orders. However, note that investors will not be able to place the exact volume they wish,
as volumes are bound to the unit unit considered for the auction. Thus, each investor will submit
an order with lower volume than they wish to trade. This difference is minimised by reducing the
size of unit. However, as unit decrease, the number of orders increases and the slower the auction
will run, as shown in Table 4.

In bucket-2 match, clearings one and two are similar to the volume match, in the sense that
large volumes can be traded without the need to submit a large number of orders. On the other
hand, since there are only two possible volumes for each non-dummy order, the number of dummies
should be greater than in the volume match case, and one would expect the same as in bucket-1
match. Besides, similarly to bucket-1 match, there will be some trade volume lost. This volume lost
will be more significant than bucket-1 match if unit < unit1 and vice versa. In general, assuming
there is an order imbalance and as a consequence clearing phases 3 and 4 are not executed, bucket
match with z + 1 lists should be faster than bucket match with z lists, if we dedicate for each list
an MPC engine. This should also hold if we dedicate only one engine for all lists, as adding one list
will decrease the total number of orders and therefore the input phase will be faster, but also the
clearing phases should become faster in general, as they will be dealing with lists of smaller sizes.
For instance, in our experiments, for the case of T = 1000 and d = 9, the input phase for bucket-1
match requires 44730 · 0.00013 = 5.81 seconds, while this required (11010 + 11240) ∗ 0.00013 = 2.89
seconds for the two lists of bucket-2 match. Besides, the clearing required 1.03 seconds for bucket-1
match, and 0.2506 + 0.2705 = 0.52 seconds for the two lists of bucket-2 match.

As to the bucket match with z lists compared to the volume match, as stated earlier, the input
phase for the volume match is about five times the one of the bucket match (precisely 4.76 times).
However, one would expect fewer orders submitted to the auction for the volume match than the
bucket match, because we will have fewer dummy orders for the volume match, and also because
for each order submitted in the volume match, there will be at least one order submitted in one
of the lists among the z lists, and most likely at least two orders among the z lists for a rational
choice of the units. Thus, if we consider for instance that investors tend to place 9 times more
dummies in the bucket match than the volume match, the input phase for the bucket match will
be at least 2·10

4.76·2 = 2.1 times the one for the volume match. Thus, the volume match will be faster
than the bucket match with z lists as the runtimes are dominated by the input phase. For instance,
for the case of T = 1000, with d = 9 for the bucket match and d = 1 for the volume match,
where we had on average 4.5 · n orders for bucket-1 match, and 1.1 · n orders in each list of the
bucket-2 match, the input phase for volume match, bucket-1 match, and bucket-2 match were,
respectively, 2000 · 0.00062 = 1.24s, 44730 · 0.00013 = 5.81s, and (11010 + 11240) · 0.00013 = 2.8s;
and for clearing phases, they are respectively 0.0157 + 0.0496 = 0.06s, 0.129 + 0.8971 = 1.03s, and
0.2506 + 0.2705 = 0.52s if run sequentially or 0.27s in a parallel execution.

5.6 Summary

If clearing phases 3 and 4 of bucket-2 match are not executed then all three algorithms have
roughly the same leakage, which in each case is extremely small and relies on estimating unmatched
order volume by observing historical dummy ratios. In practice, this level of information leakage is

24

negligible if investors use a randomised dummy order submission strategy. Assuming a 3:2 imbalance
in orders to sell or buy, this implies that bucket-2 (or, more generally, bucket-z) is to be preferred
as it has the quickest input phase. However, the precise trade off between the simple cost of input
checking in bucket-z versus the more complicated cost of input checking in the volume matching
algorithm depends on the exact distribution of dummy orders that investors submit in a real
environment. Compared with volume match, bucket-z match is likely to incentivise the placement
of more dummy orders to disguise the fact that each real order has a known volume equal to
the bucket size. Once this number of additional dummy orders grows above some threshold, then
volume match becomes more efficient than bucket-z match. For example, with T = 1000 investors,
with a 9:1 ratio of dummy to real orders in bucket-2 match and a 1:1 ratio of dummy to real
orders in volume match, volume match has an input phase of 1.24s and a clearing phase of 0.06s,
whereas bucket-2 match has a longer input phase of 2.8s and a longer parallel clearing phase of
0.27s. However, in either scenario that bucket-z or volume match is quickest, the presented runtimes
demonstrate that these algorithms can securely input and clear more than a thousand orders per
second, and are therefore clearly capable of handling the throughput requirements of a real world
dark pool trading venue.

Acknowledgments

This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the
FWO under an Odysseus project GOH9718N, and by CyberSecurity Research Flanders with refer-
ence number VR20192203. Additionally, the first author is supported by the Flemish Government
through FWO SBO project SNIPPET S007619N. The second author is sponsored by Refinitiv.

This paper was prepared in part for information purposes by the Artificial Intelligence Re-
search group of JPMorgan Chase & Co and its affiliates (“JPMorgan”), and is not a product of
the Research Department of JPMorgan. JPMorgan makes no representation and warranty what-
soever and disclaims all liability, for the completeness, accuracy or reliability of the information
contained herein. This document is not intended as investment research or investment advice, or a
recommendation, offer or solicitation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evaluating the merits of participating
in any transaction, and shall not constitute a solicitation under any jurisdiction or to any person,
if such solicitation under such jurisdiction or to such person would be unlawful. 2021 JPMorgan
Chase & Co. All rights reserved.

References

1. Aly, A., Cong, K., Cozzo, D., Keller, M., Orsini, E., Rotaru, D., Scherer, O., Scholl, P., Smart, N.P., Tanguy, T.,
Wood, T.: SCALE-MAMBA v1.12: Documentation (2021), https://homes.esat.kuleuven.be/~nsmart/SCALE/
Documentation.pdf

2. Bag, S., Hao, F., Shahandashti, S.F., Ray, I.G.: SEAL: Sealed-bid auction without auctioneers. Cryptology ePrint
Archive, Report 2019/1332 (2019), https://eprint.iacr.org/2019/1332

3. Bogetoft, P., Christensen, D.L., Damgard, I., Geisler, M., Jakobsen, T., Krøigaard, M., Nielsen, J.D., Nielsen,
J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.: Multiparty computation goes live. Cryptology ePrint
Archive, Report 2008/068 (2008), http://eprint.iacr.org/2008/068

4. Bogetoft, P., Damg̊ard, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A practical implementation of secure
auctions based on multiparty integer computation. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol.
4107, pp. 142–147. Springer, Heidelberg (Feb / Mar 2006)

25

https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://eprint.iacr.org/2019/1332
http://eprint.iacr.org/2008/068

5. Cartlidge, J., Smart, N.P., Talibi Alaoui, Y.: MPC joins the dark side. In: Galbraith, S.D., Russello, G., Susilo,
W., Gollmann, D., Kirda, E., Liang, Z. (eds.) ASIACCS 19. pp. 148–159. ACM Press (Jul 2019)

6. Cartlidge, J., Smart, N.P., Talibi Alaoui, Y.: Multi-party computation mechanism for anonymous equity block
trading: A secure implementation of Turquoise Plato Uncross. Cryptology ePrint Archive, Report 2020/662
(2020), https://eprint.iacr.org/2020/662

7. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer computation. In: Garay, J.A., Prisco,
R.D. (eds.) SCN 10. LNCS, vol. 6280, pp. 182–199. Springer, Heidelberg (Sep 2010)

8. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Sion, R. (ed.) FC 2010. LNCS, vol.
6052, pp. 35–50. Springer, Heidelberg (Jan 2010)

9. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party
computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 285–304. Springer, Heidelberg (Mar 2006)

10. Damgard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for
dishonest majority – or: Breaking the SPDZ limits. Cryptology ePrint Archive, Report 2012/642 (2012), http:
//eprint.iacr.org/2012/642

11. Galal, H., Youssef, A.: Publicly verifiable and secrecy preserving periodic auctions. In: Workshop on Trusted
Smart Contracts (WTSC) (2021), https://fc21.ifca.ai/wtsc/WTSC21paper2.pdf

12. Hao, F., Zieliński, P.: A 2-round anonymous veto protocol. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe,
M. (eds.) Security Protocols. pp. 202–211. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

13. Jutla, C.S.: Upending stock market structure using secure multi-party computation. Cryptology ePrint Archive,
Report 2015/550 (2015), http://eprint.iacr.org/2015/550

14. Keller, M., Rotaru, D., Smart, N.P., Wood, T.: Reducing communication channels in MPC. In: Catalano, D., De
Prisco, R. (eds.) SCN 18. LNCS, vol. 11035, pp. 181–199. Springer, Heidelberg (Sep 2018)

15. Ngo, N., Massacci, F., Kerschbaum, F., Williams, J.: Practical witness-key-agreement for blockchain-based dark
pools financial trading. In: Financial Cryptography and Data Security 2021 (2021), https://fc21.ifca.ai/

papers/113.pdf

16. Parkes, D.C., Rabin, M.O., Shieber, S.M., Thorpe, C.A.: Practical Secrecy-Preserving, Verifiably Correct and
Trustworthy Auctions, pp. 70–81. Association for Computing Machinery, New York, NY, USA (2006), https:
//doi.org/10.1145/1151454.1151478

17. Petrescu, M., Wedow, M.: Dark pools in European equity markets: emergence, competition and implications.
European Central Bank: Occasional Paper Series, No. 193 (Jul 2017), https://www.ecb.europa.eu/pub/pdf/
scpops/ecb.op193.en.pdf

18. Smart, N.P., Wood, T.: Error detection in monotone span programs with application to communication-efficient
multi-party computation. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 210–229. Springer, Heidelberg
(Mar 2019)

19. Thorpe, C., Parkes, D.C.: Cryptographic securities exchanges. In: Dietrich, S., Dhamija, R. (eds.) FC 2007.
LNCS, vol. 4886, pp. 163–178. Springer, Heidelberg (Feb 2007)

20. Thorpe, C., Parkes, D.C.: Cryptographic combinatorial securities exchanges. In: Dingledine, R., Golle, P. (eds.)
FC 2009. LNCS, vol. 5628, pp. 285–304. Springer, Heidelberg (Feb 2009)

21. Thorpe, C., Willis, S.R.: Cryptographic rule-based trading - (short paper). In: Keromytis, A.D. (ed.) FC 2012.
LNCS, vol. 7397, pp. 65–72. Springer, Heidelberg (Feb / Mar 2012)

22. Zhu, H.: Do Dark Pools Harm Price Discovery? The Review of Financial Studies 27(3), 747–789 (12 2013)

26

https://eprint.iacr.org/2020/662
http://eprint.iacr.org/2012/642
http://eprint.iacr.org/2012/642
https://fc21.ifca.ai/wtsc/WTSC21paper2.pdf
http://eprint.iacr.org/2015/550
https://fc21.ifca.ai/papers/113.pdf
https://fc21.ifca.ai/papers/113.pdf
https://doi.org/10.1145/1151454.1151478
https://doi.org/10.1145/1151454.1151478
https://www.ecb.europa.eu/pub/pdf/scpops/ecb.op193.en.pdf
https://www.ecb.europa.eu/pub/pdf/scpops/ecb.op193.en.pdf

	Kicking-the-Bucket: Fast Privacy-Preserving Trading Using Buckets
	Introduction
	Related work:

	Our Proposed Auction Algorithms
	Bucket match:
	Volume match:
	Intuitive Comparison:

	Secure implementations of the algorithms
	Setup
	Bucket match:
	Bucket-1 match:
	Bucket-2 match:

	Volume match:

	Leakage
	Leakage from partially matched orders:
	Leakage from opening orders:
	Summary

	Runtimes
	Setting:
	Online phase of volume match:
	Online phase of bucket-1 match:
	Online phase of bucket-2 match:
	Summary:

	Background on Multi-Party Computation
	Multiparty Computation
	Shamir Secret Sharing based MPC
	ScaleMamba:
	Basic Arithmetic:
	Comparison:

	The FRand() Functionality

	Secure Variants of the Auction Algorithms
	Experimental Runtimes
	Comparison with the volume matching from ASIACCS:CarSmaTal19:
	Online runtimes comparison

