
Performance Evaluation of Post-Quantum TLS 1.3 on Embedded
Systems

George Tasopoulos
Industrial Systems Institute

R.C. ATHENA
Platani, Patra, Greece
tasopoulos@isi.gr

Jinhui Li
Faculty of Information Technology,

Monash University
Clayton, Victoria, Australia
jlii0204@student.monash.edu

Apostolos P. Fournaris
Industrial Systems Institute

R.C. ATHENA
Platani, Patra, Greece

fournaris@isi.gr

Raymond K. Zhao
Faculty of Information Technology,

Monash University
Clayton, Victoria, Australia
raymond.zhao@monash.edu

Amin Sakzad
Faculty of Information Technology,

Monash University
Clayton, Victoria, Australia
amin.sakzad@monash.edu

Ron Steinfeld
Faculty of Information Technology,

Monash University
Clayton, Victoria, Australia
ron.steinfeld@monash.edu

ABSTRACT
Transport Layer Security (TLS) constitutes one of the most widely
used protocols for securing Internet communication and has found
broad acceptance also in the Internet of Things (IoT) domain. As we
progress towards a security environment resistant against quantum
computer attacks, TLS needs to be transformed in order to support
post-quantum cryptography schemes. However, post-quantum TLS
is still not standardized and its overall performance, especially in
resource constrained, IoT capable, embedded devices is not well
understood. In this paper, we evaluate the time, memory and en-
ergy requirements of a post-quantum variant of TLS version 1.3
(PQ TLS 1.3), by integrating the pqm4 library implementations of
NIST round 3 post-quantum algorithms Kyber, Saber, Dilithium
and Falcon into the popular wolfSSL TLS 1.3 library. In particular,
our experiments focus on low end, resource constrained embed-
ded devices manifested in the ARM Cortex-M4 embedded plat-
form NUCLEO-F439ZI (with hardware cryptographic accelerator)
and NUCLEO-F429ZI (without hardware cryptographic accelera-
tor) boards. These two boards only provide 180MHz clock rate, 2
MB Flash Memory and 256 KB SRAM. To the authors’ knowledge
this is the first thorough time delay, memory usage and energy
consumption PQ TLS 1.3 evaluation using the NIST round 3 finalist
algorithms for resource constrained embedded systems with and
without cryptography hardware acceleration. The paper’s results
show that the post-quantum signatures Dilithium and Falcon and
post-quantum KEMs Kyber and Saber perform in general well in
TLS 1.3 on embedded devices in terms of both TLS handshake time
and energy consumption. There is no significant difference between
the TLS handshake time of Kyber and Saber; However, the hand-
shake time with Falcon is much lower than that with Dilithium. In
addition, hardware cryptographic accelerator for symmetric-key
primitives improves the performances of TLS handshake time by
about 6% on the client side and even by 19% on the server side, on
high security levels.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
cryptography, quantum-safe, network security, TLS 1.3, embedded
systems

1 INTRODUCTION
In 1994, Peter Shor, published a work [31] that describes an algo-
rithm for quantum computers that can solve the factoring problem
and the discrete logarithm problem in polynomial time, the two un-
derlying problems that the current Public Key Infrastructure (PKI)
relies mostly upon, thus making many network communications
used today vulnerable to future quantum attacks. In recent years,
there have been important advances regarding quantum comput-
ers. Many companies, like Google and IBM, and organizations, like
the University of Science and Technology of China (USTC), have
succeeded on making operating quantum computers. Even though,
these computers cannot solve real world, significant, computation
problems, they pave the way for large scale quantum computers by
displaying what is called "quantum supremacy". On 2019, Google
displayed quantum supremacy for the first time on an operational
quantum computer [11].

In response, in 2017 the National Institute of Standards and
Technology of the USA (NIST) initiated a (still ongoing) evalua-
tion and standardization process to select the next generation of
industry-standard public key cryptographic primitives. At the time
of paper’s writing, the competition is in the 3rd round with 7 fi-
nalist algorithms, 4 of which are key exchange algorithms and 3
digital signature algorithms. Currently, NIST round 3 candidates
can be divided into 3 families: lattice-based, code-based and mul-
tivariate. Regarding key exchange there are Kyber, Saber, NTRU,
all of them being lattice-based and Classic McEllice being code-
based. Regarding digital signatures, there are Dilithium and Falcon,
both lattice-based, and Rainbow, being multivariate. Almost all
of the candidates, 5 out of 7, use lattice-based cryptography. The
implementation of code-based cryptography requires significant
memory and sometime high execution times which can be prohibit-
ing adoption reason for resource constrained devices. The recent
cryptanalytic results [13], create some uncertainty about multi-
variate candidates, and moreover, the very large public key size of
Rainbow, make the more balanced lattice-based schemes the most



George Tasopoulos, Jinhui Li, Apostolos P. Fournaris, Raymond K. Zhao, Amin Sakzad, and Ron Steinfeld

promising candidates. Out of the 7 NIST PQC finalist algorithms,
we believe four of them, namely Kyber [15], Saber [20] for key
exchange and Dilithium [17] and Falcon [21] for authentication (all
of which are lattice-based) are the most promising candidates. The
above algorithms are chosen for three reasons. As discussed above,
the lattice-based schemes are the most promising in terms of secu-
rity and efficiency, of all the finalist candidates. Classic McEllice
and Rainbow require more memory and communication costs than
an embedded system typically can afford. NTRU has significantly
slower key generation time than Kyber and Saber.

One of the most popular secure communication protocols on
the Internet is Transfer Layer Security (TLS). Perhaps over 80%
of the Internet traffic is using TLS and for that reason, is one of
the most important protocols to evaluate against quantum attack
threats. One of the main issues of the community is integrating
post-quantum algorithms in TLS and measuring the overheads it
introduces with respect to a number of metrics: execution speed,
memory requirements, communication size, and code size. Due
to the increasing number of constrained devices connecting to
the Internet, forming what is known as the Internet-of-Things
(IoT), the performance of Post-Quantum TLS (PQ TLS) on these
devices is a challenging and important research topic. The time
delay, memory, communication and energy requirements of PQ
TLS are important considerations for resource constrained devices,
and may be critical to their final adoption of PQ TLS. However,
prior works on evaluating the resource requirements of PQ TLS for
embedded devices [16, 26] suffer from various limitations, namely
the restriction to the older version 1.2 of TLS, lack of evaluation of
TLS with lattice-based signature schemes [16], lack of evaluation
on lower-end, resource constrained, modern embedded devices,
restriction to mutually authenticated TLS handshakes [26], and also
lack of energy consumption measurements (we refer the reader to
Sec. 1.2 for further discussion).

1.1 Our Contributions
In this paper, we address the above-mentioned gaps by studying
the execution speed, memory requirements and communication
size, of four post-quantum public-key candidates from the NIST
PQC 3rd round, on TLS 1.3 coupled with two constrained devices.
Specifically, we integrate pqm4 [25] library implementations of the
NIST round 3 candidates’ signature Dilithium and Falcon and post-
quantum key exchange mechanisms (KEM) Kyber and Saber into
the wolfSSL [9] implementation of TLS 1.31; And evaluate these PQ
algorithms’ performance of handshake time delay, memory usage
and energy-consumption under a full TLS 1.3 connection between
a server and a client over a local Ethernet network2, assuming only
the server authenticates to the client. Our main contributions are
as follows:
ARM Cortex-M4 Embedded Platform Integration: We inte-
grate the PQ algorithms library pqm4 [18] to wolfssl for algorithms
Kyber, Saber, Dilithium and Falcon. We also use the lwIP library for
network connectivity and routing functions for our project. Em-
bedded Platform Evaluation of Runtime for PQ TLS 1.3: We
1The source code for the embedded platform is available in the public repository:
https://gitlab.com/g_tasop/pq-wolfssl-for-embedded
2The source code for the PC platform is available in the public repository:
https://gitlab.com/g_tasop/pq-wolfssl-for-pc

measure TLS handshake execution time of both client and server on
both embedded platforms, NUCLEO-F439ZI with hardware acceler-
ator and NUCLEO-F429ZI without hardware accelerator. Hardware
accelerator is used in symmetric key crypto primitives like en-
cryption and hash used in TLS. The PQ cryptography algorithms
themselves, internally use SHA-3 [19] which is implemented in
software without acceleration. We found the performance of PQ
TLS1.3 with Kyber and Saber is similar; And PQ TSL1.3 with Falcon
is less costly than PQ TLS1.3 with Dilithium in terms of execution
time on client side while Dilithium is less costly than Falcon on
server side.

Embedded Platform Evaluation of Energy for PQ TLS 1.3:
We also measure the handshake energy consumption of the client
on the embedded platform NUCLEO-F429ZI. We introduced the
expansion board X-NUCLEO-LPM01A (can perform static mea-
surement up to 200 mA and dynamic measurement up to 50 mA)
to capture the the energy consumption of NUCLEO-F429ZI. Our
results show the average current consumption of TLS sessions es-
tablishment process is slightly affected by employed cryptography
algorithms.

Main Findings Summary. The results of our evaluations lead
to the following main findings for our post-quantum TLS pro-
tocol versus the baseline quantum-insecure TLS protocol (using
ECDHE/ECDSA): the server handshake run-time overheads of the
post-quantum protocols are approximately 1.6 times (resp. 5.1 times)
with Dilithium (resp. Falcon) on authentication, both for 128-bit
quantum security i.e. NIST level 1 and 2.3 times (resp. 10.6 times) for
192-bit quantum security i.e. NIST level 3 Dilithium signature (resp.
256-bit quantum security i.e. NIST level 5 Falcon signature). On
the other hand, the client handshake run-time of the post-quantum
protocols are approximately 1.25 times for Dilithium authentication
(resp. 2.2 times for Falcon authentication) faster for NIST level 1
and 1.1 times slower and 1.5 times faster for NIST level 3 and level
5 respectively for Dilithium and Falcon. The hardware acceleration
typically decreased handshake time by about 6% on the client side
while on the server-side can decrease it up to 19%. We also found
the RAM memory usage overhead to be approximately 33 times for
Dilithium (resp. 20 times for Falcon) for NIST level 1.

1.2 Related Work
Prior to the start of NIST competition, there was a bloom of research
in the field of post-quantum cryptography. Aside from the post-
quantum algorithms that were developed for the competition, other
research emerged in recent years (and in particular after the start of
NIST standardisation process) focused on prototyping, integrating
in popular protocols, measuring the speed, memory requirements
and other metrics of these post-quantum algorithms.

PQ TLS on Embedded Platforms. In the work of Bürstinghaus-
Steinbach K. et al. [16], an implementation of TLSwith post-quantum
algorithms is used to takemetrics on embedded devices, but an older
version of TLS is used (TLS 1.2) and moreover the signature scheme
used is hash-based (SPHINCS+) [12] rather than lattice-based. An-
other work by Paul et al.[27] introduces a migration strategy to-
wards post-quantum authentication by using post-quantum algo-
rithms in mixed certificate chains and also evaluates post-quantum
TLS 1.3 performance on a server, on a PC and on a Raspberry Pi. The



Performance Evaluation of Post-Quantum TLS 1.3 on Embedded Systems

Raspberry Pi device used in [27] has an ARM Cortex-A53 processor
running at 1.2 GHz, a significantly higher end embedded device
than the Cortex-M4 at 180 MHz used in our evaluation. Moreover,
Paul et al. evaluated only a mutually authenticated TLS 1.3 hand-
shake on both local and remote network connections where both
client and server authenticate to each other, whereas our work
focuses on server-only authentication (a typical scenario in IoT
devices) on a local network.

PQ TLS on Other Platforms. PQClean [6] focuses on the pro-
totyping of post-quantum algorithms. It tries to collect or write
standalone implementations of post-quantum algorithms without
any external dependencies. Open Quantum Safe (OQS) [33] project,
has developed a cryptographic library, named liboqs, that focuses
on post-quantum algorithms. By leveraging the developed library,
this project integrates post-quantum algorithms to popular libraries
that implements security protocols, like OpenSSL [5] and OpenSSH
[4], making it possible to evaluate or even use these protocols with
post-quantum algorithms in real-world scenarios. On the work of
Sikeridis D. et al. [32], the OpenSSL and OpenSSH forks of OQS are
used to measure the overhead that is introduced with post-quantum
integration on these two protocols on realistic network conditions.
Both this work and [27] use TLS 1.3 with post-quantum algorithms,
but target medium to high resource systems.

Standalone PQ Algorithm Implementations for Embedded Plat-
forms. Regarding post-quantum cryptography on embedded sys-
tems, a project named mupq is developed that provides optimized
libraries targeting a number of embedded processors or even FPGAs.
For example, mupq’s library pqm4 [25] is implementing and col-
lecting code for all the submissions of NIST PQC competition, with
a focus on optimizations for the Cortex-M4 series of processors.

To the authors knowledge, this paper constitutes the first sys-
tematic and thorough architectural adaptation, implementation and
performance evaluation of a Post-Quantum TLS 1.3 (PQ TLS 1.3),
based on the popular wolfSSL library, that takes into account the
latest NIST PQC competition finalists algorithms and explicitly
targets low resource embedded systems.

Structure: In Section 2, we review background knowledge needed
for this work. In Section 3, we describe the architecture of the li-
brary we use as well as the architectural changes we did to make
TLS work with post-quantum algorithms and we discuss the imple-
mentation details. In Section 4, we display our measurements from
our evaluations and finally in Section 5, we conclude this paper.

2 BACKGROUND
2.1 TLS Protocol
One of themajor security protocols that are threatened by a possible
quantum attack, is the Transport Layer Security (TLS) protocol. TLS
is the most widely used protocol for secure communications on
the Internet, making it a de facto security standard. HTTPS for
secure website transfer [29], secure connection to mail servers
[22] as well as secure Internet access for smartphone apps [28],
are some of the many use cases of TLS. TLS version 1.3 [30] has
been standardised in 2018 and is currently offering many important
changes over the previous version, TLS 1.2. With a focus on strong
security, by terminating support for deprecated and potentially

dangerous cryptography functions, and on speed, by eliminating a
whole round-trip in comparison to the previous version, TLS 1.3 is
an important upgrade on the protocol itself. The adoption of TLS
1.3 is in good levels, due to the high centralization of the Internet
and to the long period of the drafts evaluation [23]. In fact, the
Internet Society Pulse reports nearly 60% adoption of TLS 1.3 by the
top 1, 000 websites globally [10].

TLS is a cryptographic protocol designed to provide secure com-
munication over a computer network. It is typically considered
among the application layer, in the Internet protocol stack, as the
protocol that provides privacy and data integrity between two par-
ties. TLS consists of two primary components: a handshake protocol
that authenticates the communicating parties, negotiates crypto-
graphic modes and parameters, and establishes shared keying ma-
terial to create a secure session (secure communication channel)
and a record protocol that uses the parameters established by the
handshake protocol to protect traffic between the securely com-
municating peers. The record protocol, which is located above the
transport layer and uses the Transmission Control Protocol (TCP),
will not be directly affected by quantum attacks since it uses sym-
metric key ciphers and it can be easily modified to be completely
quantum safe. This is in contrast to the handshake protocol, which
makes heavy use of public key cryptography, and hence will be
directly affected and threatened by quantum cryptanalytic attacks.
TLS 1.3 uses public key cryptography for two main reasons. Key
exchange, which mostly uses Diffie-Hellman (DH) over Elliptic
Curves (EC) or RSA and Digital Signatures, which use DSA over
Elliptic Curves or RSA. For this reason, an integration of quantum
resistant public key cryptography algorithms must be made, for
both the key exchange and the digital signatures.

On TLS 1.3, the handshake between two parties, a client and
a server, begins with the client sending the first TLS 1.3 message,
ClientHello, to the server. This message typically contains a client
random number, the client TLS version, a list of Cipher Suites and a
series of extensions with additional information like: Server Name,
Supported Groups, Supported Signature Algorithms, Key Share and
the Supported Versions. The “Supported Groups" extension con-
tains all the key exchange methods and the extension “Supported
Signature Algorithms" contains all the digital signature algorithms
that are supported by the client. In addition, Key Share contains an
ephemeral ECDH or RSA public key. TLS 1.3 makes significant use
of the extensions field, for example if the negotiated version of TLS
is version 1.3, it is indicated on “Supported Version" extension, as
the original entry “Supported Version" is set to TLS 1.2, to eliminate
compatibility issues with middleboxes. The server then replies with
a ServerHello message, which contains a server random number,
the selected Cipher Suite using the client’s list of Cipher Suites
and the server’s preferences, the negotiated Protocol Version and
the server’s Key Share. From now on, every message that is ex-
changed is encrypted. The server sends the “EncryptedExtensions”
message which contains the remaining extensions. Then, the server
sends the Server Certificate, containing its digital certificate and
the certificate chain up to a root Certificate Authority (CA). Then,
the server sends the “CertificateVerify” message which basically,
contains a digital signature over a hash of all handshake messages
exchanged, starting at ClientHello and up to, but not including, this



George Tasopoulos, Jinhui Li, Apostolos P. Fournaris, Raymond K. Zhao, Amin Sakzad, and Ron Steinfeld

message itself. Finally, the server sends the “ServerHandshakeFin-
ished” message, indicating that the handshake is complete by the
server side.

In the above handshake protocol description that is adopted in
this paper’s analysis and overall PQ TLS 1.3 evaluation, only the
server is authenticated, so the client now has all the necessary
information to produce the final master key and can also verify
the certificate as well as the signature of the server. The client,
finally send the “ClientHandshakeFinished” message that informs
the server that the handshake is now complete by the client side.

2.2 TLS Implementations for Embedded
Systems and Beyond

When the NIST PQC competition was in the 2nd round, NIST urged
the community to implement the post-quantum algorithms on em-
bedded systems and specifically on ARM processors like Cortex-M4
[1]. So, in the summer of 2019, a paper was published that collected
and implemented all the post-quantum algorithm implementations
from the 2nd round of the competition specifically for Cortex-M4,
creating the so-called pqm4 library [25]. These implementations are
based on the “Reference Implementations" of the official releases
of the algorithms but with a focus on speed and size and using
optimized assembly code for the Cortex-M4 processor. As the com-
petition advances, the pqm4 library is regularly updated with new
versions of the code or with any changes the algorithms themselves
introduce. All these updates are being kept in an open-source git
repository available online at [24].

There are numerous implementations of the TLS protocol cover-
ing the different needs of computing devices. There are open-source
and closed-source implementations, implementations targeting PCs,
smartphones and of course, embedded systems. The Open Quantum
Safe [33] project aiming on developing quantum-resistant software
is focused on developing an open-source library, named liboqs, that
implements post-quantum cryptography and is embedded in pop-
ular, widely used, TLS libraries like OpenSSL [5], thus providing
post-quantum cryptographic protocols. OpenSSL is a very famous
implementation of the TLS protocol and is used by the majority
of servers that support HTTPS. So the OQS project, created as a
fork of the OpenSSL project that is using liboqs, to provide a fully
functional TLS implementation using post-quantum cryptography.
Unfortunately, OpenSSL targets PCs and servers, making it unsuit-
able to be ported on resource constrained embedded platforms.

Regarding TLS open-source solutions for embedded systems, the
most famous and widely used implementations are: Mbed TLS [3]
and wolfSSL [8, 9]. With Mbed TLS lacking support for TLS 1.3,
wolfSSL is the only option to be adopted in this paper’s research
work. WolfSSL is a library that implements the TLS protocol with
“traditional" cryptography, without having immediate support for
post-quantum cryptography. As of version 4.7.0, wolfSSL offer to
the developers the interfaces of including local implementation of
the NTRU quantum-resistant algorithm, but lacks support for any
other PQC algorithms. In this paper, wolfSSL library was modified
so it can use the four selected post-quantum algorithms from NIST
PQC 3rd round competition; namely Kyber, Saber, Dilithium and
Falcon.

PQ KEM related operation { } Encrypted Message
PQ Authentication related operation

Figure 1: Post-quantum TLS handshake messages

2.3 WolfSSL
WolfSSL [9], the TLS library targeting embedded platforms, gener-
ally consists of three major components:wolfCrypt, a cryptographic
library, wolfSSL, the TLS protocol code along with all associated
functionality and a set of utilities: test programs, benchmarks, and
others. More information on these components can be found on
Appendix A.

3 ARCHITECTURE AND IMPLEMENTATION
In order for the TLS protocol to operate with post-quantum algo-
rithms, the first action to be performed is to integrate the pqm4
[25] implementations of Kyber, Saber, Dilithium and Falcon in the
wolfSSL code. Pqm4 provides implementations of these algorithms
that are optimized for our target microcontroller, ARM Cortex-M4.
Then, we used lwIP library [18] to build the network layer for our
implementation; LwIP library provides the Ethernet connection
and routing functions for our project. Apart from the code itself, the
PQ algorithms require the usage of some cryptographic primitives.
Specifically, all of the adopted algorithms make use of the Keccak
primitives, SHA-3 and SHAKE-256 [19]. The provided implementa-
tions of these algorithms from the mupq project has been adopted
in our work (a simple, C code implementation).

3.1 WolfSSL Post-Quantum Adaptation
In order to make the wolfSSL TLS 1.3 messages on the handshake
layer post-quantum compatible, architectural adaptations/adjustments
have been made in the wolfSSL library on the Extension “Supported
Groups", on the Extension “Signature Algorithms", on supporting



Performance Evaluation of Post-Quantum TLS 1.3 on Embedded Systems

Key Encapsulation Mechanisms and supporting Post-Quantum Dig-
ital signatures and Certificates.

In Figure 1, the overall post-quantum adapted handshake mes-
sage exchanges are presented in detail indicating the PQ operations
that are made in each phase of the TLS handshake. One important
thing to note, is that wolfSSL, when acting as a server using RSA,
immediately after creating a signature, runs the Verify operation
to check for signature faults. We mimicked this behaviour on our
PQ TLS adaptation. Although it may be redundant, it only adds a
minor overhead on our measurements.

3.1.1 Supported Groups. The ClientHello message, the first mes-
sage that the client sends to initiate the handshake, consists of
several fields, one of which is the Extensions field. In this field, the
client extends the information provided by the rest of the Clien-
tHello fields and plays a crucial role in TLS 1.3. One of the fields
among the Extension field, as shown in Figure 1, is the field Sup-
ported Groups. In this field, the client sends a list of key exchange
algorithms, as encoded identifiers (codepoints), in order of prefer-
ence, so that the server can select one of them to be used in the
handshake. These identifiers are called, Named Groups, and are de-
fined for each supported algorithm by the protocol itself. In order to
use post-quantum algorithms, we have introduced our own Named
Groups. In order for the wolfSSL library to be inter-operable with
other popular libraries, we decided to choose the codepoints that
are being used by OQS’s fork of OpenSSL [5]. The codepoints for
the post-quantum algorithms are shown in Table 1 along with some
traditional algorithms’ codepoints.

3.1.2 Signature Algorithms. Another useful field on the Extension
field, is the “Signature Algorithms” field. In this field, the client
provides its preference on the signature algorithms that it supports,
regarding the CertificateVerify field. This means that this signature
algorithm will be used to sign the transcript of the data exchanged
by the server and to be verified by the client. Similar to the extension
“Supported Groups”, apart from the predefined codepoints for each
algorithm we introduce our own codepoints for the post-quantum
digital signature algorithms that the PQ TLS wolfSSL can support.
The codepoints that have been added are compliant with the OQS’s
fork of OpenSSL [5], as shown in Table 1 along with with some of
the traditional algorithms’ codepoints.

3.1.3 Key EncapsulationMechanism Support/Adaption. All the post-
quantum algorithms that participating in the NIST competition are
Key Encapsulation Mechanism (KEM) schemes. However, the key
exchange method that is used in TLS is the traditional (Elliptic
Curve) Diffie-Hellman Key Exchange. In order to adapt the key
exchange to the post-quantum environment, in our proposed work
the key exchange mechanism of TLS 1.3 is transformed into a KEM
scheme through some architectural adaptation. We used the propo-
sition introduced in the Crystals-Kyber key exchange scheme [15]
that is also presented below:

Initially, the client generates a key pair and sends the public key
to the server with the ClientHello message. The server, using the
client’s public key, calls the Encapsulation function that produces a
Ciphertext, that is sent to the client with the ServerHello message,
and a Shared Secret, that the server keeps, as it is the actual shared

key. The client, upon receiving the Ciphertext calls the Decapsula-
tion function, together with its Secret Key and produces the same
Shared Secret as the server. Now, both the client and the server,
share the same key and have completed the key exchange scheme.
These exchanged messages are shown in Figure 1 as the Ephemeral
PQ Key Generate, PQ Encapsulate and PQ Decapsulate operations.

3.1.4 Digital Certificates Support. Another important object that
needs to be modified in order for TLS to work with post-quantum
algorithms, is the digital certificate. These are objects that bound
an entity, for example a server, with its public key by introducing a
signature from a trusted third party. This can occur repeatedly by
intermediate third parties, forming what is known as a “chain of
certificates”. The X.509 [14] is the standard that digital certificates
usually follow on protocols like TLS. It contains useful information
about the entity, for example: the entity’s name, email, web address
etc, the issue and expiration date of the certificate, the public key
of the owner, the digital signature algorithm code that is used, the
digital signature itself, etc.

For the production of these digital certificates using post-quantum
cryptographic algorithms, theOpenQuantum Safe’s fork of OpenSSL
[5] was used. Through this library we generated digital certificates
using the OpenSSL’s API with support for all the post-quantum
algorithms that are evaluated in this paper. Our goal is to produce a
digital certificate for the server, as it is the only one to authenticate
itself. To achieve that, we introduced a base “Certificate Authority”
(CA) that can issue other certificates making a chain of trust up
until the server. In our paper, this chain is of length two, as the
server’s certificate is directly signed by the CA. To accomplish this,
we created a digital certificate for the CA, which is self-signed and
then we produced a digital certificate for the server which is then
signed by the CA. Thus, a server certificate is produced, verifiable
by our basic CA.

For the sake of simplicity, all the certificates in the chain employ
the same signature algorithm each time. This is also the case for
both the certificate’s signature and the signing operation on the
CertificateVerify message. For example, when measuring the perfor-
mance of Dilithium2, CA’s certificate and server’s certificate have
Dilithium2 signatures and the CertificateVerify message is signed
using Dilithium2, as well.

3.2 Brief Experiment setup description
In order for the PQ TLS to be evaluated, we used a series of tools
and two embedded systems for WolfSSL to run on, as well as a PC
acting as a remote device for the boards to connect to through an
Ethernet based network. In the evaluation experiments we perform
a series of TLS connections and statistics are gathered using modi-
fied Wolfssl benchmark programs. For a thorough description on
the used evaluation setup we refer the reader to Appendix B.

4 MEASUREMENTS AND EVALUATION
In this section we discuss the measurements on standalone PQ
algorithm performance, comparing them with the traditional algo-
rithms and with each other. Also, in this section the PQ TLS 1.3
evaluation is made and the TLS handshake time measurements are
presented and discussed using various combinations of PQ KEM



George Tasopoulos, Jinhui Li, Apostolos P. Fournaris, Raymond K. Zhao, Amin Sakzad, and Ron Steinfeld

Table 1: Traditional and Post-quantum Primitives

Algorithm NIST Level Codepoint Public Key
(bytes)

Private Key
(bytes)

Ciphertext
(bytes)

Key Generate
(ms)

Encapsulate
(ms)

Decapsulate
(ms)

FFDHE 1 0 0x0100 256 256 256 203.920 204.080 4 -
ECDHE 2 0 0x0017 32 32 32 8.428 17.687 4 -
Kyber512 1 0x023A 800 1632 768 9.420 7.877 4.721
LightSaber 1 0x0218 672 1568 736 11.018 7.115 4.067
Kyber768 3 0x023C 1184 2400 1088 12.224 11.412 7.924
Saber 3 0x0219 992 2304 1088 13.650 10.129 6.824
Kyber1024 5 0x023D 1568 3168 1568 16.392 15.797 12.067
FireSaber 5 0x021A 1312 3040 1472 16.779 13.693 10.154

Algorithm NIST Level Codepoint Public Key
(bytes)

Private Key
(bytes)

Signature
(bytes)

Key Generate
(ms)

Sign
(ms)

Verify
(ms)

RSA 3 0 0x0285 256 256 256 12.853/450 5 448.250 12.500
ECDSA 2 0 0x0206 32 32 32 8.428 12.305 25.193
Dilithium2 1 0xFEA0 1312 2528 2420 16.508 34.130 (11/172) 6 13.793
Dilithium3 3 0xFEA3 1952 4000 3293 27.438 55.810 (23/270) 6 23.669
Falcon512 1 0xFE0B 897 1281 666 1506.429 244.293 3.407
Falcon1024 5 0xFE0E 1793 2305 1280 3404.434 528.484 7.145

1 3072-bit, 2 secp256r1 curve, 3 2048-bit, 4 key agreement time, 5 public / private key generation time, 6 average (min/max) of execution time
over 1000 signatures.

and PQ authentication algorithms. Furthermore, the communica-
tion size that a PQ TLS handshake needs and the overall memory
requirements of different PQ TLS combinations are also discussed
in this section. Finally, energy consumption measururements of
the TLS handshake using various PQ algorithm combinations are
presented.

4.1 Post-quantum Cryptographic Algorithms
Using the tools provided by the wolfSSL library, the performance
in terms of speed for the post-quantum algorithms, Kyber, Saber,
Dilithium and Falcon can be measured. In particular, the wolfcrypt-
benchmark program has been used in order to measure the perfor-
mance of all the cryptographic functions in wolfCrypt, including
public-key algorithms, symmetric algorithms, hash and MAC algo-
rithms etc. Also, by making the necessary changes the wolfcrypt-
benchmark program functionality has been extended in order to
include the performance evaluation of the employed post-quantum
algorithms. Note that the wolfcrypt-benchmark tool is using the un-
derlying Real-time Clock (RTC) hardware module of the embedded
system to measure time with a millisecond accuracy. In addition
to the PQ algorithms, we measured the performance of four tra-
ditional algorithms, as points of reference. RSA-2048 and ECDSA
with curve secp256r1 are used for benchmarking traditional authen-
tication and Finite Field Diffie-Hellman Ephemeral (FFDHE)-3072
and ECDHE with curve secp256r1 for traditional key exchange. It
should be noted that every cryptographic algorithm operation has
been executed for 10 seconds and the average execution time of all
executions is calculated and reported as a result.

In Table 1, the measured execution time on our target platform
is presented, including each algorithm’s public key and secret key
sizes, cipher-text sizes for the KEMs and signature size for the
authentication algorithms of both the post-quantum and the tra-
ditional algorithms. In Table 1 the claimed security level of each
algorithm as defined by NIST is also reported. Level I, means that
an attack on that parameter set would require the same or more

resources as a key search on AES 128, Level III would require the
same or more resource as a key search on AES 192 and Level V
would require the same or more resource as a key search on AES
256. Level 0 means that this algorithm offers no quantum security.
NIST, also defines security levels II and IV, but none of the pqm4
evaluated algorithms offer a parameter set of that security level.
For comparison purposes it must be noted that the security level
of RSA 2048 against classical attacks is 112-bits and the classical
security level of FFDHE 3072 and curve secp256r1 is 128 bits.

4.1.1 Comparison Between Post-quantum and Traditional Primi-
tives. As it can be observed from Table 1, the Sign speed of all
PQ authentication algorithms outperforms RSA’s Sign algorithm,
except from Falcon1024 that is just 17.90% slower. Also it is clear
that ECDSA’s Sign operation is faster than both Dilithium and Fal-
con. In fact Dilithium2’s Sign algorithm is ~2.8 times slower than
ECDSA’s, while the rest of the Sign algorithms are slower by several
orders of magnitude, like Falcon1024 that is ~43 times slower. We
note that the time required for the Dilithium Sign operation varied
heavily, the minimum being 11ms and 23ms and the max being 172
ms and 270 ms for Dilithium2 and Dilithium3 respectively. These
measurements were taken after performing 1000 operations and
calculating the average time execution delay, displayed in Table 1
along with the minimum and maximum time delay appearing in
these 1000 executions (shown in the parenthesis). The variation in
execution time for Dilithium is expected since the NIST round 3
Dilithium digital signature implementation in the pqm4 library is
not providing constant time execution.

Regarding the Verify algorithm, PQ algorithms perform much
better than their Sign operation. It has been observed that the Verify
speed of Falcon512 and Falcon1024 are ~3.6 times and ~1.7 times
faster than the, already fast, RSA’s Verify operation respectively.
Also, Dilithium2 offers approximately the same Verify speed as
RSA’s Verify operation and Dilithium3 is ~1.89 times slower. As for
the ECDSA’s Verify operation, it is outperformed by both Dilithium,
on security levels 1 and 3 and Falcon, on security levels 1 and 5.



Performance Evaluation of Post-Quantum TLS 1.3 on Embedded Systems

Since PQ algorithms offer KEM functionality that differ from
the classic key exchange approaches (e.g. using Diffie Hellman
schemes), comparisons between traditional key exchange schemes
and PQ KEM schemes can not be made directly. For a fair com-
parison, since the wolfssl-benchmark tool is capable of measuring
the Key Generation and Key Agreement time separately for the
traditional algorithms, we assume that one Encapsulation and one
Decapsulation, for the PQ algorithms, is the equivalent measure-
ment of "Key Agreement". Using that rationale, it can be observed
that all post-quantum KEMs, on all security levels, are performing
better than the traditional FFDHE 3072. It can also be observed that
Key Generation time of post-quantum KEMs is comparable with
the ECDHE Key Generate, the fastest being Kyber512 Key Generate
that is ~12% slower than ECDHE Key Generate and the slowest
being FireSaber Key Generate, that is ~99% slower than ECDHE Key
Generate. However, it was also observed that the time that these
PQ algorithms need for one Encapsulation and one Decapsulation
is very fast and comparable to the Key Agreement time of ECDHE,
sometimes even faster. We see that ECDHE’s Key Agreement time
delay is 17.687 ms while the total time of one Encapsulation and one
Decapsulation operations on Kyber512, is 12.598 ms, ~29% faster
than ECDHE. Even on higher security levels, like Kyber1024, which
has the slowest Encapsulation/Decapsulation speed among all the
PQ KEMs in our experiment, Key Agreement time is just 57% slower.

From the above measurements and discussion, it can be con-
cluded that the KEM schemes included in our evaluation, have
similar performance in term of speed to the traditional key ex-
change schemes. The most significant PQ primitive computation
overhead is introduced by Falcon’s Sign time and to a lesser extent
by Dilithium’s Sign time.

4.1.2 Comparison Between Post-quantum Primitives. Regarding the
performance differences between the PQ KEM algorithms, it can be
observed that Kyber and Saber have similar Encapsulation and De-
capsulation speed, as they are alike in their designs and implemen-
tations. It is worth mentioning that Saber scales better in higher se-
curity levels. While Kyber and Saber Encapsulation/Decapsulation
on security level 1, perform approximately the same in terms of the
speed, on security level 3, Saber Encapsulation and Decapsulation
are ~11% and ~13% faster than Kyber and on security level 5, Saber
Encapsulation and Decapsulation are ~13% and ~16% faster than
Kyber, respectively.

Regarding PQ authentication, the performance differences be-
tween our evaluated algorithms are more significant. Although
Dilithium and Falcon offer the same security level (at security level
1), it is observed that Dilithium’s Sign operation is significantly
faster than Falcon’s, Falcon512’s Sign being ~7.2 times slower than
Dilithium2’s Sign. Simlarly, Falcon1024’s Sign is ~9.5 times slower
than Dilithium3’s Sign at security levels 5 and 3 respectively. On
the other hand, Falcon’s Verify operation is considerably faster than
Dilithium’s. Falcon512 verifies ~4 times faster than Dilithium2 and
Falcon1024 verifies ~3.3 times faster than Dilithium3. Note that Fal-
con1024 is on NIST’s security level 5 compared to Dilithium3 that
is on level 3. Dilithium specifications offer security level 5 support,
but unfortunately pqm4 has not included such a Dilithium version
in its implementations, probably due to its very large memory re-
quirements. Digital Signature Key generation time delays are also

shown on Table 1 but are not discussed further in this paper as they
play no active role on the TLS handshake.

4.1.3 Comparison of Key and Signature Sizes. Key and cipher-text
sizes, as well as in public key and signature sizes of the post-
quantum algorithms are particularly important in a PQ TLS 1.3
implementation, because they are related to the amount of data
being transferred over the network when the keys and ciphertexts
are exchanged, in the Key Exchange phase and when the certificates
and “CertificateVerify" message are being transmitted, later in the
protocol. As expected, both KEM and signature schemes have sizes
that are much larger (an order of magnitude larger) than those of
traditional algorithms. ECDHE keys and ciphertexts are just 32
bytes while the smallest key in PQ KEMs is LightSaber’s public key,
which has 672 bytes. The same holds for PQ authentication, with
ECDSA’s public key being just 32 bytes and the smallest public key
size in PQ algorithms is Falcon512’s which is 897 byte.

It can be observed that Falcon has smaller sizes than Dilithium re-
garding both public keys and signatures. Falcon512 and Falcon1024
public keys are ~32% and ~8% smaller thanDilithium2 andDilithium3
public keys, respectively. The results are even better for Falcon re-
garding signature sizes, with Falcon512 and Falcon1024 signatures
being ~3.6 and ~2.6 times smaller than Dilithium2 and Dilithium3
signatures, respectively. In Figure 4, Public Key + Signature size
in bytes are presented, for each of the algorithms being evaluated.
This size metric, can be used for fair comparisons because it is the
defining size of the certificates each algorithm will produce. Secret
key sizes are of little importance to PQ TLS 1.3, as the secret key is
never transmitted over the network, so we are not evaluating them
any further in the paper.

Public key and signature sizes together with the overhead the
Sign operation is introducing are the two main drawbacks of the
evaluated post-quantum algorithms when compared to the tradi-
tional algorithms that are used currently in TLS 1.3.

4.2 Connection Time Delay of PQ TLS 1.3
Having implemented all the architectural changes described in
previous sections and using the experimental setup described in
subsection 3.2, in this Section we evaluate the TLS connection es-
tablishment using post-quantum algorithms on a local Ethernet
network, regarding both their key exchange and the authentica-
tion. In this subsection we measure the performance of the post-
quantum TLS 1.3 protocol and compare it with the performance
of the traditional TLS 1.3, as well as to evaluate the PQ TLS 1.3 be-
haviour using different PQ algorithms. To have a point of reference,
ECDSA+ECDHE and RSA+ECDHE measurements are used as the
two baselines for our comparisons.

For the performance evaluation of the post-quantum TLS, we use
the wolfssl-tls-bench program, provided by the wolfSSL library itself.
This program originally simulated a client and a server on the same
board, connecting to each other using in-memory transfers. The
program was modified in order to benchmark individually either
a client or a server that is connected to a remote machine. While
wolfssl-tls-bench makes a number of connections, it simultaneously
takes a series of measurements. More specifically, using a real-time
operating system like FreeRTOS, wolfssl-tls-bench creates either a
client thread or a server thread and it initiates the TLS handshake.



George Tasopoulos, Jinhui Li, Apostolos P. Fournaris, Raymond K. Zhao, Amin Sakzad, and Ron Steinfeld

Table 2: PQ TLS 1.3 Handshake Time

Dig. Sign. Alg. Key Exch. Alg. Stack Usage
(bytes)

.bss Usage
(bytes)

Comm. Size
(bytes)

With HW acc.
(ms)

Without HW acc.
(ms) Notation

client server client server

RSA 1 ECDHE 2 2368 0 2069 71.839 508.83 75.667 549.320 RSA+ECDHE
ECDSA 2 ECDHE 2 2368 0 1312 94.419 53.917 98.538 57.313 ECDSA+ECDHE

Dilithium2 Kyber512 52 472 0 8319 74.220 83.184 79.511 90.961 Dil1+Kyb1
Dilithium2 LightSaber 52 472 0 8159 75.224 82.426 79.652 90.929 Dil1+Sab1
Falcon512 Kyber512 3800 39 936 4365 42.964 274.382 43.809 277.910 Falc1+Kyb1
Falcon512 LightSaber 7968 39 936 4199 43.721 273.392 43.212 276.405 Falc1+Sab1

Dilithium3 Kyber768 80 120 0 11 409 107.992 125.071 115.538 140.414 Dil3+Kyb3
Dilithium3 Saber 80 120 0 11 217 108.143 125.055 114.684 140.224 Dil3+Sab3
Falcon1024 Kyber768 4304 79 872 7191 63.822 574.385 66.455 582.436 Falc5+Kyb3
Falcon1024 Saber 8992 79 872 6996 63.692 572.936 65.508 583.051 Falc5+Sab3

Dilithium3 Kyber1024 80 120 0 12 273 117.579 129.98 125.357 153.881 Dil3+Kyb5
Dilithium3 FireSaber 80 120 0 11 921 115.403 124.858 121.735 148.723 Dil3+Sab5
Falcon1024 Kyber1024 4816 79 872 8052 73.213 578.714 68.200 587.333 Falc5+Kyb5
Falcon1024 FireSaber 10 016 79 872 7702 70.703 576.648 65.211 585.846 Falc5+Sab5

1 2048-bit, 2 secp256r1 curve

EC
DS
A+
EC
DH

E

RS
A+
EC
DH

E

Di
l1+
Ky
b1

Di
l1+
Sab

1

Fal
c1+

Ky
b1

Fal
c1+

Sab
1

Di
l3+
Ky
b3

Di
l3+
Sab

3

Fal
c5+

Ky
b3

Fal
c5+

Sab
3

Di
l3+
Ky
b5

Di
l3+
Sab

5

Fal
c5+

Ky
b5

Fal
c5+

Sab
5

50
100
150
200
250
300
350
400
450
500
550
600

Co
nn

ec
tT

im
e
(m

s)

HW-client SW-client HW-server SW-server

Figure 2: Average handshake time with TLS_AES_256_GCM_SHA384

On another machine, in our case a PC on the same local network,
the same wolfssl-tls-bench program is executed as the other end
of the TLS connection and the TLS 1.3 handshake is initiated. Af-
ter the handshake is complete the benchmarked client and server
exchange a number of bytes, the “application data". When they
reach the data exchange limit (defined by the evaluator), both the
server and the client, terminate the TLS connection and the under-
lying TCP socket. Then, the wolfssl-tls-bench program re-starts the
TCP connection, the TLS handshake and re-exchanges “application
data" etc. Connection benchmarking lasts for a specified number
of seconds by the evaluator. During this time frame the benchmark
program collects statistics and after the end of this time frame all
connections are closed and statistics are printed including the num-
ber of handshakes during the time frame, the amount of application
data that was exchanged, the time spent in handshaking etc. In the
paper’s benchmarking, the tests are running for 50 seconds and the
“application data" that are exchanged in each session, are 4096 bytes
long. As we are interested only in the TLS handshake metrics, we

focus on the “Average Connection Time”, that is the average time
spent on handshaking of all the connections that were established
at the specified time frame. We also, have performed tests for all the
available Cipher Suites of the application data in TLS transmissions,
that describe the symmetric encryption, the hash and MAC algo-
rithms that have been used. However, as the statistics variations of
the different Cipher Suites in the TLS record layer are trivial and
unrelated to the PQ algorithms evaluation, in the paper, we dis-
play the statistics when using only the TLS13-AES256-GCM-SHA384
Cipher Suite.

It should be noted that for simplicity, the client and the server
have been configured to agree upon the public-key algorithms
without an extra round-trip. In other words, the key share that the
client sends with “ClientHello” message contains the key of a valid
PQ key exchange group that the server can support and it is on
the top of the list of preferences. The Public key algorithms (PQ or
traditional) are chosen at compile-time. In Table 2, the experiments’



Performance Evaluation of Post-Quantum TLS 1.3 on Embedded Systems

EC
DS
A+
EC
DH

E

RS
A+
EC
DH

E

Di
l1+
Ky
b1

Di
l1+
Sab

1

Fal
c1+

Ky
b1

Fal
c1+

Sab
1

Di
l3+
Ky
b3

Di
l3+
Sab

3

Fal
c5+

Ky
b3

Fal
c5+

Sab
3

Di
l3+
Ky
b5

Di
l3+
Sab

5

Fal
c5+

Ky
b5

Fal
c5+

Sab
5

0.2

0.4

0.6

0.8

1

1.2

·104
To

ta
lC

om
m
un

ic
at
io
n
ha
nd

sh
ak
e
da
ta

(b
yt
es
)

Figure 3: Communication sizes

measurement/results on NULCEO-F439ZI and on NUCLEO-F429ZI,
are presented in detail.

4.2.1 Comparison Between Post-quantum and Traditional Algo-
rithms. As shown in Figure 1 the client and server, perform dif-
ferent operations in TLS 1.3. Regarding the Key Exchange phase,
the client performs a Key Generation and a Decapsulation oper-
ation while the server performs an Encapsulation. Regarding the
Authentication phase, and specifically the experimental setup we
use where the client is not authenticated and the certificate chain
has depth 2, the clients needs to perform two Verify operations, one
for the Certificate and one for the CertificateVerify message. The
server, on the other hand, needs to perform a Sign operation and a
Verify operation, to verify that its signature was created correctly.
If we add to that, the high disparity between the execution times of
the Sign and Verify operations, on our evaluated algorithms and
especially for Falcon, we can see that the overall performance sig-
nificantly differs when the board is acting as a client or as a server.
We observe the same results, for the traditional algorithms too, as
both ECDSA and RSA have disparities in Sign and Verify execution
times, with RSA having a larger gap.

When comparing the handshake time of the client, between the
traditional and post-quantum algorithms on security level 1 we see
that Dil1+Kyb1 or Dil1+Sab1 is on the same level as RSA+ECDHE
and outperforms ECDSA+ECDHE. (will add percentages later). As
we move to the higher security levels of the PQ algorithms we
see an increase on the average handshake time, mostly due to the
costly Dilithium3 authentication operations, but still the handshake
time is on acceptable levels with a maximum increase of 64% from
RSA+ECDHE toDil3+Kyb5. Comparing the results of Falcon, though,
we see that all the combinations of different KEMswith Falcon512 or
Falcon1024 outperforms RSA+ECDHE and ECDSA+ECDHE, except
for Falc5+Kyb5 that is just 2% slower.

Regarding the server, our results show a different picture. Al-
though RSA+ECDHE has very slow handshake time, ECDSA+ECDHE
is extremely fast. BothDil1+Kyber1 andDil1+Sab1 display around 54%

EC
DS
ARSA Fal

c1Dil
1

Dil
3

Fal
c5

500
1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000
5,500

Pu
bl
ic
Ke

y
+
Si
gn

at
ur
e
(b
yt
es
)

Figure 4: Public Key + Signature Size in bytes

increase of handshake time from ECDSA+ECDHE on the same secu-
rity level (128-bit). On higher security levels the difference is more
significant and Dil3+Kyb5 is 2.4 times slower than ECDSA+ECDHE,
although they operate at different security levels. Falcon, on the
other hand, is performing much worse as a server, because of the
very slow Sign operation. We see that even on the same tradi-
tional security level as ECDSA+ECDHE, Falc1+Kyb1 and Falc1+Sab1
performs 5 times slower. As we get to the higher security levels,
Falcon1024 with all the KEMs takes almost double the time than
Falcon512 with all the KEMs. Note that Falcon1024 is operating
at NIST security level 5, in contrast to Dilithium3 that operates at
NIST security level 3.

4.2.2 Comparison Between Post-quantum Algorithms. Regarding
the time overhead that the two different KEMs (Kyber and Saber)
are introducing, it can be observed that on security level 1, the
TLS handshake time delay difference among combinations with
different PQ signatures is minor, <2% on all combinations. Similarly,
on security level 3, this difference is still minor, also less that 2%.
On security level 5, the digital signatures combinations that use
FireSaber as KEM, perform slightly better that other setups, but still
approximately the time delay difference varies between 2% and 4%.
It can also be observed that in the different PQ combinations used in
PQ TLS 1.3 the main factor of speed overhead, is PQ authentication,
namely the performance differences between Falcon and Dilithium.
It can be observed that Falcon performs better when the board acts
as a client and Dilithium performs better when the board is acting as
a server. Comparing the client combinations that includes Dilithium
with the ones that includes Falcon, on security level 1, it can be seen
that Falc1+Kyb1 and Falc1+Sab1, are ~72% faster than Dil1+Kyb1
and Dil1+Sab1. Similarly, on security level 3 and 5, combinations
with Falcon are ~41% and ~38% faster than the ones with Dilithium.

On the other hand, when KEM combinations with Falcon per-
form as a server, we see that on security level 1, Falc1+Kyb1 and
Falc1+Sab1 are ~3.3 times slower than Dil1+Kyb1 and Dil1+Sab1.
On security level 3, server KEM combinations with Falcon are ~4.6
times slower than KEM combinations with Dilithium and on the
highest security level 5 the KEM combinations with Falcon are ~4.5
times slower than the KEM combination with Dilithium.



George Tasopoulos, Jinhui Li, Apostolos P. Fournaris, Raymond K. Zhao, Amin Sakzad, and Ron Steinfeld

4.3 Communication Sizes
As stated in subsection 4.1, the sizes of public keys, ciphertexts,
certificates and signatures play an important role on evaluating
TLS performance. With the introduction of PQ algorithms these
sizes increased largely. We collected the number of bytes each peer
is sending and receiving in a TLS handshake (communication sizes)
with all the evaluated algorithm combinations and the outcome
is presented on Table 2. Note that the size overhead introduced
by TCP headers and other lower layer protocols is not considered
in the measurements and we include only the sizes (in bytes) of
the messages that the TLS1.3 sends or receives between the client
and the server. It can be observed from Figure 3, where the above
measurements are shown visually, that the communication size of
Dilithium for all combinations is larger than the communication
size of Falcon combinations when using the same KEMs on the same
security levels (approximately 1.5 times larger). The combination
Falc1+Sab1 has the smallest communication size with 4199 bytes
while Dil3+Kyb3 has the largest communication size with 12273
bytes among the all the compared combinations. It can also be
noted, that the communication data sizes of combinations with
Kyber are larger than the ones with Saber when using the same
signature algorithms on the same security levels, although their
difference is small.

On security level 1, using the Dil1+Kyb1 TLS 1.3 has 160 more
bytes overhead than the Dil1+Sab1 combination. On security level
3 the communication data size of TLS 1.3 using Dil3+Kyb3 is 192
bytes more than TLS 1.3 with Dil3+Sab3 and on security level 5,
the communication size of TLS 1.3 with Dil3+Kyb5 is 352 bytes
more than TLS 1.3 with Dil3+Sab5. When using TLS 1.3 with tra-
ditional public key cryptography algorithms, the TLS 1.3 with
RSA+ECDSA is communicating a total of 2069 bytes and TLS 1.3
with ECDHE+ECDSA just 1312 bytes. Compared to the PQ combi-
nations, it can be observed that the communication size of TLS 1.3
with Falc1+Sab1, is already 3.2 times larger than the communication
size with ECDHE+ECDSA and as security level increases this gap
widens, with TLS 1.3 using Dil3+Kyb3 having the overhead of an
order of magnitude more bytes.

4.4 Memory Requirements
When compiling the code and flushing the binary file to the NU-
CLEO board, the STM32Cube IDE provides valuable information
about the code size, the RAM usage, the stack requirements of each
function etc. The code size is typically divided into three regions.
text, that is the bytes that will load in the Flash memory, data, that
is used for the C program’s initialized data and .bss that is used for
uninitialized data. Given that both the evaluation boards have a
2 MB flash memory, the text memory size in all algorithm combi-
nations never superseded 20% of the total flash size. On the other
hand, data and .bss are regions that are stored in RAM which is
very constrained in embedded systems thus becoming the focus
of our study. Falcon makes heavy use of the .bss region, as it can
be seen in pqm4’s benchmark table [7]. Dilithium, although not
using the .bss region at all, it requires a substantial amount of static
memory. The Stack memory requirements of each TLS 1.3 thread
(client or server), together with .bss region, give us the total static
memory allocations that our implementations require and they are

EC
DS
A+
EC
DH

E

RS
A+
EC
DH

E

Di
l1+
Ky
b1

Di
l1+
Sab

1

Fal
c1+

Ky
b1

Fal
c1+

Sab
1

Di
l3+
Ky
b3

Di
l3+
Sab

3

Fal
c5+

Ky
b3

Fal
c5+

Sab
3

Di
l3+
Ky
b5

Di
l3+
Sab

5

Fal
c5+

Ky
b5

Fal
c5+

Sab
5

2

4

6

8

·104

St
ac
k
us
ag
e
+
.b
ss

(b
yt
es
)

Figure 5: Stack + .bss usage by client or server thread in bytes

displayed for each PQ algorithm combination on Figure 5. Note
that the evaluation boards, and typically any embedded system
on the low end of resource constrained devices offer just a few
kilobytes of RAM memory. Given that the evaluation boards have
192 KB of usable SRAM in the paper (we exclude the 64 KB of core
coupled memory), the 80120 bytes of stack memory that Dilithium
requires in the TLS1.3 implementation, is consuming 40% of the
total available memory. TLS 1.3 with Falc1+Kyb1 and Falc1+Sab1
has smaller memory requirements using up 22% and 24% of to-
tal memory respectively, while on higher security levels TLS 1.3
with Falcon1024 combinations require substantially more mem-
ory, namely Falc5+Kyb5 requiring 84656 bytes which is 43% of
total memory. It should be noted that at the time of the paper’s
writing, the pqm4 ARM Cortex-M4 adapted implementations of
Dilithium, was not memory optimised. The NIST PQC competition
round 2 pqm4 implementations of the relevant algorithms have
been memory-usage optimized which performed better in terms of
memory usage compared to their round 3 counterparts. It can be
assumed that in the future, pqm4 development team will optimise
the NIST round 3 implementations too, thus bringing the memory
usage of PQ authentication using Dilithium closer to traditional
algorithms.

4.5 Energy Consumption of PQ TLS 1.3
IoT devices are generally sensitive to energy consumption. There-
fore, it is critical to capture and analyse the energy consumption
of post-quantum algorithms during the TLS 1.3 session establish-
ment and secure data transmission. Given that in most realistic
embedded devices usage scenarios the embedded system acts as a
client, connected to a powerful server, in this paper’s energy con-
sumption evaluation we assume that the embedded system acts as
a client. The energy consumption of TLS1.3 session is measured
for different combinations of post-quantum algorithms Dilithium-
Kyber, Dilithium-Saber, Falcon-Kyber, and Falcon-Saber at different
security levels. Also, similar to the previous sections’ performance
measurements, the energy consumptions of two popular traditional



Performance Evaluation of Post-Quantum TLS 1.3 on Embedded Systems

Table 3: PQ TLS 1.3 Client Nucleo-F429ZI Energy Consump-
tion (no Hardware Cryptographic Acceleration)

Dig. Sign.Alg. Key Exch. Alg. TLS13-AES256-GCM-SHA384
Current(uA) Energy(uJ)

ECDSA (secp256r1) ECDHE (secp256r1) 2317.836 753.703
RSA 2048 ECDHE (secp256r1) 2156.809 538.558
Dilithium2 Kyber512 2142.380 562.131
Dilithium2 LightSaber 2090.763 549.560
Falcon512 Kyber512 2232.228 322.713
Falcon512 LightSaber 2148.399 306.361
Dilithium3 Kyber768 2119.726 808.199
Dilithium3 Saber 2160.082 817.499
Falcon1024 Kyber768 2177.889 477.614
Falcon1024 Saber 2190.953 473.632
Dilithium3 Kyber1024 2138.605 884.694
Dilithium3 FireSaber 2175.797 874.073
Falcon1024 Kyber1024 2186.601 492.116
Falcon1024 FireSaber 2143.990 461.379

algorithms ECDSA+ECDHE and RSA+ECDHE have been measured,
acting as points of reference to the post-quantum TLS 1.3 measure-
ments.The measurements of current and energy consumption are
made using an actual network environment (the board is connected
to a server PC through a router with Ethernet network cable), which
includes the energy consumption of network communication. To be
consistent with the other performance measurements (time, mem-
ory usage etc) we only focus on the TLS13-AES256-GCM-SHA384
Cipher Suite (For more information please see Appendix B).

4.5.1 Comparison Between Post-quantum and Traditional Algo-
rithms. As can be seen in Table 3, there is small difference be-
tween the average current consumption of traditional algorithms
and post-quantum algorithms. It can be observed that the average
current consumption of TLS 1.3 handshake with RSA+ECDHE is
slightly lower than that of PQ algorithms , and the average current
consumption of ECDSA+ECDHE is slightly higher than the one
of PQ algorithms. For instance, under TLS-AES128-GCM-SHA384
the average current consumption of RSA+ECDHE is 2156.809 uA,
ECDSA+ECDHE is 2317.836 uA and the average current consump-
tion among all PQ algorithms is 2158.951 uA.

4.5.2 Comparison Between Post-quantum Algorithms. In Table 3, it
can be observed that the current consumption of a specific PQ algo-
rithm at higher security level has no significant difference with the
current consumption of the same algorithm at lower security level.
For example, the current consumption of Dil1+Kyb1, Dil3+Kyb3 and
Dil3+Kyb5 are 2149.552 uA, 2127.079 uA and 2151.783 uA respec-
tively.

5 COMPARISONWITH OTHERWORKS
In order to fully evaluate our described embedded systems PQ
TLS 1.3 design and implementation, in this section, we provide
comparisons with other relevant works. Note that there is no one-
to-one match between our proposed work and any other relevant
papers on PQ TLS ie. using low end resource constrained embedded
systems for TLS version 1.3, with round 3 NIST finalists and with
ARM cortex M4 optimized PQ algorithm implementations (though
the pqm4 library). In Table 4, comparisons are provided between the

proposed work and the work of Paul et al. [27] and Burstinghaus
et al. [16] that bare some similarities to the proposed work and up
to a point supplement to our design.

Paul et al. [27] approach aims at higher end embedded system
devices and PCs. The closest match to our proposal is the results
on a Raspberry Pi 3 Model B (RPi3), equipped with an ARM Cortex-
A53 quad-core processor running at 1.2 GHz with 1 GB of RAM.
The main focus of [27] is on the feasibility of a novel technique to
integrate PQ authentication in certificate chains, thus not focus-
ing on optimising performance. It should be pointed out that in
[27] certificate chains of depth 3 are used, compared to ours work
where depth 2 certificates are used. Also, Paul et al. is using mixed
certificate chains, i.e. chains with different signature algorithms in
each certificate, and regular certificate chains, i.e. chains with the
same signature algorithm. Although in [27] the primary focus is
not optimising the performance, the authors provide handshake
measurements using the same TLS version as our work, TLS 1.3,
and using the same measurement setup, an embedded system con-
nected to a local network via the Ethernet interface, establishing
TLS connections to a PC. In [27] tests with remote connections are
also performed to include network latency measurements. How-
ever, a major difference from our work, is that Paul et al. evaluates
a mutually authenticated TLS 1.3 handshake, where both client and
server authenticate themselves, whereas in our work server based
authentication is evaluated.

As seen in Table 4 our work is compared with the [27] TLS1.3 im-
plementations using Kyber512 for KEM and Dilithium2, Falcon512
and SPHINCS+128f on authentication. It can be noted that all algo-
rithm comparison measurements in [27] are on NIST security level
1.

The work by Burstighaus et al. [16] , on the other hand is focused
on resource constrained devices with the most powerful of them
being a Raspberry Pi (RPi3), (the same device as in [27]). Apart from
that the authors in [16] also evaluated PQ TLS on an ESP32 device
equipped with an Xtensa dual-core 32-bit LX6 processor operating
at 240 MHz with 520 KB of SDRAM and 16 MB of flash memory,
as well as two other devices, too constrained to be fairly compared
to our work. However, in contrast to [27] and our work, [16] is
focused on TLS 1.2 and not TLS1.3. Regarding the PQ algorithms,
Burstighaus et al. evaluated Kyber512 for KEM and SPHINCS+128f
for authentication, both algorithms being at NIST security level 1.
Similarly to [27] and our work, Burstighaus et al. evaluated TLS
with traditional algorithms, specifically ECDHE with ECDSA, both
with curve secp256r1. Also, it must be noted that Burstighaus et al.
provide results on handshake routines and cryptographic primitives
and not on the network stack and network response times

From Table 4 it can be observed that the TLS handshake time
in all the systems, except for the ESP32, are in the same order of
magnitude. Regarding Dil1+Kyb1 we see that the measurements of
[27] on Raspberry Pi performs 2.5 times faster than the NUCLEO-
F439ZI when acting as a client and 3 times faster than the NUCLEO-
F439ZI when acting as a server. As for the Falc1+Kyb1, the NUCLEO-
F439ZI even outperforms the Raspberry Pi by 32% when acting as
a client but is 4.4 times slower than Raspberry Pi when acting
as a server. Regarding the traditional TLS using ECDHE+ECDSA,
that all the works have measurements for, we can see that the
NUCLEO-F439ZI when acting as client is 3.2 times slower than



George Tasopoulos, Jinhui Li, Apostolos P. Fournaris, Raymond K. Zhao, Amin Sakzad, and Ron Steinfeld

Table 4: PQ TLS 1.3 Comparison with other works; rounded for better comparison

Dig. Sign. Alg. Key Exch. Alg. RPi3 [27] (ms) RPi3 [16] (ms) NUCLEO-F439ZI (ms) ESP32 [16] (ms)

client server client server client server client server

ECDSA 1 ECDHE 1 29 28 49 43 94 54 1100 890
Dilithium2 Kyber512 29 28 74 83
SPHINCS+128f Kyber512 280 290 67 840 970 23 000
Falcon512 Kyber512 63 62 43 274

1 secp256r1

the Raspberry Pi implementation of [27] and 2 times slower than
the Raspberry Pi implementation of [16]. The measurements on
the ESP32 are much slower than the results of our work, namely
ECDHE+ECDSA being 12 times slower as a client and 16 times
slower as a server compared to ours. The difference on the TLS
performance of the Raspberry Pi from these works might be due
to the different versions of the algorithms being used. As noted in
[27] and [16], the reference PQ algorithms implementations have
been used.

6 CONCLUSION
In this paper, we discussed the importance of adopting a quantum-
safe version of TLS, targeting embedded systems in response to
the imminent threats of a possible quantum attack. We integrated
post-quantum algorithms into the popular WolfSSL library, imple-
menting TLS optimized for embedded systems, and measured the
time delay, memory, communication and energy consumption over-
head the introduced PQ algorithms. We used Dilithium, and Falcon
for the authentication and Kyber and Saber for Key Encapsulation
(KEM), all being promising lattice-based PQ algorithms. We used
two boards, both equipped with an ARM Cortex-M4, and remote
machine, a PC, for each board to connect to, through the Ethernet
interface.

Our results show that the largest impact on performance is in-
troduced by the authentication algorithms, as the KEM algorithms
provide similar performance to traditional algorithms. Also, the
results show that when the board acts as a client, Falcon performs
much better than Dilithium, while the opposite is happening when
the boards acts as a server. Regarding memory usage, it is shown
that the current implementations, specifically Dilithium’s pqm4
implementation, is not memory optimized, thus introducing a large
memory overhead. Another significant finding, is that the commu-
nication size, meaning the total bytes a peer has to exchange during
a TLS handshake, is considerably increased when PQ algorithms
are used compared to traditional TLS 1.3. Finally, regarding the en-
ergy consumption evaluation, it is shown that the average current
consumption is independent of the different PQ combinations, as
well as the different security levels since the current consumption
is probably dominated by the communication transmission cost.

ACKNOWLEDGMENTS
In this paper, G. Tasopoulos and A. Fournaris has received funding
from the European Union’s Horizon 2020 research and innova-
tion program CONCORDIA under grant agreement No 830927 and

from the European Union’s Horizon 2020 research and innovation
programme ENERMAN under grant agreement No 958478.

REFERENCES
[1] [n.d.]. Focus on Cortex-M4. https://csrc.nist.gov/CSRC/media/Presentations/the-

2nd-round-of-the-nist-pqc-standardization-proc/images-media/moody-
opening-remarks.pdf. Accessed: 26-1-2021.

[2] [n.d.]. FreeRTOS. https://www.freertos.org. Accessed: 17-11-2021.
[3] [n.d.]. mbedTLS, Library. https://github.com/ARMmbed/mbedtls. Accessed:

26-1-2021.
[4] [n.d.]. OQS-OpenSSH-fork. https://github.com/open-quantum-safe/openssh.

Accessed: 4-2-2021.
[5] [n.d.]. OQS-OpenSSL-fork. https://github.com/open-quantum-safe/openssl.

Accessed: 4-2-2021.
[6] [n.d.]. PQClean. https://github.com/PQClean/PQClean. Accessed: 6-7-2021.
[7] [n.d.]. Pqm4’s benchmark.md table in Github. https://github.com/mupq/pqm4/

blob/master/benchmarks.md. Accessed: 17-11-2021.
[8] [n.d.]. WolfSSL-github-repoitory. https://github.com/wolfSSL/wolfssl. Accessed:

17-11-2021.
[9] [n.d.]. wolfSSL, Library. https://www.wolfssl.com/. Accessed: 17-11-2021.
[10] 2021. TLS 1.3 adoption according to the Internet Society Pulse. https://pulse.

internetsociety.org/technologies. Accessed: 6-7-2021.
[11] Frank et al. Arute. 2019. Quantum supremacy using a programmable su-

perconducting processor. Nature 574, 7779 (01 Oct 2019), 505–510. https:
//doi.org/10.1038/s41586-019-1666-5

[12] Jean-Philippe Aumasson, Daniel J Bernstein, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kam-
panakis, Stefan Kölbl, Tanja Lange, et al. 2019. SPHINCS. (2019).

[13] Ward Beullens. 2021. Improved Cryptanalysis of UOV and Rainbow. In EURO-
CRYPT (1) (Lecture Notes in Computer Science, Vol. 12696). Springer, 348–373.

[14] Sharon Boeyen, Stefan Santesson, Tim Polk, Russ Housley, Stephen Farrell, and
David Cooper. 2008. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. RFC 5280. https://doi.org/10.17487/
RFC5280

[15] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. 2018. CRYSTALS-
Kyber: a CCA-secure module-lattice-based KEM. In 2018 IEEE European Sympo-
sium on Security and Privacy (EuroS&P). IEEE, 353–367.

[16] Kevin Bürstinghaus-Steinbach, Christoph Krauß, Ruben Niederhagen, and
Michael Schneider. 2020. Post-Quantum TLS on Embedded Systems. Cryptology
ePrint Archive, Report 2020/308. https://eprint.iacr.org/2020/308.

[17] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. 2018. Crystals-dilithium: A lattice-based digital
signature scheme. IACR Transactions on Cryptographic Hardware and Embedded
Systems (2018), 238–268.

[18] Adam Dunkels. 2001. Design and Implementation of the lwIP.
[19] Morris Dworkin. 2015. SHA-3 Standard: Permutation-Based Hash and Extendable-

Output Functions. https://doi.org/10.6028/NIST.FIPS.202
[20] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Ver-

cauteren. 2018. Saber: Module-LWR based key exchange, CPA-secure encryp-
tion and CCA-secure KEM. In International Conference on Cryptology in Africa.
Springer, 282–305.

[21] P. A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest, T.
Ricosset, G. Seiler, W. Whyte, and Z. Zhang. 2020. FALCON: Fast-Fourier lattice-
based compact signatures over NTRU. Submission to the NIST’s post-quantum
cryptography standardization process. https://falcon-sign.info/falcon.pdf.

[22] Paul E. Hoffman. 2002. SMTP Service Extension for Secure SMTP over Transport
Layer Security. RFC 3207. https://doi.org/10.17487/RFC3207

[23] Ralph Holz, Jens Hiller, Johanna Amann, Abbas Razaghpanah, Thomas Jost,
Narseo Vallina-Rodriguez, and Oliver Hohlfeld. 2020. Tracking the Deployment
of TLS 1.3 on theWeb: A Story of Experimentation and Centralization. SIGCOMM

https://csrc.nist.gov/CSRC/media/Presentations/the-2nd-round-of-the-nist-pqc-standardization-proc/images-media/moody-opening-remarks.pdf
https://csrc.nist.gov/CSRC/media/Presentations/the-2nd-round-of-the-nist-pqc-standardization-proc/images-media/moody-opening-remarks.pdf
https://csrc.nist.gov/CSRC/media/Presentations/the-2nd-round-of-the-nist-pqc-standardization-proc/images-media/moody-opening-remarks.pdf
https://www.freertos.org
https://github.com/ARMmbed/mbedtls
https://github.com/open-quantum-safe/openssh
https://github.com/open-quantum-safe/openssl
https://github.com/PQClean/PQClean
https://github.com/mupq/pqm4/blob/master/benchmarks.md
https://github.com/mupq/pqm4/blob/master/benchmarks.md
https://github.com/wolfSSL/wolfssl
https://www.wolfssl.com/
https://pulse.internetsociety.org/technologies
https://pulse.internetsociety.org/technologies
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.17487/RFC5280
https://doi.org/10.17487/RFC5280
https://eprint.iacr.org/2020/308
https://doi.org/10.6028/NIST.FIPS.202
https://falcon-sign.info/falcon.pdf
https://doi.org/10.17487/RFC3207


Performance Evaluation of Post-Quantum TLS 1.3 on Embedded Systems

Comput. Commun. Rev. 50, 3 (July 2020), 3–15. https://doi.org/10.1145/3411740.
3411742

[24] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. [n.d.].
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://github.
com/mupq/pqm4.

[25] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. 2019.
pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4. Cryptology
ePrint Archive, Report 2019/844. https://eprint.iacr.org/2019/844.

[26] Sebastian Paul, Yulia Kuzovkova, Norman Lahr, and Ruben Niederhagen. 2021.
Mixed Certificate Chains for the Transition to Post-Quantum Authentication in
TLS 1.3. Cryptology ePrint Archive, Report 2021/1447. https://ia.cr/2021/1447.

[27] Sebastian Paul, Yulia Kuzovkova, Norman Lahr, and Ruben Niederhagen. 2021.
Mixed Certificate Chains for the Transition to Post-Quantum Authentication in
TLS 1.3. Cryptology ePrint Archive, Report 2021/1447. https://ia.cr/2021/1447.

[28] Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-Rodriguez, Srikanth
Sundaresan, Johanna Amann, and Phillipa Gill. 2017. Studying TLS Usage in
Android Apps. In Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies (Incheon, Republic of Korea) (CoNEXT
’17). Association for Computing Machinery, New York, NY, USA, 350–362. https:
//doi.org/10.1145/3143361.3143400

[29] Eric Rescorla. 2000. HTTPOver TLS. RFC 2818. https://doi.org/10.17487/RFC2818
[30] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.

RFC 8446. https://doi.org/10.17487/RFC8446
[31] Peter W. Shor. 1994. Algorithms for Quantum Computation: Discrete Logarithms

and Factoring. In FOCS. IEEE Computer Society, 124–134.
[32] Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis. 2020. As-

sessing the Overhead of Post-Quantum Cryptography in TLS 1.3 and SSH.
https://doi.org/10.1145/3386367.3431305

[33] Douglas Stebila and Michele Mosca. 2016. Post-quantum Key Exchange for the
Internet and the Open Quantum Safe Project. In SAC (Lecture Notes in Computer
Science, Vol. 10532). Springer, 14–37.

A WOLFSSL LIBRARY MAIN COMPONENTS
Wolfssl consists of the following main components:WolfCrypt: This
component includes all the traditional cryptographic algorithms,
public-key and symmetric-key, as well as hash algorithms, MAC
algorithms and programs that handle certificate and key files. It
provides optimised code for a series of architectures as well as
hardware support for selected platforms.

WolfSSL: This component includes all the protocol related codes,
that implement the TLS protocol itself as well as other protocols,
like Datagram Transport Layer Security (DTLS). It includes all the
settings and preferences of the TLS protocol and the interfaces
to communicate either to a lower level protocol, like TCP or to a
higher level, like an operating systems for example FreeRTOS [2].

Utilities: This component includes all non-essential utilities like
benchmarks or test programs verifying the correct functionality
of the wolfSSL library. In this paper, some of these benchmark
programs have been used in order tomeasure the performance of PQ
cryptographic algorithms or the TLS protocol itself. We particularly
used two toolsets as follows:

• Wolfcrypt-benchmark is a benchmark tool used to measure
the performance of all the enabled cryptographic algorithms
and provides relevant statistics. This program has been used
in the paper as basis for taking time measurement on post-
quantum algorithms in order to compare them with the
traditional ones.

• Wolfssl-tls-bench is another benchmarking tool thatmeasures
and provides a series of metrics regarding TLS sessions. It
can either make use of an operating system, like FreeRTOS,
and simulate a server and a client connecting through TLS on
the same machine or it can be run on different machines, one
being the server and the other being the client to provide a
realistic benchmark scenario. The tool repeatedly establishes

TLS sessions (by running the TLS handshake), exchanges
data for a given time period and then it provides statistics
about the established connections eg. the average time spent
on handshaking, the size of exchanged data etc. This pro-
gram has been used in this paper in order to measure the
performance of TLS protocol while using post-quantum al-
gorithms and to compare the results with the TLS protocol
using traditional algorithms.

B EXPERIMENT SETUP
B.1 Embedded Systems
The selection of the microcontroller was made in line with the
NIST competition requirements to focus on ARM Cortex-M4 based
embedded devices. We choose two embedded systems by STMi-
croeletronics with the ARM Cortex-M4 microcontroller, NUCLEO-
F439ZI and NUCLEO-F429ZI. Both systems have a 32bit ARM
Cortex-M4 processor running at 180 MHz with a SRAM of 256
KB and 2 MB of Flash memory to store the program code. The
SRAM is divided into two sections, a 64 KB Core Coupled Memory
(CCM) SRAM and a 192 KB regular SRAM. The first section might
be faster, but its small size made we work entirely on the second
one, the 192 KB regular SRAM. Both boards are also equipped with
an Ethernet interface and with a true hardware random genera-
tor. However, the NUCLEO-F439ZI is equipped with a hardware
cryptographic acceleration cell while the NUCLEO-F429ZI does not
support such hardware acceleration. Hardware acceleration in the
first board is supported for AES 128, 192, 256, Triple DES, HASH
(MD5, SHA-1, SHA-2), and HMAC.

The selection of these two boards allows us to evaluate the
post-quantum TLS’s performance on ARM Cortex-M4 processor
in two scenarios, TLS 1.3 on embedded processors with hardware
accelerated cryptography operations and TLS 1.3 on embedded
processors without hardware accelerated cryptography operations.
Thus, by comparing the results from the two boards, we canmeasure
the acceleration, in terms of time spent on handshake, that these
hardware components can provide. We should also note that even
though the PQ algorithms does not make use of these hardware
accelerated primitives directly, as they use the Keccak primitives,
SHA-3 and SHAKE-256 [19], the handshake itself makes use of the
hardware accelerated primitives, thus the hardware cryptographic
accelerator can boost performance of the PQ TLS handshake.

As discussed on the work of Sikeridis et al. [32], changing the
TCP_WND parameter of the underlying TCP implementation, im-
pacts the performance of the TLS handshake. We experimented
with different values of the TCP_WND parameter, usually in multi-
ples of TCP_MSS that is the maximum segment size of each packet,
and we observed that on some values, the handshake was particu-
larly slower than the others. Because the network analysis is not
on the scope of this work, we choose a value that the TLS hand-
shake performed well, namely TCP_WND = 2×TCP_MSS without
further evaluation.

B.2 PC as a Remote End Device
To conduct real TLS connection experiments, an end device beyond
the embedded system boards is needed. Such device, acts as a server
when the boards are configured as a client and acts as a client when

https://doi.org/10.1145/3411740.3411742
https://doi.org/10.1145/3411740.3411742
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://eprint.iacr.org/2019/844
https://ia.cr/2021/1447
https://ia.cr/2021/1447
https://doi.org/10.1145/3143361.3143400
https://doi.org/10.1145/3143361.3143400
https://doi.org/10.17487/RFC2818
https://doi.org/10.17487/RFC8446
https://doi.org/10.1145/3386367.3431305


George Tasopoulos, Jinhui Li, Apostolos P. Fournaris, Raymond K. Zhao, Amin Sakzad, and Ron Steinfeld

the boards are configured as a server. A PC connected to the local
network that is running Ubuntu 20.04 in x86_64 architecture and
is equipped with an Intel i7-1165G7 with 8 cores running at 2.8
GHz is setup in our experiment to play this role. This machine
is connected through the Ethernet interface to the same access
point as the board, with a mean Round-Trip Time (RTT) of 0.493
ms. As this paper focuses on the embedded system’s performance,
we are not taking measurements of the PC’s TLS performance.
Without loss of generality, we consider the embedded system’s
other communication end of the TLS connection as a powerful
machine that has very high performance (trivial TLS time delay)
and thus does not impact the embedded system measurements.

B.3 Development Framework
All embedded system code development was done using the of-
ficial IDE development framework for the NUCLEO boards, the
STM32CUBE IDE. This IDE made the porting of wolfSSL on the
embedded system simple, using the official supported wolfSSL li-
braries. All post-quantum algorithm integration and TLS modifi-
cations in the embedded wolfSSL vanilla version were made using
the STM32CUBE IDE. Regarding the PC wolfSSL, Eclipse CDT was
used along with the wolfSSL’s git release version 4.7.0 that was also
modified to support PQ TLS 1.3.

B.4 Memory Management
In resource constrained embedded systems, memory resources are
limited, thus appropriate memory management is crucial. In this
paper’s experiments, the ST NUCLEO embedded systems use FreeR-
TOS [2] as a real-time operating system, so the memory is managed
by this OS. FreeRTOS is using the Stack and Heap scheme thus,
every newly created thread (task) is given a region in memory as
Stack memory and this regions becomes unavailable for the rest
of the embedded system’s memory, serving as Heap memory for
dynamic allocations. As more threads are created and the total
Stack size is increased, the available Heap memory is reduced. In
the proposed wolfSSL implementation, we determine at compile
time, how much of the embedded system memory will be assigned
to the OS in order to manage threads, making this the Total Heap
that is available to the threads on run time. Also at compile time,
we determine how much Stack memory each of the created threads
will use. This Stack memory, of course is subtracted from the total
available Heap memory, and is managed by each created thread.
Necessary trade-offs need to be made between the available Heap
memory and the required Stack memory of the threads, so that
every thread has sufficient memory to function properly and still
allow the OS enough memory space for dynamic allocation. In our
experiments, the amount of available memory assigned to the OS
to manage threads and the exact Stack usage, in pair with the size
of .bss region is reported on Table 2 and it is presented in Figure
5. Regarding the PC device, memory management is not an issue,
as it has plenty of available memory, that is managed by the OS
without any direct intervention by us.

B.5 Energy Consumption Measurements setup
The measurements were made using the X-NUCLEO-LPM01A ex-
pansion board and the STM32CubeMonitor-Power software offered

by ST. Table 3 illustrates the average current and total energy con-
sumption of various PQ algorithms with different security levels
during TLS 1.3 session establishment. The column “Current" in
Table 3 corresponds to the average current (measured in micro-
Ampere) consumed during the handshake process, captured from
STM32CubeMonitor-PWR by selecting the time frame of a TLS
handshake. The column “Energy" in Table 3 corresponds to the total
energy consumption (measured in micro-Joule) per TLS handshake,
which is calculated by multiplying the average current consump-
tion, supply voltage and handshake time


	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Background
	2.1 TLS Protocol
	2.2 TLS Implementations for Embedded Systems and Beyond
	2.3 WolfSSL

	3 Architecture and Implementation
	3.1 WolfSSL Post-Quantum Adaptation
	3.2 Brief Experiment setup description

	4 Measurements and Evaluation
	4.1 Post-quantum Cryptographic Algorithms
	4.2 Connection Time Delay of PQ TLS 1.3
	4.3 Communication Sizes
	4.4 Memory Requirements
	4.5 Energy Consumption of PQ TLS 1.3

	5 Comparison with Other Works
	6 Conclusion
	Acknowledgments
	References
	A Wolfssl library main components
	B Experiment Setup
	B.1 Embedded Systems
	B.2 PC as a Remote End Device
	B.3 Development Framework
	B.4 Memory Management
	B.5 Energy Consumption Measurements setup


