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Abstract. Transport Layer Security (TLS) constitutes one of the most
widely used protocols for securing Internet communications and has also
found broad acceptance in the Internet of Things (IoT) domain. As we
progress toward a security environment resistant to quantum computer
attacks, TLS needs to be transformed to support post-quantum cryp-
tography. However, post-quantum TLS is still not standardised, and its
overall performance, especially in resource-constrained, IoT-capable, em-
bedded devices, is not well understood. In this paper, we showcase how
TLS 1.3 can be transformed into quantum-safe by modifying the TLS
1.3 architecture in order to accommodate the latest Post-Quantum Cryp-
tography (PQC) algorithms from NIST PQC process. Furthermore, we
evaluate the execution time, memory, and bandwidth requirements of
this proposed post-quantum variant of TLS 1.3 (PQ TLS 1.3). This is
facilitated by integrating the pqm4 and PQClean library implementa-
tions of almost all PQC algorithms selected for standardisation by the
NIST PQC process, as well as the alternatives to be evaluated in a new
round (Round 4). The proposed solution and evaluation focuses on the
lower end of resource-constrained embedded devices. Thus, the evalua-
tion is performed on the ARM Cortex-M4 embedded platform NUCLEO-
F439ZI that provides 180 MHz clock rate, 2 MB Flash Memory, and 256
KB SRAM. To the authors’ knowledge, this is the first systematic, thor-
ough, and complete timing, memory usage, and network traffic evaluation
of PQ TLS 1.3 for all the NIST PQC process selections and upcoming
candidate algorithms, that explicitly targets resource-constrained em-
bedded systems.

1 Introduction

In 1994, Peter Shor described an algorithm on quantum computers [36] that
solves the mathematical problems of integer factorisation and discrete logarithm
in polynomial time. This alerted the cryptography community, since those hard-
to-solve (by traditional computers) mathematical problems constitute the core of
the majority of existing public key cryptography solutions in the security world.
While the quantum computers existing today may not be powerful enough to
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solve real-world problems, they pave the way for large-scale quantum computers
in the future [14] that can easily break (e.g. recover the private keys) many
existing security protocols and public key cryptography solutions.

In response to this potential new cryptographic reality, several standardisa-
tion bodies (eg. NIST, IETF, ETSI) have started working on the transition of
cryptography to the post-quantum era [1,13,25]. In 2017, the US National Insti-
tute of Standards and Technology (NIST) initiated a still ongoing evaluation and
standardisation process to select the next generation of industry-standard public
key cryptographic primitives [4]. At the time of this paper’s writing, NIST has
selected 4 algorithms for standardisation: 3 Digital Signatures and 1 Key En-
capsulation Mechanism (KEM). Additionally, NIST recently announced an extra
round of evaluation for some of the KEMs that did not get selected (Round 4 of
the NIST process) and also a Call for Proposals for Digital Signatures in order
to diversify NIST’s Digital Signature portfolio [1]. In the meantime, the Internet
Engineering Task Force (IETF) is in the process of standardising the integration
of post-quantum algorithms in popular security protocols [39].

One of the most prominent security protocols is the Transport Layer Secu-
rity (TLS) protocol. Due to its wide acceptance and usage in secure commu-
nications, it is crucial to make TLS quantum computer safe (resistant against
quantum computer cryptanalytic attacks), by integrating post-quantum cryp-
tography (PQC) algorithms into the protocol structure. However, this PQ TLS
integration is expected to have a non-trivial overhead on the protocol’s perfor-
mance. There are already several efforts to integrate PQC algorithms in TLS
[38] and measure the overhead it introduces, with respect to a number of per-
formance metrics: execution speed, memory requirements, communication size,
and code size [37,32,18,31,21,15].

Understanding the PQ TLS performance overhead becomes even more im-
portant when dealing with resource-constrained devices and this may be critical
to the final adoption of PQ TLS on such devices. However, prior works on eval-
uating the performance of PQ TLS either focused on high-end devices studying
the impact of other factors such as network conditions [37,31,21], or focused on
embedded system devices that are not resource-constrained [32,15]. Prior works
that evaluated PQ TLS on resource-constrained devices [18], are limited to a
small set of PQC algorithms, mainly because their goal was to highlight the
feasibility of such an integration rather than provide a complete analysis.

In this paper, we make a thorough and analytic study of the PQC inte-
gration in the TLS 1.3 protocol for resource-constrained embedded system de-
vices and their overall performance impact. We perform an exhaustive and sys-
tematic analysis of the PQC performance overhead in TLS 1.3 on embedded
systems, in terms of execution speed, memory requirements, and communica-
tion size, for the majority of post-quantum public-key algorithms, including the
NIST selected algorithms for standardisation, the algorithms that progressed to
Round 4, as well as some algorithms from NIST PQC Round 3. Namely, we
have integrated the KEMs CRYSTALS-Kyber, SABER, NTRU, SIKE, BIKE,
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HQC, NTRU LPRime, and FrodoKEM, and the Digital Signature algorithms
CRYSTALS-Dilithium, Falcon, SPHINCS+, and Picnic3.

More specifically, by adopting the wolfSSL open-source TLS library, we
propose a PQC enhanced TLS 1.3 design. We integrate into our design the
above-mentioned PQC algorithms using the pqm4 [22] and PQClean [29] open-
source PQC libraries. The design is implemented in a resource-constrained device
equipped with an ARM Cortex-M4 microcontroller. We include all the security
levels that could fit in the RAM of this constrained evaluation board, and we
evaluate the protocol’s performance after the integration of all the algorithms
selected for standardisation by the NIST PQC process and almost all of the al-
gorithms that proceed to Round 4. Note that we also include in our study some
algorithms that have been in Round 3 for completeness 3, including those are
promising for a re-submission to the new standardisation Round 4 for Digital
Signatures announced by NIST. Also, note that algorithms such as Rainbow and
Classic McEliece have not been included in the study due to their large memory
requirements, even on their lowest security levels, that prohibits their integration
in the TLS 1.3 protocol. In addition, Rainbow’s raised security concerns for some
specified security parameters are taken into our consideration [16]. A recent work
[19], was able to recover the secret key from SIKE in all security levels. Although
it is possible that SIKE is now completely broken, we include its measurements
for the sake of completeness. Network communication and routing functionality
are provided through the lwIP library [22]. We also assume that both peers of
the TLS 1.3 handshake, client and server, are mutually authenticated. According
to the authors’ knowledge, this work constitutes the first comprehensive and all-
inclusive study on PQ TLS 1.3 for resource-constrained embedded systems that
takes into account the latest results of NIST standardisation efforts (Selected
Algorithms 2022 and Round 4 announcements).

The rest of the paper is organised as follows: In Section 2, we make a re-
view of popular open-source PQC libraries and related research work, and we
highlight the research gaps that our paper will fill. In Section 3, background in-
formation on TLS 1.3 is provided. In Section 4, the proposed design/architecture
of the PQC integreated TLS 1.3 protocol is presented, providing the architec-
tural changes that have been made in order to add PQC capabilities to TLS
1.3, along with various implementation details. In Section 5, the experimental
evaluation process, measurements, results, and analysis are provided. Finally,
Section 6 concludes the paper.

2 Popular PQC Libraries and Related Research Work

The NIST PQC standardisation process has sparked a bloom of research in the
field of post-quantum cryptography. Apart from the PQC algorithms that were
developed and submitted to the process, other research that emerged in recent

3 We refer the reader to the Appendix for the rest of the evaluated algorithms from
Round 3.
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years focused on prototyping, integration into popular protocols, and measuring
the performance overhead that these PQC algorithms will introduce.

Apart from the reference and x86 optimised PQC algorithm implementations
offered by the submission team of each candidate PQC algorithm, other software
libraries have also been provided by the PQC research community. PQClean
[29] focuses on the prototyping of PQC algorithms without relying on external
software library dependencies, thus offering standalone implementations of PQC
algorithms.

Regarding embedded systems, a project named mupq has been developed in
order to provide optimised PQC libraries targeting a number of embedded sys-
tem processors or even Field Programmable Gate Arrays (FPGAs). After a call
from the NIST PQC process to introduce evaluations on Cortex-M4 processors
[5], as an outcome of the work in [28] (which is part of the mupq project), the
pqm4 library has been developed. This library includes implementations based
on the Reference Implementations of the official releases of the algorithms, but
with a focus on speed and size, and uses optimised assembly code for the Cortex-
M4 processor. As the NIST PQC process advances, the pqm4 library is regularly
updated with newer versions of the code or with any changes the algorithm spec-
ifications introduce. All these updates are kept in an open-source git repository
available online at [27].

In regards to TLS design and open-source implementation, the Open Quan-
tum Safe (OQS) [38] project has developed a cryptographic library named li-
boqs, that has collected implementations of PQC algorithms, mostly from PQ-
Clean. By leveraging the developed liboqs library, this project integrated PQC
algorithms into popular security protocol libraries, such as OpenSSL [7] and
OpenSSH [6], making it possible to use these protocols with PQC algorithms.
In the work by Sikeridis et al. [37], the OpenSSL and OpenSSH forks of OQS
were used to measure the overhead that was introduced with the post-quantum
integration on these two protocols in realistic network conditions. Doring et
al. [21] performed similar experiments by using the same library and evaluated
more PQC algorithms, but on the same machine without real-world network
conditions. Paquin et al. [31] performed benchmarks of PQ TLS by using OQS
project with various PQC algorithms, on machines within an emulated network
that enabled the authors to experiment with different network parameters. All
these works evaluated PQ TLS. However, they focused only on medium or high-
resource systems like laptops, PCs, and servers.

However, there exists research works that focused on embedded systems.
Bürstinghaus-Steinbach et al. [18] employed an implementation of TLS with
PQC algorithms to take measurements on embedded devices. The authors
adopted TLS version 1.2 and integrated CRYSTALS-Kyber as a KEM and
SPHINCS+ as a Digital Signature. They showed the feasibility of such inte-
gration and gathered primitive performance measurements on PQ TLS. Paul et
al. [32] introduced a migration strategy towards post-quantum authentication by
using PQC algorithms in mixed certificate chains. The authors also evaluated
the performance of post-quantum TLS 1.3 on a server, on a PC, and on a Rasp-
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berry Pi. Barton et al. [15] used the same Raspberry Pi device to evaluate PQ
TLS by using OQS with various PQC algorithms. It should be noted that the
Raspberry Pi device used in [32] and [15] is equiped with an ARM Cortex-A53
processor running at 1.2 GHz and with 1 GB of RAM. Although this device is
considered as an “embedded device”, it belongs to the higher end of such devices
with resources capable of running its own compiler and even a full Operating
System.

To the authors’ knowledge, this paper constitutes the first systematic and
thorough architectural adaptation, implementation, and performance evalua-
tion of the PQ TLS 1.3 based on the popular wolfSSL library on a resource-
constrained device. Our work integrates the selected algorithms for standardisa-
tion by the NIST PQC process, Round 4 candidates, and alternative algorithms
in Round 3, explicitly targeting low resource embedded systems.

3 Background

3.1 TLS Protocol

One of the major security protocols that are threatened by a potential quantum
attack is the Transport Layer Security (TLS) protocol. TLS is the most widely
used protocol for secure communications on the Internet, making it a de facto
security standard. Hypertext Transfer Protocol Secure (HTTPS) protocol for
secure website transfer [34], secure connection to mail servers [24], as well as
secure Internet access for smartphone apps [33], are some of the many use cases
of TLS. TLS version 1.3 [35] has been standardised in 2018 and introduces many
important changes over the previous version, TLS 1.2.

The adoption of TLS 1.3 is at an adequate level due to the high centralisation
of the Internet and the long duration of the draft’s evaluation [26]. In fact, the
Internet Society Pulse reported a nearly 60% adoption of TLS 1.3 by the top
1, 000 websites globally [8].

TLS is a security protocol designed to provide secure communication over
a computer network. It is typically considered among the application layer in
the Internet protocol suite, providing privacy and data integrity between two
parties. TLS consists of two primary components: a handshake protocol that
authenticates the communicating parties, negotiates cryptographic modes and
parameters, and establishes shared keying material to create a secure session;
and a record protocol that uses the parameters established by the handshake
protocol to protect the traffic between the securely communicating peers. The
record protocol is located above the transport layer and uses the Transmission
Control Protocol (TCP). Although the symmetric key ciphers used by the record
protocol are affected by quantum attacks, specifically by Grover’s algorithm [23],
they can be easily modified to be quantum-safe by, e.g. doubling the size of the
encryption keys. On the other hand, the handshake protocol, which makes heavy
use of public key cryptography, is directly threatened by quantum cryptanalytic
attacks without any simple mitigation. TLS uses public key cryptography for
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two main purposes: Key Exchange, which mostly uses Diffie-Hellman (DH) over
Elliptic Curves (EC) or RSA, and Digital Signatures, which use Elliptic Curve
Digital Signature Algorithm (ECDSA) or RSA. For this reason, the integration
of quantum-resistant public key cryptographic algorithms is necessary for both
the Key Exchange and the Digital Signatures.

On TLS 1.3, the handshake between a client and a server begins with the
client sending the first TLS 1.3 message, ClientHello, to the server. This mes-
sage typically contains a client random number, the client TLS version, a list
of Cipher Suites, and a series of extensions with additional information such as
Server Name, Supported Groups, Supported Signature Algorithms, Key Share,
and the Supported Versions. The “Supported Groups” extension contains all the
Key Exchange methods, and the extension “Supported Signature Algorithms”
contains all the Digital Signature algorithms that are supported by the client. In
addition, Key Share contains an ephemeral ECDH or RSA public key. TLS 1.3
makes significant use of the extension fields. For example, if the negotiated ver-
sion of TLS is version 1.3, it is indicated on the “Supported Version” extension,
as the original entry “Supported Version” is set to TLS 1.2 to ensure compatibil-
ity with middleboxes. The server then replies with a ServerHello message, which
contains a server random number, the selected Cipher Suite using the client’s
list of Cipher Suites and the server’s preferences, the negotiated Protocol Ver-
sion, and the server’s Key Share. From now on, every exchanged message will be
encrypted. The server sends the “EncryptedExtensions” message, which contains
the remaining extensions. Then, the server sends the “CertificateRequest” mes-
sage, which states that this session will be mutually authenticated. After that,
the server sends the “Certificate” message, containing its digital certificate and
the certificate chain up to a root Certificate Authority (CA). Then, the server
sends the “CertificateVerify” message, which basically contains a Digital Signa-
ture over a hash of all exchanged handshake messages, starting with ClientHello
and up to, but not including, this message itself. Finally, the server sends the
“ServerHandshakeFinished” message, indicating that the handshake is complete
from the server side.

The client now has all the necessary information to produce the final mas-
ter key and can also verify the certificate as well as the signature of the server.
As the handshake is mutually authenticated, the client now sends its “Certifi-
cate” message containing its digital certificate and the certificate chain up to a
root CA, or alternatively, a self-signed certificate that is also installed on the
server side. Then, the client sends the “CertificateVerify” message with a Digital
Signature over a transcript of the messages so far. Finally, the client sends the
“ClientHandshakeFinished” message. The handshake is now complete from the
client side.

The server can now verify the client’s certificate as well as the signature
from the client. After that, the handshake is complete, and both peers can start
sending and receiving the “Application Data”, using symmetric key based au-
thenticated encryption algorithms with the key that derived from the shared
secret that both peers have agreed upon during the handshake phase.
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3.2 WolfSSL

Regarding open-source TLS solutions for embedded systems, the most famous
and widely used implementations are: Mbed TLS [3] and wolfSSL [11,10]. With
Mbed TLS lacking support for TLS 1.3, wolfSSL is the only option to be adopted
in this paper’s research. WolfSSL is a library that implements the TLS protocol
with a focus on “classical” cryptography. In more recent versions, wolfSSL has
added support for CRYSTALS-Kyber, SABER, NTRU, and Falcon, via an in-
tegration with liboqs [9]. However, in the time of writing, this integration does
not include optimised implementations for the Cortex-M4, except for an experi-
mental setup that uses only Kyber512 from pqm4 [12]. In our work, the wolfSSL
library has been modified in order to support all the ARM Cortex-M4 opti-
mised versions of the PQC algorithms, both KEM and Digital Signature (TLS
Authentication).

WolfSSL [11], consists of three major components: wolfCrypt, a cryptographic
library; wolfSSL, the TLS protocol code along with all associated functionality;
and a set of utilities: test programs, benchmarks, etc. More information on these
components can be found in Appendix A.

4 Proposed Design Approach and Overall PQ TLS 1.3
Architecture Implementation

To develop a complete PQ TLS 1.3 implementation supporting all the NIST
PQC algorithms selected for standardisation as well as the upcoming Round
4 candidates, we make appropriate architectural adjustments in the wolfSSL
library and the TLS 1.3 standard. Specifically, TLS 1.3 design changes have
been made to the two TLS Extensions fields: “Supported Groups” and “Signature
Algorithms”. In addition, in our work, we make necessary changes to support
KEMs as well as post-quantum Digital Signatures and certificates. In Figure 1,
the overall PQ TLS 1.3 handshake with the proposed modifications and additions
to the standard is presented visually, indicating the PQC operations that are
made in each phase of the TLS handshake and the exchanged messages. In the
following subsections, the proposed changes are discussed in detail.

4.1 WolfSSL Post-Quantum Adaptation

Supported Groups. The ClientHello message, the first message that the client
sends to initiate the handshake, contains the Extensions field. In this field, the
client extends the information provided by the rest of the ClientHello fields
and it plays a crucial role in TLS 1.3. One of the fields among the Extension
field, as shown in Figure 1, is the field Supported Groups. In this field, the
client sends a list of Key Exchange algorithms in order of preference as encoded
identifiers (codepoints) so that the server can select one of them to be used in the
handshake. These identifiers are called Named Groups and are defined for each
supported algorithm by the protocol itself. To use PQC algorithms, new Named
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PQ KEM related operation { } Encrypted Message
PQ Authentication related operation

Fig. 1. Post-quantum TLS 1.3 handshake messages.

Groups have been introduced. We have decided to choose the same codepoints
as the OQS’s fork of OpenSSL [7], to make the wolfSSL library inter-operable
with other popular libraries.

Signature Algorithms. Another TLS 1.3 Extension field of PQC adaptation
interest is the “Signature Algorithms”. In this field, the client provides its prefer-
ence on the signature algorithms that it supports regarding the CertificateVerify
field. This means that this signature algorithm will be used to sign the transcript
of the data exchanged by the server and to be verified by the client. Similar to
the extension “Supported Groups”, new codepoints are introduced for the post-
quantum Digital Signature algorithms of the PQ TLS 1.3 design. The codepoints
that have been added are compliant with the OQS’s fork of OpenSSL [7].
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Key Encapsulation Mechanism Support/Adaption. All the post-quantum
encryption algorithms in the NIST PQC are Key Encapsulation Mechanism
(KEM) schemes. However, only the traditional (Elliptic Curve) Diffie-Hellman
Key Exchange (which is not a KEM) is supported in official TLS 1.3 standard. To
transit the Key Exchange to the PQC paradigm, in our work, the Key Exchange
mechanism of TLS 1.3 is transformed into a KEM scheme through architec-
tural adaptation. We adopt the proposition introduced in the CRYSTALS-Kyber
KEM based Key Exchange scheme [17] that is also presented below.

Initially, the client generates a key pair and sends the public key to the
server with the ClientHello message. The server calls the Encapsulation function
by using the client’s public key to produce: a Ciphertext, that will be sent to the
client with the ServerHello message; and a Shared Secret that the server keeps
since it is the actual shared key. The client, upon receiving the Ciphertext, calls
the Decapsulation function by using its Secret Key to produce the same Shared
Secret as the server. Now, both the client and the server share the same key
that can be passed to a Key Derivation Function to produce the master secret
along with any other intermediate secrets that the TLS 1.3 protocol requires.
These exchanged messages are shown in Figure 1 as the Ephemeral PQC Key
Generate, PQC Encapsulate, and PQC Decapsulate operations, respectively.

Digital Certificates Support. Another important object that needs to be
modified in order for TLS to work with PQC algorithms is the digital certifi-
cates. These are objects that bound an entity, e.g. a server or a client, with its
public key, by introducing a signature from a trusted third party. This can occur
repeatedly by intermediate third parties, forming a “chain of certificates”. The
X.509 [20] is the standard of digital certificates on protocols such as TLS. It usu-
ally contains general information about the entity, along with the public key of
the owner, the Digital Signature algorithm codepoint, and the Digital Signature
itself.

To produce these digital certificates using post-quantum cryptographic algo-
rithms, the OQS’s fork of OpenSSL [7] is used. Through the OpenSSL’s API,
we generate digital certificates with support for all the PQC algorithms that are
evaluated in this paper. Our goal is to produce digital certificates both for the
server and the client, as they are mutually authenticated. To achieve this, we
introduce a base “Certificate Authority” (CA) that can issue other certificates
making a chain of trust up until a peer. In our paper, this chain is of length
two, as the peer’s certificate is directly signed by the CA. To accomplish this, we
create a digital certificate for the CA, which is self-signed, and then we produce
a digital certificate for the server and a certificate for the client, which both are
then signed by the CA. Thus, two certificates are produced, both verifiable by
our basic PQC CA.

For the sake of simplicity, all the certificates in the chain employ the same
signature algorithm each time. This is also the case for both the certificate’s sig-
nature and the signing operation on the CertificateVerify message. For example,
when measuring the performance of Dilithium2, the certificates of CA, server,
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and client all have Dilithium2 signatures, and the CertificateVerify message is
signed using Dilithium2 as well.

5 Measurements and Evaluation

5.1 Experiment and Measurement Setup

To make the TLS protocol operate with PQC algorithms, we first integrate the
pqm4 [28] implementations of the selected PQC algorithms in our study to the
wolfSSL code. Whenever pqm4 lacks an implementation of an algorithm, we use
the corresponding implementation from PQClean instead. To realise the network
communication of our project, we use the lwIP library [22], a lightweight imple-
mentation of the TCP/IP protocol suite, mainly focusing on embedded devices.
Almost all of the PQC algorithms in our study require the usage of symmetric
cryptographic primitives, specifically the Keccak primitives SHA-3 and SHAKE-
256 [30]. Pqm4 provides optimised implementations of these primitives for the
Cortex-M4, and this code has been used in our work. Note that while PQClean
does not provide any optimised code for the PQC algorithms themselves, we
have linked these schemes with the optimised Keccak code from pqm4, and as a
result we can observe some speed-up.

We use two devices to evaluate the PQ TLS: i) The NUCLEO F439ZI em-
bedded system by STMicroelectronics, with a 32-bit ARM Cortex-M4 micro-
controller running at 180 MHz, with 192 KB of usable SRAM (plus 64 KB of
CCM RAM that is not utilised) and 2 MB of Flash memory; and ii) A PC run-
ning Ubuntu 20.04 in x86_64 architecture, equipped with an Intel i7-1165G7
with 8 cores running at 2.8 GHz. Both devices are connected to the same access
point, through the Ethernet interface with a mean Round-Trip Time (RTT) of
0.493 ms. Using a modified version of the wolfSSL TLS benchmark program,
we evaluate a series of TLS connections between these two devices and gather
measurements and statistics.

As discussed in [37], changing the TCP time window parameter (TCP_WND)
of the underlying TCP implementation will impact the performance of the TLS
handshake. We experiment with different values of the TCP_WND parameter,
in multiples of TCP_MSS (maximum segment size of each packet). We observe
that the handshake is particularly slower for some TCP_WND values than the
others. Because the network analysis is not in the scope of this work, we choose
TCP_WND = 2× TCP_MSS, where the TLS handshake performs well in our
local Ethernet network without further investigation. Contrary to [37], where the
authors stated that one could get better performance with bigger TCP_WND,
we find that the above described parameter choice performs better in the context
of our local network with minimal latency and almost no packet loss.

In this section, we first compare the performance between different standalone
PQC algorithms and with the classical public key cryptography algorithms of
traditional TLS 1.3. Afterwards, we discuss the PQ TLS 1.3 handshake mea-
surements using various combinations of PQC authentications and PQC KEMs.
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Furthermore, we discuss the communication size (in terms of exchanged amount
of bytes) of a PQ TLS 1.3 handshake and the overall memory requirements of
different PQ TLS 1.3 combinations.

5.2 Post-quantum Cryptographic Algorithms Measurements

For the sake of completeness, we measure the standalone performance of the
adopted PQC algorithms by using a modified version of the wolfSSL’s benchmark
program, wolfcrypt-benchmark. This tool uses the Real-time Clock (RTC) hard-
ware module of the embedded system to measure time with millisecond preci-
sion. We use the implementations from pqm4 for CRYSTALS-Dilithium, Falcon,
CRYSTALS-Kyber, SABER, NTRU, NTRU LPRime, FrodoKEM, SIKE, BIKE,
and Picnic3, and we use the implementations from PQClean for SPHINCS+
and HQC. In addition to the PQC algorithms, we measure the performance
of four classical algorithms: RSA-2048 and ECDSA with curve secp256r1 are
used for benchmarking classical authentication, and Finite Fields Diffie-Hellman
Ephemeral (FFDHE)-3072 and ECDHE with curve secp256r1 are used for bench-
marking classical Key Exchange, respectively. Every cryptographic algorithm
operation has been executed for 10 seconds and the average execution time of
all executions within 10 seconds is calculated and reported as the result.

In Table 1, the measured execution time on our target platform is presented,
along with each algorithm’s public key size and ciphertext/signature sizes. The
claimed NIST security level of each algorithm is also presented. Level 1/3/5
means that an attack on that parameter set would require the same or more
resources as a key search on AES 128/192/256, respectively. Level 2/4 means
that an attack would require the same or more resources as a collision search on
SHA-256/384, respectively. On the other hand, Level 0 means that this algorithm
offers no quantum security. Note that the security level of RSA 2048 against
classical attacks is 112 bits, and the classical security level of FFDHE 3072 and
curve secp256r1 is 128 bits, respectively.

Comparison of Key Encapsulation Schemes. From Table 1, we can see that
Kyber, the only KEM that is selected for standardisation by NIST so far, offers
the best overall performance compared to all the other schemes. It has medium-
sized keys and resulting ciphertexts as well as offering excellent performance in
terms of execution speed.4 It outperforms the classical FFDHE by an order of
magnitude and even outperforms ECDHE by several milliseconds.

Among NIST PQC Round 4 candidates, HQC, although much slower than
Kyber, offers good performance in terms of execution time but has the largest
sizes compared to all the other schemes. BIKE has smaller sizes but slower
execution time than HQC.

4 The “execution speed” is calculated by the sum of “Key generation”, “Encapsulation”,
and “Decapsulation” time for the PQC schemes and by using the “Agreement Time”
for the classical algorithms.
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Table 1. Summary of Traditional and Post-quantum Primitives.

KEM
Algorithm

NIST
level

Public Key
(bytes)

Ciphertext
(bytes)

Key Generate
(ms)

Encapsulate
(ms)

Decapsulate
(ms)

Notation

FFDHE 1 0 256 256 203.920 204.080 4 - FFDHE
ECDHE 2 0 32 32 8.428 17.687 4 - ECDHE
Kyber512 1 800 768 8.133 6.239 3.419 Kyb1
BIKE-L1 1 1541 1573 200.620 25.969 411.308 Bike1
HQC128 1 2249 4481 30.202 50.682 72.775 Hqc1
SIKEp434 1 330 346 309.235 498.227 530.200 Sike1
SIKEp503 2 378 402 423.708 690.188 733.071 Sike2
SIKEp610 3 462 486 732.786 1341.125 1346.500 Sike3
Kyber768 3 1184 1088 12.224 11.412 7.924 Kyb3
SIKEp751 5 564 596 1262.750 2036.000 2183.000 Sike5
Kyber1024 5 1568 1568 12.918 11.623 8.539 Kyb5
Auth.
Algorithm

NIST
level

Public Key
(bytes)

Signature
(bytes)

Key Generate
(ms)

Sign
(ms)

Verify
(ms)

Notation

RSA 3 0 256 256 12.853/4505 448.250 12.500 RSA
ECDSA 2 0 32 32 8.428 12.305 25.193 ECDSA
Sphincs128s 1 32 7856 8674.000 66 239.000 61.588 Sphi1s
Sphincs128f 1 32 17088 137.750 3361.000 190.167 Sphi1f
Falcon512 1 897 666 1266.667 243.881 3.275 Falc1
Dilithium2 2 1312 2420 12.063 25.404 6 9.569 Dil2
Dilithium3 3 1952 3293 19.438 39.309 7 16.244 Dil3
Falcon1024 5 1793 1280 4802.667 527.789 6.852 Falc5

1 3072-bit, 2 secp256r1 curve, 3 2048-bit, 4 key agreement time, 5 public / private key generation
time, 6 (11/114) (min/max), 7 (15/138) (min/max) of execution time over 1000 signatures

Finally, SIKE has the slowest execution time among all the schemes but
offers the smallest public key and ciphertext sizes (even smaller than Kyber).
This fact makes SIKE an interesting candidate that only requires a very small
amount of network traffic. The execution speed can hopefully be improved by
either novel code optimisation techniques or by hardware accelerations in the
future. However, a recent work [19], has successfully recovered the secret key
from SIKE in all security levels in practice, thus bringing concerns of its overall
security.

Comparison of Authentication Schemes. It can be observed that Dilithium
offers the most balanced performance compared to all the other Digital Signa-
ture schemes selected for standardisation. While having a medium-sized public
key and signature, it offers excellent performance in terms of execution time.
Both Dilithium and Falcon outperform RSA in all operations at security level
1, and they outperform even the ECDSA in the “Verify” operation. However,
both are slower on the “Sign” operation than ECDSA, with Falcon being slower
by an order of magnitude. Note that we do not compare the “Key Generation”
operation as it is never performed online in a TLS handshake.

The SPHINCS+ offers 2 variants: The “small” variant has small signatures
but very slow execution times and the “fast” variant has faster execution times
but extremely large sizes. The signature size of the “fast” variant at NIST security
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level 1 is very large (over 17 KB) and even exceeds the Max_record_size of the
TLS protocol itself. On the other hand, the “small” variant needs over 1 minute
of execution time for the “Sign” operation.

The most time consuming operation is the “Sign” operation in all the PQC
authentication schemes. As the scenario in our evaluation is mutual authentica-
tion, the employed embedded system boards have to use the expensive “Sign”
operation when acting both as a server and as a client. This would result in
large overhead in execution time of the PQ TLS 1.3 handshake, mainly due
to the PQC authentication schemes. On the other hand, in the scenarios with
server-only authentication, there would be a significant improvement in execu-
tion time using PQC authentications when the embedded system board acts as
a client, especially when Falcon is used.

5.3 Post-quantum TLS 1.3 Measurements

After implementing all the architectural changes described in the previous sec-
tion, in this subsection, we measure the performance of the post-quantum TLS
1.3 protocol with different PQC algorithm combinations and compare this with
the performance of the classical TLS 1.3. PQ TLS 1.3 connections are established
on a local Ethernet network, following the experimental setup of subsection 5.1.

We use the wolfssl-tls-bench program provided by the wolfSSL library to
evaluate the performance of the post-quantum TLS. We make necessary changes
in order to run this program, and collect statistics and measurements for our
PQ TLS. In this work, the benchmark for each PQC algorithm combination
runs for 50 seconds. We select the Cipher Suite TLS13-AES256-GCM-SHA384
as the symmetric primitives, in line with previous works [32,31]. Note that for
simplicity, the client and the server in our experiment have been configured to
agree upon the public-key algorithms immediately, without any extra round-trip
and without pre-shared key assumption.

In Table 2, the experiment’s measurements/results, along with the static
memory consumption and the communication byte sizes of the handshake, are
presented in detail.

TLS 1.3 Handshake Time Measurements. The measurements collected
from the client differ from the measurements collected from the server. Although
the TLS 1.3 handshake authentication related operations are similar between
the two peers (1 “Sign” and 2 “Verify” operations for each), this is not the case
for the KEM related operations: the client executes 1 “Key Generate” and 1
“Decapsulate” operation, while the server executes 1 “Encapsulate” operation.
This leads to asymmetric execution time of the TLS handshake when the board
acts as a client and as a server, especially for schemes where these operations are
slow. This is most obvious in the measurements with BIKE, where the execution
time of its operations is highly divergent: very fast “Encapsualte”, but very slow
“Key Generate” and “Decapsualte”. This makes the client handshake time ∼5.6
times slower than the server. The Dil2-Hqc1 client handshake time is ∼1.36
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Table 2. PQ TLS 1.3 Handshake Measurements.

Notation
Static Usage

(bytes)
.bss Usage

(bytes)
Communication
Sizes (bytes)

Avg Handshake
Time (ms)

client server
Selected Algorithms for Standardisation

Dil2-Kyb1 49 648 0 14 748 96.318 91.062

Falc1-Kyb1 3680 39 936 6833 288.305 285.951

Dil3-Kyb3 69 072 0 20 224 157.126 153.492

Falc5-Kyb3 4200 79 872 11 789 594.495 589.058

Dil3-Kyb5 69 104 0 21 088 165.590 152.537

Falc5-Kyb5 4712 79 872 12 647 601.827 592.302

Sph1s-Kyb1 800 0 33 892 66 977.000 66 776.000

4rth Round Algorithms
Dil2-Bike1 81 528 49 16 292 690.000 121.756

Dil2-Hqc1 71 672 0 19 910 198.603 145.989

Dil2-Sike1 49 648 0 13 858 886.359 566.125

Dil2-Sike2 49 648 0 13 962 1196.510 760.265

Dil2-Sike3 49 648 0 14 130 2089.690 1416.368

Dil2-Sike5 49 648 0 14 342 3403.222 2149.923

Dil3-Sike3 69 232 0 18 902 2246.077 1529.143

Dil3-Sike5 69 104 0 19 114 3450.167 2170.840

Traditional Algorithms
RSA-ECDHE 2368 0 3742 540.220 538.158

ECDSA-ECDHE 2368 0 2353 109.171 106.927

times slower than the server. For rest of the PQC algorithm combinations, this
difference is generally smaller, on an average of 6.25 ms.

Given that TLS 1.3 mutual authentication is used, KEM combinations with
Dilithium perform much better than KEM combinations with Falcon. This is due
to the fact that Falcon has extremely fast “Verify” but slow “Sign” operations.
We also see that Sph1s-Kyb1 is extremely slow, with over 66 seconds of run-time.
Among the Round 4 algorithms, we see that Dil2-Hqc1 performs extremely well,
faster than Falc1+Kyb1 and only ∼2 times slower than Dil2+Kyb1. Dil2-Bike1
as a client is ∼3.5 times slower than Dil2-Hqc1, but outperform it as a server.

Finally, all SIKE combinations have considerable execution time overhead
(leading to execution time of a few seconds) compared to Digital Signature com-
binations with HQC or BIKE.5

Communication Sizes. The “Communication Size” is the byte size of all the
messages exchanged during the TLS 1.3 handshake, which is the sum of all the
bytes that a peer has sent plus the sum of all the bytes that the peer has re-
ceived. We only consider the byte size of the TLS 1.3 messages, and the overhead
5 This should be considered with caution since there is evidence that SIKE is no longer

cryptographically secure in its current version.
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from the TCP headers and lower network level protocols is not included in the
measurements. Communication size measurements provide a clear picture of the
network traffic that is involved during a TLS 1.3 handshake with a specific PQC
combination. For example, although KEM combinations with Dilithium gener-
ally perform much better in terms of speed compared to KEM combinations with
Falcon, it can be observed that Dil2+Kyb1 requires more than twice the band-
width than Falc1+Kyb1. The same applies to higher security levels. In addition,
the network traffic of the “fast” variant of SPHINCS+ is very high, almost 2.3
times compared to Dil2+Kyb1 and almost 5 times compared to Falc1+Kyb1.

Regarding the Round 4 algorithms, Dil2-Sike1 has the lowest communica-
tion sizes among all the combinations with Dilithium2. For example, Dil2+Kyb1
uses ∼6.5% more bandwidth than Dil2-Sike1. However, given the current inse-
cure status of SIKE, this result cannot be considered useful in practice. Note
that the communication sizes are dominated by the Authentication introduced
overhead. This has more significant impact in our mutual authentication sce-
nario. As demonstrated in Table 1, each peer must send and receive a certificate
or a whole certificate chain, and one Digital Signature. Nevertheless, larger KEM
sizes affect the “Communication Sizes”, as we can see that Dil2-Bike1 and Dil2-
Hqc1 use ∼10.5% and ∼35% more bandwidth than Dil2-Kyb1, respectively, even
though they all use Dilithium2 for authentication.

Compared to the classical TLS, PQ TLS 1.3 introduces a larger overhead in
terms of network traffic due to the excessive communication size. Dil2+Kyb1 uses
6.26 times more bandwidth than ECDSA+ECDHE, while Falc1+Kyb1, having a
lower overhead, consumes only 2.9 times more bandwidth than ECDSA+ECDHE.

Memory Requirements. We use the tools provided by the STM32Cube IDE
in order to perform an analysis on the static memory usage of our PQ TLS 1.3
implementation. The tool provides information about the code size, the RAM
usage, and the stack requirements of each function etc. The text segment of the
code size that includes the executable code and is stored in the Flash memory,
never exceeds 30% of our total 2MB Flash memory. However, the data and .bss
segments play a crucial role on the PQC algorithm integration, as they are stored
in the 192 KB SRAM of the embedded system evaluation board. Algorithms
introducing large artifact sizes or having an implementation that requires a lot
of Stack memory, may eventually be impossible to be integrated in a memory-
constrained device. For example, Rainbow has a public key of size 157KB, that
alone consumes 80% of the total available memory, making it impossible to be
evaluated in our board. Likewise, Classic McEliece is not included in pqm4 in
the first place for the same reason [28]. Also, Dilithium at security level 5 is not
included in pqm4, because the memory requirements are too large. In Table 2, we
show the Static memory or data region required by each KEM-Digital Signature
combination as well as the respective .bss region, as reported by STM32Cube
IDE tool.

Given that the employed embedded system evaluation board has 192 KB us-
able SRAM (excluding the 64 KB Core Coupled Memory), Dil2+Kyb1 consumes
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∼25% of the total available memory, while on higher security levels, Dil3+Kyb5
uses ∼35%. Combinations with Falcon generally use less memory: Falc1+Kyb1
consumes ∼ 22% of the total available memory and Falc5+Kyb5 uses 43%. On
the other hand, Sph1s-Kyb1 uses merely 800 bytes of RAM.

Regarding the Round 4 algorithms, both BIKE and HQC consume a sig-
nificant amount of memory. Dil2-Hqc1 and Dil2-Bike1 consume 41% and 36%
of the total memory of the board, which are 44% and 64% more memory than
Dil2-Kyb1, respectively.

Note that the PQC algorithm implementations do not make any use of dy-
namically allocated memory internally, but the rest of the program’s components
(lwIP, FreeRTOS, wolfSSL) do. The memory allocations of public key, private
key, ciphertext, and signatures are also made dynamically by wolfSSL. In ad-
dition, at the time of this paper’s writing, some of the pqm4 implementations
were not memory-usage optimised. It is likely that stack-usage optimised ver-
sions of the PQC algorithms selected for standardisation will be developed in
the future, which would hopefully reduce significantly their memory footprint
and thus make it possible to use them on memory-constrained devices.

6 Conclusion

In this paper, the importance of adopting a quantum-safe version of TLS 1.3
targeting embedded systems, in response to the imminent threats of a possible
quantum attack, is discussed. In the paper, we provide the necessary architec-
tural/design adaptations to the TLS 1.3 standard in order to make it quantum
safe and we provide a systematic PQ TLS 1.3 design that can support a broad
range of PQC algorithms, including the NIST PQC selected algorithms for stan-
dardisation, Digital Signatures that NIST considered for further evaluation (on
a new round), as well as the alternative PQC algotithms that NIST deemed wor-
thy to move to Round 4 of the NIST PQC process. We use an embedded system
board equipped with an ARM Cortex-M4 and a remote PC with an Intel x86_64
chip in our experiment. We have connected our devices to the same access point
through the Ethernet interface and performed a series of mutually authenticated
PQ TLS 1.3 connections for benchmarking. Our design implementation is based
on the wolfSSL TLS library for embedded systems, on which the PQC algo-
rithms are seamlessly integrated. To evaluate the PQ TLS 1.3 performance on
embedded systems, performance of the developed PQ TLS 1.3 implementation
is measured in terms of the execution timing, memory footprint, and commu-
nication size overhead that the PQC algorithms will introduce. This work, to
the authors’ knowledge, constitute the first complete work on PQ TLS 1.3 for
resource-constrained embedded systems that takes in account all the selected
algorithms for standardisation from the NIST PQC process, almost all Round 4
algorithms, and additionally some alternative algorithms from Round 3.

In this paper, G. Tasopoulos and A. Fournaris has received funding from the
European Union’s Horizon 2020 research and innovation program CONCOR-
DIA under grant agreement No 830927 and from the European Union’s Horizon
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Table 3. Summary of Other Post-quantum Primitives.

Algorithm
NIST
level

Public Key
(bytes)

Ciphertext
(bytes)

Key Generate
(ms)

Encapsulate
(ms)

Decapsulate
(ms)

LightSaber 1 672 736 10.564 6.555 3.960
NTRU 1 699 699 31.093 11.990 3.650
Frodo640 1 9,616 9,720 474.682 473.091 469.545
NTRULPR-761 2 1,039 1,167 18.116 11.284 8.818

Algorithm
NIST
level

Public Key
(bytes)

Ciphertext
(bytes)

Key Generate
(ms)

Sign
(ms)

Verify
(ms)

Picnic3 1 35 14,612 5.922 2,188.400 1,355.000

Table 4. PQ TLS 1.3 Handshake Measurements with Other Post-quantum Primitives.

Notation
Static Usage

(bytes)
.bss Usage

(bytes)
Communication
Sizes (bytes)

Avg Handshake
Time (ms)

client server
Extra Measurements

Pic1-Kyb1 87 000 13 52 445 5022.167 5027.083

Dil2-Ntru1 50 000 0 14 578 126.978 104.136

Dil2-Frod1 73 000 0 32 491 1194.501 687.865

Dil2-Ntrulpr1 49 648 0 15 388 125.351 123.697

Dil2-Sab1 49 648 0 14 588 109.429 98.401

A Main Components of wolfSSL Library

WolfSSL consists of the following main components:
WolfCrypt. This component includes all the classical public-key and symmetric-

key cryptographic algorithms, as well as hash algorithms, MAC algorithms, and
programs handling certificate and key files. It provides optimised code for various
architectures as well as hardware support for selected platforms.

WolfSSL. This component includes all the protocol related codes, that im-
plement the TLS protocol itself as well as other protocols such as Datagram
Transport Layer Security (DTLS). It includes all the settings and preferences
of the TLS protocol and the interfaces to communicate either to a lower level
protocol such as TCP, or to a higher level such as an operating systems e.g.
FreeRTOS [2].

Utilities. This component includes all non-essential utilities such as bench-
marks or programs for testing purpose to verify the correct functionality of the
wolfSSL library. In this paper, some of these benchmark programs have been
used in order to measure the performance of PQ cryptographic algorithms or
the TLS protocol itself. We particularly use the following two tools:

– Wolfcrypt-benchmark is a benchmark tool used to measure the performance
of all the enabled cryptographic algorithms and provides relevant statistics.
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This program has been used in the paper as basis for taking time mea-
surements on PQC algorithms in order to compare them with the classical
algorithms.

– Wolfssl-tls-bench is another benchmarking tool that measures and provides
a series of metrics regarding TLS sessions. It can make use of an operat-
ing system, like FreeRTOS, and simulate a server and a client connecting
through TLS on the same device. Alternatively, it can be run on different
devices, one being the server and the other being the client, to provide a re-
alistic benchmark scenario. The tool repeatedly establishes TLS sessions (by
running the TLS handshake), exchanges data for a given time period, and
then it provides statistics about the established connections e.g. the average
time spent on handshaking, the size of exchanged data etc. This program
has been used in this paper in order to measure the performance of TLS
protocol while using PQC algorithms and to compare the results with the
TLS protocol using classical algorithms.
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