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Abstract—Fully homomorphic encryption enables computation
on encrypted data, and hence it has a great potential in privacy-
preserving outsourcing of computations. In this paper, we present
a complete instruction-set processor architecture ‘Medha’ for
accelerating the cloud-side operations of an RNS variant of
the HEAAN homomorphic encryption scheme. Medha has been
designed following a modular hardware design approach to
attain a fast computation time for computationally expensive
homomorphic operations on encrypted data. At every level of
the implementation hierarchy, we explore possibilities for parallel
processing. Starting from hardware-friendly parallel algorithms
for the basic building blocks, we gradually build heavily parallel
RNS polynomial arithmetic units. Next, many of these parallel
units are interconnected elegantly so that their interconnections
require the minimum number of nets, therefore making the
overall architecture placement-friendly on the implementation
platform. As homomorphic encryption is computation- as well
as data-centric, the speed of homomorphic evaluations depends
greatly on the way the data variables are handled. For Medha,
we take a memory-conservative design approach and get rid of
any off-chip memory access during homomorphic evaluations.

Our instruction-set accelerator Medha is programmable and
it supports all homomorphic evaluation routines of the leveled
fully RNS-HEAAN scheme. For a reasonably large parameter
with the polynomial ring dimension 214 and ciphertext coefficient
modulus 438-bit (corresponding to 128-bit security), we imple-
mented Medha in a Xilinx Alveo U250 card. Medha achieves the
fastest computation latency to date and is almost 2.4× faster in
latency and also somewhat smaller in area than a state-of-the-art
reconfigurable hardware accelerator for the same parameter.

I. INTRODUCTION

Cloud computing services are very popular and provide
high-performance computational resources to the users [2].
Despite its advantages, conventional cloud computing has se-
curity and privacy risks as the data of the user, becomes visible
(as plaintext) during any computation in the cloud. Isolation
techniques are followed with certain trust assumptions. Yet, in
recent years several data leaks have been reported.

The concept of Fully Homomorphic Encryption (FHE) was
introduced by Rivest et al. [24] in 1978. FHE enables logical
and arithmetic operations on encrypted data without requiring
any decryption of the data. Therefore FHE has a great potential
in privacy-preserving outsourcing of computation to the cloud
without needing to trust the cloud or a third party.

Since its inception, it took three decades to build a homo-
morphic encryption scheme that could perform many com-
putations on encrypted data. In 2009, Gentry constructed the
first FHE scheme [15]. FHE quickly gained interest from both
academia and industry and in the last 10 years, and because of

the research, better and better FHE schemes started appearing
with orders of magnitude improvements in the performance.

There are several FHE or leveled FHE schemes in the
literature. The difference between an FHE and a leveled-FHE
is that the latter one could perform computations correctly
only up to a certain complexity level whereas the first one
could do arbitrary computations. It is possible to transform a
leveled-FHE into an FHE by introducing a special procedure
‘bootstrapping’. For evaluating arithmetic operations homo-
morphically, the BFV [13] and BGV [8] schemes are popular.
Whereas the THFE scheme [11] is efficient for evaluating
Boolean gates. On the other hand, for performing compu-
tations on encrypted real numbers, the HEAAN [10] and
its Residue Number System (RNS) variant RNS-HEAAN [9]
schemes are efficient. In fact, RNS-HEAAN is to this date the
fastest scheme for performing approximate computations on
the encrypted real data, thus making it popular for privacy-
preserving machine learning applications on clouds. There
are also various efforts in the literature for improving the
performance of FHE using hardware accelerators [14], [23],
[25], [28], [30].
Contributions: In this work, we propose a programmable
instruction-set architecture (ISA), which we call ‘Medha’ for
accelerating the Cloud-side operations of RNS-HEAAN [9].
When Medha is implemented in a single Xilinx U250 FPGA
Alveo Card, it achieves around 137× speedup compraed to
the optimized SEAL software [27]. In greater detail, we
summarize our contributions as follow:

• Implementing a high-performance processor architecture
for a leveled FHE scheme, such as RNS-HEAAN, is
full of challenges as homomorphic encryption is com-
putation and data-centric. For the primitives used in
RNS-HEAAN, we design hardware-friendly algorithms
so that we can parallelize and pipeline them efficiently in
hardware.

• Besides optimizing the number of compute cycles, a
significant effort is put on the on-chip memory organi-
zation of the architecture. Although U250 has one of
the largest FPGAs, reaching a high memory utilization is
rather challenging as the memory elements are distributed
across the FPGA floor. We follow a memory-conservative
design approach and eliminate off-chip data transfers
(which is slow) during homomorphic computing.

• Starting from optimized primitives, we gradually build
high-level instruction-set processing elements which we
call the ‘RPAU’. Many RPAUs (each one is quite big) are



instantiated in parallel and then they are connected in a
‘ring’ structure to make the overall architecture placement
and routing efficient.

• At the highest level of the implementation hierarchy, we
apply instruction-level parallelism to execute a major por-
tion of the polynomial arithmetic operations in parallel.
With this, we observe around 40% reduction in the cycle
count at the cost of around 20% increase in the resources.

The amount of computation that can be performed using
a leveled FHE is determined by the parameter set of the
implementation. Our Medha has been optimized to support
the following parameter of RNS-HEAAN: the polynomial
ring dimension is N = 214 and the ciphertext modulus is
log2 Q = 438 bits. With this parameter set, we can perform
computations up to seven levels satisfying a bit security
of 128 bits. Thus, Medha could be used to accelerate the
cloud side homomorphic evaluations of various approximate
computations such as machine learning, and neural network
models, e.g., training a 2-layer CNN, logistic and exponential
computation up to depth 4 [19], etc.

II. BACKGROUND

In a typical homomorphic encryption protocol, there are
two parties: a client and a cloud server. The cloud contains
data encrypted (i.e., ciphertext) by the client, and the client
performs computations on its encrypted data directly in the
cloud. At the end of this protocol, the client receives the
encrypted results from the cloud and performs decryptions to
recover the plaintext results.

An ideal lattice-based homomorphic encryption scheme
works as follows. Let, a client’s secret-key be sk = (1, s) ∈
R2

Q and the corresponding public-key be pk = (b, a) ∈ R2
Q.

Each key is a pair of polynomials in the polynomial ring
RQ where Q is the coefficient-modulus. Client encrypts a
message m using pk and obtains the ciphertext ct ← (c0 =
r · b + e0 + m, c1 = r · a + e1) ∈ R2

Q where ei is a
Gaussian distributed error-polynomial. Let, a cloud contains
two ciphertexts ct = (c0, c1) and ct′ = (c′0, c

′
1) ∈ R2

Q of the
client as encryptions of messages m and m′ respectively. The
cloud can compute a valid encryption of m + m′ simply by
adding the two ciphertexts as ctadd ← (c0+c′0, c1+c′1) ∈ R2

Q.
Computing an encryption of m ·m′ is relatively complex and
involves several steps. First, the two ciphertexts are multiplied
to obtain ctmult = (c0 · c′0, c0 · c′1 + c1 · c′0, c1 · c′1) ∈ R3

Q.
This intermediate result has three polynomial components and
could be decrypted using (1, s, s2) but not using sk = (1, s).
Next, a special operation known as the ‘Key-Switching’,
is used to transform the three-component ciphertext ctmult
(which is decryptable under (1, s, s2)) into a two-component
ciphertext ctrelin decryptable under (1, s). In this context, the
key-switching is called re-linearization as it obtains a linear
ciphertext from a quadratic one.

The above-mentioned general framework is used in sev-
eral lattice-based FHE schemes, e.g., BGV [8], BFV [13],
and HEAAN [9]. Our instruction-set accelerator Medha has
been designed keeping in mind the above-mentioned general

framework, and as a case study, Medha has been optimized
and implemented for an RNS variant of the HEAAN scheme
which is popularly known as the ‘RNS-HEAAN’ scheme [9].
In RNS-HEAAN, the ciphertext modulus Q =

∏L−1
i=0 qi is

a product of small primes qi. These primes form the RNS
basis of the implementation. With the application of RNS, a
polynomial a ∈ RQ is represented as a vector of L residue
polynomials (hence small coefficients) in the RNS basis. The
biggest advantage is that these small-coefficient residue poly-
nomials can be processed efficiently and in parallel. Hence,
RNS-HEAAN is more efficient and implementation-friendly
than the original HEAAN scheme [10].

Due to the page limit, we briefly describe the RNS-HEAAN
scheme. To get a detailed description of RNS-HEAAN, the
readers may follow the original publication [9]. To use RNS-
HEAAN in an application, the first step will be to set up
the scheme parameters such as polynomial-degree, modulus
size, RNS-basis, etc., depending on the multiplicative depth
required by the application. After that, a client generates its
private-key sk = (1, s) ∈ R2

Q, public-key pk = (b, a) ∈ R2
Q

and a special key KSK = (KSK0, KSK1) for performing the
key-switching operation after a ciphertext multiplication. Each
of KSK0 and KSK1 is a vector L of polynomials where each
polynomial resides in RpQ and p is a special prime modulus.
After generating the keys, the client sends its public and key-
switching keys to the cloud. Due to efficiency reasons, the
cloud keeps these keys in the RNS representation and the NTT
domain. The Number Theoretic Transform or NTT enables fast
polynomial multiplications (we will see it later). Note that in
the RNS representation, a polynomial in RQ (or RpQ) is a
vector of L (or L + 1) residue polynomials. Hence, each of
KSK0 and KSK1 has L·(L+1) residue polynomials. The Client-
side operations are relatively a lot simpler than the Cloud-side
operations. Our Medha accelerates the Cloud-side operations.
RNS-HEAAN subroutines used in the Cloud: In the follow-
ing part, we use the notation Ql to represent the ciphertext-
modulus at level l and Ql =

∏l−1
i=0 qi with l ≤ L. It implicitly

performs all arithmetic operations on the residue polynomials.

• HE.Add(ct, ct′): It adds the respective polynomials of the
two ciphertexts and outputs the result.

• HE.Mult(ct, ct′): It multiplies two input ciphertexts ct =
(c0, c1) ∈ R2

Ql
and ct′ = (c′0, c

′
1) ∈ R2

Ql
, and computes

d0 = c0 · c′0 ∈ RQl
, d1 = c0 · c′1 + c1 · c′0 ∈ RQl

,
and d2 = c1 · c′1 ∈ RQl

. The output is the non-linear
ciphertext d = (d0, d1, d2) ∈ R3

Ql
.

• HE.Relin(d, KSK): It re-linearizes the result of previous
step and produces a ciphertext that is decryptable under
the secret key. Let d2,i = d2 (mod qi) for 0 ≤ i < l.
Now compute ct′′ = (c′′0 , c

′′
1) where c′′0 =

∑l−1
i=0 d2,i ·

KSK0[i] ∈ RpQl
and c′′1 =

∑l−1
i=0 d2,i · KSK1[i] ∈

RpQl
. Finally, output the re-linearized ciphertext ctrelin =

(d0, d1) + ⌊p−1 · ct′′⌉ (mod Ql).

Fig. 1 shows the hierarchy of different operations that are
used in a homomorphic application. At the highest level of this
hierarchy, there are homomorphic procedures for performing
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Fig. 1. Implementation hierarchy of homomorphic encryption. Key genera-
tion, encryption, and decryption are performed on the user side. These user-
side operations also include encoding, decoding, and Gaussian sampling at
the lowest level. Homomorphic evaluations on ciphertexts using HE. Add,
subtract, multiply, key-switching, etc., are performed at the cloud side. Our
hardware accelerator is designed for accelerating cloud-side operations which
are significantly more expensive than user-side operations.

TABLE I
PARAMETER SETS

Parameter
(N, log2 Q) L+ 1

Mult. Security
Set Depth Level1

Set-1 (214, 384) 7 6 151-bit
Set-2 (214, 438) 8 7 130-bit
Set-3 (214, 492) 9 8 115-bit

1: Results are obtained using lwe security estimator [1].

computations (e.g., addition, multiplication, key-switching,
etc.) on the ciphertexts. These high-level operations trans-
late into the arithmetic of polynomials: polynomial addition,
polynomial subtraction, polynomial multiplication, coefficient-
wise multiplication, coefficient-wise modular reduction, and
coefficient-wise scalar multiplication. Finally, the lowest level
of this hierarchy is composed of arithmetic blocks for residue
arithmetic where the moduli are 54 or 60-bit primes.
Parameter set for our implementation For proof-of-concept,
we implement three different versions of the accelerator with
three-parameter sets, which we refer to as Set-1, Set-2, and
Set-3. They have the coefficient modulus sizes 384, 438, and
492, respectively, with the same polynomial degree (N = 214)
as shown in Table I.

III. COMPUTATION AND PLATFORM CONSTRAINTS

A. Profiling for identifying computational challenges

Before designing a hardware accelerator for FHE, it is
important to know which of the above-mentioned computation
primitives are the most expensive ones, so that we can allocate
more resources for them in the architecture. Software profiling
of the SEAL [27] library on an Intel i5 laptop showed that
polynomial multiplications are the most computation-intensive
operations. The polynomial multiplications in SEAL use the
Number Theoretic Transform (NTT) method that gives the
fastest asymptotic time complexity of O(n log n). The NTT
and inverse NTT (INTT) computations take roughly 67%
and 7% of the overall computation time of a key-switching
operation when the polynomials are 214 coefficients, and there
are eight moduli in the RNS base. The remaining 26% is spent
on different coefficient-wise operations.

Handling huge active data variables is very important for
performance. For the above-mentioned parameter, to perform a
homomorphic multiplication, SEAL allocates around 600 MBs
of memory in the stack and heap. The total on-chip memory
(BRAMs and URAMs) in the target FPGA is only around 24
MBs. Additionally, it is generally not feasible to achieve 100%
utilization of the on-chip memory as the BRAMs and URAMs
are distributed throughout the FPGA.

B. Overview of Alveo U250 Platform

We have implemented Medha in the Alveo U250 data
center accelerator card. It contains one of the largest Xilinx
FPGAs. The FPGA is divided into four isolated ‘Super Logic
Regions (SLRs)’. Such a splitting leads to lower power and
energy consumption. An SLR is connected to its neighboring
SLR(s) through stacked silicon interconnects. These inter-SLR
connections are limited in number. Hence, for implementing a
large architecture on a multi-SLR FPGA, the number of nets
crossing the SLRs should be sufficiently small.

All the SLR regions have an almost similar amount of logic
and memory resources. In our case, each SLR has around
345K LUTs, 705K FFs, 2877 DSPs, 500 BRAMs, and 320
URAMs. Integer multipliers are generally implemented using
DSPs instead of LUTs for better speed and area. The BRAMs
and URAMs are addressable dual-port memory elements.
URAMs are profitable when we have to store big but less
frequently-accessed data in the on-chip memory. The BRAMs
and URAMs are arranged in columns in the SLRs.

IV. IMPLEMENTATION OF MODULAR ARITHMETIC

The ground layer of the implementation hierarchy in Fig. 1
is built of operators for the arithmetic of residue numbers. The
prime moduli are only 54 to 60 bits large. We use hardware-
friendly algorithms and optimizations so that we can optimize
these fundamental arithmetic blocks for both area and speed.
Modular addition and subtraction are the simplest blocks and
they are implemented using adder and subtractor circuits made
of configurable fabric logic, i.e., LUTs.

For implementing modular multiplication, we instantiate
bit-parallel modular multipliers so that the highest throughput
can be achieved. A bit-parallel modular multiplier is essen-
tially an integer multiplier followed by a reduction circuit.
Integer multipliers are implemented using DSP slices with
several layers of pipeline registers to meet at least 300 MHz
clock-frequency constraints. One 60-bit integer multiplier con-
sumes 10 DSP slices.

The most commonly used methods for performing modular
reduction are based on the Barrett or Montgomery methods.
The SEAL library [27] uses the Barrett reduction technique
for reducing the results of integer multiplications. The same
technique is also used in the hardware architecture of the
HEAX processor. In the Barrett reduction, the input (i.e., the
non-reduced value) is first multiplied by a constant, and then a
bit shifting is performed to obtain a quotient. Next, a partially
reduced result is calculated by multiplying the quotient by
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another constant. The final result requires a conditional sub-
traction operation. In summary, the Barrett reduction method
is based on multiplications. Another method for implementing
the modular reduction operation is using a table-based modular
reduction approach as proposed in [25]. In this method, the
result of a multiplication is reduced in multiple steps where
each step reduces a part near the most significant bit using
a pre-computed look-up table. Although this method does not
use any DSP multipliers, it increases LUT utilization on FPGA
and does not provide an optimal solution when the modulus is
constant. When the modulus is selected as a sparse prime, the
reduction operation can be performed efficiently using only
add and shift operations as proposed in [34]. In this work,
we use reduction-friendly primes as moduli and employ the
fast add-shift-based modular reduction method to save both
DSPs and LUTs [34]. For example, the first modulus in the
RNS-basis is a 60-bit sparse prime q0 = 259 + 220 − 215 + 1
and the result of a multiplication (120 bit) is reduced using
the relation 259 ≡ −220 +215− 1 (mod q0) recursively. This
approach saves up to 45% LUT units compared to the table-
based modular reduction method.

V. IMPLEMENTATION OF POLYNOMIAL ARITHMETIC

In the second level of the implementation hierarchy in
Fig. 1, large-degree polynomials are processed. Other than
the polynomial multiplication, the remaining operations are
coefficient-wise with O(n) time complexity.

For multiplying two large polynomials, the Number The-
oretic Transform (NTT) that is a generalization of the Fast
Fourier Transform (FFT), is the fastest method thanks to
its O(n log n) time complexity. To perform a multiplication,
the input polynomials are transformed into frequency-domain
polynomials, then they are multiplied coefficient-wise, and
finally, the result is brought to the time-domain by applying
the inverse NTT (INTT).

We use the decimation-in-time (DiT) approach for the NTT
and decimation-in-frequency (DiF) approach for the INTT
[26]. This particular combination eliminates the need for any
coefficient permutations before the NTTs or after the INTT as
used in SEAL [27]. The DiT NTT algorithms is described in
Alg. 1. The butterfly operation in Alg. 1 takes a pair of coeffi-
cients, then performs modular arithmetic (addition, subtraction
and multiplication), and finally produce two new coefficients.
To remain within the page limit, we do not describe the DiF
INTT algorithm. In comparison to the DiT method, the DiF
method processes the polynomial coefficients in the reverse
order and the butterfly computations are performed differently.

A. Parallel NTT architecture

On hardware platforms, the NTT algorithm can be paral-
lelized by instantiating parallel compute cores for the butter-
fly operation. At the same time, due to the loop-dependent
varying memory access pattern (Alg. 1), implementing a
highly parallel NTT [23], [25], [28] requires solving three
major challenges: memory-access bottleneck due to port lim-
itation, memory read/write conflicts, and long routing nets

Algorithm 1 Decimation-in-time (DIT) forward NTT
Input: Polynomial a(x) ∈ Rq and ωN ∈ Zq (N -th root of unity)
Output: Polynomial A(x) ∈ Zq[x] = NTT(a)

1: A← BitReverse(a) ▷ permutation of coefficients
2: for m = 2 to N by m = 2m do
3: ωm ← ω

N/m
N

4: ω ← 1
5: for j = 0 to m/2− 1 do ▷ butterfly loop
6: for k = 0 to n− 1 by m do
7: (u, t)← (A[k + j], A[k + j +m/2])
8: A[k + j]← u+ ω · t
9: A[k + j +m/2]← u− ω · t

10: end for
11: ω ← ω · ωm

12: end for
13: end for

Fig. 2. Organization of memory and compute cores for efficient implemen-
tation of parallel NTT

between compute-cores and memory elements. Taking inspi-
ration from [23], [25], [28] we implement our parallel NTT
unit. Fig. 2 shows a high-level organization of the memory
elements (for storing the polynomial) and the compute cores
(for processing the coefficients). As the on-chip memory
elements (e.g., BRAM) in FPGAs are dual-port, one of the
ports is used for reading, and the other port is used for
writing during an NTT. Each compute core is responsible for
computing one butterfly operation every cycle.

Following [25] any compute core in Fig. 2 reads its operand
data exclusively from a fixed set of memory elements. With
this strategy ‘all memory element’ -to- ‘all compute core’
communication which requires O(c2) nets (where c is the
number of cores) is reduced to O(c) nets only.

Output coefficients from the compute cores are stored in
the memory through the ‘bus switching matrix’ in Fig. 2.
The matrix rearranges the received coefficients in such a way
that during the next loop-iteration of the NTT algorithm,
each compute core gets its operand coefficients from its
exclusive memory elements. The matrix is composed of a set
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Fig. 3. Organization of the unified butterfly core (without pipeline registers)
for DiT and DiF NTTs. During DiT, the selection signal sel=0 for computing
{u+ t · ω, u− t · ω}. During DiF, sel=1 to compute {u+ t, (u− t) · ω}.

of multiplexers and its area is proportional to the logarithm of
the number of compute cores.

The data paths that originate at the outputs of the compute
cores and reach the bus switching matrix (Fig. 2) are long.
We put multiple layers of pipeline registers (shown in green
in the figure) to split these long paths into much shorter paths.
This pipeline strategy increases the clock frequency without
increasing the latency as each compute core produces the
result-coefficients in a continuous ‘stream’.

The number of parallel compute cores is a design parameter
that depends on area and performance budgets. Our NTT unit
uses c = 16 butterfly cores and computes one NTT in around
7,168 cycles for polynomials of N = 214 coefficients. Each
memory element in Fig. 2 is a dual-port BRAM36k slice and
hence a butterfly core exclusively reads a pair of BRAM36k
to obtain two coefficients every cycle.

B. Unified butterfly core for DiT NTT and DiF INTT

The forward and inverse transform use different butterfly
steps. In DiT a new coefficient-pair (u′, t′) is computed from
(u, t) as follows: (u′, t′)← (u+t·ω, u−t·ω). Whereas in DiF
a new coefficient-pair is computed as (u′′, t′′)← (u+ t, (u−
t) ·ω). We use a unified butterfly core for computing both DiT
and DiF methods. It is shown in Fig. 3. The multiplexers are
used to select an appropriate data path depending on the DiT
or DiF mode of operation.

Pipeline registers (not shown in the figure) are used to
meet over 300 MHz clock frequency. We propose an op-
timized pipeline scheduling to reduce the area overhead of
our pipelined butterfly core significantly compared to previous
works [23], [25], [28]. The modular multiplier in Fig. 3
uses many more levels of pipeline registers compared to
the modular adder and subtracter. Let us consider the pro-
cessing of coefficient pairs during DiT NTT. After reading
the coefficient t, computation of the intermediate data ω · t
progresses through a long chain of pipeline registers present
inside the modular multiplier. For the correct computation of
(u′, t′)← (u+t ·ω, u−t ·ω), u and ω ·t must reach the inputs
of the adder and subtractor synchronously in the same cycle.
In [25] both u and t are read together from the memory and
then u is passed through a long chain of redundant registers

Fig. 4. The timing diagram for our DiT method of NTT. Due to pipelined
datapath, the reading of the u coefficients is delayed so that we can add or
subtract them when the corresponding modular multiplication results t ·ω are
ready. The results of butterfly operations are written synchronously. For the
DiF method, the read-write happen oppositely: we read the u and t coefficients
synchronously but write them asynchronously. The notations &R and &W

are for reading and writing addresses respectively.

just to make sure that both u and ω · t arrive together at the
adder and subtracter. We do not use this pipeline strategy as it
adds an overhead of around 1,200 flip-flops per butterfly core
and around 153,600 flip-flops for Medha.

Our pipeline strategy avoids the above-mentioned bloated
register consumption by simply delaying the read of coefficient
u from the memory. We keep u and t in separate memory
elements in Fig. 2 so that they can be read separately just-
in-time. The timing diagram in Fig. 4 shows how the {u, t}
coefficients are read during a DiT NTT. Reading of the t-
coefficients for the consecutive butterfly operations is initiated
several cycles ahead of reading the u-coefficients. The timing
gap between the two reading streams equals the number of
pipeline stages in the modular multiplier. As a consequence,
each modular multiplication result and the respective u appear
synchronously at the inputs of the adder and subtractor circuits
in Fig. 3. In this way, just by delaying the read of the u-set of
coefficients, we eliminate the need for any redundant registers.

We extend the above-mentioned pipeline strategy to the DiF
method of INTT. The difference is that both u and t are read
simultaneously but the result coefficients are written separately
into the memory.

C. Twiddle factors during NTT

Software implementations (e.g., SEAL [27]) and also the
hardware implementations [23], [28] save cycle count by
keeping all the required twiddle constants in large tables.
As several previous hardware implementations [23], [28] in-
dicated that homomorphic encryption is memory-bound in
Medha we compute the twiddle factors on the fly and in
parallel to the butterfly operations so that we save on-chip
memory without increasing the latency.

A twiddle factor generation unit mainly consists of a modu-
lar multiplier and only one memory element for keeping a few
initial constants. The multiplier is not an additional cost as it is
reused to speed-up non-NTT operations, such as coefficient-
wise multiplication of two polynomials and coefficient-wise
modular reductions of an input polynomial.
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Fig. 5. Architecture of the Residue Polynomial Arithmetic Unit (RPAU).

VI. ARCHITECTURE OF THE HOMOMORPHIC ENCRYPTION
PROCESSOR

In this section, we describe the level in Fig. 1 where
homomorphic computations namely, homomorphic addi-
tion/subtraction, multiplication, and key-switching are per-
formed. Our Medha is an instruction-set architecture (ISA) and
hence programmable. By changing the program-microcode,
Medha could be re-used for executing different homomorphic
routines. ISAs have been designed for accelerating homomor-
phic encryption in [25], [28]. However, their performance
advantages have remained limited, e.g., only 13× speedup
compared to the SW-only implementation in [28]. Medha
overcomes the speed limits of the previous ISA-based imple-
mentations and offers about 137× speedup compared to the
software implementations. Indeed, Medha has a faster latency
than HEAX [23] which is a block-unrolled architecture.

A. High-level architecture of Medha

In an RNS homomorphic encryption scheme, an arithmetic
operator is applied to a ‘vector’ of residue polynomials. This
has some similarities with the Single Instruction Multiple Data
(SIMD) processors. Our Medha has been designed to leverage
that algorithmic parallelism.

At a high level, Medha instantiates parallel computation
units similar to [28] for processing the residue polynomials
in SIMD manner in parallel. We call one such computation
unit the ‘Residue Polynomial Arithmetic Unit (RPAU)’. We
instantiate one RPAU per moduli of the RNS basis. Next, the
RPAUs are connected carefully as data exchanges must happen
between them during the key-switching or relinearization.

We would like to mention that, although similar SIMD
processors [28], [30] have been proposed in the literature, we
make significantly novel contributions in the internal design
of the RPAUs, on-chip memory organization, and the way
these RPAUs are interconnected to realize Medha. Because of
all these optimizations, our Medha achieves 2-order speedup;
whereas the previous ISAs [28], [30] achieved only 1-order
speedup compared to a slower software and also with a 4×
smaller parameter (thus less challenging to implement).

Fig. 6. Computation steps that are performed in the j-th RPAU during a
homomorphic multiplication followed by a key-switching operation. The tilde
is used to indicate that a data variable is in the NTT domain. Coefficient-wise
multiplication of two polynomials is denoted using ⋆.

Fig. 7. Parallel processing of Fig. 6 using two threads inside an RPAU.

B. Design of Residue Polynomial Arithmetic Unit (RPAU)

An RPAU, shown in Fig. 5, is composed of polynomial
arithmetic blocks and memory for storing the operand and re-
sultant residue polynomials. There are two groups of compute
cores, namely RPAU.All and RPAU.Dyadic, for executing
two residue polynomial arithmetic instructions in parallel.
RPAU.All is capable of performing all kinds of polynomial
arithmetic operations that an RPAU is needed to perform.
Hence, it is a necessary and sufficient component for designing
an RPAU. RPAU.Dyadic enhances the performance of an
RPAU by computing coefficient-wise (i.e., dyadic) operations
in parallel to the operations performed by RPAU.All.
Instruction parallelism within RPAU: Looking at the data
dependencies between the steps in Fig. 6, we see that some of
the steps can be performed in parallel. For example, in the first
block, d0,j , d1,j , and d2,j can be computed in parallel to each
other as they depend only on the input polynomials. Inside the
loop of the key-switching operation, the steps are sequential in
nature due to data dependencies. As the loop iterates several
times, we can parallelize the loop by unrolling it and then
‘block-pipelining’ the loop-internals. In summary, we have
different options for applying parallel processing. Next, we
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discuss the architectural options and the design decisions that
we take to leverage this parallelism without increasing the area
significantly.

• Option 1: Running more than one NTTs in parallel inside
an RPAU will become essential if we unroll the loop of
the key-switching operation in Fig. 6. The NTT unit that
we use has 16 compute cores and they are not really
small in area. Hence replicating the NTT unit multiple
times will increase the area significantly.

• Option 2: Using only one NTT unit with more compute
cores. Compared to the previous option, this option will
be simpler as well as more effective in reducing the
latency irrespective of data dependencies. E.g., instead of
using 16 cores in the NTT, if we use 32 or 64 cores then
we can reduce the cycle count of an NTT by a factor of 2
or 4 respectively. A potential problem is that we may not
see a similar reduction in the overall computation time
due to a slow-down in the clock frequency of the much
larger architecture. Another problem is that the number
of cores in NTT increases by powers of two, leaving no
room for a middle solution.

• Option 3: Following Option 2, if we use only one NTT
unit per RPAU, then a way to reduce latency will be to
execute coefficient-wise polynomial operations in parallel
with NTTs. In this approach, a few additional arith-
metic cores for these cheaper coefficient-wise operations
will be needed in the RPAU. For example, using only
four coefficient-wise arithmetic cores, we can compute
two dyadic polynomial arithmetic instructions (taking
2×4, 096 cycles) concurrently with an NTT (taking 7,168
cycles). In Fig. 7 we provide a timing diagram and show
how we can speedup the computation of Fig. 6 using two
parallel threads.

C. Organization of on-chip memory inside RPAU

As RNS-HEAAN involves computations on large-degree
residue polynomials, storage and access of the operand and
intermediate results play a critical role in the performance.
Off-chip data transfer is very expensive, and therefore while
designing the RPAU architecture, we aimed to store all or
most of the required data in the on-chip memory elements
such as BRAMs and URAMs. After analyzing and optimizing
the steps of homomorphic multiplication + key-switching,
we observe that the peak memory requirement is equal to
storing seven residue polynomials (operands and intermediate
data) in each RPAU. Additionally, if we also keep the key-
switching key inside the RPAU to completely avoid off-chip
memory access, then we need storage for 2L additional residue
polynomials. This is because the key-switching loop in Fig. 6
requires L polynomials from each of KSK0 and KSK1. For the
parameter set that we are using, L = 7. Thus, in total, we
need to store 21 residue polynomials to eliminate the need for
off-chip memory access and achieve minimum computation
time.

On the target FPGA platform, a URAM is 8 times larger
than one BRAM36k. However, both types of memory have

Fig. 8. Organization of memory elements inside the memory module. One
such memory module is connected to a single compute core of the NTT
unit. There are 16 such memory modules inside each RPAU. Any residue
polynomial is split into 16 fragments, and one such fragment is stored in one
RPM-i of a memory module.

only two ports. Storing one residue polynomial would cost 32
BRAM36k slices or 4 URAM slices. However, we also need
a high data rate for feeding the computation cores and storing
results by them. For example, if a polynomial is stored using
4 URAMs, then due to the limitation in the number of ports,
we cannot use all 16 cores of the NTT unit. Also in Sec. V-A
we will see that for efficient placement and simpler memory
access, the memory elements are required to be exclusive to
the compute cores. Hence, designing the memory bank of the
RPAU requires careful considerations of the computation and
architectural constraints.

We make the memory organization modular within the
RPAUs. First, we align BRAMs and URAMs to implement the
‘memory-bank’ that will be exclusively read by one of the 16
compute cores during the NTT. In this way, the memory-bank
of the i-th compute core keeps only the i-th fragments of all
the 21 residue polynomials. This memory-bank is a hybrid of
BRAMs and URAMs and its internal architecture is shown in
Fig. 8. The abbreviation ‘RPM’ stands for residue polynomial
memory. There are seven RPMs inside the core memory and
each RPM stores 1/16-th of the consecutive coefficients, i.e.,
1,024 coefficients for N = 214. In the figure, we use the
peach and light green colors to represent RPMs that are based
on BRAMs and URAMs respectively. RPM-4, 5, and 6 are
composed of BRAM36k slices and are physically separated.
Hence, they can be read/written in parallel. Whereas, RPM-0-
to-3 are implemented using a single pair of URAMs and are
logically separated. Hence, only one of them can be read and
only one of them can be written every cycle. It is the job of the
programmer to decide which polynomial goes to which RPM
taking data dependencies and access patterns of a subroutine
into consideration.

The ‘Memory access controller’ block is responsible for
handling memory accesses of the two parallel computing
threads namely, RPAU. All and RPAU.Dyadic (from the previ-
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ous subsection). The two threads must use mutually exclusive
RPMs at any cycle. Again, it is the job of the programmer
to correctly specify the operand RPMs of the two parallel
threads so that no access conflicts arise at any point in time.
Based on the operand RPMs of the two threads, the memory
access controller generates appropriate control signals for the
multiplexers in Fig. 8.

D. Interconnecting RPAUs

The proposed processor architecture supports a large param-
eter set and it works with many coefficient moduli, namely
L + 1 including the special prime. So, it instantiates L + 1
RPAUs in parallel. As the amount of logic and memory
elements in each SLR of the FPGA is limited, the RPAUs
are carefully placed. To that end, for a high-performance
implementation, it is essential to perform the placement of
building blocks effectively across multiple SLR regions to
minimize the cost of routing.

Each RPAU unit uses 96 URAMs. Since each SLR region
has around 320 URAMs, only 3 RPAUs can be mapped per
SLR at most. For an architecture supporting L + 1 = 7, we
have to employ 7 RPAU units and this dictates the placement
of RPAUs into at least three different SLR regions. The com-
munication between the FPGA and host resides in SLR1, thus
the input polynomials (i.e. ciphertexts) should be efficiently
sent to and stored in memory blocks of RPAUs mapped
to other SLR regions. Similarly, output polynomials should
be read from different SLR regions to SLR1. This requires
careful floorplanning of RPAUs and an efficient approach for
sending data from a single location to multiple locations in a
large FPGA. The naive solution would be directly connecting
inputs in SLR1 to memory blocks in other SLRs. This would
require separate paths for each connection and create a ’star-
like’ architecture, which complicates the routing, increases the
number of nets crossing SLRs, and reduces the maximum
achievable clock frequency significantly.

In the proposed design, each RPAU unit has access to
only its local memory blocks for reducing the interconnects
between RPAUs and simplifying the routing. Due to algorith-
mic requirements as shown in Fig. 6, there is still a need
for RPAU-to-RPAU communication. The first approach for
realizing this requirement was using a central memory block
accessible by every RPAU unit. Then, RPAU units can use the
central memory for exchanging data with each other. However,
this approach would create new routing paths. Instead, we
proposed a ’ring-like’ architecture to reduce routing. This way,
each RPAU can send its data to any other RPAU through a
chain of RPAU units. For example, when RPAU#6 needs to
send its data to RPAU#1, it first forwards data to RPAU#0,
and then it is forwarded to RPAU#1. Thus, each RPAU will
have direct connections with only two RPAUs. Since each SLR
region can have at most 3 RPAUs, there have to be at least two
RPAU-to-RPAU data connections between each SLR region.
To keep the crossing nets between SLRs at a minimum, we
tried to place consecutive RPAUs in the same SLR region. For
example, RPAU#1, RPAU#2, and RPAU#3 are placed in the

Fig. 9. The proposed ’ring’ structured floorplan to minimize routing cost for
the implementation with 7 RPAU units.

same SLR with a ’ring-like’ architecture as shown in Fig. 9,
where the ’ring’ is marked with a red line.

For external communication signals, we followed the same
approach and adopted the same ’ring-like’ architecture for
sending data signals from SLR1 to other SLR regions as shown
in Fig. 9. External communication signals are forwarded to an
RPAU through a chain of RPAUs, which reduces the routing
cost significantly. For example, the external communication
signals first go from SLR1 to the RPAU#0 in SLR2 through
three-stage of buffers. Similarly, these signals in SLR2 are
forwarded to the RPAU#1 in SLR3 and so on.

E. Program Execution Unit

Our Medha is an instruction set architecture with its own
program execution unit. An RPAU receives its instructions
from a program execution unit. Using dedicated program
controllers for each RPAU we can run asynchronously when
there are no data dependencies between the RPAUs. However,
the key-switching operation requires periodic data exchanges
between RPAUs. Hence, we do not allocate dedicated program
controllers for any RPAUs. By analyzing the computation
steps in the homomorphic subroutines, we observe that most
of the time the RPAUs could execute the same instruction
in a SIMD manner. Only during the rescaling operation, the
program execution flow splits into two parallel branches: a
subset of the RPAUs follow the first branch and the remaining
RPAUs follow the second branch. Hence, Medha uses only
two program controllers inside its program execution unit. We
would also like to mention that by reducing the number of
program controllers to two from ‘one for each RPAU’ we
greatly simplify the programming model of Medha.

F. Hardware-Software Interfacing of the Overall System

We implemented a proof-of-concept software stack (Fig. 10)
consisting of a SEAL library, User-Mode Driver (UMD),
and Kernel Mode Driver (KMD). The UMD provides an
interface layer for SEAL, and KMD supports the scheduling
of jobs. When a SEAL command (supported by Medha) is
executed, the corresponding UMD-API is called to submit
the command with the required parameters to KMD’s job
queue as a job. Next, KMD’s job scheduler sends the job
to Medha. When Medha completes its task, the result is
read through the PCIe interface. All data communications are
performed using XDMA [32] for fast transfers. We use the
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Fig. 10. CPU-FPGA interface and software stack

TABLE II
PERFORMANCE OF EACH INSTRUCTION/OPERATION

Instruction/Operation Clock Lat. Throug.
Cycles (µ sec) (per sec)

In
st

ru
ct

io
ns

N -pt NTT ≈ 7,200 36 27,777
N -pt INTT ≈ 7,200 36 27,777
RPAU-to-RPAU broadcast ≈ 512 2.56 390,625
Scale by q−1

i (mod qj) ≈ 512 2.56 390,625
C.wise Add/Sub/Mult (main) ≈ 512 2.56 390,625
C.wise Add/Sub/Mult/MAC (dyd) ≈ 4,096 20.48 48,828

Se
t-

1 Hom. Add 1 1,134 4.54 220,264
Hom. Mult. + Relin. 1 88,411 353.64 2,827

Se
t-

2 Hom. Add 1,134 5.67 176,366
Hom. Mult. + Relin. 96,740 483.70 2,067

Se
t-

3 Hom. Add 1,134 5.67 176,366
Hom. Mult. + Relin. 105,069 525.35 1,903

1: The implementation with 250MHz.

MicroBlaze (Xilinx’s microprocessor) unit for controlling the
communication between the host CPU and the RPAUs, and
also for monitoring the entire FPGA system.

VII. RESULTS

The proposed architecture is described in Verilog HDL and
implemented for Xilinx Alveo U250 card using Vivado 2019.1
tool with a performance-optimized implementation strategy.
The implementations with the Set-1, Set-2, and Set-3 from
Table I employ 7, 8, and 9 RPAUs respectively.

A. Timing results

The proposed implementation with Set-1 runs at 250MHz,
and the implementations with Set-2 and Set-3 run at 200MHz.
In Table II, we present the cycle count, latency (in µ sec) and
throughput results for each low-level instruction and high-level
operations for all three designs. Since each design employs
RPAUs as the number of ciphertext coefficient modulus (i.e.
the design with Set-1 has 7 RPAUs), the low-level instructions
have the same clock cycles for each implementation. The
low-level instructions for synchronizing main/dyadic cores,
synchronizing the program controllers, and ending the program
do not consume any clock cycles, thus they are not included
in Table II. Since we use only on-chip memory (i.e. registers
and BRAMs/URAMs) during the computations, the proposed
architectures do not have any DDR data transfer overhead.
Computational cost of homomorphic multiplication: Ho-
momorphic multiplication and relinearization operations con-
sist of two parts as shown in Fig. 6: HE.Mult and HE.Relin.
The HE.Mult operation is performed using coefficient-wise

multiplication and addition instructions. Since the ciphertext
element d̃2,j is required by the HE.Relin operation, it is first
computed using the fast RPAU.All cores while other cipher-
texts (d̃0,j and d̃1,j) are computed using the RPAU.Dyadic
cores. The HE.Relin operation is the most computationally
intensive part, and it requires the utilization of both main
and dyadic cores. The HE.Relin operation requires each d̃2,j
polynomial in base qj to be reduced by other bases. Thus,
it first requires all d̃2,j polynomials to be converted to the
polynomial domain using one INTT instruction. Then, the
polynomial d2,j is sent to other RPAUs for reduction operation
and converted back to the NTT domain. This procedure is
repeated in the main core for j = 0, 1, . . . , L− 1 as shown in
Fig. 6. At the same time, multiplication and accumulation of
the resulting NTT(d2,i) polynomials with key-switching keys
are performed in the dyadic core as visualized in Fig. 7.
This parallelism improves the performance significantly. The
routine for homomorphic multiplication and relinearization
operations are the same for each design except for the number
of required multiplications during the HE.Relin. The design
with Set-1, Set-2, and Set-3 require 6, 7, and 8 multiplications
during the HE.Relin, respectively. Hence, a total of ≈59,904,
≈68,096 and ≈76,288 clock cycles are required during the
HE.Mult and the HE.Relin operations for the designs with
Set-1, Set-2, and Set-3, respectively, excluding extra cycles
generated by pipeline bubbles between instructions.

The final step of HE.Relin operation requires the poly-
nomials in the last coefficient base (p) to be reduced by
other coefficient bases, scaled, and added with ciphertexts.
Since the polynomial in base p resides in the NTT domain
after the key-switching loop, it first needs to be converted
to the polynomial domain with INTT operation. Then, it is
reduced by other bases and converted to the NTT domain.
Finally, the reduced polynomials are subtracted, scaled by p−1

(mod qi) for i = 0, 1, . . . , L−1 and added with the ciphertexts
(d0,j , d1,j). In the proposed architectures, we use two program
controllers. This allows us to perform two different instructions
for RPAUs at the same time as detailed in Section VI.
This feature of the architecture enables us to perform NTT
instruction for the first element of ciphertext with the first L−1
RPAU and perform INTT instruction for the second element
of ciphertext with the last RPAU. This saves us one INTT
instruction during the last step of HE.Relin computations.
Hence, a total of ≈26,208 clock cycles are required for the last
step of HE.Relin operation excluding extra cycles generated
by pipeline bubbles between instructions.

B. Resource Utilization results

Detailed resource utilization of main arithmetic units for the
design with Set-1 is shown in Table III. For the RPAU unit,
only the utilization result of the first RPAU is presented. Other
RPAU units have similar resource utilization. The ‘Platform’
unit which is responsible for the communication between the
FPGA and the host CPU significantly contributes the resource
utilization. We also provide resource utilization reports for all
three designs in Table IV. Except for the URAM utilization,
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TABLE III
RESOURCE UTILIZATION OF ARITHMETIC MODULES FOR SET-1

Modules LUTs REGs BRAMs URAMs DSPs
Processor 670,720 537,162 1,080.5 673 2,527
⌊Platform 128,177 132,102 296.5 1 7
⌊Core 542,124 404,333 784 672 2,520
RPAU Unit 64,090 47,627 112 96 360
⌊Memory Core 13,754 999 96 96 –
⌊Dyadic Core 12,243 3,566 – – 40
⌊Main Core 37,981 40,986 16 – 320
Butterfly Unit 1,545 1,592 – – 10
⌊Modular Mult. 535 749 – – 10
TF Gen. Unit 755 929 1 – 10

TABLE IV
RESOURCE UTILIZATION RESULTS ON ALVEO U250 CARD

(N, log2 Q)
LUTs REGs BRAMs URAMs DSPs

(% utilization)

(214, 384) 670,720 537,162 1,080.5 673 2,527
(39%) (16%) (40%) (53%) (20%)

(214, 438) 746,730 581,731 1,192.5 769 2,887
(43%) (17%) (44%) (60%) (23%)

(214, 492) 824,865 637,381 1,304.5 865 3,247
(48%) (19%) (48%) (67%) (26%)

we use only the half of available resources on the FPGA even
for the design with the largest parameter set. It shows that we
still have enough resources to instantiate extra arithmetic units
for implementing more powerful architectures.

C. Comparison with related works
Notable works in the literature proposing efficient imple-

mentations for the high-level arithmetic operations of the
HEAAN and other homomorphic encryption schemes in
CPU [7], [16], [20], [27], GPU [3]–[6], [12], [18], FPGA [23],
[33] and ASIC [14], [21], [22], [29] platforms.
Comparisons with SEAL: There are various highly-
optimized software implementations of the HEAAN scheme
based on homomorphic encryption libraries such as Microsoft
SEAL [27] and Palisade [20]. We compare the performance
of Medha with the single-threaded software implementation
of the RNS-HEAAN on highly-optimized homomorphic en-
cryption library Microsoft SEAL v3.6 [27]. To present a
fair comparison, we modified the SEAL accordingly to work
with the parameter sets defined in Table I. The latency of
high-level homomorphic operations in SEAL [27] and its
comparison to Medha for Set-1, Set-2 and Set-3 are pre-
sented in Table V. The timing results of SEAL are obtained
on an Intel i5-6200U CPU @ 2.30GHz × 4 with 16 GB
RAM using gcc version 9.3 in Ubuntu 20.04.2 LTS. The
proposed architectures with Set-1, Set-2, and Set-3 showed
up to 79.1×, 73.7×, and 82.7× performance improvements,
respectively, for high-level homomorphic operations compared
to the SEAL-based implementation. The effectiveness of our
approach increases with the larger parameter sets. In Table V,
We also provide the performance results of SEAL running on
a single-threaded Intel Xeon(R) Silver 4108 running at 1.80
GHz from the work [23] for the Set-2. Compared to this result,
our architecture shows 137.8× speed-up for homomorphic
multiplication and relinearization operations.
Comparisons with HEAX: The fairest comparison is with the
HEAX processor [23]. It is the only prior art for the FPGA-

TABLE V
LATENCY COMPARISON WITH THE SEAL [27] AND HEAX [23]

Work Hom. Add Hom. Mult. + Relin.

Se
t-

1 Medha 1 4.54 µs 353.64 µs

SEAL [27] 359 µs 24,629 µs
(79.1×) (69.6×)

Se
t-

2

Medha 5.67 µs 483.70 µs

SEAL [27] 418 µs 33,844 µs
(73.7×) (70.0×)

SEAL [23] – 66,666 µs
– (137.8×)

HEAX [23] – 1,182.27 µs
– (2.4 ×)

Se
t-

3 Medha 5.67 µs 525.35 µs

SEAL [27] 469 µs 39,143 µs
(82.7×) (74.5×)

1: The implementation with 250MHz.

based implementation of the RNS-HEAAN scheme. HEAX
and Medha follow significantly different design methodolo-
gies. Unlike Medha, HEAX unrolls the key-switching of RNS-
HEAAN into steps and then instantiates one dedicated block
per step. These blocks are cascaded to realize a block-pipeline
architecture. There are a total of six block-pipeline stages in
the implementation of the key-switching operation. During a
key switching, all the residue polynomials are processed one-
by-one through the pipeline stages. Thanks to such unrolled
and block-pipelined architecture, HEAX achieves a very high
asymptotic throughput of 2,616 homomorphic multiplication
including key-switching operations per second at 300MHz on
a Stratix10 FPGA for the Set-2 parameter.

In comparison, Medha is an instruction-set architecture
with programmability, and it reuses the building blocks again
and again for computing different steps of various homo-
morphic routines. Naturally, Medha is a low latency-oriented
architecture. It still achieves a competitive throughput (i.e.,
time/latency of one operation) of 2,067 homomorphic multi-
plications including key-switching operations per second while
running at a lower clock frequency of 200MHz.

Latency-wise, Medha is more than 2× faster than HEAX
as shown in Table V. As the latency figures of HEAX are not
specified in [23], we estimate them based on the computation
flow diagram from Table 5 and Figure 6 of [23] as follows.
There are six stages of block-pipeline processing during a key-
switching (the last row or Set-C of Table-5 in [23]) and the
stages have been designed to have similar cycle counts. The
first stage uses an 8-core inverse-NTT with at least 14,336
cycles latency. Thus, each stage has roughly 14,336 cycles of
latency. As there are seven RNS-moduli and 18 pipeline stages
including a one-core INTT stage with 114,688 cycles latency
(see Figure 6 of [23]), computing a full key-switching will
take at least 358,400 cycles. In comparison, our Medha has a
latency of 96,740 cycles only for computing one homomorphic
multiplication plus a key-switching.

We will discuss a bit more on the latency-vs-throughput fig-
ures. Thanks to the significantly lower latency, Medha would
be advantageous for practical homomorphic applications com-
pared to HEAX. The asymptotic throughput of HEAX is
achievable only if we assume that in the application there are
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plenty of data-independent homomorphic operations most of
the time and that there is no overhead at the host side (e.g., a
SW system) concerning managing the input-output ciphertexts.
In real-life applications, there will be data dependencies and
additionally, a SW host (which is running the application and
using the HW as a service) will introduce some overhead in the
processing of operand and result. Hence, the overall processing
time of an application will greatly be determined by the latency
instead of throughput.

There is one more advantage of using a low-latency system
from a full-stack implementation point of view. Different
homomorphic compilers have been designed to translate plain-
text applications into homomorphic applications automatically.
These compilers try to reduce execution time by reducing the
number of homomorphic multiplications and depth of multi-
plication chains. If the latency is used as a ‘cost’-metric, then
the optimization task for a homomorphic compiler becomes
simpler. On the other hand, if the accelerator is throughput-
oriented, then the tasks for a homomorphic compiler become
more challenging as it has to identify different ways of paral-
lelization and also make necessary arrangements for handling
the parallel ciphertexts (which are large in size).

We also note that Medha is somewhat smaller in area
than HEAX. When the Set-2 parameter is considered, HEAX
uses off-chip DRAM memory during the computations while
Medha does not. Also, HEAX lacks flexibility and does not
support programmability.
Comparisons with F1: A very recent concurrent work [14]
has proposed a new instruction-based wide-vector processor
F1. It supports high-level operations for BGV and HEAAN
schemes in ASIC. It is primarily optimized for minimizing
data movements during homomorphic computations. RTL syn-
thesis of F1 in a commercial 14nm/12nm process reported an
estimated chip area of 151 mm2. Based on the cycle-accurate
simulation, one homomorphic multiplication and relinarization
operation of the HEAAN scheme requires only 2µs at a clock
frequency of 1 GHz. A fair comparison between F1 and Medha
is not possible as the two processors have been implemented
on significantly different platforms. Medha has been designed
considering the underlying FPGA-specific constraints. On the
Xilinx U250 FPGA, the clock frequency of Medha is only 200
MHz which is almost 5× slower than the frequency of F1 with
one of the latest ASIC technologies. While we report accurate
performance and resource consumption figures for Medha, the
same for F1 will be available only after an F1 chip is made.
Nevertheless, both works are instruction-set architectures and
they show that such programmable and flexible architectures
are potential candidates for HE architectures of the near future.
Comparisons with other HW implementations: The works
in [25], [28], [31] present the FPGA implementations for the
high-level operations of the BFV scheme. In [25], the authors
proposed an implementation targeting vert large parameter set
(namely N = 215 and log2 Q = 1228) and multiplicative
depth. Their implementation suffers from heavy memory re-
quirements as they need to continuously read and write DDR
memory. In our architecture, we did not utilize any off-chip

memory during the computations. In [28], Roy et al. uses
smaller parameter set (namely N = 212 and log2 Q = 180)
and shows 13× performance improvement for homomorphic
multiplication compared to the FV-NFLlib. Our design shows
better performance and supports significantly larger parameter
set. In [30], Turan et al. presents homomorphic encryption
acceleration for the BFV scheme using the Amazon AWS
FPGAs. It targets the same parameter set as [28] and can
perform 613 homomorphic multiplications per second.

There are also works targeting acceleration of the BFV
scheme using ‘compute-in-memory’ approach, where com-
putations are performed using arithmetic units very close to
the memory elements [22], [29]. This eliminates the data
movements between memory and arithmetic units, and it
reduces memory cost, which is a bottleneck for homomorphic
encryption systems. However, near-memory arithmetic units
can perform simple operations. As these works target accel-
erating the BFV scheme on a completely different platform,
presenting a fair comparison between these works and Medha
is not feasible.
Comparisons with GPU implementations: To the best of our
knowledge, there are only two GPU implementations for the
RNS-HEAAN scheme in the literature [4], [18]. Badawi et
al. presents the first GPU-based implementation and they
provide performance results for different parameters [4]. For
the parameter set N = 214 and log2 Q = 360, they perform
homomorphic multiplication and relinearization operations in
0.74 ms. For a similar parameter set (Set-1), our architecture
shows 1.75× better performance compared to their system run-
ning on an NVIDIA DGX-1 multi-GPU system with 8 V100
GPUs. The work in [18] uses a newer RNS variant of HEAAN
scheme [17] and their implementation supports bootstrapping
operation. They focused on memory-centric optimizations for
the GPU platform, which is an NVIDIA Tesla V100, to
implement operations of the HEAAN scheme efficiently. Their
work targets very large parameter set, namely N = {216, 217}
and log2 Q ≈ 2300. Therefore, it is not easy to perform a
fair comparison between their work and our architecture. They
claim to have 7.2× performance improvement compared to the
work of Badawi et al. [4].

VIII. CONCLUSIONS

Despite being theoretically sound, FHE suffers from perfor-
mance issues due to its massive computational costs. In this
paper, we proposed a programmable instruction-set architec-
ture Medha for accelerating the cloud side operations of the
RNS-HEAAN scheme. The accelerator gains its speed from
parallel processing, efficient on-chip memory management,
and other architectural design decisions. We experimentally
tested the accelerator by running it on a Xilinx Alveo U250
card. Compared to the highly-optimized SEAL [27] library,
our Medha achieves 137× speedup on an Intel Xeon server.
Furthermore, our results demonstrate almost 2.4× perfor-
mance improvement in the latency compared to the state-of-
the-art hardware accelerator [23] for the same parameter. In
this way, Medha pushes the limit of hardware acceleration for
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cloud-side encrypted computations, and by doing so, it makes
FHE practical for several privacy-preserving applications.
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