
Quantum Time/Memory/Data Tradeoff Attacks

Orr Dunkelman1,?, Nathan Keller2,??,
Eyal Ronen3,? ? ?, and Adi Shamir4

1 Computer Science Department, University of Haifa, Israel
orrd@cs.haifa.ac.il

2 Department of Mathematics, Bar-Ilan University, Israel
Nathan.Keller@biu.ac.il

3 Computer Science Department, Tel Aviv University, Israel
eyal.ronen@cs.tau.ac.il

4 Faculty of Mathematics and Computer Science, Weizmann Institute of Science,
Israel

adi.shamir@weizmann.ac.il

Abstract. One of the most celebrated and useful cryptanalytic algo-
rithms is Hellman’s time/memory tradeoff (and its Rainbow Table vari-
ant), which can be used to invert random-looking functions on N possible
values with time and space complexities satisfying TM2 = N2. In this
paper we develop new upper bounds on their performance in the quan-
tum setting. As a search problem, one can always apply to it the standard
Grover’s algorithm, but this algorithm does not benefit from the possible
availability of a large memory in which one can store auxiliary advice
obtained during a free preprocessing stage. In fact, at FOCS’20 it was
rigorously shown that for memory size bounded by M ≤ O(

√
N), even

quantum advice cannot yield an attack which is better than Grover’s
algorithm.
Our main result complements this lower bound by showing that in the
standard Quantum Accessible Classical Memory (QACM) model of com-
putation, we can improve Hellman’s tradeoff curve to T 4/3M2 = N2.
When we generalize the cryptanalytic problem to a time/memory/data
tradeoff attack (in which one has to invert f for at least one of D given
values), we get the generalized curve T 4/3M2D2 = N2. A typical point
on this curve is D = N0.2, M = N0.6, and T = N0.3, whose time is
strictly lower than both Grover’s algorithm (which requires T = N0.4

in this generalized search variant) and the classical Hellman algorithm
(which requires T = N0.4 for these D and M).

? The first author was supported in part by the Center for Cyber, Law, and Policy in
conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office
and by the Israeli Science Foundation through grants No. 880/18 and 3380/19.

?? The second author was supported by the European Research Council under the
ERC starting grant agreement n. 757731 (LightCrypt) and by the BIU Center for
Research in Applied Cryptography and Cyber Security in conjunction with the Israel
National Cyber Bureau in the Prime Minister’s Office.

? ? ? The third author is partally supported by Len Blavatnik and the Blavatnik Family
foundation, the Blavatnik ICRC, and Robert Bosch Technologies Israel Ltd. He is a
member of CPIIS.

1 Introduction

The problem of efficiently inverting a random looking and easy to compute func-
tion f is a fundamental problem with numerous applications. In particular, it
represents the purest form of cryptanalysis, where f(x) is defined as the cipher-
text obtained by encrypting some fixed plaintext p under key x. In this context it
is natural to consider the variant in which the inversion process can be assisted
by advice which is stored in a memory of size M and whose precomputation
could take an arbitrarily long time, provided that such a one-time effort of ana-
lyzing the cryptosystem would make it easier to find any particular key from its
associated ciphertext with a lower online time complexity T .

Due to its importance, this problem had received considerable attention.
When the function f : {1, 2, . . . , N} → {1, 2, . . . , N} is a permutation, Hell-
man [15] had shown that given M memory, one can invert f using time T = N/M
(thus satisfying the time/memory tradeoff curve MT = N). Later, Yao [22]
proved that this attack was optimal up to logarithmic factors.

When f is a random function rather than a random permutation, the situ-
ation is more complicated. In 1979 Hellman [15] had published his well known
cryptanalytic attack which used time T and memory M satisfying TM2 =
O(N2), after preprocessing the cryptosystem in time O(N). In 2003, Oechslin
offered a different approach for this attack, obtaining the same tradeoff curve
(TM2 = O(N2)), but claimed improved complexity in real-life scenarios. In
2006, Barkan et al. [3] showed that these attacks are indeed optimal in the clas-
sical setting (up to logarithmic factors and within a certain natural model of
computation which treats f as a black box).

The problem of lower bounding the complexities of such time/memory trade-
off attacks in the quantum setting was first tackled in 2015 by Nayebi et al. [20],
who considered only the case of random permutations. Their paper took into con-
sideration the power offered by quantum algorithms, and particularly Grover’s
algorithm [14], to offer a lower bound of the form MT 2 = N , i.e., any quantum
algorithm using M memory needs time T ≥

√
N/M to succeed with a constant

probability to invert the permutation f .
This lower bound was extended to the case of random functions by Hhan et

al. [16] and Chung et al. [11] to show a similar lower bound of the formMT 2 = N .
These results show that to invert a function using precomputed quantum advice,
we must have T ≥

√
N/M . Finally, Chung et al. [10] proved that no quantum

algorithm with quantum advice and memory less than
√
N can do better than

a simple application of Grover’s algorithm to this search problem (the actual
bound is MT + T 2 = Ω(N)).

In this paper we consider the question of upper bounds. While we cannot
fully match this lower bound, we show how to obtain from either the Hellman
or the Rainbow attack variants new quantum time/memory tradeoff attacks on
the function inversion problem whose time and memory complexities satisfy the
relationship T 4/3M2 = N2. Note that this tradeoff attack offers strictly better
online time complexity than Grover’s algorithm for any M > N2/3. Finally,
we consider the more general time/memory/data tradeoff attacks, in which we

are given D possible values and have to invert f on at least one of them, and
describe a new quantum attack whose complexities satisfy T 4/3M2D2 = N2.
The novelty of our results can be demonstrated by the following quote from [16]
which appeared at Asiacrypt 2019:

“Basically, the best known attacks we are aware of are to just apply
quantum attacks without auxiliary inputs (i.e., Grover’s algorithm...)
or best known classical attacks that make use of auxiliary inputs (i.e.,
Hellman’s attack...). Though quantum attacks possibly exist that utilize
classical auxiliary inputs that achieve better bounds than classical ones,
we are not aware of such an algorithm for these primitives.”

It is interesting to note that in the classical setting, there is no advantage to
time/memory(/data) tradeoff attacks over exhaustive search before the memory
is sufficiently large (at least

√
N/D). Similarly, in the quantum setting, our

algorithms need memory of at least (N/D)2/3 in order to offer an attack which
is faster than Grover.

A summary of all the known and new results can be found in Table 1.

Algorithm Time-Memory-Data Curve Restrictions

Classical Hellman [15,6] N2 = T ·M2 ·D2 T ≥ D2

Classical Rainbow [21,3] N2 = T ·M2 ·D2 T ≥ D2

Grover (Sect. 3.2) N2 = T 4 ·D2 , M = O(1) None

Quantum Hellman (Sect. 4) N2 = T 4/3 ·M2 ·D2 T ≥ D1.5

Quantum Rainbow (Sect. 5) N2 = T 4/3 ·M2 ·D2 T ≥ D1.5

Table 1: Comparison of Time-Memory(-Data) Tradeoff Attacks

1.1 Our Quantum Memory Model

Quantum algorithms can be categorized into one of three main models, depend-
ing on the amount and type of memory they used. In addition to standard
qubits, one can also consider classical memory which can be probed in a quan-
tum manner. This type of memory is based on quantum RAM (qRAM) gates
that support a query (requesting a given memory cell from the memory) which
in itself is a superposition, without collapsing the state. In other words, in the
qRAM model, one can take a superposition of indices |i〉 and access an array
a[·] using the superposition, to accept a superposition of answers. For example,
in [8] the quantum collision finding algorithm tests for each value of x (given in
a superposition) whether f(x) appears in a large table a[·], without collapsing
the superposition.

Hence, the three main models (we adopt the names and conventions of [19])
are:

– Low-qubits: algorithms that require a small amount of quantum bits, e.g.,
O(n). Any amount of classical memory can be available to the algorithm,
but the algorithm has only classical access to it. Results such as Grover’s
algorithm [14] or those of [13] fall into this category.

– QACM (quantum-accessible classical memory): in addition to a small amount
of true qubits, the algorithm can use qRAM gates that allow access to clas-
sical data using superposition of a quantum state. As mentioned before, the
collision finding algorithm of [8] uses this model. This model is considered
more realizable than the next model — QAQM [18].

– QAQM (quantum-accessible quantum memory): such algorithms enjoy as
many qubits as needed. All the data is thus accessed, stored, and processed
in quantum memory. Obviously, this is the strongest possible model. An ex-
ample to such an algorithm is the unique collision finding algorithm proposed
in [1].

The model we use in this paper is the QACM model. This model is used
in many quantum-based cryptanalytic papers, such as [4], [8], [9], [13], [17] and
[19]. It seems to be the “correct” model for our type of cryptanalytic attacks for
the following reasons:

– Hellman-like attacks require a huge amount of precomputed data. Such a
large database cannot be handled in the Low-qubits model, and requires an
impractical number of high quality qubits (with extremely long decoherence
times) in the QAQM model.

– The preparation of such a database requires a huge amount of time, which
can only be justified if we amortize this cost among many independent at-
tempts to find multiple cryptographic keys (note that to find a single key, we
can simply use Grover’s search algorithm to get a square root improvement
without performing any preprocessing). When we store this database in an
array of qubits in the QAQM model, measuring the database in one attack
may collapse its quantum state, stopping us from using it in the next at-
tack. This can not happen if the database is classically stored in the QACM
model.

– It may take many years before we have access to sufficiently powerful quan-
tum computers. Powerful attackers can use this interim period to prepare the
classical database needed to apply a Hellman-like attack. Such a database
can then be used “as is” in a future QACM computer to speed up the actual
attacks on particular keys.

1.2 Organization of this paper

This paper is organized as follows: In Section 2 we recall the classical time/memory
(/data) tradeoff attacks on cryptographic schemes. In Section 3 we recall the col-
lision finding attack of Brassard et al. and discuss how it can be used to solve
multiple-data inversion problem using Grover’s algorithm. In Section 4 we de-
velop the quantum variant of Hellman’s attack, and in Section 5 we develop the
quantum variant of the Rainbow attack. In Section 6, we compare our attacks
with Grover’s algorithm. Finally, Section 7 concludes this paper.

2 Classical Time-Memory-Data Tradeoff Attacks

The problem of inverting a (pseudo-random) function

f : {1, 2, . . . , N} → {1, 2, . . . , N}

has two trivial solutions: exhaustive search (in time O(N) and O(1) memory)
and a table attack (in memory O(N) and time O(1), given a preprocessing of
O(N) time).1

A way to bridge between these complexity extremes was presented by Hell-
man in [15]. While the precomputation is still O(N), the online time complexity
T and the memory complexity M can vary along the curve TM2 = N2, as long
as M ≥

√
N . Hellman’s attack is based on precomputing many tables, and then

searching them efficiently during the online phase. Later, Oechslin presented a
different method for constructing the tables [21], called Rainbow Tables, along
with a slightly modified way of searching them during the online phase.

We recall Hellman’s attack in Section 2.1 and the Rainbow tables in Sec-
tion 2.2. Finally, we recall the case of multiple data variants of the two attacks
in Section 2.3. Readers who are familiar with these techniques can safely skip
these three subsections.

2.1 Hellman’s Attack

The main tool in Hellman’s attack is the use of chains, defined by the iterative
application of f(·) (i.e., x, f(x), f(f(x)), . . .). In the original work of Hellman,
the chains, computed during the preprocessing are of a predetermined length t
(we later discuss the value of t). The key idea here is that the adversary can
store the starting point and the end point (i.e., (x, f t(x))), and then recover the
full chain, if needed, by iteratively applying f(·) to x.

A well known improvement to the algorithm, due to Rivest, called distin-
guished points, stops the chain once the computed value is a special point. This
special point needs to have an easy to characterize property, e.g., with log2(t)
least significant bits equal to 0. It is easy to see that on average the length of
the chain is t, and thus for the sake of analysis we assume that indeed this is the
case.

We note one technical point with distinguished points — the chains are
bounded in length. In other words, if we start from some value x, and com-
pute a chain of some length (it is common to pick 8t as this length2) without
reaching a distinguished point, we call this a failure. If this happens during the
preprocessing time, a different starting point may be chosen for generating a
new chain. If this happen during the online phase of the attack, then the attack
fails for the given input (but in the case of multiple data points, then another

1 Throughout the paper we disregard logarithmic factors.
2 The probability of a chain of length 8t in a random function to not contain a distin-

guished point, when a random point is a distinguished point with probability 1/t is
(1− 1/t)8t ≈ 1/e8. Obviously, picking a larger limit decreases this failure rate.

Algorithm 1: The Preprocessing Algorithm for Hellman’s Time-
Memory Tradeoff Attack

for ` = 1 to t do
Initialize an empty hash table T`.
Pick m starting points x`,1, x`,2, . . . , x`,m.
for j = 1 to m do

Set tmp← x`,j

for i = 1 to 8t do
Set tmp← f`(tmp)
if tmp is a distinguished point then

Set y`,j = tmp.
Store (x`,j , y`,j) in the hash table T` (indexed according to
y`,j).

Break from the loop.

if tmp is not a distinguished point then
try a different x`,j

point can be tried). While for classical algorithms this issue is a relatively small
technical detail, for quantum algorithms, it becomes an important one (as it
puts a limit on the depth of the circuit).

Preprocessing In the preprocessing phase, the adversary constructs several
tables. Each table is constructed by picking m starting points, x1, x2, . . . , xm.
From each starting point, xi, the adversary computes the chain xi → f(xi) →
f 2(xi) = f(f(xi))→ · · · → yi = f t(xi).

3 The pairs (xi, yi) are stored in a hash
table indexed by the value of yi.

To avoid collisions between the chains and the tables, Hellman’s attack uses
t flavors of the function f(·). Namely, let f`(x) = f(L`(x)) for some invertible
function L`. There is a table T` (1 ≤ ` ≤ t) for each such function f`(·). The
preprocessing phase is given in Algorithm 1.

It is easy to see that the preprocessing takes N = mt2 time, and uses M = mt
memory.

The Online Phase In the online phase of the attack, the adversary is given
y = f(x) and she wishes to find x. This is done by building a chain from y
(under the t different flavors), and checking whether the chain results in an end
point yi stored in the table. Once such an end point is found, the stored starting
point xi is recovered from the table, and the adversary can compute from xi the
chain until reaching y. With constant probability, the chain indeed recovers y.
The steps (when using distinguished points) are described in Algorithm 2.

3 When using distinguished points, the value of yi is the first distinguished point
encountered in the iterative application of f(·).

Algorithm 2: The Online Algorithm for Hellman’s Time-Memory
Tradeoff Attack

for ` = 1 to t do
Set tmp← y
for i = 1 to 8t do

Set tmp← f`(tmp)
if tmp is a distinguished point then

Break from the loop.

if tmp is not a distinguished point then
Output “Failure”

if tmp is an endpoint stored in T` then
Let yi = y be the end point
Fetch xi, the corresponding starting point, from T`.
Set tmp← xi

Set tmp2← xi

Set tmp = f`(tmp)
while tmp 6= y and tmp not a distinguished point do

Set tmp2 = tmp Set tmp = f`(tmp)

if f`(tmp2) = y then
Output tmp2

Algorithm 3: Constructing the Rainbow Table

Pick mt starting points x1, x2, . . . , xmt.
for j = 1 to m do

Compute yj = ft(ft−1(· · · f2(f1(xj)) · · ·)).
Store (xj , yj) in the table (indexed according to yj).

The running time of the attack algorithm is T = t2. We recall that the
amount of memory is M = mt, and that N = mt2. Hence, (up to logarithmic
factors) we have T ·M2 = N2. We alert the reader that when M <

√
N the

online running time of this algorithm is worse than exhaustive search.

2.2 Rainbow Tables

In 2003, Oechslin presented a different method to construct the tables [21]. In
this method, a single table (called a Rainbow table) is constructed. This time,
m starting points are chosen, and the constructed chains are of the form x →
f1(x)→ f2(f1(x))→ f3(f2(f1(x)))→ · · · → ft(. . . (f1(x))), where the functions
f`(·) are of the same type used in Hellman’s scheme (i.e., a small variation
of f(·)) and t is the number of different functions as in Hellman’s attack. The
preprocessing step of generating the table in given in Algorithm 3. This technique
reduces the effects of false alarms, and allows to cover most of the search space
by a single table.

Algorithm 4: The Online Algorithm for Using the Rainbow Table

for ` = t downto 0 do
Compute y′ = ft(ft−1(· · · f`+2(f`+1(y)) · · ·))
if y′ is an end point stored in the table then

Fetch the starting point xj from the table
Set x′ = xj

for i = 1 to `− 1 do
Compute x′ = fi(x

′)

if f`(x
′) = y then

Output x′

The online phase of the attack, described in Algorithm 4, is slightly different
than in Hellman’s attack. First, the adversary checks whether ft(y) appears as
an endpoint in the table. If not, she computes ft(ft−1(y)) and checks whether
this value appears in the table. If not, she computes ft(ft−1(ft−2(y))), and so
forth. Once an endpoint is encountered, the corresponding chain is computed
from the respective starting point.

The online running time of the rainbow table attack is about T = t2/2 calls
to f(·) (as well as t accesses to the database). The memory requirement of the
rainbow table M = m. Since, most of the states are covered by the single table,
we have N ≈ mt, and hence the obtained tradeoff curve is N2 = 2TM2.

A more complete analysis and comparison of the two attacks is available
at [3].

2.3 Time-Memory-Data Tradeoff Attacks

In some cases it may be possible to use multiple data points in time-memory
tradeoff attacks. The adversary is given a set of D points y1 = f(x1), y2 =
f(x2), . . . , yD = f(xD), such that f(xi) = yi, and is asked to find a pre-image
of one of the yi’s.

The main advantage comes from the fact that the precomputation tries to
cover only N/D states, and thus, with constant probability, one of the yi is
covered (either by the Rainbow or the Hellman tables). Then, the online phase
of the attack is repeated for any yi value.4

For Hellman’s attack, this is done by generating t/D tables [6]. This means
that for each of the D data points, the attacker tries t/D flavors, where each
such trial takes time t (on average). The resulting online time complexity is thus
t2 (as in Hellman’s original attack), but the memory complexity is reduced to
M = mt/D. Up to the requirement that t ≥ D (which stems from the fact that

4 In some cases related to stream ciphers, this process is repeated only for a single
yi [12].

Algorithm 5: The Preprocessing Algorithm for Time-Memory-Data
Rainbow Attack

Initialize an empty rainbow table T .
Pick mt/D starting points x1, x2, . . . , xmt.
for j = 1 to mt do

Set tmp← xj

for i = 1 to 8t/S do
Set tmp← fS(fS−1(· · · f2(f1(tmp)) · · ·))
if tmp is a distinguished point then

Set yj = tmp.
Store (xj , yj) in the rainbow table T (indexed according to yj).
Break the loop.

if tmp is not a distinguished point then
try a different xj

there is at least one table5), the multiple-data variant of the attack obtains the
curve N2 = T ·M2 ·D2 (as long as T ≥ D2).

For Rainbow tables, one can use the straightforward approach of reducing
the number of functions by a factor of D, proposed in [5]. The resulting curve is
N2 = T ·M2 ·D, as long as T ≥ D. However, a more efficient algorithm, offering
the curve N2 = T ·M2 · D2 was proposed in [3]. We now quickly describe the
algorithm in its distinguished point version (which is equivalent to the regular
description). For more information about the algorithm and the tradeoffs we
refer the interested reader to [2].

To achieve the full potential of multiple data in the rainbow attack a basic unit
is of S flavors (the value of S is discussed later), i.e., fS(fS−1(· · · f2(f1(x)) · · ·)).
The chains are built as t/S iterations of the basic unit, which consists of t
functions in total. Again, as we describe the distinguished point variant of the
algorithms, chains end when the output of a basic unit (i.e., of fS) has log2(t/S)
least significant bits set to 0.

The pre-processing algorithm is quite straightforward adaptation of the rain-
bow tables one to use the basic unit idea. It is given in Algorithm 5. The online
algorithm is slightly different, and due to the use of distinguished points may
look similar to the case of Hellman’s online phase. Specifically, given a point y,
we first apply fS(·) to it (similarly to the regular Rainbow attack). If the result
is not a distinguished point, a series of basic units is applied to fS(·), until a
distinguished point is reached. Once such a point is achieved, we check the stored
table whether this distinguished point is an end point. If so, we “jump” to the
starting point. Otherwise, we take the same point y, and repeat the process after
first applying fS(fS−1(y)), if this fails, the algorithms is repeated after applying
fS(fS−1(fS−2(y))), and so forth. The algorithm is described in Algorithm 6.

5 Reducing the size of a Hellman table below m rows, for m = N/t2 offers sub-optimal
attack.

Algorithm 6: The Online Algorithm for Time-Memory-Data Rainbow
Attack
Input: y1, y2, . . . , yD data points.
for i=1 to D do

Set tmp = yi
for j = S downto 1 do

Compute tmp = fS(fS−1(· · · fj+1(fj(tmp)) · · ·))
if tmp is not a distinguished point then

for k = 1 to 8t/S − 1 do
Compute tmp = fS(fS−1(· · · f2(f1(tmp)) · · ·))
if tmp is a distinguished point then

Break

if tmp is an end point stored in the table then
Fetch the starting point x from the table
Set tmp2 = x
Compute tmp2 = fj−1(fj−2(· · · f2(f1(tmp2)) · · ·))
if fj(tmp2) = y then

Output tmp2

Compute tmp2 = fS(fS−1(· · · fj+2(fj+1(tmp2)) · · ·))
while tmp2 is not a distinguished point do

Compute tmp2 = fj−1(fj−2(· · · f2(f1(tmp2)) · · ·))
if fj(tmp2) = y then

Output tmp2

Compute tmp2 = fS(fS−1(· · · fj+2(fj+1(tmp2)) · · ·))

While the analysis of the pre-processing algorithm is relatively straightfor-
ward (m chains of expected length t such that mt = N/D are generated), the
analysis of the online algorithm is a bit more involved. We briefly reproduce
the analysis suggested in [2,3] as it is needed for understanding the complexity
of the quantum variants. Full details are given in [2]. In the online phase, each
data point is tested with S different starting positions. For each such starting
position, a sequence of functions (from fj the first function till fS) is applied,
and we check whether the result is a distinguished point. Then, a basic unit (of
S functions) is applied, and again we test whether we obtained a distinguished
point. It is easy to see that if the distinguishing property of the point is that the
log2(t/S) least significant bits are 0, then the chain ends after t/S basic units,
i.e., after t values were encountered for a given data point. Hence, the online
time complexity of the attack is T = D · t.

The only factor which need to be determined is the value of S. As shown
in [2], the optimal value of S is t/D. This follows from the matrix stopping rule
— each chain contains t values, and after m chains, there are mt covered points.
Each of the t values in the new chain can collide only with mt/S locations (as
the collision has to be with the same flavor). The result is a stopping rule of
N = mt · t/S. As the total cover is N/D = mt, we get mt2/S = Dmt. In other

Algorithm 7: GroverMatch(G,T, (D,F lavors)) the Grover Match Al-
gorithm

Input: A function G, QACM sorted table T of size M free of internal
collisions of chain values (flavor, starti, endi), a superposition of data-points
d ∈ D and a superposition of flavors flavor ∈ F lavors.
Compute (d, flavor) = Grover(H) for

H(x) =

{
1 iff there exists (starti, endi) ∈ T s.t. G(d, flavor) = endi
0 Otherwise

Output (d, flavor).

words, S = t/D is the requirement for acheiving the time-memory-data tradeoff
variant of the Rainbow table.

3 Basic Quantum Algorithms

3.1 Grover Match Algorithm

We take Brassard et al.’s [8] original algorithm (Step 4 of the algorithm, specif-
ically), and re-write it as the GroverMatch. This algorithm identifies whether
there is a match between a list of values held in a quantum superposition, and
the classical list stored in a device which allows quantum access classical mem-
ory (QACM). The algorithm is described in Algorithm 7. The analysis as well
follows the footsteps of [8].

Let H(x) be the function that tells whether a value G(x) appears in a given
database. In other words, H(x) = 1 if G(x) is indeed in the database, or other-
wise, H(x) = 0. When there is a single data-point x, for which H(x) = 1, the
number of iterations needed by Grover to find that x value is the square root of
the size of the search space D. If the function G has a running time T , then the
overall run-time complexity of the GroverMatch algorithm is T · |D|0.5.

It should be noted that when the number of points for which H(x) = 1 is
0, then Grover is going to suggest in each iteration some random x value (for
which H(x) = 0. Hence, one can easily detect whether there are no solutions in
the table with high probability after a few repetition of Grover’s algorithm that
result in x values for which H(x) = 0). When there are k multiple solutions,
as suggested in [7] one should expect each invocation of Grover’s algorithm to
produce one random x for which H(x) = 1 after

√
N/k iterations. Hence, one

could repeat Grover’s search about k log(k) times to obtain all k solutions. As
in our cases k is expected to be 1, this results in a logarithmic factor in the total
complexity. When k is unknown in advance, we can use the method proposed
in [7] that performs binary search-like partitioning looking for k. Again, the
increase in the running time is by a logarthmic factor, and thus, we disregard
its impact on our analysis.

3.2 Grover with D Targets

It is well known that running Grover on a search space of size N with D possible
inputs for which the function f(x) = 1 (whereas for the other N − D values,
f(x) = 0) takes time O(

√
N/D) for finding one possible input. However, in

cryptographic settings with multiple data points there are multiple inputs yi,
where only one needs inversion.

These are different yi, and thus, a straightforward Grover may not be suitable.
This follows the fact that the function

g(x) =

{
1 f(x) = y1 ∨ y2 ∨ y3 ∨ . . . ∨ yD
0 Otherwise

has a circuit size of O(|f |+ |D|). Hence, the gain offered by the fact that there
are multiple solutions is offset by the increased circuit size.

However, the GroverMatch algorithm can be used almost in a straightforward
way to obtain the gain. By storing a table with the D possible yi’s and running
GroverMatch on the search space takes time O(

√
N/D) as there are D values

for which the matching function evaluates to 1.

4 Quantum Hellman Tables

Our quantum version for the Hellman Tables algorithm provides a significant
speed-up over the classical version. In the classical version, we need to sepa-
rately test each of the D data-points on each of the t/D flavors. However, in
the quantum version, we can use the GroverMatch algorithm to test the super-
position of the D · t/D = t possible combinations, at a run-time cost of only√
t.

4.1 Offline Preprocessing Phase

In our quantum algorithm, we prepare the hash tables for the different flavors us-
ing the same preprocessing algorithm used in the classical version and described
in Algorithm 1. We store the resulting table T = T0||T1||..||Tt/D in a QACM
that can be accessed by our GroverMatch algorithm.

4.2 Finding Distinguished Point

In the classical version, for each data-point d and each flavor `, we iterate over
the chain for up to 8t function invocations but break when we hit a distinguished
point. However, when using a quantum function implemented as a circuit, we
must use the same number of function invocations, regardless of the inputs.
The function FHellman described in Algorithm 8 fulfills this requirement in the
following way:

1. The function is always iterated 8t times regardless of the inputs.

Algorithm 8: FHellman(D,F lavors) The Quantum function used in
the Hellman online phase

Input: a superposition of data-points d ∈ D and a superposition of flavors
` ∈ F lavors.

Set d′ = d
for i = 1 to 8t do

tmp = f`(d
′)

if d′ is a distinguished point then
Set d′ = d′

else
Set d′ = tmp

Output d′

2. In each iteration, we always apply f` on the current value but store it in a
temporary variable. If the current value is a distinguished point, we keep it.
Otherwise, we replace it with the value stored in the temporary variable.6

For each data-point and flavor, if the resulting chain of length 8t contains a
distinguished point with high probability., the function will return that point (or
the end of the chain if no distinguished point is found). As the function receives
an input which is a superposition of initial data-points and flavors, it returns a
superposition of distinguished points with time complexity of O(t).

4.3 Online Phase

The online phase of our quantum Hellman Tables algorithm is described in Al-
gorithm 9. We know that with a constant non-negligible probability we have
at least one combination of a data-point d and a flavor ` that is covered by
table T . That means the distinguished point reached by the chain started at
d with flavor ` is stored as an endpoint in T . We use the GroverMatch algo-
rithm, with the function FHellman to find that data-point and flavor. FHellman

converts the superposition of data-points and flavors into a superposition of dis-
tinguished points, and the GroverMatch algorithm amplifies the amplitude of
the combination of d and ` that T covers.

While the GroverMatch algorithm returns the covered data-point and fla-
vor, it does not return the start and end points of the covering chain or the
preimage. Our algorithm uses a classical computation to find the chain by sim-
ply iterating over the chain until we reach a distinguished point. We then find
the corresponding start and end points from table T`. To recover the preimage
for d, we iterate over the chain that begins in the starting point we found until
we reach d.
6 In practice, this is equivalent to constant time implementation of a conditional move

operation. This can be implemented in a circuit using only logical gates without a
temporary variables.

Algorithm 9: The Quantum Hellman Tables Online Phase

Input: a superposition of data-points to invert d ∈ D, a superposition of
flavors ` ∈ F lavors, QACM sorted table T of size M free of internal collisions
of chain values (starti, endi).

// We use GroverMatch to find the data-point d that is covered by

table T and the specific flavor ` that covers the data-point.

(d, `) = GroverMatch(FHellman, T, (D,F lavor))
// From this point onwards we only use classical computations.

// We start by finding specific chain in T` that covers d and

retriving the corresponding starting point.

d′ = d
for j = 1 to 8t do

if d′ is a distinguished point then
find (starti, endi) ∈ T` s.t. d′ = endi
start′ = starti
Break

else
Set d′ = f`(d

′)

// Using the recovered starting point and flavor, we can find the

preimage of the data-point d.
for i = 1 to 8t do

if f`(start
′) = d then

Break

else
Set start′ = f`(start

′)

Output (start′, `)

4.4 Complexity of the algorithm

Similar to the classical version of the algorithm, for D data-points, we gener-
ate t/D tables. Each table contains m chains of length 8t, such that omitting
constants, N/D = m·t2/D, and the overall memory requirement is M = m·t/D.

As inputs to the algorithm, we have a superposition of D data-points and t/D
flavors, so the resulting size of the search space for out GroverMatch algorithm
is D · t/D = t. As the time complexity of the FHellman function is O(t), the total
time complexity of the call to the GroverMatch algorithm is T = t ·

√
t = t1.5.

The final classical computation time complexity is O(t) and can be neglected.
We get the following constraints:

N/D = m · t2/D
M = m · t/D
T = t ·

√
t = t1.5

Using these constraints we get the following time memory trade-off curve:

N/D = m · t2/D
N3/D3 = m3 · t6/D3 = t3 · (m · t/D)3 = T 2 ·M3

N3 = T 2 ·M3 ·D3

N2 = T 4/3 ·M2 ·D2

4.5 Restrictions

Note that as we need to have at least one table, we get the following constraint:

t/D > 1

t > D

t1.5 > D1.5

T > D1.5

5 Quantum Rainbow Tables

Our quantum version of the Rainbow Tables algorithm is based on similar princi-
ples as the quantum Hellman Tables algorithm and achieves a similar time com-
plexity improvement. Again, while the classical algorithm needs to test each of
the D data-points on each of the t/D flavors separately, using the GroverMatch
algorithm, we test the superposition of D · t/D = t combinations, at a run-time
cost of only

√
t.

5.1 Offline Preprocessing Phase

In the offline phase, we prepare the hash table using the same preprocessing
algorithm used in the classical version and described in Algorithm 5. We store
the resulting table T in a QACM that our GroverMatch algorithm can access.

5.2 Finding Distinguished Point

Similar to the FHellman described in Algorithm 8, we need to use a quantum
function that can be implemented in a circuit with a fixed number of function
invocations. As in the case of Hellman Table, we need to stop when hitting a
distinguished point. Moreover, in the Rainbow Table algorithm, the beginning
point of the chain is not fixed but is determined by the flavor. in Algorithm 10,
we fulfill these requirements in the following way:

1. The function is always iterated 8t times regardless of the inputs.

Algorithm 10: FRainbow(D,F lavors) The Quantum function used in
the Rainbow Table Online Phase
Input: a superposition of data-points d ∈ D and a superposition of flavors
` ∈ F lavors.

Set d′ = d
for i = 1 to S do

tmp = fi(d
′)

if i < ` then
Set d′ = d′

else
Set d′ = tmp

for i = 1 to 8t/S do
tmp = fS(fS−1(· · · f2(f1(d′)) · · ·))
if d′ is a distinguished point then

Set d′ = d′

else
Set d′ = tmp

Output d′

2. In the first S invocations, we apply fi on the current value but store it in
a temporary variable. If we didn’t reach the starting flavor `, we keep the
current value. Otherwise, we replace it with the value stored in the temporary
variable.7

3. After the first S invocation, we apply the S flavors on the current value using
S function invocations but store it in a temporary variable. If the current
value is a distinguished point, we keep it. Otherwise, we replace it with the
value stored in the temporary variable.

5.3 Online Phase

The online phase of our quantum Rainbow Tables algorithm is described in
Algorithm 11. We know that with a constant non-negligible probability we have
at least one data-point d that is covered by table T . That means the distinguished
point reached by the chain started at d starting with some flavor ` is stored
as an endpoint in T . We use the GroverMatch algorithm, with the function
FRainbow to find that data-point and flavor. FRainbow converts the superposition
of data-points and flavors into a superposition of distinguished points, and the
GroverMatch algorithm amplifies the amplitude of the combination of d and
staring flavor ` that T covers.

As before, while the GroverMatch algorithm returns the covered data-point
and flavor, it does not return the start and end points of the covering chain or the

7 As described in Section 4.2, this can be implemented in a circuit using only logical
gates without a temporary variables.

Algorithm 11: The Quantum Rainbow Table Online Phase

Input: a superposition of data-points to invert d ∈ D, a superposition of
flavors ` ∈ F lavors, QACM sorted table T of size M free of internal collisions
of chain values (starti, endi).

// We use GroverMatch to find the data-point d that is covered by

table T and the specific flavor ` offset of the data-point in

the covering chain.

(d, `) = GroverMatch(FRainbow, T, (D,F lavor))
// From this point onwards we only use classical computations.

// We start by finding specific chain in T that covers d and

retriving the corresponding starting point.

d′ = d
for i = ` to S do

d′ = fi(d
′)

for i = 1 to 8t/S do
if d′ is a distinguished point then

find (starti, endi) ∈ T s.t. d′ = endi
start′ = starti
Break

else
Set d′ = fS(fS−1(· · · f2(f1(d′)) · · ·))

// Using the recovered starting point and flavor, we can find the

preimage of the data-point d.
for i = 1 to ` do

start′ = fi(start
′)

for i = 1 to 8t/S do
for j = 1 to S do

tmp = fj(start
′) if tmp = d then

Break // Only occurs when j = `.

else
Set start′ = fS(fS−1(· · · f2(f1(start′)) · · ·))

Output (start′, `)

preimage. Our algorithm uses a classical computation to find the chain by simply
iterating over the chain starting from flavor ` until we reach a distinguished point.
We then find the corresponding start and end points from table T . To recover
the preimage for d, we iterate over the chain that begins in the starting point
we found until we reach d.

5.4 Complexity of the algorithm

Similar to the classical version of the algorithm, for D data-points, we generate
a single table. The table contains m chains of length 8t with S = t/D different

flavors. Omitting constants, we get that N/D = m · t, and the overall memory
requirement is M = m.

As inputs to the algorithm, we have a superposition of D data-points and t/D
flavors, so the resulting size of the search space for out GroverMatch algorithm
is D · t/D = t. As the time complexity of the FRainbow function is O(t), the total
time complexity of the call to the GroverMatch algorithm is T = t ·

√
t = t1.5.

The final classical computation time complexity is O(t) and can be neglected.

We get the following constraints:

N/D = m · t
M = m

T = t ·
√
t = t1.5

Using these constraints we get the following time memory trade-off curve:

N/D = m · t
N3/D3 = t3 ·m3 = T 2 ·M3

N3 = T 2 ·M3 ·D3

N2 = T 4/3 ·M2 ·D2

5.5 Restrictions

Note that as we need to have at least one flavor, resulting in the same constraint
described in Section 4.5:

t/D > 1

t > D

t1.5 > D1.5

T > D1.5

6 Comparison with Grover’s Algorithm

In classical settings, we have to make sure that the complexities of tradeoff
attacks are better than the generic exhaustive search. In the quantum setting,
we have to compare the complexities of the tradeoff attacks with the complexity
of generic Grover search instead.

Although our quantum algorithms are valid at any point where T > D3/2,
we are only interested in the range of parameters where we are faster than
Grover. As Grover does not use any memory, we can start by finding the point
where the time complexity of both algorithm is the same. As was explained in

Section 3, Grover’s time/data tradeoff is N2 = T 4 ·D2. Our algorithm’s tradeoff
is N2 = T 4/3 ·M2 ·D2. Equating the time complexities we get:

N2 = T 4 ·D2

T = (N/D)0.5

N2 = T 4/3 ·M2 ·D2 = (N/D)2/3 ·M2 ·D2

M2 = (N/D)4/3

M = (N/D)2/3

As the time complexity improves when M increases, our algorithm’s time com-
plexity is better than Grover’s when M > (N/D)2/3. For comparison, in classical
settings M > (N/D)1/2 is required to have online time complexity faster than
exhaustive search.

We now calculate the respective data and time complexities at the point M =
(N/D)2/3, in which our algorithm’s time complexity matches that of Grover’s
algorithm. When taking the maximal number of data points, which results in
the minimal online complexity we obtain:

T = D3/2 = (N/D)1/2

D3/2 = (N/D)1/2

D2 = N1/2

D = N1/4

T = N3/8

M = (N/D)2/3 = N1/2

For comparison, in the classical setting, when M = (N/D)1/2 (which is the
transition point with respect to exhaustive search), D = N1/3 and T = N2/3.

7 Summary and Open Problems

In this paper we studied how to adapt the Hellman and Rainbow time-memory(-
data) tradeoff attacks to the quantum world. We developed quantum variants
of these attacks which follow the improved curve T 4/3M2D2 = N2 compared
to the classical curve of TM2D2 = N2, using the standard model of quantum-
access classical-memory (QACM). As these algorithms have to compete with a
straightforward Grover search, the memory size in our algorithms must be at
least N2/3 (this bound is slightly larger than the previously known result that
no improvement is possible when the size of the quantum advice is less than
N1/2). Another corollary is that while for the classical attacks each doubling of
the memory reduces the time by a factor of 4, in our quantum setting the time
is reduced only by a factor of 2

√
2 ≈ 2.82.

While these results improve both on the classical time-memory(-data) trade-
off attacks and on the Grover’s search algorithm, there is still a gap between

them and the lower bounds proved in [10]. Hence, a natural question to ask is
whether one can reduce the gap, either by improving our attacks or by improving
the lower bounds.

Aknowledgements

We thank the following people for the insightful discussions: Rotem Arnon-
Friedman, Gustavo Banegas, Daniel J. Bernstein, Tal Mor, and Maŕıa Naya-
Plasencia.

References

1. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Com-
put. 37(1), 210–239 (2007). https://doi.org/10.1137/S0097539705447311, https:
//doi.org/10.1137/S0097539705447311

2. Barkan, E.: Cryptanalysis of Ciphers and Protocols. Ph.D. thesis, Technion, Israel
(2006)

3. Barkan, E., Biham, E., Shamir, A.: Rigorous Bounds on Cryptanalytic
Time/Memory Tradeoffs. In: Dwork, C. (ed.) Advances in Cryptology - CRYPTO
2006, 26th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 20-24, 2006, Proceedings. Lecture Notes in Computer Science,
vol. 4117, pp. 1–21. Springer (2006)

4. Bernstein, D.J., Jeffery, S., Lange, T., Meurer, A.: Quantum Algorithms for the
Subset-Sum Problem. In: Gaborit, P. (ed.) Post-Quantum Cryptography - 5th
International Workshop, PQCrypto 2013, Limoges, France, June 4-7, 2013. Pro-
ceedings. Lecture Notes in Computer Science, vol. 7932, pp. 16–33. Springer
(2013). https://doi.org/10.1007/978-3-642-38616-9 2, https://doi.org/10.1007/
978-3-642-38616-9_2

5. Biryukov, A., Mukhopadhyay, S., Sarkar, P.: Improved time-memory trade-offs
with multiple data. In: Selected Areas in Cryptography. Lecture Notes in Computer
Science, vol. 3897, pp. 110–127. Springer (2005)

6. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. In: Okamoto, T. (ed.) Advances in Cryptology - ASIACRYPT 2000, 6th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Kyoto, Japan, December 3-7, 2000, Proceedings. Lecture Notes
in Computer Science, vol. 1976, pp. 1–13. Springer (2000)

7. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight Bounds on Quantum Searching.
Fortschritte der Physik 46(4-5), 493–505 (1998)

8. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: LATIN. Lecture Notes in Computer Science, vol. 1380, pp. 163–169.
Springer (1998)

9. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An Efficient Quantum
Collision Search Algorithm and Implications on Symmetric Cryptography. In:
Takagi, T., Peyrin, T. (eds.) Advances in Cryptology - ASIACRYPT 2017 -
23rd International Conference on the Theory and Applications of Cryptology
and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 10625, pp. 211–240. Springer
(2017). https://doi.org/10.1007/978-3-319-70697-9 8, https://doi.org/10.1007/
978-3-319-70697-9_8

https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1007/978-3-642-38616-9_2
https://doi.org/10.1007/978-3-642-38616-9_2
https://doi.org/10.1007/978-3-319-70697-9_8
https://doi.org/10.1007/978-3-319-70697-9_8

10. Chung, K., Guo, S., Liu, Q., Qian, L.: Tight Quantum Time-Space Tradeoffs for
Function Inversion. In: 61st IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020. pp. 673–684
(2020). https://doi.org/10.1109/FOCS46700.2020.00068

11. Chung, K., Liao, T., Qian, L.: Lower Bounds for Function Inversion with Quan-
tum Advice. In: Kalai, Y.T., Smith, A.D., Wichs, D. (eds.) 1st Conference on
Information-Theoretic Cryptography, ITC 2020, June 17-19, 2020, Boston, MA,
USA. LIPIcs, vol. 163, pp. 8:1–8:15. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2020)

12. Dunkelman, O., Keller, N.: Treatment of the initial value in time-memory-data
tradeoff attacks on stream ciphers. Inf. Process. Lett. 107(5), 133–137 (2008)

13. Grassi, L., Naya-Plasencia, M., Schrottenloher, A.: Quantum Algorithms for the
k-xor Problem. In: Peyrin, T., Galbraith, S.D. (eds.) Advances in Cryptology -
ASIACRYPT 2018 - 24th International Conference on the Theory and Application
of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-
6, 2018, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11272, pp.
527–559. Springer (2018)

14. Grover, L.K.: A Fast Quantum Mechanical Algorithm for Database Search. In:
STOC. pp. 212–219. ACM (1996)

15. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980)

16. Hhan, M., Xagawa, K., Yamakawa, T.: Quantum random oracle model with aux-
iliary input. In: ASIACRYPT (1). Lecture Notes in Computer Science, vol. 11921,
pp. 584–614. Springer (2019)

17. Kaluderovic, N., Kleinjung, T., Kostic, D.: Improved key recovery on the Legendre
PRF. IACR Cryptol. ePrint Arch. p. 98 (2020), https://eprint.iacr.org/2020/
098

18. Kuperberg, G.: Another Subexponential-time Quantum Algorithm for the Dihedral
Hidden Subgroup Problem. In: Severini, S., Brandão, F.G.S.L. (eds.) 8th Confer-
ence on the Theory of Quantum Computation, Communication and Cryptography,
TQC 2013, May 21-23, 2013, Guelph, Canada. LIPIcs, vol. 22, pp. 20–34. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2013)

19. Naya-Plasencia, M., Schrottenloher, A.: Optimal Merging in Quantum k-xor and
k-xor-sum Algorithms. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2020 - 39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12106, pp. 311–340.
Springer (2020)

20. Nayebi, A., Aaronson, S., Belovs, A., Trevisan, L.: Quantum lower bound for in-
verting a permutation with advice. Quantum Inf. Comput. 15(11&12), 901–913
(2015)

21. Oechslin, P.: Making a Faster Cryptanalytic Time-Memory Trade-Off. In: Boneh,
D. (ed.) Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceed-
ings. Lecture Notes in Computer Science, vol. 2729, pp. 617–630. Springer (2003)

22. Yao, A.C.: Coherent Functions and Program Checkers (Extended Abstract). In:
Ortiz, H. (ed.) Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, May 13-17, 1990, Baltimore, Maryland, USA. pp. 84–94. ACM (1990)

https://eprint.iacr.org/2020/098
https://eprint.iacr.org/2020/098

	Quantum Time/Memory/Data Tradeoff Attacks

