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Abstract

Blind signatures have numerous applications in privacy-preserving technologies. While there exist
many practical blind signatures from number-theoretic assumptions, the situation is far less satisfactory
from post-quantum assumptions. In this work, we make advances towards making lattice-based blind
signatures practical. We introduce two round-optimal constructions in the random oracle model, and
provide guidance towards their concrete realization as well as efficiency estimates.

The first scheme relies on the homomorphic evaluation of a lattice-based signature scheme. This
requires an HE-compatible lattice-based signature. For this purpose, we show that the rejection step in
Lyubashevsky’s signature is unnecessary if the working modulus grows linearly in

√
Q, where Q is an

a priori bound on the number of signature queries. Compared to the state of art scheme from Hauck
et al [CRYPTO’20], this blind signature compares very favorably in all aspects except for signer cost.
Compared to a lattice-based instantiation of Fischlin’s generic construction, it is much less demanding on
the user and verifier sides.

The second scheme relies on the Gentry, Peikert and Vainkuntanathan signature [STOC’08] and
non-interactive zero-knowledge proofs for linear relations with small unknowns, which are significantly
more efficient than their general purpose counterparts. Its security stems from a new and arguably natural
assumption which we introduce: one-more-ISIS. This assumption can be seen as a lattice analogue of the
one-more-RSA assumption by Bellare et al [JoC’03]. To gain confidence, we provide a detailed overview
of diverse attack strategies. The resulting blind signature beats all the aforementioned from most angles
and obtains practical overall performance.

1 Introduction

Blind signatures are a fundamental cryptographic primitive with numerous applications in e-cash [23],
e-voting [48] cryptocurrencies [77] and other privacy-preserving technologies [78]. In a blind signature
scheme [23], a user U , holding a public key and message, may request a signature from a signer S, holding a
signing key, such that the signer is not able to link a message-signature pair with a protocol execution, and
the user is not able to forge signatures even after several interactions with the signer. While there exist many
practical realizations of blind signatures under number-theoretic assumptions (see, e.g., [64, 65, 66, 67, 71, 61]),
the situation is very unsatisfactory in the post-quantum regime, especially in the context of optimal round
complexity. Below, we summarize the state of the art from lattice assumptions, which is the focus of our
work.

State of the Art from Lattices. The first proposal of a lattice-based blind signature was by Rückert [70],
which has been investigated in a series of works, all of which have been shown to have incomplete security
proofs and sometimes even attacks [70, 6, 5, 20, 52, 62] – we refer to [46] for a detailed discussion. The
state of the art construction in this regime is due to Hauck et al [46], who state that the main goal of their
work “is to give the first direct lattice-based blind signature scheme with a correct security proof”. However,
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despite being in the Random Oracle Model (ROM), this construction suffers from some significant drawbacks
impacting its efficiency:

1. Noise Flooding. The construction relies on a variant of noise flooding, used with the Short Integer
Solution problem (SIS). For λ-bit security, it leads to setting the SIS parameters such that n log q = Ω̃(λ3),
which is a lower bound on the signature bit-length. More precisely, the noise flooding derives from the
requirement that the lattice-based linear hash function must be (ε,Q)-regular (see [46, Section 3]) with
an ε that is 2−Ω(λ) for [46, Theorem 1] to be applicable to adversaries succeeding with probability 2−o(λ).
This is achieved in [46, Section 6] by considering two balls of the same radius that is 2Ω(λ) larger than
the offset between the ball centers.

2. Loss in Security Proof. The scheme is an adaptation of the Okamoto-Schnorr blind signature [61]
from the discrete logarithm setting to the lattice setting. The best known security proof for the
Okamoto-Schnorr blind signature under standard assumptions [67], suffers from a loss in advantage
larger than 2Q/|C|. Here Q denotes an upper bound on the number QS of generated signatures and C
denotes the challenge space. Note that log |C| is a lower bound on the signature bit-length. This
advantage loss stems from the ability of a malicious user to perform concurrent protocol executions
with the signer and was recently shown to be intrinsic [16]. In the lattice setting, the proof from [46]
suffers from a similar loss, which drastically limits Q or forces to have signature bit-lengths that grow
at least linearly in Q (note that no devastating attack as the one from [16] is known for the scheme [46],
so a better proof could possibly exist).

3. Suboptimal Round Complexity. Finally, the scheme of [46] uses three rounds, while optimal round
complexity is two.

Due to the above factors, by parameters provided in [46], the constructed blind signature has size
≈ 7.73MB, for security against adversaries limited to getting 7 signatures. Thus, while the work makes
an important contribution by providing a correct lattice based blind signature, it may be seen only as a
feasibility result. Since blind signatures are practice oriented primitives, there remains a large distance to be
covered until an acceptable solution.

Taking a Step Back. In this work, we take a step back and ask whether lattice based blind signatures can
be practical. Looking more closely at the Hauck et al construction, an immediate observation is that the
advantage loss stems from the ability of a malicious user to perform concurrent protocol executions with the
signer. This loss was recently shown to be intrinsic [16], at least in the discrete logarithm setting. In turn,
the ability of the user to engage in concurrent protocol executions stems from the fact that the protocol has
three rounds: this attack could not arise in a two round protocol. Needless to say, smaller round complexity
is desirable even for its own sake, and in the context of blind signatures, round complexity of two is both
achievable and optimal [37, 40].

There are two main solutions in the literature for round optimal blind signatures which can be instantiated
from lattice assumptions: one by Fischlin [37] in the CRS model, and one by Garg et al in the standard
model [40]. However, both have primarily been interpreted as feasibility results as they make use of heavyweight
techniques. In more detail, the work of Fischlin uses general purpose non-interactive zero knowledge proofs
(NIZK), while the work of Garg et al relies heavily on complexity leveraging and general purpose witness
indistinguishable proofs. Indeed, the subsequent work of [39] was dedicated to mitigating the impact of
complexity leveraging and instantiating the proofs to minimize costs, but this work is restricted to the
number-theoretic setting.

1.1 Our Contributions

We reopen the possibility of constructing practical two round blind signatures from lattices. As a starting
point, we adapt Fischlin’s scheme [37] to the ROM and instantiate it with efficient lattice based signatures
and NIZKs. Due to the extensive research in efficient lattice based signatures [41, 55, 36, 44, 38, 11, 31] and
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proof systems [53, 29, 15, 76, 19, 36, 35, 56] over the last 15 years, this already provides a candidate which
is “somewhat reasonable” in practice. Using this along with [46] as benchmarks, we then provide two new
constructions:

1. From Homomorphic Encryption: We provide a two-round construction based on homomorphic encryption
(HE) in the ROM, which builds upon the multi-party computation (MPC) based construction of [40].
Our construction enjoys the following advantages:

• Efficiency. Compared to [46], we reduce the amount of noise flooding from 2Ω(λ) down to
√
Q,

where Q is the bound on the number of generated signatures and λ is the security parameter.

• Number of Signing Queries. Unlike the scheme from [46], our construction enjoys a proof that does
not suffer from a loss that is exponential in Q. Using lattice hardness assumptions over rings, we
obtain signatures of bit-lengths bounded as Õ(λ log2Q). In contrast, the signature bit-length in the
scheme from [46] is Ω(λ3 +Q · λ).

• Computational Cost. In terms of verification cost, our scheme outperforms the one of [46]. On the
other hand, the comparison is more complex for signing cost. Our signing algorithm requires HE
evaluation of a hash function. However, we show that using suitable building blocks, our signing
cost can be reduced to several minutes with appropriate parallelization (see Table 1). We note that
though the signing algorithm from [46] is simpler, if we adjust its parameters to support as many
signatures as we do, the bit-sizes may grow so much that even their basic operations may become
noncompetitive compared to our more complex operations on small data.

Compared to the lattice adaptation of Fischlin’s scheme, our construction offers a different tradeoff.
The signatures in our HE based construction are shorter, and user complexity is significantly better.
However, signer complexity is higher for the HE based construction, and the signature size depends
on an a-priori bound on the number of queries, unlike in the adaptation of Fischlin’s scheme. We note
that in practical applications, we expect the signer to be a server with much higher computational
resources than the user, so it may often be desirable to favour the user.

Our construction also has the following disadvantages:

• Very Honest Signer Model: The main limitation of our HE based construction is that it achieves
somewhat reasonable parameters only in the “very honest signer” model as against the more standard
“honest signer” model, where the latter imposes that the signing keys are generated honestly while
the former further assumes that the signer behaves honestly during protocol execution. In fact,
as discussed in Subsection 4.2, the cost of upgrading the HE-based construction to honest signer
blindness is likely to be prohibitive using off the shelf components. Mitigating this cost is an important
direction for future work.

• Large Communication Complexity: Another limitation of our HE based approach is the large
communication complexity (about 50 MB). However, though this is large, we observe that all
of this data except for a few kB is independent from the message µ to be signed. The corresponding
computation and transmission can hence be off-lined and amortized across several protocol executions
(including with different signers).

2. From One-More-ISIS: We introduce a new assumption, one-more-ISIS, from which we construct a two
round blind signature with very efficient parameters. Informally, the one-more-ISIS assumption states
that for any polynomially bounded `, it is difficult to forge `+ 1 GPV signatures [41], even when given
access to up to ` inversions of arbitrary syndromes.

This construction supports an unbounded number of signatures, does not use noise flooding, and achieves
overall superior computational cost than all the aforementioned candidates (although other candidates
may outperform it in individual parameters). On the other hand, unlike the other constructions, it is
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based on a new assumption. We believe that for a practice oriented primitive like blind signatures, it is
justified to introduce new, plausible assumptions, and we provide detailed cryptanalysis to justify it.

At a high level, this new candidate is similar in spirit to Fischlin’s [37] and Chaum’s [23]. While
Fischlin’s construction uses general purpose zero knowledge proofs, we can instead rely on algebraic
proofs for linear relations [35, 56], which can be much more efficient. This lets us reduce the signature
size as well as the cost of generating and verifying the signature.

Table 1 provides a comparison between the three round optimal approaches. The contents of the table are
only rough estimates, detailed in the corresponding sections. Precise numbers can only be provided with
implementations, which is beyond the scope of this work.

Construction Sig Size User Time Signer Time Transcript
Size

Verifier
Time

Fischlin, Sec. 3 ∼ 130 kB up to 1h < 1 ms ∼ 5 kB Few secs
HE, Sec. 4 3-8 kB < 1 ms (on-

line) Few mins
(offline)

∼ 200 min (w.o.
parallelization)

∼ 200 kB (on-

line) ∼ 50 MB
(offline)

Few ms

one-more-ISIS, Sec. 5 30-100 kB < 100 ms < 1 ms < 2 kB Few ms

Table 1 Comparison of two round blind signature schemes. Parameters for the HE based scheme are in the
“very honest signer” model.

1.2 Technical Overview

Protocol Based on HE. We believe that given the recent advances in HE and NIZKs, this approach may
be a viable design strategy towards practical constructions of blind signatures from lattices. When starting
from [40], making this approach work requires several new ideas, which we describe next.

Adapting Protocol by Garg et al [40]. We revisit the construction of [40] and observe that if it is degraded to rely
on the ROM (its primary objective was to provide a standard model construction), then the primary source
of inefficiency, namely complexity leveraging, can be removed. Similarly, expensive witness indistinguishable
ZAPs can be replaced by simple and efficient zero-knowledge arguments for specific algebraic statements [54, 55]
by using ROM. We instantiate two round MPC of their construction using HE.

A question is how to instantiate the HE scheme with the required properties: our protocol needs malicious
circuit privacy (Definition 2.4) and algebraic structure which allows for efficient non-interactive proofs for
proving well-formedness of the public and secret key. To avoid using general zero knowledge proofs, we
instantiate the HE scheme using TFHE [25, 26]. With this choice, it suffices to prove statements of linear
relations with short unknowns, for which specific lattice-based techniques are known (see [76, 19, 35, 56], and
references therein). These techniques result in much shorter proof sizes as well as much more efficient running
times for the prover and verifier. We can also use techniques of [34] to upgrade TFHE to satisfy semi-honest
circuit privacy and then leverage the ROM to upgrade it to the malicious setting, in an efficient way.

Circuitizing the Underlying Signature. Our blind signature requires to evaluate a signing algorithm under
the hood of an HE scheme. For this to be efficient, we need a lattice-based signature scheme that can be
expressed as a relatively simple circuit. The GPV signature scheme [41] and its practical versions [33, 68, 38]
seem ill-suited to our needs, as the signing algorithm is very sequential, and the required 1-dimensional
Gaussian samples are obtained via algorithms based on rejection sampling (see, e.g., [47, 79]) that are costly
to transform into circuits. The other candidate is Lyubashevsky’s signature scheme [54, 55]. It has the
advantage of being far less sequential, but it also relies on rejection sampling: when some rejection test does
not pass, then one needs to restart the signing process. The rejection probability is typically a non-zero
constant: for example, it is ≈ 0.85 for the recommended parameter set of [31].
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We show that Lyubashevsky’s signature is suitable for transformation into a circuit using two modifications
which enjoy different performance properties. The first possibility is to run Q · ω(log λ) executions of
Lyubashevsky’s signing algorithm in parallel and keep one that passes the rejection test (return ⊥ if they all
fail). If no more than Q signatures are generated, then for each of them the signing algorithm succeeds with
probability ≥ 1− λ−ω(1). However, this approach requires parallel repetition, implementing the rejection test
and choosing the right output which may be cumbersome to implement homomorphically, and additionally
results in some error of correctness. Another possibility is to remove the rejection test from Lyubashevsky’s
signature altogether, which we describe next. Observe that Lyubashevsky’s signature consists of a pair of
matrices or polynomials over the integers (depending whether one relies on the SIS assumption or its ring
variant). It is well-known that when the magnitudes of these integers is bounded by λO(1), then removing
the rejection test leads to polynomial-time attacks. Oppositely, taking exponential magnitudes allows, via
the noise flooding technique, to prove unforgeability of the rejection-free variant [28], but this leads to

setting n log q = Ω̃(λ3). In this work, we show that limited magnitudes of the order of
√
Q suffice to ensure

unforgeability. The proof is based on the Rényi divergence technique [57, 51, 12] and results in a sufficient

condition n log q = Ω̃(λ log2Q). Since Q is often a moderate polynomial in practice, this improvement is
significant. Furthermore, we show that this amount of noise flooding is optimal by exhibiting a statistical
attack if smaller noise is used. We believe this contribution could have other applications, for instance in
evaluating this signature within an MPC protocol.

Protocol Based on one-more-ISIS. The starting point of our protocol based on the one-more-ISIS assumption
is Fischlin’s protocol [37], which we instantiate in Section 3. Its primary source of inefficiency is the use
of general purpose NIZKs. In our lattice adaptation using GPV “Hash and Sign” signatures [41], the final
signature in the blind signature protocol is a NIZK argument of knowledge (NIZKAoK) that the user knows a
GPV signature for an encryption of the message. In more detail, the user must provide a NIZKAoK for the
following statement: Given (C,PKE.pk) and µ, there exists r and a vector y such that

‖y‖ ≤ β ∧ Cy = H(Enc(PKE.pk, µ; r)).

Since the witness r is inside a ciphertext, which in turn is inside a hash function, the statement becomes
very complex and using state of art general purpose NIZKAoK [15, 9], we estimate a proof size of more than
100kB and prover time complexity of possibly one hour or more. In the blind signature application, the proof
is the signature and the prover is the user. This is very dissatisfying because signature size and user time
complexity are often the most important parameters in a blind signature. For most applications, it may be
assumed that the signer is more powerful than the user, and choosing the tradeoff in computation cost to
favour the signer over the user does not seem meaningful.

Our main new idea is to leverage a new, arguably natural assumption, which we call one-more-ISIS so
that the problematic general purpose NIZKAoK above may be replaced by an efficient lattice based proof for
linear statements with small coefficients. As discussed above, there are now several practical constructions
for such statements with proofs in the tens of kB, and very efficient prover and verifier times. By virtue of
our new assumption, the user now needs to prove the following statement: Given (C,A,PKE.pk), ct and µ,
there exists r and vectors x,y such that

‖x‖ ≤ β/m ∧ ‖y‖ ≤ β ∧ Cy −Ax = H(µ) ∧ ct = PKE.Enc(PKE.pk,x‖y; r).

The above statement also involves the hash function H modeled as a random oracle in the security proof.
But the input µ to H is known, implying that H(µ) can be seen as a public quantity. By using Regev’s
encryption scheme [69] (or variants of it), one sees that the statement to be proved is linear in the unknowns,
which are themselves required to be small.

The one-more-ISIS Assumption. Next, we state our assumption and argue about its plausibility. The
one-more-ISISq,n,m,σ,β assumption is defined using the following experiment between a challenger C and
adversary A. First, C uniformly samples a matrix C ∈ Zn×mq and sends it to A. Then A adaptively makes
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two types of queries: syndrome queries, to which C replies with a uniformly sampled vector t ← Znq , and
preimage queries, where A queries a vector t′ ∈ Znq , to which C replies with a short vector y′ ← DZm,σ such
that Cy′ = t′. If ` is the total number of preimage queries, we ask the adversary to output `+ 1 pairs of
the form {(yj , tj)}j∈[`+1], such that Cyj = tj , ‖yj‖ ≤ β and tj were provided via syndrome queries, for all
j ∈ [`+ 1]. We say that the one-more-ISISq,n,m,σ,β problem is hard if the probability that A succeeds in the
above game is negligible.

Note that this definition is reminiscent to the chosen target version of the one-more-RSA inversion problem
from [14]. It is also closely related to the k-SIS problem [18] which was introduced in the context of linearly
homomorphic signatures. The k-SIS problem is as follows: Given a matrix C ∈ Zn×mq , and k short vectors
e1, . . . , ek ∈ Zm satisfying A · ei = 0 mod q, find a short vector e ∈ Zm satisfying A · e = 0 mod q, such that
e is not in Q-span(e1, . . . , ek). In [18], the linearly homomorphic signature must intuitively sign a subspace.
Hence for k-SIS, the goal is to restrict the attacker to the subspace of the signatures she has already seen; this
prevents her from obtaining signatures of vectors out of the vector subspace that has already been signed. In
contrast, in our one-more-ISIS, we do not want to restrict the subspace and indeed allow the attacker to query
the oracle more times than the dimension of the whole space. But we are more demanding on the norm of
the vector that the attacker must find. We are optimistic that this assumption may have other applications.

To justify our assumption, we attempted to cryptanalyze it. For some parameter regimes, the problem
can be solved in polynomial time but, as far as we know, the problem is exponentially hard for the regimes
that we use in the blind signature scheme. Broadly, we consider two approaches to solve one-more-ISIS:
combinatorial and lattice-based algorithms, and we provide complexity results for one-more-ISIS using these
approaches. We also formulate new cryptanalytic questions that the one-more-ISIS assumption raises.

Other Related Works. Aside from lattice based blind signatures, there are a few other constructions from
post-quantum assumptions. The most relevant to our work is the code-based construction of Blazy et al [17],
relying on the CFS signature scheme [27] and Stern zero-knowledge proofs [74]. Like in our one-more-ISIS
construction, their construction relies on a new assumption, related to CFS. However, there are important
differences with our work. In CFS, not all syndromes can be inverted, and the procedure needs to be repeated
if no inversion is possible. Hence, the resulting blind signature scheme is not round optimal. Moreover, due
to the use of Stern proofs, their construction achieves signature size of several MB. A blind signature scheme
based on multivariate polynomial systems was described in [63], with a non-standard unforgeability security
property.

2 Preliminaries

In this section, we provide several preliminaries used in our work.

Notation. We write vectors with bold small letters and matrices with bold capital letters. For any vector v,
we denote its ith element by v[i] or vi. Similarly, for any matrix M, M[i][j] or Mij represents the element
in the jth column of ith row. Let S be any set, then |S| represents the cardinality of S, while in case of
any x ∈ R, |x| represents absolute value of x. For any n ∈ N, we let the set {1, 2, . . . , n} be denoted by [n]. For
a distribution D over a countable set X , we let H∞(D) = −maxx∈X log2D(x) denote the min-entropy of D.
The statistical distance between two distributions D0 and D1 over X is defined as 1

2

∑
x∈X |D0(x)−D1(x)|.

We use standard definitions for pseudo-random functions (PRF), public-key encryption (PKE), signatures
and commitments. We place ourselves in a setup that allows the attackers to run in time 2o(λ) and succeed
with probability 2−o(λ), but that forbids them to make more than poly(λ) interactions with honest users.
Compared to the setup of polynomially bounded attackers, this allows to better reflect practice and to better
differentiate between operations that the adversary can do on its own and are only limited by the adversary
runtime (such as hash queries) and operations that require interaction with a honest user and are much more
limited (such as signature queries). We note that if we limit ourselves to polynomially bounded adversaries,
then all our reductions of our security proofs involve polynomial-time reductions and would not require
subexponential hardness assumptions.
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2.1 Homomorphic Encryption (HE)

A homomorphic encryption scheme is an encryption scheme that allows computations on encrypted data.

Definition 2.1 (Homomorphic Encryption). A homomorphic encryption scheme HE is a tuple of PPT
algorithms HE = (HE.KeyGen,HE.Enc,HE.Eval, HE.Dec) defined as follows:

• HE.KeyGen(1λ, 1d)→(pk, sk): On input the security parameter λ and a depth bound d, the KeyGen algorithm
outputs a key pair (pk, sk).

• HE.Enc(pk, µ)→ct: On input a public key pk and a message µ ∈ {0, 1}, the encryption algorithm outputs a
ciphertext ct.

• HE.Eval(pk, C, ct1, . . . , ctk)→ĉt: On input a public key pk, a circuit C : {0, 1}k→{0, 1} of depth at most d,
and a tuple of ciphertexts ct1, . . . , ctk, the evaluation algorithm outputs an evaluated ciphertext ĉt.

• HE.Dec(pk, sk, ĉt)→µ̂: On input a public key pk, a secret key sk and a ciphertext ĉt, the decryption
algorithm outputs a message µ̂ ∈ {0, 1,⊥}.

The definition above can be adapted to handle plaintexts over larger sets than {0, 1}. Note that the
evaluation algorithm takes as input a (deterministic) circuit rather than a possibly randomized algorithm.
An HE should satisfy the compactness, correctness and security properties defined below.

Definition 2.2 (Compactness). We say that an HE scheme is compact if there exists a polynomial
function f(·, ·) such that for all λ, depth bound d, circuit C : {0, 1}k→{0, 1} of depth at most d, and
µi ∈ {0, 1} for i ∈ [k], the following holds: for (pk, sk)←HE.KeyGen(1λ, 1d), cti←HE.Enc(pk, µi) for i ∈ [k],
ĉt←HE.Eval(pk, C, ct1, . . . , ctk), the bit-length of ĉt is at most f(λ, d).

Definition 2.3 (Correctness). We say that an HE scheme is correct if for all λ, depth bound d,
circuit C : {0, 1}k→{0, 1} of depth at most d, and µi ∈ {0, 1} for i ∈ [k], the following holds: for
(pk, sk)←HE.KeyGen(1λ, 1d), cti←HE.Enc(pk, µi) for i ∈ [k], ĉt←HE.Eval(pk, C, ct1, . . . , ctk), we have

Pr[HE.Dec(pk, sk, ĉt) = C(µ1, . . . , µk)] = 1− λ−ω(1).

Definition 2.4 (Security). We say that an HE scheme is secure if for all λ and depth bound d, the following
holds: for any adversary A with run-time 2o(λ), the following experiment outputs 1 with probability 2−Ω(λ):

1. On input the security parameter λ and a depth bound d, the challenger runs (pk, sk)←HE.KeyGen(1λ, 1d)
and ct←HE.Enc(pk, b) for b←{0, 1}; it provides (pk, ct) to A.

2. Adversary A outputs a guess b′; the challenger outputs 1 if b = b′.

In our application, we will also need the HE scheme to support circuit privacy, as defined below.

Definition 2.5 (Circuit Privacy). We say that the homomorphic encryption scheme HE is semi-honest circuit
private if for (pk, sk) ← HE.KeyGen(1λ, 1d), any circuit C : {0, 1}k→{0, 1} of depth at most d, µi ∈ {0, 1}
for i ∈ [k], no 2o(λ)-time adversary can distinguish between the following distributions with 2−o(λ) advantage:(

HE.Eval(pk, C, {cti}i≤k), {cti}i≤k, pk, sk
)

and
(
HE.Eval(pk, C0, {ct′i}i≤k), {cti}i≤k, pk, sk

)
,

where cti ← HE.Enc(pk, µi) for i ∈ [k], ct′1 = HE.Enc(pk, C(µ1, . . . , µk)), ct′i = HE.Enc(pk, 0) for 1 < i ≤ k
and C0 : {0, 1}k→{0, 1} is the trivial circuit of depth d that outputs its first input and ignores the others.

We say that HE is maliciously circuit private if the above holds even if the keys (pk, sk) and ciphertexts
cti for i ∈ [k] are not necessarily generated honestly. In this case, the µi’s are defined as µi = HE.Dec(sk, cti)
for i ∈ [k], where we assume without loss of generality that decryption always outputs a bit (even when the
ciphertext is not well-formed).
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2.2 Blind Signatures

To begin, we introduce some notation for interactive executions between algorithms X and Y. By (a, b)←
〈X (x),Y(y)〉, we denote the joint execution of X and Y where X has private input x, Y has private input y
and X receives private output a while Y receives private output b.

Definition 2.6 (Blind Signature). A blind signature scheme BS consists of PPT algorithms Gen, Vrfy along
with interactive PPT algorithms S, U such that for any λ:

• Gen(1λ) generates a key pair (BSig.sk,BSig.vk).

• The joint execution of S(BSig.sk) and U(BSig.vk, µ), where µ ∈ {0, 1}∗, generates an output σ for the user
and no output for the signer; this is denoted as (⊥, σ)← 〈S(BSig.sk),U(BSig.vk, µ)〉.

• Algorithm Vrfy(BSig.vk, µ, σ) outputs a bit b.

The scheme must satisfy completeness: for any (BSig.sk,BSig.vk)←Gen(1λ), µ ∈ {0, 1}∗ and σ output by U
in the joint execution of S(BSig.sk) and U(BSig.vk, µ), it holds that Vrfy(BSig.vk, µ, σ) = 1 with probability
1− λ−ω(1).

Blind signatures must satisfy two security properties: one more unforgeability and blindness [49].

Definition 2.7 (One More Unforgeability). The blind signature BS = (Gen,S,U ,Vrfy) is one more unforgeable
if for any polynomial QS , and any algorithm U∗ with run-time 2o(λ), the success probability of U∗ in the
following game is 2−Ω(λ):

1. Gen(1λ) outputs (ssk, svk), and U∗ is given svk.

2. Algorithm U∗ interacts concurrently with QS instances S1
ssk, . . . ,S

QS

ssk .

3. Algorithm U∗ outputs (µ1, σ1, . . . , µQS+1, σQS+1).

Algorithm U∗ succeeds if the µi’s are distinct and Vrfy(svk, µi, σi) = 1 for all i ∈ [QS + 1].

The blindness condition says that it should be infeasible for any malicious signer S∗ to decide which of
two messages µ0 and µ1 of its choice has been signed first in two executions with a honest user U . If one of
these executions has returned ⊥, then the signer is not informed about the other signature either. We will
focus on the following notion of honest signer blindness.

Definition 2.8 (Honest Signer Blindness). The blind signature BS = (Gen,S,U ,Vrfy) satisfies honest signer
blindness if for any algorithm S∗ with run-time 2o(λ), the advantage of S∗ in the following game is 2−Ω(λ):

1. Gen(1λ) outputs (ssk, svk) and gives it to S∗; algorithm S∗ outputs two messages µ0, µ1 of its choice.

2. A random bit b is chosen and S∗ interacts concurrently with U0 := U(svk, µb) and U1 := U(svk, µb̄)
possibly maliciously; when U0 and U1 have completed their executions, the values σb, σb̄ are defined as
follows:

• If either U0 or U1 aborts, then (σb, σb̄) := (⊥,⊥).

• Otherwise, let σb (resp. σb̄) be the output of U0 (resp. U1).

Algorithm S∗ is given (σ0, σ1).

3. Algorithm S∗ outputs a bit b′.

Algorithm S∗ succeeds if b′ = b. If succ denotes the latter event, then the advantage of S∗ is defined as
|Pr[succ]− 1/2|.

Full-fledged blindness lets the adversary S∗ sample its own pair (ssk, svk) at Step 1 (possibly
maliciously), and gives svk to the challenger. We also consider the notion of very honest signer blindness
for which the signer S∗ follows the protocol honestly.
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2.3 Non-Interactive Zero Knowledge Arguments

Definition 2.9 (Non Interactive Zero Knowledge Argument). A non-interactive zero-knowledge (NIZK)
argument system Π for an NP relation R consists of three PPT algorithms (Gen,P,V) with the following
syntax:

• Gen(1λ)→crs : On input a security parameter λ, the Gen algorithm outputs a common reference string crs;
in the random oracle model, this algorithm may be skipped, since the crs can be generated by P and V by
querying the random oracle on some fixed value.

• P(crs, x, w)→π : On input the common reference string crs, a statement x ∈ {0, 1}poly(λ), a witness w such
that (x,w) ∈ R, the prover P outputs a proof π.

• V(crs, x, π)→accept/reject : On input a common reference string crs, a statement x ∈ {0, 1}poly(λ) and a
proof π, the verifier V outputs accept or reject.

The argument system Π should satisfy the following properties.

• Completeness: For any (x,w) ∈ R, we have

Pr[crs← Gen(1λ), π ← P(crs, x, w) : V(crs, x, π) = 1] ≥ 1− λ−ω(1).

• Soundness: For any x ∈ {0, 1}poly(λ)
and any 2o(λ) time prover P∗, we have

Pr[crs← Gen(1λ), π ← P∗(crs, x) : V(crs, x, π) = 1] ≤ 2−Ω(λ).

• Honest Verifier Zero Knowledge: There is a PPT simulator Sim such that, for all statements x for
which there exists w with R(x,w) = 1, for any 2o(λ) time adversary A, we have:∣∣ Pr

[
1← A

(
(crs, x, π) : crs← Gen(1λ), π ← P(crs, x, w)

) ]
−Pr

[
1← A

(
(crs, x, π) : (crs, π)← Sim(1λ, x)

) ] ∣∣ ≤ 2−Ω(λ).

Definition 2.10 (Argument of Knowledge). The argument system (Gen,P,V) is called an argument of
knowledge for the relation R if it is complete and knowledge-sound as defined below.

• Knowledge Sound: For any 2o(λ) time prover P∗, there exists an extractor E with expected run-time
polynomial in λ and the run-time of P∗, such that for all PPT adversaries A

Pr

 crs← Gen(1λ), (x, s)← A(crs),
π∗ ← P∗(crs, x, s), b← V(crs, x, π∗),

w ← EP∗(crs,x,s)(crs, x, π∗, b)

∣∣∣∣∣∣(x,w) 6∈ R ∧ b = accept

 ≤ 2−Ω(λ).

If an argument of knowledge is also non-interactive zero knowledge, it is termed as a non-interactive zero
knowledge argument of knowledge, abbreviated as NIZKAoK.

2.4 Lattices and Discrete Gaussians

An m-dimensional integral lattice Λ is a full-rank subgroup of Zm. Among these lattices are the “q-ary”
lattices defined as follows: for any integer q ≥ 2 and any A ∈ Zn×mq , we define

Λ⊥q (A) :=
{
e ∈ Zm : A · e = 0 mod q

}
.

For a vector u ∈ Znq , we define the following coset of Λ⊥q (A):

Λu
q (A) :=

{
e ∈ Zm : A · e = u mod q

}
.
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We have Λu
q (A) = Λ⊥q (A) + t for any t such that A · t = u mod q.

For any vector c ∈ Rn and any real σ > 0, the (spherical) Gaussian function with standard deviation
parameter σ and center c is defined as:

∀x ∈ Rn, ρσ,c(x) = exp

(
−π‖x− c‖2

σ2

)
.

The Gaussian distribution is Dσ,c(x) = ρσ,c(x)/σn.

The (spherical) discrete Gaussian distribution over a lattice Λ with standard deviation parameter σ > 0
and center parameter c is defined as:

∀x ∈ Λ, DΛ,σ,c =
ρσ,c(x)

ρσ,c(Λ)
,

where ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x). When c = 0, we omit the subscript c.

2.5 Hardness Assumptions

We will need the Learning With Errors (LWE) problem, which is known to be at least as hard as certain
standard lattice problems in the worst case [69, 22] when it is appropriately parameterized.

Definition 2.11 (Learning With Errors (LWE)). Let q, n,m, α be functions of a parameter λ. For a
secret s ∈ Znq , the distribution Aq,n,α,s over Znq × Zq is obtained by sampling a←Znq and an e←DZ,αq, and
returning (a, 〈a, s〉+ e) ∈ Zn+1

q . The Learning With Errors problem LWEq,n,m,α is as follows: For s←Znq , the
goal is to distinguish between the distributions:

D0(s) := U(Zm×(n+1)
q ) and D1(s) := (Aq,n,α,s)

m.

We say that a 2o(λ)-time algorithm A solves LWEq,n,m,α if it distinguishes D0(s) and D1(s) with 2−ω(λ)

advantage (over the random coins of A and the randomness of the samples), with 2−ω(λ) probability over the
randomness of s.

Definition 2.12 (Short Integer Solution (SISq,n,m,β)). Let q, n,m, β be functions of a parameter λ. An
instance of the SISq,n,m,β problem is a matrix A←Zn×mq . A solution to the problem is a nonzero vector
v ∈ Zm such that ‖v‖ ≤ β and A · v = 0 mod q.

Like LWE, the SIS problem is known to be at least as hard as certain lattice problems in the worst
case [2, 59, 41], when it is appropriately parameterized. The same holds for the inhomogeneous version of the
SIS problem stated below.

Definition 2.13 (Inhomogeneous Short Integer Solution (ISISq,n,m,β)). Let q, n,m, β be functions of a
parameter λ. An instance of the ISISq,n,m,β problem is a matrix A←Zn×mq and a vector t←Znq . A solution
to the problem is a vector v ∈ Zm such that ‖v‖ ≤ β and A · v = t mod q.

2.6 Lattice Trapdoors

We will use algorithms for generating a random lattice with a trapdoor, and for sampling short vectors in a
lattice coset. The first algorithm is derived from [3, 41, 58], whereas the second is derived from [50, 41, 22].

Lemma 1. Let q, n,m be positive integers with q ≥ 2 and m ≥ 6n log2 q.

There is a PPT algorithm TrapGen(q, n,m) that with probability 1 − 2−Ω(n) outputs a pair (A,T) ∈
Zn×mq × Zm×m such that A is within 2−Ω(n) statistical distance to uniform in Zn×mq and T is a basis for

Λ⊥q (A).

There is a PPT algorithm SamplePre(A,T,u, σ), which takes as input the above pair (A,T), a vector
u ∈ Znq and a sufficiently large σ = Ω(

√
n log q logm) and outputs a vector e from DΛu

q (A),σ. Further, with

probability 2−Ω(n), we have ‖e‖ ≤ σ
√
m.
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We also need the so-called “gadget” matrix, defined next.

Definition 2.14 (Gadget Matrix). We say that a matrix G ∈ Zk×`q is a gadget matrix if there exists an

efficient deterministic procedure G−1, which, on input x ∈ Zkq , output a matrix G−1(x) with small norm
such that GG−1(x) = x. A common choice of the gadget matrix is the following “power-of-b” matrix, where

the base b is a small integer (say b = 2). Let G = Ik ⊗ gT ∈ Zk×kdlogb qe
q with gT = (1, b, . . . , bdlogb qe−1)

(implicitly setting ` = kdlogb qe). The G−1 function is then the base-b decomposition function. By default
we will consider the “power-of-two” gadget matrix, but all our results apply with any matrix G with the
following property: There exists a deterministic polynomial-time algorithm G−1(·), which on input x ∈ Zkq
outputs a “short” c such that G(c) = x.

2.7 Rényi Divergence

The Rényi Divergence (RD) is a measure of closeness of any two probability distributions. In certain cases,
especially in proving the security of cryptographic primitives where the adversary is required to solve a
search-based problem, the RD can be used as an alternative to the statistical distance [12], which may help
obtain security proofs for smaller scheme parameters and may sometimes lead to simpler proofs.

Definition 2.15 (Rényi Divergence). Let P and Q be any two discrete probability distributions such that
Supp(P ) ⊆ Supp(Q). Then for a ∈ (1,∞), the Rényi Divergence of order a is defined by

Ra(P ||Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

.

For a = 1 and a =∞, the RD is defined as

R1(P ||Q) = exp

 ∑
x∈Supp(P )

P (x) log
P (x)

Q(x)

 and R∞(P ||Q) = max
x∈Supp(P )

P (x)

Q(x)
.

For any fixed distributions P and Q, the function f(a) = Ra(P‖Q) is non-decreasing, continuous over
(1,∞) and tends to R∞(P‖Q) as a goes to infinity. Further, if Ra(P‖Q) is finite for some a, then it tends to
R1(P‖Q) as a tends to 1.

Lemma 2 ([12, Lemma 2.9]). Let a ∈ [1,∞]. Let P and Q denote distributions with Supp(P ) ⊆ Supp(Q).
Then the following properties hold

• Log Positivity: Ra(P ||Q) ≥ Ra(P ||P ) = 1.

• Data Processing Inequality: Ra(P f ||Qf ) ≤ Ra(P ||Q) for any function f , where P f (resp. Qf ) denotes
the distribution of f(y) induced by sampling y←P (resp. y←Q).

• Probability preservation: Let E ⊆ Supp(Q) be an arbitrary event. If a ∈ (1,∞), then

Q(E) ≥ P (E)
a

a−1 /Ra(P‖Q).

For a =∞,
Q(E) ≥ P (E)/R∞(P‖Q).

For a = 1, Pinsker’s inequality gives the following analogue property:

Q(E) ≥ P (E)−
√

lnR1(P ||Q)/2.

• Multiplicativity: Assume that P and Q are two distributions of a pair of random variables (Y1, Y2). For
i ∈ {1, 2}, let Pi (resp. Qi) denote the marginal distribution of Yi under P (resp. Q), and let P2|1(·|y1)
(resp. Q2|1(·|y1)) denote the conditional distribution of Y2 given that Y1 = y1. Then we have:
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• Ra(P ||Q) = Ra(P1||Q1) ·Ra(P2||Q2) if Y1 and Y2 are independent for a ∈ [1,∞].

• Ra(P ||Q) ≤ R∞(P1||Q1) ·maxy1∈Y1
Ra(P2|1(·|y1)||Q2|1(·|y1)).

• Weak Triangle Inequality: Let P1, P2, P3 be three distributions with Supp(P1) ⊆ Supp(P2) ⊆ Supp(P3).
Then we have

Ra(P1||P3) ≤

{
Ra(P1||P2) ·R∞(P2||P3),

R∞(P1||P2)
a

a−1 ·Ra(P2||P3) if a ∈ (1,+∞).
(2.1)

We will use the following RD bounds. Note that proof tightness can often be improved by optimizing
over a, as suggested in [75].

Lemma 3 ([51, Lemma 4.2]). For any n-dimensional lattice, Λ ⊆ Rn and s > 0, let P be the distribution
DΛ,s,c and Q be the distribution DΛ,s,c′ for some fixed c, c′ ∈ Rn. If c, c′ ∈ Λ, let ε = 0. Otherwise fix
ε ∈ (0, 1) and assume that s > ηε(Λ). Then for any a ∈ (1,+∞)

Ra(P ||Q) ∈

[(
1− ε
1 + ε

) 2
a−1

,

(
1 + ε

1− ε

) 2
a−1

]
· exp

(
aπ
||c− c′||2

s2

)
.

2.8 Other Useful Lemmas

Lemma 4 (Leftover Hash Lemma). Let H = {h : X→Y} be a 2-universal hash function family. Then for
any random variable X ∈ X , for ε > 0 such that log(|Y|) ≤ H∞(X)− 2 log(1/ε), the distributions

(h, h(X)) and (h,U(Y))

are within statistical distance ε.

Further, the family {A ∈ Zn×mq : r 7→ Ar} is 2-universal for any prime q.

The following lemma is adapted from [55], which uses a different Gaussian normalization. In our uses of
the third item, for simplicity, we set k =

√
2/π, for which the probability upper bound is ≤ 2−m.

Lemma 5 (Adapted from [55, Lemma 4.4]). 1. For any k > 0, Pr[|z| > kσ; z←DZ,σ] ≤ 2 exp(−πk2).

2. For any σ ≥ 3, H∞(DZm,σ) ≥ m.

3. For any k > 1/
√

2π, Pr[‖z‖ > kσ
√

2πm; z←DZm,σ] < (k
√

2π)m exp(m2 (1− 2πk2)).

3 Starting Point: Instantiating Fischlin’s Blind Signature

A simple way to obtain a two-round blind signature from lattices is to instantiate Fischlin’s construction [37].
This will serve as a point of comparison for the constructions we will present in the next sections.

3.1 Construction

The construction uses the following building blocks:

1. A hash function H : {0, 1}∗ → Znq that will be modeled as random oracle model in the unforgeability
proof.

2. A CPA-secure PKE scheme PKE(PKE.KeyGen,PKE.Enc,PKE.Dec) that is perfectly correct.

3. A NIZKAoK for the statement of Equation (3.1) (see Figure 1).
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The construction is provided in Figure 1. The parameters q, n,m, σ are set such that n = Ω(λ), Lemma 1 is
applicable, and SISq,m,n,2β is hard with β = σ

√
m. The completeness of the scheme follows from the choice

of β (using the Gaussian tail bound from Lemma 5) and the completeness of the NIZKAoK.

Note that Steps 1 and 2 of the signing algorithm can be implemented quite efficiently. Step 3 is much
more costly and results in a large signature bit-size. This is because the statement of Equation (3.1) involves
the hash function H (in particular, the input of H must be kept secret). Note that we make a non-black-box
use of H in the scheme, but require it to be modeled as a random oracle in the unforgeability proof.

Setup. Gen(1λ): Upon input the security parameter λ, define n,m, q, σ, β = 2σ
√
m as functions of λ such that

SISq,n,m,2β is hard and the scheme is both efficient and complete; then do the following:

• Run (PKE.pk,PKE.sk)←PKE.KeyGen(1λ) and discard PKE.sk.

• Compute (C,TC)← TrapGen(n,m, q).

• Output BSig.sk = TC, BSig.vk = (C,PKE.pk).

Signing. 〈S(BSig.sk),U(BSig.vk, µ)〉:

1. User: Given the key BSig.vk and a message µ, user U does the following:

• It samples PKE.Enc randomness r and computes ct = PKE.Enc(PKE.pk, µ; r).

• It sends ct to the signer.

2. Signer: Upon receiving ct, signer S does the following:

• It computes H(ct) and samples y←SamplePre(C,TC, H(ct), σ); we have that y is short and Cy = H(ct).

• It sends y to the user.

3. User: Upon receiving y, user U does the following:

• It verifies that y is small and satisfies Cy = H(ct).

• It generates a NIZKAoK π for following statement: Given BSig.vk = (C,PKE.pk) and µ, there exists r
and a vector y such that

‖y‖ ≤ β ∧ Cy = H(Enc(PKE.pk, µ; r)). (3.1)

• The signature is π.

Verifying. The verifier accepts if the proof π is valid, and rejects if it is not.

Figure 1 Adaptation of Fischlin’s Blind Signature.

3.2 Security

We show that the construction satisfies one more unforgeability and blindness.

Theorem 1. Assume that SISq,n,m,2β is hard and the NIZKAoK is knowledge sound. Then the blind signature
scheme in Figure 1 is one more unforgeable in the random oracle model.

Proof. We argue one more unforgeability using the following hybrids.

Hybrid0: This is the genuine one more unforgeability experiment.

Hybrid1: In this hybrid, the challenger (which plays the role of the signer) does not discard the decryption
key PKE.sk. For every sign query cj , it uses PKE.sk to decrypt cj into a plaintext µj (which can be ⊥
in case decryption fails). It stores the µj ’s.

Hybrid2: The difference between this hybrid and the previous one is in how the hash and sign queries are
answered. On a fresh input c for a hash query, the challenger first samples y←DZm,σ and returns
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H(c) = Cy. To answer a signing query for an input c, the challenger returns the corresponding y
that it must have sampled while answering the hash query for c. If the sign query is made before the
corresponding hash query, then the challenger first sets the hash value as above and then returns the
corresponding y.

Indistinguishability of hybrids

1. The differences between Hybrid0 and Hybrid1 are only concerning the inner computations of the challenger
and not its interactions with the adversary. Hence, the two hybrids are identical in the view of the
adversary.

2. By Lemma 4, the views of the adversary in Hybrid1 and Hybrid2 are within statistical distance (QS +
QH) · 2−Ω(λ) from one another, where QS is the number of signing queries and QH is the number of
hash queries.

Assume now that the adversary succeeds in Hybrid2 with probability ε. When it succeeds, it generates
distinct messages (µi)i≤QS+1 and corresponding signatures, i.e., proofs (πi)i≤QS+1 for the statement of
Equation (3.1), such that all these proofs are accepted. As the adversary makes at most QS sign queries, at
least one of these µi’s cannot be part of the µj ’s stored by the challenger: let µ? be this message and π? be
the associated proof.

Using the knowledge soundness of the NIZKAoK on π?, the challenger extracts a witness (r?,y?) such that
‖y?‖ ≤ β and Cy? = H(ct?) with ct? = Enc(PKE.pk, µ?; r?). By perfect correctness of PKE, the ciphertext
ct? decrypts to µ?. By definition, the message µ? cannot have been queried for a signature. However, it
must have been queried for a hash, as otherwise the equality Cy? = H(ct?) would hold with probability at
most q−n. This implies that the challenger has previously sampled a vector y←DZm,σ such that Cy = H(ct?).
By the Gaussian tail bound (Lemma 5), we have ‖y‖ ≤ β = σ

√
m and the probability that y = y? is 2−Ω(λ).

We conclude that y− y? is non-zero, has norm ≤ 2β and satisfies C(y− y?) = 0, providing a solution to the
SISq,n,m,2β instance C.

Theorem 2. Assume that PKE is IND-CPA secure and the NIZKAoK is (computational) zero-knowledge.
Then the blind signature scheme in Figure 1 satisfies honest signer blindness.

Proof. We argue blindness using the following hybrids.

Hybrid0: This is the genuine honest signer blindness experiment.

Hybrid1: In this hybrid, the proofs πb and πb are replaced with simulated proofs.

Hybrid2: In this hybrid, the ciphertexts ctb and ctb are changed to encrypt 0.

Indistinguishability of hybrids

1. Hybrid0 and Hybrid1 are indistinguishable in the view of the adversary, because of the zero-knowledge
property of the NIZKAoK.

2. Hybrid1 and Hybrid2 are indistinguishable in the view of the adversary, because of the IND-CPA security
of PKE.

In Hybrid2, the distinguishing advantage of the adversary is 0, because its views for b = 0 and b = 1 are
statistically identical.

Full-Fledged Blindness. Note that the scheme may not satisfy full-fledged blindness as stated. In particular,
if the malicious signer does not discard PKE.sk in the setup phase, it could use it to decrypt the ciphertexts
in the challenge phase and break blindness. However, the security proof above can be extended to handle
full-fledged blindness if we can ensure that PKE.pk has been honestly generated by the adversarial signer,
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without a corresponding decryption key. For example, if PKE.pk is computationally indistinguishable from
uniform, then we could replace PKE.pk in the scheme by the output of another hash function H ′ modeled
as a random oracle, on an arbitrary public input. Since the secret key must anyway be discarded in the
construction, setting the public key as the output of the random oracle ensures that the adversarial signer
cannot know the corresponding secret key. In the (full fledged blindness) security proof, we would then
introduce a very first game in which the output of H ′ is replaced by a properly generated PKE.pk.

3.3 Efficiency Estimate

We consider the following instantiation of the building blocks.

• For PKE, we can take any lattice-based public-key encryption scheme. It is only required to be IND-CPA,
but it must be perfectly correct. The latter property can typically be guaranteed by tail-cutting error
distributions and increasing the working modulus sufficiently. Also, lattice-based encryption schemes
typically typically have public keys that are computationally indistinguishable from uniform, as required
for the full fledged blindness adaptation described above. For example, one could use a variant of the
NewHope scheme [7], modified to provide perfect correctness. It is expected that ciphertexts will be of
bitlengths below a few kB.

• For the underlying signature scheme, we recommend using the Falcon scheme [38], which is an efficient
instantiation of the TrapGen-SamplePre framework from [41]. With this choice, the first transcript t will
have size below 2kB and the second transcript will have size below 1kB. Also, that makes the signer
particularly efficient – for instance, using Falcon [38], signing time is in the range 0.15− 0.3 ms depending
on choice of parameters.

• As the hash function is modeled as a random oracle in the unforgeability proof, one could use SHA-3-256.
With the above choices for the public-key encryption and signature schemes, one may need more than 15
rounds for reading the input and a similar number to write the output.

• Unfortunately, as the statement of Equation (3.1) involves a hash function H that is modeled as a random
oracle in the unforgeability proof, it seems we are bound to use an all-purpose NIZKAoK. For example,
one could use an instantiation of Aurora [15]. Estimating a precise cost is difficult, but we do not expect
a proof of size below 100kB. Also, prover complexity could approach 1 hour, whereas verifier runtime could
be several seconds. It could be beneficial to use hash functions designed to be compatible with all-purpose
NIZKAoK, such as [8, 43].

4 Two Round Blind Signature from MPC

In this section, we study the possibility of building practical round-optimal lattice based signatures in the
random oracle model, using HE.

4.1 HE-based Blind Signature

We describe our two-round construction of blind signatures in Figure 2, which is a significant simplification of
the construction by [40]. Our construction uses the following building blocks:

• A UF-CMA signature scheme Sig = (Sig.KeyGen,Sig.Sign, Sig.Verify).

• A maliciously circuit private homomorphic encryption scheme (see Definition 2.4)
HE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) that is capable of homomorphically evaluating circuits with
depth up to the depth of Sig.SignSig.sk,ρ, the circuit that takes µ as input and returns Sig.Sign(Sig.sk, µ; ρ)
(i.e., with the key Sig.sk and the Sig.Sign randomness ρ being hardwired).
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• A NIZKAoK for the well-formedness of an HE key-pair, i.e., that there exists (sk, r) such that (pk, sk) =
HE.KeyGen(1λ; r); here r denotes the randomness used by HE.KeyGen.

The construction is described in Figure 2.

Setup. Gen(1λ): Upon input the security parameter λ, do the following:

• Invoke (Sig.sk, Sig.vk)← Sig.KeyGen(1λ).

• Output BSig.sk = Sig.sk, BSig.vk = Sig.vk.

Signing. 〈S(BSig.sk),U(BSig.vk, µ)〉:

1. User: Given the key BSig.vk and a message µ, user U does the following:

• It first samples HE.KeyGen randomness r and an HE key-pair (pk, sk) = HE.KeyGen(1λ; r); it then
generates a NIZKAoK πsk that (pk, sk) is well-formed, i.e., that there exists a pair (sk, r) such that
(pk, sk) = HE.KeyGen(1λ; r).

• It computes ctµ = HE.Enc(pk, µ).

• It sends (pk, πsk, ctµ) to signer S.

2. Signer: Upon receiving (pk, πsk, ctµ), signer S does the following:

• It verifies πsk and outputs ⊥ if it fails.

• It samples Sig.Sign randomness ρ and computes a ciphertext ctσ = HE.Eval(pk,Sig.SignSig.sk,ρ, ctµ) that
decrypts to Sig.Sign(Sig.sk, µ; ρ).

• It sends ctσ to user U .

3. User: Upon receiving ctσ, user U computes and outputs σ = HE.Dec(sk, ctσ).

Verifying. The verifier computes Sig.Verify(Sig.vk, µ, σ) and outputs the result.

Figure 2 HE-based Round-Optimal Blind Signature.

Completeness. The completeness of the blind signature is argued as follows. From the completeness
of NIZKAoK, the signer accepts πsk (and does not abort) if the user computed the HE public key and
πsk correctly. From the correctness of HE, the element ctσ = HE.Eval(Sig.SignBSig.sk, ctµ) decrypts to
Sig.SignSig.sk(µ) = Sig.Sign(Sig.sk, µ) = σ. Hence HE.Dec(sk, ctσ) outputs a signature σ = Sig.Sign(Sig.sk, µ).
It passes verification, by correctness of Sig.

Security. We show that our construction satisfies one more unforgeability and blindness.

Theorem 3. Assume that the underlying signature scheme satisfies UF-CMA security, the homomorphic
encryption scheme HE satisfies malicious circuit privacy and the NIZKAoK is knowledge sound. Then the
construction in Figure 2 satisfies one more unforgeability.

Proof. The argument proceeds via the following hybrids.

Hybrid0: This is the genuine one-more unforgeability experiment.

Hybrid1: This hybrid differs from the previous one in that the challenger extracts sk from πsk, and aborts if
it fails to do so.

Hybrid2: In this hybrid, the challenger uses sk to compute µi = HE.Dec(sk, cti) for all i ∈ [QS ]. It then
changes the way the QS ciphertexts ctσ1

. . . , ctσQS
are generated. It first signs the messages µ1, . . . , µQS

to obtain signatures σ1, . . . , σQS
(in the clear). Then, it encrypts σ1, . . . , σQS

using HE to obtain

16



ct′σ1
, . . . , ct′σQS

. It runs HE.Eval(pk, C0, (ct′σi
, ?)) for all i ∈ [QS ] to obtain ctσ1 . . . , ctσQS

. Here C0 is a

dummy circuit that has the same depth and number of inputs as the Sig.Sign signing circuit and outputs
its first input and ? represents as many independent encryptions of 0 as required (see Definition 2.5).

The indistinguishability between Hybrid0 and Hybrid1 follows from the knowledge soundness of the
NIZKAoK. The indistinguishability between Hybrid1 and Hybrid2 follows from malicious circuit privacy of HE.
Note here that semi-honest circuit privacy may not suffice, as we are not certain that the ciphertexts
are properly generated (or even that sk is properly generated, as the NIZKAoK only guarantees its well-
formedness). The theorem statement follows from Lemma 6, which shows that if Sig satisfies UF-CMA, then
the adversary wins in Hybrid2 only with negligible probability.

Lemma 6. Assume that Sig satisfies UF-CMA security. Then the advantage of the adversary in the one
more unforgeability game is negligible in Hybrid2.

Proof. Assume there exists an adversary U∗ that wins the one more unforgeability game in Hybrid2. Then
we build an adversary B against the UF-CMA security of the underlying signature scheme Sig. Adversary B
does the following:

1. It obtains Sig.vk from the signature challenger, defines BSig.vk = Sig.vk and forwards it to U∗.

2. It runs the signing protocol with adversary U∗ simulating the BS signer as follows:

(a) Adversary U∗ outputs the HE public key pk along with argument of knowledge πsk of a
corresponding sk. Adversary B rewinds U∗ to extract sk from the NIZKAoK πsk.

(b) Adversary U∗ also outputs QS ciphertexts ct1, . . . , ctQS
. Adversary B uses sk to decrypt

ct1, . . . , ctQS
to obtain µ1, . . . , µQS

.

(c) Adversary B sends µ1, . . . , µQS
to the UF-CMA signature challenger and obtains signatures

σ1, . . . , σQS
.

(d) It constructs ctσ1
. . . , ctσQS

from σ1, . . . , σQS
as in the previous hybrid and returns these to U∗.

(e) When U∗ outputs QS + 1 message-signature pairs (µi, σi) for i ∈ [QS + 1] that pass verification
and such that the µi’s are distinct, it outputs any of these for which µi had not been queried to
the UF-CMA signature challenger.

The success of U∗ translates to the success of B in the UF-CMA game.

We now argue that the HE-based blind signature BS satisfies very honest signer blindness.

Theorem 4. Assume that the argument systems are zero knowledge and that HE is semantically secure.
Then the construction in Figure 2 satisfies very honest signer blindness.

Proof. The argument proceeds via a sequence of hybrids.

Hybrid0: This is the genuine very honest signer blindness experiment.

1. The challenger generates (BSig.sk,BSig.vk) and returns these to the adversary S∗.
2. The signer S∗ outputs two messages µ0 and µ1. The challenger picks a uniform bit b.

3. The signer S∗ interacts concurrently with U0(BSig.vk, µb) and U1(BSig.vk, µb̄), played by the
challenger as follows:

(a) User U0 (resp. U1) generates the HE public and secret keys (pk0, sk0) (resp. (pk1, sk1)) honestly,
along with arguments πsk0 and πsk1 of the well-formedness of the public keys.

(b) Additionally, users U0 and U1 provide their respective ciphertexts ct0 = HE.Enc(pk0, µb) and
ct1 = HE.Enc(pk1, µb̄).
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(c) The challenger evaluates the signing algorithm homomorphically on ciphertexts ctb and ctb̄
to obtain ct′0 and ct′1, respectively (recall that this step is performed by the adversary in the
honest signer blindness experiment, but by the challenger in the very honest signer blindness
experiment); the challenger gives ctb and ctb̄ to the signer S∗, as well as all intermediate values
of their computation.

(d) After obtaining the evaluated HE ciphertexts, users U0 and U1 decrypt them using the HE
secret keys sk0 and sk1 to obtain signatures σ0 and σ1 respectively.

(e) The signer S∗ is given σ0, σ1.

(f) The signer S∗ outputs its guess for bit b.

Hybrid1: In this hybrid, the proofs πsk0 and πsk1 are replaced with simulated proofs.

Hybrid2: In this hybrid, at Step 3(d), the signatures σ0 and σ1 are generated by using Sig.Sign directly on µb
and µb̄, respectively.

Hybrid3: In this hybrid, we replace HE.Enc(pk0, µb) by HE.Enc(pk0, 0) and HE.Enc(pk1, µb̄) by HE.Enc(pk1, 0).

Indistinguishability of hybrids

1. The indistinguishability between Hybrid0 and Hybrid1 follows from the zero-knowledge property of the
underlying NIZKAoK.

2. The only difference between Hybrid1 and Hybrid2 is that in the former, we have σ0 = HE.Dec(sk0, ct
′
0)

(resp. σ1 = HE.Dec(sk1, ct
′
1)) while in the latter, the signatures σ0 and σ1 are generated using Sig.Sign

directly. Indistinguishability follows from the correctness of HE and Sig.

3. The indistinguishability between Hybrid2 and Hybrid3 follows from the semantic security of HE. The
proof is a standard reduction to the semantic security. Note that due to the previous hybrids, the
blindness challenger does not need the HE secret key for any operations and can obtain the HE public
keys and ciphertexts from the HE challenger. The arguments πsk are simulated, and the signatures σb
and σb̄ are computed directly using the signing key Sig.sk.

To complete the proof of the theorem, it suffices to note that the advantage of the adversary in Hybrid3 is 0
since the bit b is information theoretically hidden.

In the next subsection, we explain that the scheme may only achieve very honest signer blindness, and
discuss how to modify it to achieve the stronger notions of honest signer blindness as well as full-fledged
blindness.

4.2 Upgrading Blindness

Here, we discuss how to upgrade the construction in Figure 2 to achieve the more standard notion of honest
signer blindness. Recall that for honest signer blindness, the signer is not expected to adhere to the protocol
during signing. Note that the scheme of Figure 2 may not satisfy the stronger notion of honest signer
blindness, which differs from very honest signer blindness in that the signer can deviate from the protocol
during the signing phase. For example, assume the signature scheme Sig is obtained by derandomizing a
probabilistic signature scheme Sig0, as follows: at key generation, one samples a PRF key k and appends it to
the signing key; when signing a message, one first creates a pseudo-random string using k and the message to
be signed, and then runs Sig0.Sign with this pseudo-random string. Then, to break honest signer blindness,
the signer could use two distinct PRF keys k0 and k1 for the two executions of the signing protocol. At the
end, it could compute the four possible signatures from (µ0, µ1) and (k0, k1) and assess which PRF key has
been used in which execution, by matching σ0 and σ1 with those four signatures.

To handle this, we first make the signature deterministic, to constrain what the signer can do. For this
purpose, we use a PRF: during the setup phase, the signer samples a PRF key k that is now part of the blind
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signature key BSig.sk. During the signing phase, the signer generates a pseudo-random string ρ for Sig.Sign
by using the PRF with key k, and input the ciphertext ctµ. Taking ctµ rather than µ as input to the PRF
allows to avoid a possibly costly HE evaluation of the PRF.

To further constrain the signer’s behavior, we additionally add a NIZKAoK πσ on the signer’s side, which
shows that ctσ is honestly computed using BSig.sk, ctµ and pk and that the same signing key BSig.sk is
used across all signatures. To ensure this, we include a perfectly binding commitment of BSig.sk as part of
BSig.vk and the signer generates a NIZKAoK for the following statement: Given ctσ, ctµ, pk, com, there exist
BSig.sk and r such that (i) com = Commit(BSig.sk, r), and (ii) ctσ = HE.Eval(pk,Sig.SignSig.sk, ctµ). Upon
receiving πσ and ctσ, the user first verifies πσ, outputs ⊥ if the verification fails and else continues as in
the scheme of Figure 2. Unfortunately, from a concrete perspective, we do not see a way to implement this
NIZKAoK at a moderate cost.

To upgrade from honest signer blindness to full-fledged blindness, the only further ingredient that we add
is the requirement that the commitment is extractable. We can ensure this by instantiating the commitment
with a perfectly correct PKE scheme. In the blindness proof, using the secret key of this PKE, the challenger
can extract BSig.sk from the commitment.This allows to reduce to the honest signer blindness game above.

4.3 Making Lyubashevsky’s Signature HE-friendly

In this section, we “flatten” the signing circuit of Lyubashevsky’s signature scheme from [55] to make it more
HE-friendly. As discussed in Section 1, we provide a rejection-free variant of Lyubashevsky’s signature scheme
from [55]. Our construction uses a hash function H : {0, 1}∗→{v : v ∈ {−1, 0, 1}k; ‖v‖1 ≤ α}, modeled as a
random oracle. Here α is a parameter, typically much smaller than k.

The signature scheme is described in Figure 3.

KeyGen(1λ): Upon input the security parameter λ, set q, n,m, β, k, d, σ such n = Ω(λ) and the scheme is secure (see
Theorem 5); then do the following:

1. Sample A←Zn×mq and S←{−d, . . . , 0, . . . , d}m×k.

2. Set T = AS.

3. Output vk = (A,T), sk = S.

Sign(sk, µ): Upon input the signing key sk and a message µ, do the following:

1. Sample y←DZm,σ.

2. Set c = H(Ay, µ).

3. Set z = y + Sc.

4. Output (z, c).

Verify(vk, µ, (z, c)): Upon input the verification key vk, a message µ, and a signature (z, c), do the following:

1. Check if ‖z‖ ≤ γ, where γ = (2σ + αd)
√
m.

2. Check if H(Az−Tc, µ) = c.

3. If both checks pass, then accept, else reject.

Figure 3 Lyubashevsky’s Signature Without Aborts

Correctness. Since z = y+Sc, where y←DZm,σ, we have ‖z‖ ≤ 2σ
√
m+‖Sc‖ with probability 1−2−Ω(λ),

using standard Gaussian tail bounds (see, e.g., Lemma 5). Since ‖S‖∞ ≤ d and ‖c‖1 ≤ α, we have
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‖Sc‖ ≤ dα
√
m. This gives us ‖z‖ ≤ (2σ + dα)

√
m with overwhelming probability. Finally, note that

H(Az−Tc, µ) = H(A(y + Sc)−ASc, µ) = H(Ay, µ) = c.

Security. Next, we establish security via the following theorem.

Theorem 5. Assume that m > λ+ (n log q)/ log(2d+ 1), σ ≥ αd
√
mQ where Q is the maximum number

of signing queries an attacker can make and |DH | ≥ 2λ where DH is the range of H. Assume further that
SISq,n,m,β is hard for β = 2γ + 2dα

√
m. Then the construction in Figure 3 satisfies UF-CMA in the random

oracle model.

Proof. We prove the security via the following hybrids:

Hybrid0: This is the genuine security game, i.e., with honest executions of the Sign algorithm on signing
queries by the adversary.

Hybrid1: In this hybrid the challenger responds to the signing query for any message µ as follows.

1. Sample y←DZm,σ as in the previous hybrid.

2. Sample c←{v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ α}.
3. Set z = y + Sc.

4. Set H(Az−Tc, µ) = c.

5. Output (z, c).

Hybrid2: In this hybrid the challenger responds to the signing query for any message µ as follows.

1. Sample c←{v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ α}.
2. Sample z←DZm,σ.

3. Set H(Az−Tc, µ) = c.

4. Output (z, c).

The only difference between Hybrid0 and Hybrid1 is that in Hybrid1, the output value for H is chosen at
random, and then programmed as the answer to H(Ay, µ) when a query for µ. By the definition of the
random oracle, the two hybrids are indistinguishable.

The result now follows from the two claims below.

Claim 6. If there is an adversary that makes at most QS signing queries and can win the game in Hybrid1

with probability δ, then its probability of winning in Hybrid2 is polynomial in δ, if σ ≥ αd
√
mQS .

Proof. The only difference between the two hybrids is in the value of z. For i ∈ [QS ], in Hybrid1, we have
zi = yi + Sci with yi←DZm,σ, while in Hybrid2, we have zi←DZm,σ. Let us refer to the joint distribution of
all z’s in Hybrid1 as D1 and that in Hybrid2 as D2. Let E denote the event that the adversary wins the game.
Then by our assumption, we have D1(E) = δ. From the probability preservation property (Lemma 2) of the
Rényi Divergence, we get:

D2(E) ≥ δ
a

a−1

Ra(D1‖D2)
, for any a ∈ (1,∞). (4.1)

Computing Ra(D1‖D2): For i ∈ [QS ], the vector zi is from distribution D1i := DZm,σ,Sci in Hybrid1 and
from distribution D2i = DZm,σ in Hybrid2. Note that D1 = (D11, . . . , D1QS

) and D2 = (D21, . . . , D2QS
). By

Lemma 3, we have

Ra[D1i‖D2i] = exp

(
aπ
‖Sci‖2

σ2

)
for any a ∈ (1,∞).
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Recall from the correctness proof that we have ‖Sci‖ ≤ dα
√
m. By using the multiplicativity property of the

Rényi divergence (Lemma 2), we get:

Ra(D1‖D2) ≤ exp

(
aπ
QS(dα

√
m)2

σ2

)
, for any a ∈ (1,∞). (4.2)

Using the assumption σ ≥ dα
√
m ·
√
QS , we get Ra(D1‖D2) ≤ exp(aπ). Using Equation (4.1), we obtain

that D2(E) ≥ δ
a

a−1 exp(−aπ). Taking any value of a > 1 provides the result.

Claim 7. If there is a forger F that makes at most QS signing queries and QH random oracle queries, and
succeeds in forging a valid signature with probability δ in Hybrid2, then we can define an algorithm B which
given A←Zn×mq , finds a non-zero v such that ‖v‖ ≤ (2γ + 2dα

√
m) and Av = 0, with probability at least(

1

2
− ε

2

)(
δ − 1

|DH |

)(
δ − 1/|DH |
QH +QS

− 1

|DH |

)
.

This claim and its proof are identical to [55, Lemma 5.4]. Note that under the conditions of Theorem 5,
the latter probability lower bound is ≥ δ2/(2(QH +QS))− 2−Ω(λ).

Note that the condition σ ≥ αd
√
mQ from Theorem 5 forces to set a modulus q and a SIS bound β that

grow linearly with
√
Q. To ensure λ bits of security, one may choose n growing linearly with

√
Q. Overall, if

using a Ring-SIS or Module-SIS instantiation, then the bit-length of the signature grows linearly with n log q
and hence with log2Q.

Next, we show that the flooding noise used in the above construction is essentially optimal by exhibiting
an attack when the flooding noise is smaller. In Section 4.3.2, we show how to handle uniform rather than
Gaussian noise.

4.3.1 Optimality of Flooding

In this section, we show that the flooding amount used in the above construction is essentially optimal, and
in particular that the dependence on

√
Q is necessary. In more detail, we show that if the flooding noise is

smaller than this, then an adversary can recover the signing key. Note that this attack is folklore, we recall it
for the sake of completeness.

Statistical Attack. Recall that the signature for message Mi is of the form (zi, ci), where zi = Sci + yi,
ci ∈ {−1, 0, 1}k, ‖ci‖1 ≤ α, and S is the signing key. The adversary can obtain many such pairs corresponding
to different messages. Let Q be the maximum number of signing queries that the adversary can make. Let
Si represents the ith row of matrix S. Let cij , yij and Sij represent the jth entry in vectors ci, yi and
Si respectively. Consider such tuples (zi, ci) where ci1 = 1. Let B ⊆ [Q] be the set of such indices. The
adversary gets approximately Q/3 such tuples corresponding to i ∈ B. For each i, using the first row of S,
we may write:

S11 +

k∑
j=2

S1jcij + yi1 = zi1 (4.3)

We denote the average of
∑k
j=2 S1jcij + yi1 over i ∈ B as avg. We show that unless yi1 is O(

√
Q), we can

recover S11. To conduct the attack, we bound each summand of avg separately.

Claim 8. Let t1 < 1/2 be a positive constant and Q, k, d, α be as above. Then,

Pr
[∣∣∣∑i∈B

∑k
j=2 S1jcij

|B|

∣∣∣ < t1

]
≥ 1− 2 exp(

−Qt21
6(α− 1)2d2

)
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Proof. Note that
∑k
j=2 S1jcij takes values in the range [−(α − 1)d, (α − 1)d], with mean at 0. In more

detail, let X be a random variable, with mean 0 and bound [−(α − 1)d, (α − 1)d], then for some positive
constant t1 < 1/2, we have from Hoeffding’s bound

Pr[|X̄ − E[X]| ≥ t1] ≤ 2 exp(
−(Q/3)t21

2(α− 1)2d2
)

=⇒ Pr[|X̄| ≥ t1] ≤ 2 exp(
−Qt21

6(α− 1)2d2
)

=⇒ Pr[|X̄| < t1] ≥ 1− 2 exp(
−Qt21

6(α− 1)2d2
)

Since d is small, in particular if (6(α− 1)2d2 < Qt21), then 1− 2 exp(
−Qt21

6(α−1)2d2 ) is non-negligible.

Let us assume that the average of yi1 is also smaller than 1/2− t1 with non negligible probability. Then,
avg < 1/2 with non negligible probability. Summing both sides of Equation 4.3 over the set B, we get

S11 + avg =

∑
i∈B zi1

|B|

In this case the adversary can successfully recover S11 as

S11 =

⌊∑
i∈B zi1

|B|

⌉
We now examine how large yi1 must be to avoid this attack. Let Y←Dσ be the random variable representing
the distribution of yi1 values. Then from Hoeffding’s bound, for some constant c′ and t2 < (1/2− t1),

Pr[|Ȳ − E[Y ]| ≥ t2] ≤ 2 exp(−c′Qt22/3σ2)

=⇒ Pr[|Ȳ | ≥ t2] ≤ 2 exp(−c′Qt22/3σ2)

=⇒ Pr[ |Ȳ | < t2] ≥ 1− 2 exp(−c′Qt22/3σ2)

Thus, if 3σ2 < c′Qt22, then 1−2 exp(−c′Qt22/3σ2) is non-negligible. Hence, for the average of yi1 to be greater
than t2, we need that 3σ2 ≥ c′Qt22, i.e. σ must grow proportional to

√
Q.

4.3.2 From Gaussian to Uniform Noise

In some applications, it may be preferable to use a vector y whose coordinates are uniform in some
interval [−B,B] rather than Gaussian (at Step 1 of the Sign algorithm). This is the choice made for the
regular Dilithium signature scheme [31].

To adapt the current proof, the only step that needs to be modified is in the transition between Hybrid1

and Hybrid2. A difficulty is that the support of the distribution of z in Hybrid2 has to contain the support
of the distribution of z in Hybrid1, for the Rényi divergence to be defined. For this purpose, we consider
a wider interval in Hybrid2, which contains all possible intervals [−B,B]m + Sc of Hybrid1. Concretely, in
Hybrid1, the vector z is sampled from D1 = U([−B,B]m) + Sc, whereas in Hybrid2, the vector z is sampled
from D2 = U([−B′, B′]m). As ‖Sc‖∞ ≤ αd, we can take B′ = B + αd. Assuming that both B and B′ are
integers, we have

Ra(D1‖D2) =

(
2B′ + 1

2B + 1

)QSm

≤
(

1 +
2αd

B

)QSm

, for any a ∈ (1,∞).

We obtain that for transiting from Hybrid1 to Hybrid2, it suffices to set B ≥ Ω(mdαQS).
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4.3.3 Using a Non-Cryptographic Hash.

Since the homomorphic evaluation of the hash function could be inefficient, it is natural to ask how complex
the hash function in Figure 3 needs to be. In a recent result, Chen at al. [24] showed that Lyubashevsky’s
signature, which relies a cryptographic hash function H that can be modeled as a random oracle (such as
SHA3-256), can be replaced by the bit decomposition function G−1 (defined in Section 2). This variant,
which we discuss in Subsection 4.6, offers a different performance when computed homomorphically.

4.4 Efficiency Estimate

In this section, we analyze the efficiency of the blind signature from Section 4.1 if instantiated using the
signature scheme in Figure 3 and the TFHE scheme [25, 26].

Signature Size. We first analyze the concrete size of the signature produced by the scheme in Section 4.3, which
is exactly the signature size of the blind signature scheme. For efficiency, it is preferable to consider variants
over polynomial rings (note that the above proofs carry over directly to the ring-SIS and module-SIS settings).
We consider the Dilithium-G signature scheme from [32, Appendix B]. It is a variant of Dilithium [31],
a concrete implementation of Lyubashevsky’s signature scheme designed to reach a compromise between
efficiency and simplicity. Dilithium-G has slightly smaller signature sizes than Dilithium, but requires
that y has Gaussian coordinates rather than having them uniform in an interval. This makes it somewhat
more cumbersome to implement, but the Rényi divergence analysis above is more effective than its uniform
counterpart. Note that for the blind signature application described in Section 4.1, the sampling of y is done
in the clear by the signer.

Rather than defining new parameter sets for Dilithium-G (which would most likely lead to improved
concrete parameters), we show that Dilithium-G already offers significant security when removing rejection
sampling. We consider two variants of Dilithium-G: with the Bai-Galbraith [11] signature truncation
technique as in [32], and without it.1 Indeed, a variant without the truncation technique may be more
convenient to evaluate homomorphically, depending on the specific choice of HE scheme.

For security, we place ourselves in the (classical/quantum) core-SVP hardness model, like in [32]. State of
the art cryptanalysis suggests that bit security is expected to be at least 10-15 bits higher than core-SVP
security (see [73, Section 5.2]). We consider the ‘medium’, ‘recommended’ and ‘very high’ parameter sets
from [32]. For a given value of QS , and use the analysis above to derive core-SVP hardness estimates for this
number of signature queries. Concretely, we use Equations (4.1) and (4.2) with δ ≈ 1 (which can be assumed
in the multi-user setting, and can also be justified by considering known attack strategies [32]) and a ≈ 1
(which minimizes the upper bound on the Rényi divergence). By adapting the figures from [32, Table 2], we
obtain Table 2.

For example, using the ‘very high’ parameter set, we lose no more than 100 bits of security by removing
rejection sampling, when the number of signature queries is limited to 256. In this setting, the overall classical
bit security remains close to 128 bits (more precisely, 118 bits of classical core-SVP hardness), for a signature
size that is below 3kB.

On the Choices of Signature and HE scheme. We use the TFHE scheme [25, 26]. With this choice, the
relation proved by πsk is linear in short unknowns, for which specific lattice-based techniques are known
(see [35, 56], among others). Note that TFHE does not satisfy malicious circuit privacy, as required in the
proof of Theorem 3. We upgrade it to a maliciously circuit private HE as described in Section 4.5. For our
specific application to the blind signature from Subsection 4.1, the modification to circuit privacy induces a
bootstrap for every encrypted bit prior to any computation, and Ω(λ) bootstraps for every encrypted bit at

1Concretely, Algorithm 14 from [32] is modified by removing Step 6, replacing w1 by w in Step 7, removing Step 13 and
replacing h by z2 in Step 14. Algorithm 15 is updated accordingly.
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medium recommended very high
Standard deviation σ of z 48127 44868 31082

Dimension m of z 1536 2048 2560
Secret key magnitude bound d 6 5 3

Hamming weight α of c 60 60 60
pk size 1184 1568 1952

sig size with truncation 1850 2435 2950
sig size without truncation 3200 4225 5105

Security with rejection 109 / 99 162 / 147 228 / 206
Security loss with QS = 64 25 27 25
Security loss with QS = 128 50 53 50
Security loss with QS = 256 100 106 100

Table 2: Security of Dilithium-G without rejection sampling. Sizes are given in bytes, security corresponds
to classical/quantum core-SVP hardness, security losses are in bits. Note that due to a different Gaussian
normalization, our Gaussian standard deviation is

√
2π times higher than in [32, Table 2]. Adapting the

methodology from [32, Appendix B.5], we bound the no-truncation signature size by 32+(2.25+log2(σ/
√

2π))·
m/8 bytes.

the end of the computation. As explained in [34], the precise number of required bootstrappings depends
on how much noise a ciphertext can accommodate. As a loose estimate, we will set this number to 40. For
the signature scheme, we start from Dilithium-G, but we consider a variant in which the 256-dimensional
challenge c is binary uniform rather than ternary of weight 60. This is because the conversion between the
output of a cryptographic hash function to this specific format seems complex to perform homomorphically.
This should negatively impact the figures in Table 2, in a moderate manner. For the sake of simplicity, we
keep the figures from Table 2. We also assume that the message µ to be signed has bit-length 256, as the
user can hash µ to a 256 bit-string before encrypting it to request a signature.

User Complexity and Transcript Sizes. The user must first create an HE key-pair (pk, sk) and a NIZKAoK
πsk of well-formedness of the HE key-pair. The public key includes key-switching keys and bootstrapping
keys, which makes pk quite large: a back-of-the-envelope calculation leads to an estimate of 50MB. This is
without πsk. Even though this is quite heavy, it is worth pointing out that this data is independent from
the message µ to be signed, and the computation of pk and πsk and their transmission to the signer can be
amortized across several executions of the blind signature protocol (including with different signers) and also
be performed in an off-line phase.

From the perspective of the user, the computations related to the message µ to be signed are limited to an
HE encryption (to produce ctµ from µ) and an HE decryption (to recover σ from ctσ). If using a Ring-LWE
ciphertext in dimension n = 1024 with a 25-bit modulus, the bit-size of ctµ is ∼ 3.2kB. As this is a fresh
encryption, we assumed for this computation that the first ring element of the ciphertext is set as the output
of a random oracle. On the way back, the signature has bit-length below 3kB. This can be packed into 24
Ring-LWE ciphertexts, leading to a ctσ with below 160kB. Both encryption and decryption are very efficient.

Signer Complexity. The signer samples y←DZm,σ, sets c = H(Ay, µ) and z = y+Sc and outputs σ = (z, c).
Note that A,y and S are in clear, whereas µ is provided through ctµ. Due to the non-algebraic nature of the
computation of the hash function, we consider HE computations on bits, using the TFHE gate bootstraps
(GBS). This requires to extract and keyswitch when receiving ctµ and to pack to build ctσ (as ctµ is not very
large, one may also consider sending a bit-by-bit encryption of ctµ, to decrease the size of pk).

For circuit privacy, we bootstrap all ciphertexts after they have been converted to a bit-by-bit format.
This requires 256GBS (one GBS for each bit of µ). As a GBS costs ∼ 10ms, we estimate that this step can
be performed in less than 3s.
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For the hash function, we consider SHA3-256. It works with iteratively evaluating a permutation,
consuming 1088 bits at every iteration. From an efficiency perspective, it is important to note that we can
first perform iterations in the clear to consume Ay, and as µ has 256 bits, only one iteration needs to be
performed homomorphically to consume the rest of the input. Before the iteration, the message is xored with
the current SHA3 state, which costs 256GBS. Now, one SHA3 iteration consists in 24 rounds, and each round
requires ∼ 6, 000 binary gates, and hence ∼ 6, 000GBS when performed homomorphically. We estimate that
this can be performed in less than ∼ 1, 500s if done sequentially. Note that the computations within a round
can be massively parallelized.

As c is obtained in a bit-by-bit encrypted form, we suggest to perform the computation of z = y+Sc using
a bit-level addition. A back-of-the-envelope computation suggests that this should take below 1 million GBS,
i.e., ∼ 10, 000s if done sequentially. Note that this can also be massively parallelized.

Finally, to guarantee circuit privacy, we use 40GBS for each output bit. We estimate the cost to ∼ 1, 200s,
if done sequentially. Again, this can be parallelized.

4.5 Maliciously Circuit Private HE

We consider the GSW HE scheme [42]. In our instantiation of the HE-based blind signature, we consider
TFHE [25, 26], which can be viewed as a variant of the GSW HE scheme with a very efficient bootstrapping
procedure. To make it semi-honest circuit private, we use the construction of [34], which essentially consists
in adding bootstrappings at the end of the computation. The alternative construction of [21] would require
to modify TFHE more significantly.

The secret key sk and public key pk are, respectively:

s = (−s̄, 1) and Â =

(
A

s̄>A + e>

)
,

where s̄ ← {0, 1}n−1, A ← Z(n−1)×m
q and e ← DZm,α. Here m = ndlog2 qe. Note that in GSW, the secret

vector s is uniform modulo q, whereas it is binary in the GSW scheme.

We modify the above binary GSW scheme to make it maliciously circuit private, as follows:

1. The matrix A is generated using a hash function modeled as a random oracle, to guarantee that it is
uniformly distributed. This does not have any negative impact on efficiency.

2. The public key pk contains a NIZKAoK that the last row of Â is of the form x>A + y> for some
low-norm vector (x,y). Note that such an argument is already contained in the blind signature scheme
from Subsection 4.1, so this addition is superfluous in this application scenario.

3. Before HE computations are performed, each ciphertext is bootstrapped. As in [1], this ensures that
every (possibly malicious) ciphertext becomes a properly formed ciphertext.

4. At the end of the HE computations, each ciphertext is bootstrapped Ω(λ) times, as in [34].

Assume first that the public key is well-formed (this is the purpose of modifications 1 and 2). The addition
of pre-computation bootstrappings ensures that the (refreshed) ciphertexts are well-formed. The technique
from [34] only requires from the HE that the scheme enables bootstrapping, which is the case here as pk is
well-formed. Using [34], we obtain that the genuine and simulated distributions match. Now, in the case in
which the public key is possibly not well-formed, if an adversary can distinguish between the genuine and
simulated distributions, it can be used to break the soundness of the NIZKAoK.

4.6 Using A Simpler Hash Function in Lyubashevsky’s Signature

Below we provide details of the variant using a simpler hash function, adapted from [24]. The hash
function H : {0, 1}∗ → Znq is modeled as a random oracle in the security proof. As its input is only µ, in our
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KeyGen(1λ): Upon input the security parameter λ, set q, n,m, β, d, σ such n = Ω(λ) and the scheme is secure (see
Theorem 9); then do the following:

1. Sample A←Zn×mq and S←{−d, . . . , 0, . . . , d}m×n log q.

2. Set T = AS.

3. Output vk = (A,T), sk = S.

Sign(sk, µ): Upon input the signing key sk and a message µ, do the following:

1. Sample y←DZm,σ.

2. Set c = G−1(Ay +H(µ)) ∈ {0, 1}n log q.

3. Set z = y + Sc.

4. Output (z, c).

Verify(vk, µ, (z, c)): Upon input the verification key vk, a message µ, and a signature (z, c), do the following:

1. Check c is binary and ‖z‖ ≤ γ, where γ = (2σ + dn log q)
√
m.

2. Check if [A‖G + T]

[
−z
c

]
= H(µ).

3. If all checks pass, then accept, else reject.

Figure 4 The Chen et al. Signature Without Aborts

blind signature construction from Subsection 4.1, the value H(µ) can be computed in the clear by the user
before being encrypted and sent to the signer: the signer does not have to homomorphically evaluate H.

The correctness of the scheme is proved as in [24] (the removal of aborts has no impact on the correctness
proof). Next, we establish security via the following theorem.

Theorem 9. Assume that SISq,n,m,β is hard for β = 2γ + 2dn log q
√
m and that σ ≥ nd log q

√
mQ, where Q

is the maximum number of signing queries an attacker can make. Then the construction in Figure 4 satisfies
UF-CMA in the random oracle model.

Proof. We prove the security via the following hybrids:

Hybrid0: This is the real world, i.e., with honest executions of the Sign algorithm on signing queries by the
adversary.

Hybrid1: In this hybrid the challenger responds to the signing query for any message µ as follows.

1. Sample y←DZm,σ.

2. Sample u← Znq and let c = G−1(u).

3. Set z = y + Sc.

4. Set H(µ) = u−Ay = Gc−Ay.

5. Output (z, c).

Hybrid2: In this hybrid the challenger responds to the signing query for any message µ as follows.

1. Sample u← Znq and let c = G−1(u).

2. Sample z←DZm,σ.

3. Set H(µ) = Gc−Ay.
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4. Output (z, c).

The only difference between Hybrid0 and Hybrid1 is that in Hybrid1, H(µ) is programmed to u−Ay, where u
and y are chosen randomly. Hence, u−Ay is indistinguishable from a random and hence, by the definition
of the random oracle, Hybrid0 and Hybrid1 are indistinguishable As in Lemma 2, the following result holds.

Claim 10. If there is an adversary who makes at most QS signing queries and can win the game in Hybrid2

with probability δ, then the probability of winning in Hybrid3 is polynomial in δ, if σ ≥ nd log q
√
mQS .

Finally, it follows from [24, Theorem 4.16] that if there is a forger F who succeeds in forging a valid
signature with non-negligible probability in Hybrid2, then we can define an algorithm B which given A←Zn×mq ,
finds a non-zero v such that ‖v‖ ≤ (2γ + 2dn log q

√
m) and Av = 0 with non-negligible probability.

Efficiency Analysis. We now consider the cost inferred by using this variant of Lyubashevsky’s signature
inside the HE-based blind signature construction of Subsection 4.1. This involves the homomorphic evaluation
of the signing algorithm, in which µ is given as an HE ciphertext and the signing key is provided in clear. As
before, we consider the TFHE scheme.

At first, replacing SHA3-256 by the bit-decomposition function may seem to lead to a significant
improvement. Note first that here, the user can send an encryption of H(µ) rather than µ, hence avoiding
an HE evaluation of H. The efficiency improvement would come from the fact that SHA3-256 involves a
large number of binary gates whereas, at the binary level, the bit-decomposition function is vacuous. A more
precise analysis suggests that, in fact, this change negatively impacts efficiency. Nevertheless, we include this
variant since a careful implementation with additional tricks may improve current estimates.

1. First, in the SHA3-256 approach of Subsections 4.3 and 4.4, the user was only sending a 256-bit
encrypted message to the signer, leading to a ciphertext of ∼ 3kB. Now, the user needs to provide
an encryption of H(µ), which is uniformly distributed in the range of Ay. A back-of-the-envelope
calculation suggests that the size of the first transcript grows to ∼ 100kB. This is of the same order of
magnitude as the size of the second transcript of the blind signature scheme.

2. Second, the bit-level HE-computation of Ay+H(µ) mod q requires a large number of gates. If computing
over Znq with n = 1024 and log2 q ≈ 25, we estimate the number of gates to be of the order of 50,000.
Using gate bootstrappings (GBS) that cost ∼ 10ms each, this leads to a cost of ∼ 500s (this can be
parallelized). This is indeed a priori more efficient than the corresponding step of Subsection 4.4.

3. However, in Subsection 4.4, the most costly step is the computation of z = y + Sc. Unfortunately,
the bit-decomposition approach makes this step significantly more costly, as it requires c to be of
dimension log2 q ≈ 25 times bigger. The cost may not grow by a factor 25 (as the computations are
made on integers of unbalanced bit-sizes).

Bit-level HE computations as provided by TFHE may not the best strategy here, as the Ay + H(µ)
and y + Sc computations are linear. However, if using another HE scheme, the computation of the bit-
decomposition function may become more difficult. One would also need to assess how to adapt the other
ingredients of the blind signature scheme, such as the NIZKAoK argument πsk of well-formedness of the HE
key-pair.

5 Two Round Blind Signature from One-More-ISIS

In this section, we describe a significantly more practical scheme, under a new assumption.
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5.1 The One-More-ISIS Assumption

We first introduce the one-more-ISIS hardness assumption. As it is a new assumption, we provide a detailed
assessment of potential attacks, in Subsection 5.6.

Informally, the one-more-ISIS assumption states that for any polynomially bounded `, it is difficult to
forge `+ 1 GPV signatures [41], even when given access to up to ` inversions of arbitrary syndromes. We
stress that these are not signature queries, as a query for a message µ corresponds to a uniformly distributed
syndrome H(µ) (modelling H by a random oracle), whereas here the attacker is allowed to make inversion
queries for arbitrary syndromes. As a result, the one-more-ISIS could possibly be easier to solve than it is to
break the chosen-message security of the GPV signature scheme.

Definition 5.1. Let q, n,m, σ, β be functions of security parameter λ. The one-more-ISISq,n,m,σ,β assumption
is defined using the following experiment.

1. The challenger C uniformly samples a matrix C ∈ Zn×mq and sends C to A.

2. The adversary adaptively makes queries of the following types to the challenger, in any order.

• Syndrome queries. The adversary A requests C for a challenge vector, to which C replies with a
uniformly sampled vector t← Znq . We denote the set of received vectors by S.

• Preimage queries. The adversary A queries a vector t′ ∈ Znq , to which C replies with a short vector
y′ ← DZm,σ such that Cy′ = t′. We denote by ` the total number of preimage queries.

3. In the end, the adversary A outputs `+ 1 pairs of the form {(yj , tj)}j∈[`+1].

4. The adversary wins if Cyj = tj , ‖yj‖ ≤ β and tj ∈ S for all j ∈ [`+ 1].

The one-more-ISISq,n,m,σ,β assumption states that for every adversary A running in time 2o(λ) making at
most λO(1) preimage queries and 2o(λ) syndrome queries, the probability (over the randomness of A and C)
that A wins is 2−Ω(λ).

The definition is reminiscent to the chosen target version of the one-more-RSA inversion problem from [14].
We could define a variant of one-more-ISIS inspired from the known target version of the one-more-RSA
inversion problem from [14], in which the set S is restricted to be of size `+ 1. The choice (chosen target)
formulation from Definition 5.1 is driven by the security proof of the scheme. In the RSA setting, the chosen
and known target versions reduce to one another, but this seems difficult to adapt to the ISIS setting.

5.2 Construction

The construction uses the following building blocks:

1. A hash function H : {0, 1}∗ → Znq that will be modeled as random oracle model in the unforgeability
proof.

2. A NIZKAoK for the statement of Equation (5.1) (see Figure 5).

3. A CPA-secure PKE scheme PKE(PKE.KeyGen,PKE.Enc,PKE.Dec) that is perfectly correct.

The construction is provided in Figure 5. The parameters q, n,m, σ are set such that Lemma 1 is applicable,
the distribution of Ax is close to uniform at Step 1 of the signing algorithm (using Lemmas 4 and 5 with
standard deviation parameter σ/m = Ω(1)), and one-more-ISISq,m,n,σ,2β is hard with β = 2σ

√
m.
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5.3 Completeness of the blind signature scheme

The completeness of the scheme follows from the choice of β, correctness of SamplePre and the completeness
of the argument system NIZKAoK. In more detail, we make the following observations to argue completeness.
From the correctness of SamplePre, the vector y is small and satisfies Cy = t, where t = Ax +H(µ). This
gives us Cy −Ax = H(µ). Furthermore, the vector x is small by design and ct = PKE.Enc(PKE.pk,x‖y; r)
by construction. Hence, the proof π for Equation (5.1) verifies and the user accepts the proof because of the
completeness of NIZKAoK.

We now make a few remarks about the construction. Observe that we choose x to have norm at most
β/m, which is a factor m smaller than that of y. This is because in the security proof, we will construct
solutions to the one-more-ISISq,n,m,σ,2β problem as y −Rx (see Step 5 of the unforgeability proof), where
R← {0, 1}m×m. Thus, choosing ‖x‖ ≤ β/m and ‖y‖ ≤ β allows us to bound the norm of the one-more-ISIS
solution by 2β as desired. Note that by increasing the ratio between the norms of x and y further, one can
decrease the quantity 2β to a value that is arbitrarily close to β (hence possibly weakening the hardness
assumption). Another important component is the inclusion of ciphertext ct = PKE.Enc(PKE.pk,x‖y; r) in
the signature. It enables to circumvent rewinding in the extraction of all the witnesses (xi‖yi) of the QS + 1
message-signature pairs output by the adversary, in the proof of unforgeability (see Step 5). Without it, the
reduction would need to rewind QS + 1 times to extract all the pairs (xi,yi), to construct the one-more-ISIS
solution, leading to a security loss exponential in QS .

5.4 Security

We show that our construction satisfies one more unforgeability and blindness.

Theorem 11. Assume that the one-more-ISISq,n,m,σ,2β assumption holds and the argument NIZKAoK is
sound. Then the blind signature scheme in Figure 5 is one more unforgeable in random oracle model.

Proof. We argue one more unforgeability using the following hybrids.

Hybrid0: This is the genuine one more unforgeability experiment.

Hybrid1 : In this hybrid, the challenger does not discard the decryption key PKE.sk. For every signature σj =
(πj , ctj) output by the adversary (for j ∈ [` + 1]), it uses PKE.sk to decrypt ctj into a plaintext µj
(which can be ⊥ in case decryption fails). It stores the µj ’s.

Hybrid2 : This hybrid differs from the previous one in the way matrix A is chosen. The challenger first
samples a binary matrix R← {0, 1}m×m and sets A = CR.

Indistinguishability of hybrids

1. The differences between Hybrid0 and Hybrid1 are only concerning the inner computations of the challenger
and not its interactions with the adversary. Hence, the two hybrids are identical in the view of the
adversary.

2. The only difference between Hybrid1 and Hybrid2 is that in the latter A is computed as CR, where R
is a uniform binary matrix, instead of sampling it uniformly randomly from Zn×mq . The two hybrids

are indistinguishable because Lemma 4 implies that (C,A) is within statistical distance 2−Ω(λ) from
(C,CR).

Claim 1. Assume that the NIZK argument system is sound and PKE is correct. Then if there is an adversary
A that makes at most QS signing queries and succeeds in generating QS + 1 signatures in Hybrid2, then there
exists a one-more-ISIS adversary B with QS preimage queries.

Note that this claim implies the result.

Proof. The reduction is as follows.
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Setup. Gen(1λ): Upon input the security parameter λ, define n,m, q, σ, β = 2σ
√
m as functions of λ such that

one-more-ISISq,n,m,σ,2β is hard and the scheme is both efficient and complete; then do the following:

• Run (PKE.pk,PKE.sk)←PKE.KeyGen(1λ) and discard PKE.sk.

• Compute (C,TC)← TrapGen(n,m, q).

• Sample A← Zn×mq .

• Output BSig.sk = TC, BSig.vk = (C,A,PKE.pk).

Signing. 〈S(BSig.sk),U(BSig.vk, µ)〉:

1. User: Given the key BSig.vk and a message µ, user U does the following:

• It samples x← DZm,σ/m.

• It computes t = Ax +H(µ).

• It sends t to the signer.

2. Signer: Upon receiving t, signer S does the following:

• It samples a short vector y←SamplePre(C,TC, t, σ); we have Cy = t.

• It sends y to the user.

3. User: Upon receiving y, user U does the following:

• It verifies that ‖y‖ ≤ β and satisfies Cy = t.

• It samples PKE.Enc randomness r and computes ct = PKE.Enc(PKE.pk,x‖y; r).

• It generates a NIZKAoK π for following statement: Given BSig.vk = (C,A,PKE.pk), ct and µ, there
exists r and vectors x,y such that

‖x‖ ≤ β/m ∧ ‖y‖ ≤ β ∧ Cy −Ax = H(µ)

∧ ct = PKE.Enc(PKE.pk,x‖y; r). (5.1)

• The signature is (π, ct).

Verifying. The verifier accepts if the proof π is valid, and rejects if it is not.

Figure 5 Blind Signature from one-more-ISIS.

1. Upon being challenged by the one-more-ISIS challenger C, with matrix C, algorithm B does the following:

• It samples a uniform binary matrix R and computes A = CR.

• It samples (PKE.pk,PKE.sk)← PKE.KeyGen(1λ).

• It invokes A with (A,C,PKE.pk) as verification key.

2. In response to each (fresh) hash query on input µ from A, algorithm B makes a syndrome query to C.
Challenger C returns a uniform vector t ∈ Znq , which B forwards to A as H(µ).

3. To answer a signing query on input t′, algorithm B forwards t′ to C as a preimage query. Challenger C
returns a short vector y′, such that Cy′ = z. Algorithm B forwards y′ to A.

4. Eventually, adversary A outputs QS + 1 pairs {µj , (πj , ctj)}j∈[QS+1].

5. If the πj ’s pass verification, then algorithm B decrypts the ctj ’s and obtains QS + 1 corresponding
pairs of short vectors (xj ,yj). If all µj ’s have been hash-queried by A and the vectors (xj ,yj) satisfy
Equation (5.1) for all j ∈ [QS + 1], then B outputs {(yj −Rxj , H(µj))}j∈[QS+1]. If any decryption
fails or any of the above conditions are not satisfied, B aborts.
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Note that A’s view is identical to the one in Hybrid2. It hence succeeds with the same probability. We
now assume that this is the case. By the perfect correctness of PKE and the soundness of NIZKAoK, the
probability that a decryption fails is ≤ (QS + 1) · 2−Ω(λ). We assume we are not in this situation. We claim
that for each µj , adversary A must have issued a corresponding hash query to B. This is because otherwise,
there is only a q−n probability that a fresh (µj) is equal to Cyj−Axj . Finally, by the soundness of NIZKAoK,
the following indeed holds for all j ∈ [QS + 1]:

‖xj‖ ≤ β/n ∧ ‖yj‖ ≤ β ∧ Cyj −Axj = H(µj).

Next, observe that because of the way hash queries are answered by B, the value H(µj) is one of the
syndromes returned by C. Define tj = H(µj). Then we get, for all j ∈ [QS + 1],

tj = Cyj −Axj = Cyj −CRxj = C(yj −Rxj).

Since R is a binary matrix, we have ‖yj −Rxj‖ ≤ 2β for all j ∈ [QS + 1].

Note that B issues one preimage query for each signing query from A. Since A can issue at most QS
signing queries, algorithm B also issues at most QS preimage queries to C.

Next we show that the construction satisfies honest signer blindness.

Theorem 12. Assume that PKE is IND-CPA secure and the NIZKAoK is zero-knowledge. Then the blind
signature in Figure 5 satisfies honest signer blindness.

Proof. We argue blindness using following hybrids.

Hybrid0 : This is the genuine honest signer blindness experiment.

Hybrid1 : This hybrid differs from the previous one in the way the proofs π0 and π1 are computed: instead
of genuinely computing the NIZKAoKs, the challenger simulates them without using the witnesses.

Hybrid2 : This hybrid differs from the previous hybrid in that both ct0 and ct1 encrypt 0 instead of (x0‖y0)
and (x1‖y1), respectively.

Hybrid3 : This hybrid differs from the previous hybrid in the way the challenger computes t0 and t1. Instead
of sampling x0 (resp. x1) and computing t0 = Ax0 +H(µb) (resp. t1 = Ax1 +H(µb̄)), it samples u0

(resp. u1) uniformly and sets t0 = u0 +H(µb) (resp. t1 = u1 +H(µb̄)).

Indistinguishability of hybrids

1. The only difference between Hybrid0 and Hybrid1 is in the way π0 and π1 are computed. The two
hybrids are indistinguishable because of the zero-knowledge property of the NIZKAoK.

2. The only difference between Hybrid1 and Hybrid2 is in the messages being encrypted by ct0 and ct1.
The two hybrids are indistinguishable because of the IND-CPA security of PKE.

3. Note that in Hybrid2, the vectors x0 and x1 are only used in the computations of the vectors t0 and t1

that the challenger provides to the adversary when it plays the roles of users U0 and U1. By the leftover
hash lemma (Lemma 4), we have that t0 and t1 are statistically indistinguishable from uniform. Hence,
Hybrid2 and Hybrid3 are indistinguishable.

Finally, in Hybrid3, the adversary S∗ has zero advantage in guessing the bit b since, in its view, it is information
theoretically hidden.

Full-Fledged Blindness. Similarly to the construction in Section 3, the security proof above can be extended
to handle full-fledged blindness if we can ensure that PKE.pk has been honestly generated by the adversarial
signer, without a corresponding decryption key. By choosing a suitable encryption scheme so that PKE.pk is
computationally indistinguishable to uniform, one can set PKE.pk as the output of a random oracle on a
publicly-known value.
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5.5 Efficiency Estimate

From an efficiency perspective, a crucial difference from the scheme provided in Section 3 lies in the specific
statement required to be handled by the NIZKAoK (see Figure 5). The statement also involves the hash
function H modeled as a random oracle in the security proof. But the input µ to H is known, implying
that H(µ) can be computed publicly and can be seen as a public quantity. By using Regev’s encryption
scheme [69] (or variants of it), one sees that the statement to be proved is linear in the unknowns, which are
themselves required to be small. As a result, we can circumvent the use of a general-purpose NIZKAoK and
instead rely on algebraic proofs for linear relations [35, 56]. This lets us reduce the signature size to maybe as
small as 50kB [35, 56], against more than 100kB. More importantly, the cost of generating and verifying the
proof becomes very small.

Towards a concrete version of the scheme, we suggest instantiating the other building blocks as follows.
The hash function could be taken to be SHA-3-256. The encryption scheme could be set as the IND-CPA
NewHope [7], properly modified to ensure perfect correctness. The Falcon signature scheme [38] could
provide the concrete instantiation of the TrapGen-SamplePre functions. With these choices, the transcripts
between the user and the signer are below 2kB, the size of the signature is dominated by the size of the proof,
and all algorithms can be run very efficiently (in orders less than a second).

5.6 Security Analysis of One-More-SIS

The purpose of this section is to argue why we believe that the new computational problem we introduce,
one-more-ISIS, is hard. We did not succeed in obtaining a reduction from a well-studied problem to one-more-
ISIS, but we still expect that for the parameter ranges relevant to our constructions, this problem cannot be
solved by polynomial or even sub-exponential time attackers.

The hardness of the one-more-ISIS problem as stated in Definition 5.1 primarily depends on the precise
relation between β, the upper bound on the norm of the vectors yi’s the adversary must output, and the
dimensions m and n of the input matrix C. We also assume that σ – the standard deviation parameter of
the preimage queries – is of order Ω(

√
m), which what we would expect from an efficient sampler, e.g. [41].

Note that a significantly smaller standard deviation, e.g., of order O(1), would invalidate the hardness of the
one-more-ISIS assumption as extremely short y’s would enable an adversary to solve one-more-ISIS (see the
discussion below). In this section we make the hardness of the one-more-ISIS problem explicit by describing
the parameter regimes for which this problem can be solved in polynomial time, and for which, as far as we
know, the problem is exponentially hard. We consider two approaches to solve one-more-ISIS: combinatorial
attacks and lattice-based attacks.

Combinatorial attacks. We start by showing an elementary polynomial time algorithm that achieves
β = Θ(

√
mnσ) and requires (q · n) ISIS preimage oracle calls.

Consider the set of n-dimensional vectors A = {ei · a : i ∈ [n], a ∈ Zq}, where the ei’s are the canonical-
basis vectors. The set A is of size q · n. The adversary runs preimage queries for all vectors from A and
receives Gaussian vectors y′’s. Thanks to the Gaussian tail bound (see Lemma 5), we have ‖y′‖ ≤ 2

√
mσ

with probability greater than 1− 2−m for all y′’s. Any element from Znq , and thus the challenge t, can be
expressed as a sum of at most n vectors from A (one for each coordinate). The adversary then sums the
corresponding y′’s it received from the ISIS preimage oracle and obtains a new y such that Cy = t. The
resulting y is a valid one-more-ISIS solution for β = Θ(

√
nm · σ) with probability greater than 1− 2−Ω(m).

The algorithm can be generalized to a larger set A. The generalization, presented in Algorithm 6, makes
the attack less efficient, but reduces the bound on β. It is parametrized by Q, the upper bound on the
number of the preimage queries the attacker can issue. This is also the assumed upper bound on the memory
capacity of the attacker, since the attack requires that all the responses are stored.

The correctness of Algorithm 6 is direct: any t ∈ Znq can be efficiently written as a sum of at most dn/we
elements from the set A constructed on Step 2. Note that |A| ≤ n2qw: by definition of w, the algorithm
indeed makes ≤ Q queries. Finally, we can bound the norm of the output as ‖y‖ < 2

√
b nw c ·m · σ =
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Input: The ISIS preimage oracle OISIS(·), a number Q of queries to OISIS, and t ∈ Znq .

Output: A short vector y ∈ Zmq such that Cy = t mod q.

1. Set w = b log(Q/n
2)

log q
c.

2. Let A =
{∑

w·(i−1)<j≤max{w·i,n} ej · aj : ∀i ∈
[⌈

n
w

⌉]
, aj ∈ Zq

}
.

3. For all a ∈ A, set T [a] = OISIS(a).

4. Write t = ai1 + . . .+ aidn/we .

5. Output y = T [ai1 ] + . . .+ T [aidn/we ].

Figure 6 Combinatorial Attack on one-more-ISIS.

Θ(
√

1 + n log q
log(Q/n2) ·

√
m · σ), with probability greater than 1 − 2−Ω(m). The algorithm is correct for any

1 ≤ w ≤ n computed on Step 1, providing a trade-off between the runtime (which is essentially the number Q
of preimage queries) and the bound on β.

Lattice-based attacks. A strategy to attack one-more-ISIS is to use a discrete Gaussian sampler
algorithm [50, 41]. This allows to solve one-more-ISIS in poly(m) time with β = Ω(mσ) using O(m2)
preimage queries. More precisely, the attacker does the following:

1. It queries the preimage ISIS oracle Θ(m2) times for t = 0. From the oracle’s answers, it computes a
basis B for Λ⊥q (C) = {y ∈ Zm : Cy = 0 mod q}.

2. Given input t ∈ Znq , it runs a Gaussian sampler [50, 41] instantiated with the basis B and the syndrome
vector t (as in Lemma 1). It outputs what the sampler replies.

Let us make several remarks about the above procedure. First, thanks to standard properties of lattice
Gaussian distributions, it indeed suffices to query the ISIS preimage oracle Θ(m2) times in Step 1, in order to
obtain a basis of Λ⊥q (C) with at least constant probability bounded away from 0 (see [69, Corollary 3.16]).
Second, the Gaussian sampler from [22] produces samples from any coset of the lattice with standard deviation
σ ≥ ‖B‖

√
logm, where ‖B‖ is the norm of the longest vector in B. Since ‖B‖ ≤ 2

√
m ·σ (with overwhelming

probability), the sampler will produce valid one-more-ISIS solutions for β = O(mσ
√

logm) in poly(m) time
using Θ(m2) calls to the ISIS preimage oracle.

Observing that one-more-ISIS only cares about the norm of the returned y but not about its actual
distribution, we can slightly improve the bound on β by getting rid of the factor

√
logm. For this purpose,

we replace the Gaussian Sampling procedure by Babai’s Nearest Plane algorithm [10]. This algorithm
receives on input a lattice basis B ∈ Zm×m and a target vector z ∈ Zm, and outputs a lattice vector v such
that ‖v − z‖ ≤ 1

2 (
∑
i∈[m]‖bi‖2)1/2. In our case, the right-hand side is bounded from above by mσ with

probability greater than 1− 2−Ω(m). We run Babai’s Nearest Plane algorithm on input (B, z), where z ∈ Zm
is an arbitrary vector that satisfies Cz = t mod q. Let v = Bcv be the output and let e = v − z. Then we
have t = Cz = C ·Bcv −Ce = −Ce mod q with e being a valid one-more-ISIS solution for β = Θ(mσ).

Can we do better? A strategy to improve the above bounds on β is to obtain basis of the lattice Λ⊥q (C)
that is shorter than what the ISIS preimage oracle offers. We can go as far as the Minkowski’s bound suggests,
i.e., we can achieve ‖B‖ = λ1(Λ⊥q (C)) ≤ minm′≤m

√
m′ · qn/m′ (here we assume that all lattice minima have

essentially the same norms, which is expected to be the case when C is sampled uniformly). The latter
bound is O(

√
n ln q) when m = Ω(n log q). Vectors of such a small norm can be found by calling shortest

vector problem solvers on Λ⊥q (C). The fastest known such algorithms run in time 2O(m) (see, e.g., [13]). This

exponential time attack enables us to solve one-more-ISIS for β = Θ(
√
mn ln q) by invoking Babai’s Nearest

Plane algorithm on the obtained short basis. Note that the ISIS preimage oracle is only used to obtain a basis
of Λ⊥q (C). A trade-off between the quality of β and the runtime is possible: a b-BKZ reduction [45, 72] yields
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a basis B with ‖B‖ ≤ bO(m/b) · λ1(Λ⊥q (C)) in time 2O(b), thus leading to β = bO(m/b) ·
√
mn ln q). Note that

in order to outperform the bound on β we have in the polynomial time regime, the BKZ parameter b has to
be of order Θ(m/ log σ), when m = Θ(n log q).

To summarize, we have the run-times for solving one-more-ISIS:

• there exists a combinatorial algorithm that achieves β = Θ(
√

1 + n log q
log(Q/n2) ·

√
mσ) in time Q and using

Q ≥ nq preimage queries;

• there exists a lattice-based algorithm that achieves β = Θ(mσ) in polynomial time using O(m2) preimage
queries; except for very few queries, it is outperformed by the combinatorial algorithm;

• there exists a lattice-based algorithm that achieves β = 2O( m log log T
log T )√mn log q) in time T without any

preimage query (except to obtain a basis of Λ⊥q (C)).

Open questions and potential directions. Let us now formulate some cryptanalytic questions that the
new one-more-ISIS hardness assumptions raises.

I. Improving algorithms for the shortest vector problem with preimage queries. One might
wonder whether we can accelerate existing shortest vector solvers, such as sieving algorithms [4, 60, 13], once
we already have a somewhat short basis. Just from the nature of sieving algorithms it does not seem to
be the case: even to obtain a small constant reduction in the norm of the current shortest vector, sieving
generates and processes 2O(m) vectors which already constitutes its asymptotic cost.

II. Improving Babai’s Nearest Plane with a short generating set. Given access to ISIS preimages,
another direction one can consider is to try to accelerate the closest vector problem (CVP) solvers on Λ⊥q (C),
by exploiting the fact that we have many short vectors from this lattice. The presence of many short vectors
helps to heuristically improve the Voronoi cell-based CVP algorithms [30]. Yet their heuristic correctness and
analysis rely on the presence of the shortest vectors from Λ⊥q (C), which, as we believe, the preimage ISIS
queries do not help to obtain fast.

III. Dual counterpart to one-more-ISIS: one-more-LWE. As LWE can be seen as the ‘lattice dual’
of SIS, it is tempting to find a one-more-LWE definition that would be ‘lattice dual’ to one-more-ISIS, with
hopefully bi-directional reductions between one-more-ISIS and one-more-LWE. This dual to one-more-ISIS
could possibly shed light on the computation hardness of one-more-ISIS.

We propose the following one-more-LWE definition, and leave it as an open problem to study its relationship
to one-more-ISIS. The attacker is given as input a matrix C ∈ Zn×mq and arbitrarily many vectors ti ∈ Znq of
the form ti = stiC + eti with ei short. The attacker is given access to an LWE oracle that on input t′j (not
necessarily among the input ti’s) returns sj and ej such that stjC + etj = t′j mod q, if such a pair (sj , ej)
exists with a short ej . If ` is the number of LWE oracle queries, the attacker must output `+ 1 pairs (ti, si)
(with vectors t among the inputs).
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