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Abstract. Blind signatures are a fundamental cryptographic primitive with numerous practical
applications. While there exist many practical blind signatures from number-theoretic assumptions,
the situation is far less satisfactory from post-quantum assumptions. In this work, we provide the first
overall practical, lattice-based blind signature, supporting an unbounded number of signature queries
and additionally enjoying optimal round complexity. We provide a detailed estimate of parameters
achieved – we obtain a signature of size less than 44KB, for a core-SVP hardness of 109 bits. The
run-times of the signer, user and verifier are also very small.
Our scheme relies on the Gentry, Peikert and Vaikuntanathan signature [STOC’08] and non-interactive
zero-knowledge proofs for linear relations with small unknowns, which are significantly more efficient than
their general purpose counterparts. Its security stems from a new and arguably natural assumption which
we introduce, called the one-more-ISIS assumption. This assumption can be seen as a lattice analogue
of the one-more-RSA assumption by Bellare et al [JoC’03]. To gain confidence in our assumption, we
provide a detailed analysis of diverse attack strategies.

1 Introduction

Blind signatures are a fundamental cryptographic primitive with numerous applications in e-cash [25], e-
voting [45] cryptocurrencies [73] and many others. In a blind signature scheme [25], a user U , holding a public
key and message, may request a signature from a signer S, holding a signing key, such that the signer is not
able to link a message-signature pair with a protocol execution, and the user is not able to forge signatures
even after multiple interactions with the signer.

Blind signatures have been studied for several decades, and admit instantiations from a variety of
assumptions [26, 65, 36, 47, 37, 38, 34, 54]. Given their wide applicability, there has been a significant thrust
towards obtaining practical efficiency. Constructions based on standard assumptions are primarily feasibility
results [38, 34] which do not admit practical instantiations. In light of this, in the number-theoretic regime,
reasonable new assumptions were introduced to obtain efficient constructions. For instance, in the group
setting, several candidates [26, 62, 65, 43, 36] are based on the hardness of the non-standard ROS/mROS
problem (note that the ROS problem was recently broken [16]) or rely [1, 71] on the algebraic group [47] and
the generic group [61] models, which are very strong idealizations. The situation is analogous in the regime of
pairings [20, 18, 37] or RSA [14].

Post-Quantum Regime. In the post-quantum regime, the situation is much more unsatisfactory – even
disregarding efficiency, several lattice-based blind signatures [67, 6, 5, 22, 50, 63] were found to have errors
in their security proofs [44]. The recent construction by Hauck et al. [44] aimed to fix the errors but the
resulting construction is completely impractical – using their suggested parameters, the constructed blind
signature has size ≈ 7.73MB, for security against adversaries limited to getting 7 signatures. The very recent
work of Lyubashevsky et al. [54] achieves better parameters (signature size of about 150KB), but the cost of
their signing algorithm grows linearly on the maximum number of signatures that an adversary can query.
This makes it impractical for situations where the number of signatures is large or cannot be apriori bounded.
Finally there are constructions based on codes [17] and systems of algebraic equations [64] but these are
either impractical or do not satisfy the standard definition of security.
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Our Results. In this work, we provide the first overall practical, lattice-based blind signature, which additionally
enjoys optimal round complexity. Our scheme relies on the Gentry, Peikert and Vaikuntanathan (GPV)
signature [39] and non-interactive zero-knowledge proofs for linear relations with small unknowns, which
are significantly more efficient than their general purpose counterparts. Its security stems from a new and
arguably natural assumption which we introduce, called one-more-ISIS. This assumption can be seen as a
lattice analogue of the one-more-RSA assumption by Bellare et al. [JoC’03]. Informally, the one-more-ISIS
assumption states that for any polynomially bounded `, it is difficult to forge `+ 1 GPV signatures [39], even
when given access to up to ` inversions of arbitrarily chosen syndromes.

Our construction supports an unbounded number of signatures and is overall more efficient than all prior
candidates. While it is based on a new assumption, we believe that for a practice oriented primitive like blind
signatures, it is justified to introduce plausible assumptions as was done in the number-theoretic regime. We
provide detailed cryptanalysis to justify our new assumption.

1.1 Our Techniques

The starting point of our work is a two round blind signature by Fischlin [34], which relies on the CRS
model. To begin, we adapt this scheme to the ROM and instantiate it with efficient lattice based signatures
and non-interactive zero knowledge proofs (NIZK). Due to the extensive research in efficient lattice based
signatures [39, 52, 33, 41, 35, 12, 30] and proof systems [51, 28, 15, 72, 21, 33, 32, 56] over the last 15 years,
this already provides a candidate which is “somewhat reasonable” in practice.

Adapting Fischlin’s Protocol. Our adaptation of Fischlin’s protocol uses a public key encryption scheme PKE
and a non-interactive zero knowledge argument of knowledge NIZKAoK as building blocks. To begin, we
consider the honest signer model for blindness, in which it is assumed that the signing and verification keys
are generated honestly, though the signer can deviate arbitrarily from the signing protocol. This assumption
will subsequently be removed. We summarize this protocol next. In what follows, we assume some familiarity
with the signature scheme of Gentry, Peikert and Vaikuntanathan (GPV); please refer to [39] for a refresher.

In the setup phase, we run (PKE.pk,PKE.sk)←PKE.KeyGen(1λ) and discard PKE.sk. Next, following the
GPV signature scheme, we sample a matrix C ∈ Zn×mq together with a trapdoor TC ∈ Zm×m of it. We set
the signing key of the blind signature as BSig.sk = TC, and the verification key as BSig.vk = (C,PKE.pk).

To sign the message µ, the user U samples PKE.Enc randomness r and computes ct = PKE.Enc(PKE.pk, µ; r).
It sends ct to the signer. Upon receiving ct, the signer S computes a GPV signature on ct and returns this to
the user. In more detail, it computes H(ct) and uses the trapdoor TC to sample y such that y is short and
Cy = H(ct) (modulo q). It sends y to the user. Here H is a hash function, modeled as a random oracle in
the security proof.

Upon receiving y, the user U verifies that y is small and that Cy = H(ct) and aborts if this fails. It
generates a non-interactive zero-knowledge argument of knowledge (NIZKAoK) π for following statement:
Given BSig.vk = (C,PKE.pk) and µ, there exists PKE randomness r and a vector y such that

‖y‖ ≤ β ∧ Cy = H(Enc(PKE.pk, µ; r)).

In the above, β is some appropriate bound. Finally, the user outputs π as the signature. To verify the blind
signature, the verifier checks that the proof π is valid. Thus, the final signature in the blind signature protocol
is a NIZKAoK that the user knows a GPV signature for an encryption of the message.

For full-fledged blindness, it suffices to ensure that PKE.pk has been honestly generated by the adversarial
signer, without a corresponding decryption key. This can be achieved, for example, by choosing PKE such
that PKE.pk is computationally indistinguishable from uniform, and then setting PKE.pk as the output of
another hash function H ′ modeled as a random oracle, on an arbitrary public input.

Since the witness of the NIZKAoK includes the randomness r used to compute the ciphertext, and the
ciphertext is inside a (complex) hash function, the statement that we require to prove becomes very complex
and resorting to general purpose NIZKAoK seems unavoidable. Despite amazing recent advances in efficient
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general purpose NIZKAoK [15, 9], the resulting parameters are formidable – as discussed in Section 3, we
estimate a proof size of more than 100KB and prover time complexity of one hour or more. Even worse, the
prover of the NIZKAoK is the user in the blind signature, who is generally expected to be computationally
light. This leads to a blind signature with very large user time complexity, which is very dissatisfying, both in
theory and practice.

An Efficient Construction from one-more-ISIS. We begin by observing that general purpose NIZKAoKs are
the primary source of inefficiency in the above protocol, and “lightening” the usage of NIZKAoK would result
in a significantly lighter overall protocol. Intuitively, some usage of NIZKs feels unavoidable if we want to
stick to a two round protocol, but can we simplify the statement that is proved? Our main new idea is to
leverage a new, arguably natural assumption, which we call one-more-ISIS so that the problematic general
purpose NIZKAoK above may be replaced by an efficient lattice based NIZK for linear statements with small
unknowns, for which practical constructions have been developed recently [32, 56, 53]. Armed with these
ideas, we provide a simple, overall efficient protocol as follows.

For setup, we run (PKE.pk,PKE.sk)←PKE.KeyGen(1λ) and discard PKE.sk. Again, discarding PKE.sk can
be achieved in the real world by setting PKE.pk as the output of a hash function on a public value (this
requires ensuring that the distributions match). Next, we sample a matrix C together with trapdoor TC as
before. At this stage, we depart from the previous protocol – instead of encrypting the message µ to achieve
blindness, we will rely on a much simpler “one time pad” style blinding mechanism. For this, we sample
another matrix A and set BSig.sk = TC, BSig.vk = (C,A,PKE.pk). For full fledged blindness, we would also
need to set A as the output of a random oracle, together with PKE.pk as discussed above.

For signing a message µ, a user U samples a vector x from a suitable distribution such that Ax is
indistinguishable from uniform. It computes t = Ax +H(µ) and sends t to the signer. Note that for suitable
choice of x, the term H(µ) and hence µ is hidden from the view of the signer. Upon receiving t, signer
S uses the trapdoor TC to sample a short vector y such that Cy = t (modulo q). It sends y to the user.
Upon receiving y, user U verifies that y is short and satisfies Cy = t. It samples PKE.Enc randomness r and
computes

ct = PKE.Enc(PKE.pk,x‖y; r).

It generates a NIZK π for following statement: Given BSig.vk = (C,A,PKE.pk), ct and µ, there exist r and
vectors x,y such that

‖x‖ ≤ β1 ∧ ‖y‖ ≤ β2 ∧ Cy −Ax = H(µ)

∧ ct = PKE.Enc(PKE.pk,x‖y; r).

In the above, β1 and β2 are appropriate parameters and H is the random oracle hash function. The signature
is (π, ct), and verification consists in verifying the NIZK π as before.

Note that the above statement also involves the hash function H which is modeled as a random oracle in
the security proof. But, crucially, the input µ to H is known, implying that H(µ) can be seen as a public
quantity and this does not make the proof complex. By using Regev’s encryption scheme [66] (or variants of
it), one can ensure that the statement to be proved is linear in the unknowns, which are themselves required
to be small. As a result, we can circumvent the use of a general-purpose NIZKAoK and can instead rely on
NIZK for linear relations with small unknowns [32, 56, 53]. This lets us reduce the signature size to less
than 44KB, as against more than 100KB. More importantly, the cost of generating and verifying the proof
becomes very small.

The astute reader may wonder why the witnesses x‖y are being encrypted. In the unforgeability proof, this
allows to circumvent rewinding when extracting GPV preimages from the output of the adversary. Rewinding
would incur a loss that is exponential in the number of preimages that the attacker requested from the signer.
Please see Section 4 for more details.

The resultant protocol is extremely simple and appears quite similar to the first protocol we presented,
which in turn is a natural adaptation of Fischlin’s protocol from 2006 [34]. The reader may wonder whether
replacing the ciphertext computed by the user in the first step by a one time pad is the only difference from
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the first scheme, and if so, why efficient lattice-based blind signatures have remained elusive for so long. The
key new insight of our work is in formulating a meaningful new assumption that allows reducing security of
this very natural construction to it. We describe our assumption next and discuss how it implies security of
our candidate.

The one-more-ISIS Assumption. The one-more-ISISq,n,m,σ,β assumption is defined using the following
experiment between a challenger C and adversary A. First, C uniformly samples a matrix C ∈ Zn×mq

and sends it to A. Then A adaptively makes two types of queries: syndrome queries, to which C replies with a
uniformly sampled vector t← Znq , and preimage queries, where A queries a vector t′ ∈ Znq , to which C replies
with a short vector y′ ← DZm,σ such that Cy′ = t′. If ` is the total number of preimage queries, we ask
the adversary to output `+ 1 pairs of the form {(yj , tj)}j∈[`+1], such that Cyj = tj , ‖yj‖ ≤ β and tj were
provided via syndrome queries, for all j ∈ [`+ 1]. We say that the one-more-ISISq,n,m,σ,β problem is hard if
the probability that A succeeds in the above game is negligible.

Note that this definition is reminiscent to the chosen target version of the one-more-RSA inversion problem
from [14]. It is also closely related to the k-SIS problem [19] which was introduced in the context of linearly
homomorphic signatures. The k-SIS problem is as follows: Given a matrix C ∈ Zn×mq , and k short vectors
e1, . . . , ek ∈ Zm satisfying A ·ei = 0 mod q, find a short vector e ∈ Zm satisfying A ·e = 0 mod q, such that
e is not in Q-span(e1, . . . , ek). In [19], the linearly homomorphic signature must intuitively sign a subspace.
Hence for k-SIS, the goal is to restrict the attacker to the subspace of the signatures it has already seen; this
prevents it from obtaining signatures of vectors out of the vector subspace that has already been signed. In
contrast, in our one-more-ISIS, we do not want to restrict the subspace and indeed allow the attacker to query
the oracle more times than the dimension of the whole space. But we are more demanding on the norm of
the vector that the attacker must find.

In particular even if the attacker manages to obtain a trapdoor for the matrix C via repeated preimage
queries to the vector 0, this trapdoor will not be of sufficiently good quality to lead to an attack. In more
detail, such a trapdoor enables sampling preimages to arbitrary images, and hence the attacker can output
`+ 1 pairs of the form {(yj , tj)}j∈[`+1], such that Cyj = tj and tj were provided via syndrome queries, for
all j ∈ [`+ 1]. However, it will be unable to meet the constraint that ‖yj‖ ≤ β. We believe this assumption is
very natural and are optimistic that it may have other applications.

Given our new assumption, one more unforgeability follows very naturally. In the proof, the challenger
can sample the PKE public and secret keys using the PKE setup algorithm, and not discard the secret key.
Assuming correctness of PKE and with knowledge of PKE.sk, the challenger can extract the pairs (xj ,yj)
corresponding to the signature of each message µj . We have by soundness of the NIZK that Cyj−Axj = H(µj).
By setting A = C ·R for a low norm matrix R, we can (i) use the leftover hash lemma to argue that A
appears uniform, and (ii) rewrite Cyj −Axj as C(yj −Rxj). Finally, by programming the random oracle so
that H(µj) is a syndrome queried by the one-more-ISIS adversary yields the proof. Please see Section 4 for
more details.

To justify our assumption, we attempted to cryptanalyze it. For some parameter regimes, the problem can
be solved in polynomial time but, as far as we know, the problem is exponentially hard for the regimes that we
use in the blind signature scheme. Broadly, we consider two approaches to solve one-more-ISIS: combinatorial
and lattice-based algorithms, and we provide complexity results for one-more-ISIS using these approaches. We
also formulate new cryptanalytic questions that the one-more-ISIS assumption raises. Please see Section 4.5
for more details.

Estimating Performance. We provide a detailed analysis of the performance of our new candidate in Section
4.4. To instantiate our new protocol based on one-more-ISIS, we use the following building blocks:

– For the hash function, we use SHA-3-256;

– For the trapdoor generation and preimage sampling, we follow Falcon-512 [35];

– For the IND-CPA secure PKE, we adapt the CRYSTALS-Kyber encryption scheme [10];

– For the NIZK scheme, we follow the recent protocol of [53, Figure 10].
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To make these building blocks compatible with each other, we need a working modulus which must satisfy
the following constraints:

– Its prime factors must be sufficiently large to avoid soundness improving repetitions in the zero knowledge
proof;

– The moduli of the underlying signature and encryption schemes should divide the working modulus so
that the relations required to be proven are simpler;

– The polynomial x128 + 1 defining the ring used in the NIZK scheme should split in exactly two prime
factors modulo all factors of the working modulus, due to technical reasons related to the NIZK.

Satisfying the above constraints requires a delicate balancing of parameters, which results in a number of
changes in the building blocks. First, we must modify Falcon’s modulus because x128 + 1 splits completely
modulo the original Falcon modulus, which violates the last constraint above. We must also instantiate the
CRYSTALS-Kyber framework so that it complies with the zero-knowledge proof π from [53] and enjoys
perfect correctness. Since it is the zero-knowledge proof that makes most of the overall signature size as
well as the complexity to generate it, we are mainly interested in making the generation of π efficient, while
potentially sacrificing the efficiency of the other routines.

We provide a detailed guideline on how to instantiate the NIZKAoK protocol from [53, Figure 10], and
how to choose the parameters for the other building blocks so as to obtain a concrete estimate for all the
parameters of the resultant blind signature scheme. We provide a python script (available at https://gitlab.
com/ElenaKirshanova/onemoresis_estimates) that estimates the concrete security of the building blocks,
as well as the size of the resulting signatures. The resulting protocol has security relying on Ring-LWE [69, 57],
Module-LWE [23, 49] and the Module-SIS [49] variant of one-more-ISIS.

Using our script, we obtain a signature of size less than 44KB, for a classical core-SVP hardness of 109
bits (following the security methodology from [7]). Note that bit security is typically estimated to be higher
than core-SVP hardness (see [10]), and we expect it to be of the order of 128 bits. The transcript has size less
than 1.5KB. The costs of the signer and user in the signing protocol, as well as that of the verifier are also
very low. To see this, note that the signer must simply compute a GPV pre-image, the user must compute a
ciphertext and proof for a linear statement with small unknowns, while the verifier must verify this proof.
Thus, in the end, we obtain a protocol which enjoys conjectured post-quantum security and is overall more
efficient than all prior candidates.

Other Related Works. Aside from lattice based blind signatures, there are a few other constructions from
conjectured post-quantum assumptions. The most relevant to our work is the code-based construction of
Blazy et al. [17], relying on the CFS signature scheme [27] and Stern zero-knowledge proofs [70]. Like in our
one-more-ISIS construction, their construction relies on a new assumption, related to CFS. However, there
are important differences with our work. In CFS, not all syndromes can be inverted, and the procedure needs
to be repeated if no inversion is possible. Hence, the resulting blind signature scheme is not round optimal.
Moreover, due to the poor scaling of CFS signatures and the use of Stern proofs, their construction achieves
signature size of several MB. A blind signature based on multivariate polynomial systems was described
in [64], with a non-standard unforgeability security property.

2 Preliminaries

In this section, we provide some preliminaries used in our work.

Notations. We write vectors with bold small letters and matrices with bold capital letters. Let S be any
set, then |S| represents the cardinality of S, while in case of any x ∈ R, |x| represents absolute value of x.
For any n ∈ N, we let the set {1, 2, . . . , n} be denoted by [n]. For a distribution D over a countable set X ,
we let H∞(D) = −maxx∈X log2D(x) denote the min-entropy of D. The statistical distance between two
distributions D0 and D1 over X is defined as 1

2

∑
x∈X |D0(x)−D1(x)|.
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We use standard definitions for pseudo-random functions (PRF), public-key encryption (PKE) and
signatures.

We place ourselves in a setup that allows the attackers to run in time 2o(λ) and succeed with
probability 2−o(λ), but that forbids them to make more than poly(λ) interactions with honest users. Compared
to the setup of polynomially bounded attackers, this allows to better reflect practice and to better differentiate
between operations that the adversary can do on its own and are only limited by the adversary runtime (such
as hash queries) and operations that require interaction with a honest user and are much more limited (such
as signature queries). We note that if we limit ourselves to polynomially bounded adversaries, then all our
reductions of our security proofs involve polynomial-time reductions and would not require subexponential
hardness assumptions.

2.1 Blind Signatures

To begin, we introduce some notation for interactive executions between algorithms X and Y. By (a, b)←
〈X (x),Y(y)〉, we denote the joint execution of X and Y where X has private input x, Y has private input y
and X receives private output a while Y receives private output b.

Definition 2.1 (Blind Signature). A blind signature scheme BS consists of PPT algorithms Gen, Vrfy
along with interactive PPT algorithms S, U such that for any λ:

• Gen(1λ) generates a key pair (BSig.sk,BSig.vk).
• The joint execution of S(BSig.sk) and U(BSig.vk, µ), where µ ∈ {0, 1}∗, generates an output σ for the user

and no output for the signer; this is denoted as (⊥, σ)← 〈S(BSig.sk),U(BSig.vk, µ)〉.
• Algorithm Vrfy(BSig.vk, µ, σ) outputs a bit b.

The scheme must satisfy completeness: for any (BSig.sk,BSig.vk)←
Gen(1λ), µ ∈ {0, 1}∗ and σ output by U in the joint execution of S(BSig.sk) and U(BSig.vk, µ), it holds that
Vrfy(BSig.vk, µ, σ) = 1 with probability 1− λ−ω(1).

Blind signatures must satisfy two security properties: one more unforgeability and blindness [46].

Definition 2.2 (One More Unforgeability). The blind signature BS = (Gen,S,U ,Vrfy) is one more
unforgeable if for any polynomial QS, and any algorithm U∗ with run-time 2o(λ), the success probability of U∗
in the following game is 2−Ω(λ):

1. Gen(1λ) outputs (BSig.sk,BSig.vk), and algorithm U∗ is given BSig.vk.

2. Algorithm U∗ interacts concurrently with QS instances S1
BSig.sk, . . . ,S

QS

BSig.sk.
3. Algorithm U∗ outputs (µ1, σ1, . . . , µQS+1, σQS+1).

Algorithm U∗ succeeds if Vrfy(BSig.vk, µi, σi) = 1 for all i ∈ [QS + 1] and the µi’s are distinct.

The blindness condition says that it should be infeasible for any malicious signer S∗ to decide which of
two messages µ0 and µ1 of its choice has been signed first in two executions with a honest user U . If one of
these executions has returned ⊥, then the signer is not informed about the other signature either. We will
focus on the following notion of honest signer blindness.

Definition 2.3 (Honest Signer Blindness). The blind signature BS = (Gen,S,U ,Vrfy) satisfies honest
signer blindness if for any algorithm S∗ with run-time 2o(λ), the advantage of S∗ in the following game
is 2−Ω(λ):

1. Gen(1λ) outputs (BSig.sk,BSig.vk) and gives it to S∗; algorithm S∗ outputs two messages µ0, µ1 of its
choice.

2. A random bit b is chosen and S∗ interacts concurrently with U0 := U(BSig.vk, µb) and U1 := U(BSig.vk, µb̄)
possibly maliciously; when U0 and U1 have completed their executions, the values σb, σb̄ are defined as
follows:
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• If either U0 or U1 aborts, then (σb, σb̄) := (⊥,⊥).
• Otherwise, let σb (resp. σb̄) be the output of U0 (resp. U1).
Algorithm S∗ is given (σ0, σ1).

3. Algorithm S∗ outputs a bit b′.

Algorithm S∗ succeeds if b′ = b. If succ denotes the latter event, then the advantage of S∗ is defined as
|Pr[succ]− 1/2|.

Full-fledged blindness lets the adversary S∗ sample its own pair (BSig.sk,BSig.vk) at Step 1 (possibly
maliciously), and gives BSig.vk to the challenger.

2.2 Non-Interactive Zero Knowledge Arguments

Definition 2.4 (Non Interactive Zero Knowledge Argument). A non-interactive zero-knowledge
(NIZK) argument system Π for an NP relation R consists of three PPT algorithms (Gen,P,V) with the
following syntax:

• Gen(1λ)→crs : On input a security parameter λ, the Gen algorithm outputs a common reference string crs;
in the random oracle model, this algorithm may be skipped, since the crs can be generated by P and V by
querying the random oracle on some fixed value.

• P(crs, x, w)→π : On input the common reference string crs, a statement x ∈ {0, 1}poly(λ), a witness w such
that (x,w) ∈ R, the prover P outputs a proof π.

• V(crs, x, π)→accept/reject : On input a common reference string crs, a statement x ∈ {0, 1}poly(λ) and a
proof π, the verifier V outputs accept or reject.

The argument system Π should satisfy the following properties.

• Completeness: For any (x,w) ∈ R, we have

Pr[crs← Gen(1λ), π ← P(crs, x, w) : V(crs, x, π) = 1] ≥ 1− λ−ω(1).

• Soundness: For any x ∈ {0, 1}poly(λ)
and any 2o(λ) time prover P∗, we have

Pr[crs← Gen(1λ), π ← P∗(crs, x) : V(crs, x, π) = 1] ≤ 2−Ω(λ).

• Honest Verifier Zero Knowledge: There is a PPT simulator Sim such that, for all statements x for
which there exists w with R(x,w) = 1, for any 2o(λ) time adversary A, we have:∣∣ Pr

[
1← A

(
(crs, x, π) : crs← Gen(1λ), π ← P(crs, x, w)

) ]
−Pr

[
1← A

(
(crs, x, π) : (crs, π)← Sim(1λ, x)

) ] ∣∣ ≤ 2−Ω(λ).

Definition 2.5 (Argument of Knowledge). The argument system (Gen,P,V) is called an argument of
knowledge for the relation R if it is complete and knowledge-sound as defined below.

• Knowledge Sound: For any 2o(λ) time prover P∗, there exists an extractor E with expected run-time
polynomial in λ and the run-time of P∗, such that for all PPT adversaries A

Pr


crs← Gen(1λ),

(x, s)← A(crs),
π∗ ← P∗(crs, x, s),
b← V(crs, x, π∗),

w ← EP∗(crs,x,s)(crs, x, π∗, b)

∣∣∣∣∣∣∣∣∣∣
(x,w) 6∈ R ∧ b = accept

 ≤ 2−Ω(λ)

If an argument of knowledge is also non-interactive zero knowledge, it is termed as a non-interactive zero
knowledge argument of knowledge, abbreviated as NIZKAoK.
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2.3 Lattices and Discrete Gaussians

An m-dimensional integral lattice Λ is a full-rank subgroup of Zm. Among these lattices are the “q-ary”
lattices defined as follows: for any integer q ≥ 2 and any A ∈ Zn×mq , we define

Λ⊥q (A) :=
{
e ∈ Zm : A · e = 0 mod q

}
.

For a vector u ∈ Znq , we define the following coset of Λ⊥q (A):

Λu
q (A) :=

{
e ∈ Zm : A · e = u mod q

}
.

We have Λu
q (A) = Λ⊥q (A) + t for any t such that A · t = u mod q.

For any vector c ∈ Rn and any real σ > 0, the (spherical) Gaussian function with standard deviation
parameter σ and center c is defined as:

∀x ∈ Rn, ρσ,c(x) = exp

(
−π‖x− c‖2

σ2

)
.

The Gaussian distribution is Dσ,c(x) = ρσ,c(x)/σn.

The (spherical) discrete Gaussian distribution over a lattice Λ with standard deviation parameter σ > 0
and center parameter c is defined as:

∀x ∈ Λ, DΛ,σ,c =
ρσ,c(x)

ρσ,c(Λ)
,

where ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x). When c = 0, we omit the subscript c.

2.4 Lattice Trapdoors

We will use algorithms for generating a random lattice with a trapdoor, and for sampling short vectors in a
lattice coset. The first algorithm is derived from [3, 39, 58], whereas the second is derived from [48, 39, 24].

Lemma 2.6. Let q, n,m be positive integers with q ≥ 2 and m ≥ 6n log2 q.

There is a PPT algorithm TrapGen(q, n,m) that with probability 1 − 2−Ω(n) outputs a pair (A,T) ∈
Zn×mq × Zm×m such that A is within 2−Ω(n) statistical distance to uniform in Zn×mq and T is a basis

for Λ⊥q (A).

There is a PPT algorithm SamplePre(A,T,u, σ), which takes as input the above pair (A,T), a vector
u ∈ Znq and a sufficiently large σ = Ω(

√
n log q logm) and outputs a vector e from DΛu

q (A),σ. Further, with

probability 2−Ω(n), we have ‖e‖ ≤ σ
√
m.

We assume that the SamplePre algorithm provides the same output when invoked with the same input – this
can be ensured by generating the randomness used by the algorithm using a PRF (with the given input as
argument).

2.5 Hardness Assumptions

We will need the Learning With Errors (LWE) problem, which is known to be at least as hard as certain
standard lattice problems in the worst case [66, 24] when it is appropriately parameterized.

Definition 2.7 (Learning With Errors (LWE)). Let q, n,m, α be functions of a parameter λ. For a
secret s ∈ Znq , the distribution Aq,n,α,s over Znq × Zq is obtained by sampling a←Znq and an e←DZ,αq, and
returning (a, 〈a, s〉+ e) ∈ Zn+1

q . The Learning With Errors problem LWEq,n,m,α is as follows: For s←Znq , the
goal is to distinguish between the distributions:

D0(s) := U(Zm×(n+1)
q ) and D1(s) := (Aq,n,α,s)

m.
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We say that a 2o(λ)-time algorithm A solves LWEq,n,m,α if it distinguishes D0(s) and D1(s) with 2−ω(λ)

advantage (over the random coins of A and the randomness of the samples), with 2−ω(λ) probability over the
randomness of s.

Definition 2.8 (Short Integer Solution (SIS)). Let q, n,m, β be functions of a parameter λ. An instance
of the SISq,n,m,β problem is a matrix A←Zn×mq . A solution to the problem is a nonzero vector v ∈ Zm such
that ‖v‖ ≤ β and A · v = 0 mod q.

Like LWE, the SIS problem is known to be at least as hard as certain lattice problems in the worst
case [2, 59, 39], when it is appropriately parameterized. The same holds for the inhomogeneous version of the
SIS problem stated below.

Definition 2.9 (Inhomogeneous Short Integer Solution (ISIS)). Let q, n,m, β be functions of a
parameter λ. An instance of the ISISq,n,m,β problem is a matrix A←Zn×mq and a vector t←Znq . A solution to
the problem is a vector v ∈ Zm such that ‖v‖ ≤ β and A · v = t mod q.

2.6 Other Useful Lemmas

Lemma 2.10 (Leftover Hash Lemma). Let H = {h : X→Y} be a 2-universal hash function family. Then
for any random variable X ∈ X , for ε > 0 such that log |Y| ≤ H∞(X)− 2 log(1/ε), the distributions

(h, h(X)) and (h,U(Y))

are within statistical distance ε.

Further, the family {A ∈ Zn×mq : r 7→ Ar} is 2-universal for any prime q.

The following lemma is adapted from [52], which uses a different Gaussian normalization. In our uses of
the third item, for simplicity, we will set k =

√
2/π, for which the probability upper bound is ≤ 2−m.

Lemma 2.11 (Adapted from [52, Lemma 4.4]).

1. For any k > 0, Pr[|z| > kσ; z←DZ,σ] ≤ 2 exp(−πk2).
2. For any σ ≥ 3, H∞(DZm,σ) ≥ m.
3. For any k > 1/

√
2π, Pr[‖z‖ > kσ

√
2πm; z←DZm,σ] < (k

√
2π)m exp(m2 (1− 2πk2)).

3 Starting Point: Instantiating Fischlin’s Blind Signature

A simple way to obtain a two-round blind signature from lattices is to instantiate Fischlin’s construction [34].

3.1 Construction

The construction uses the following building blocks:

1. A hash function H : {0, 1}∗ → Znq that will be modeled as random oracle in the unforgeability proof.
2. A CPA-secure PKE scheme PKE that is perfectly correct.
3. A NIZKAoK for the statement of Equation (3.1) (see Figure 1).

The construction is provided in Figure 1. The parameters q, n,m, σ are set such that n = Ω(λ), Lemma 2.6 is
applicable, and SISq,m,n,2β is hard with β = σ

√
m. The completeness of the scheme follows from the choice

of β (using the Gaussian tail bound from Lemma 2.11) and the completeness of the NIZKAoK.

Note that Steps 1 and 2 of the signing algorithm can be implemented quite efficiently. Step 3 is much
more costly and results in a large signature bit-size. This is because the statement of Equation (3.1) involves
the hash function H (in particular, the input of H must be kept secret). Note that we make a non-black-box
use of H in the scheme, but require it to be modeled as a random oracle in the unforgeability proof.
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Setup. Gen(1λ): Upon input the security parameter λ, define n,m, q, σ, β = σ
√
m as functions of λ such that

SISq,n,m,2β is hard and the scheme is both efficient and complete; then do the following:
• Run (PKE.pk,PKE.sk)←PKE.KeyGen(1λ) and discard PKE.sk.
• Compute (C,TC)← TrapGen(n,m, q).
• Output BSig.sk = TC, BSig.vk = (C,PKE.pk).

Signing. 〈S(BSig.sk),U(BSig.vk, µ)〉:
1. User: Given the key BSig.vk and a message µ, user U does the following:

• It samples PKE.Enc randomness r and computes ct = PKE.Enc(PKE.pk, µ; r).
• It sends ct to the signer.

2. Signer: Upon receiving ct, signer S does the following:
• It computes H(ct) and samples y←SamplePre(C,TC, H(ct), σ); we have that y is short and Cy = H(ct).
• It sends y to the user.

3. User: Upon receiving y, user U does the following:
• It verifies that ‖y‖ ≤ β and Cy = H(ct) and aborts if this fails.
• It generates a NIZKAoK π for following statement: Given BSig.vk = (C,PKE.pk) and µ, there exists r and

a vector y such that
‖y‖ ≤ β ∧ Cy = H(Enc(PKE.pk, µ; r)). (3.1)

• The signature is π.

Verifying. The verifier accepts if the proof π is valid, and rejects if it is not.

Fig. 1 Adaptation of Fischlin’s Blind Signature.

3.2 Security

We show that the construction satisfies one more unforgeability and blindness.

Theorem 3.1. Assume that SISq,n,m,2β is hard and the NIZKAoK is knowledge sound. Then the blind
signature scheme in Figure 1 is one more unforgeable in the random oracle model.

Proof. We argue one more unforgeability using the following hybrids.

Hybrid0: This is the genuine one more unforgeability experiment.
Hybrid1: In this hybrid, the challenger (which plays the role of the signer) does not discard the decryption

key PKE.sk. For every sign query cj , it uses PKE.sk to decrypt cj into a plaintext µj (which can be ⊥ in
case decryption fails). It stores the µj ’s.

Hybrid2: The difference between this hybrid and the previous one is in how the hash and sign queries
are answered. On a fresh input c for a hash query, the challenger first samples y←DZm,σ and returns
H(c) = Cy. To answer a signing query for an input c, the challenger returns the corresponding y that it
must have sampled while answering the hash query for c. If the sign query is made before the corresponding
hash query, then the challenger first sets the hash value as above and then returns the corresponding y.

Indistinguishability of hybrids

1. The differences between Hybrid0 and Hybrid1 are only concerning the inner computations of the challenger
and not its interactions with the adversary. Hence, the two hybrids are identical in the view of the
adversary.

2. By Lemma 2.6 and 2.10, the views of the adversary in Hybrid1 and Hybrid2 are within statistical
distance (QS +QH) · 2−Ω(λ) from one another, where QS is the number of signing queries and QH is the
number of hash queries1.

1 We note here that SamplePre is assumed to be deterministic (see Section 2.4), without which the claim would not
be true.
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Assume now that the adversary succeeds in Hybrid2 with probability ε. When it succeeds, it generates
distinct messages (µi)i≤QS+1 and corresponding signatures, i.e., proofs (πi)i≤QS+1 for the statement of
Equation (3.1), such that all these proofs are accepted. As the adversary makes at most QS sign queries, at
least one of these µi’s cannot be part of the µj ’s stored by the challenger: let µ? be this message and π? be
the associated proof.

Using the knowledge soundness of the NIZKAoK on π?, the challenger extracts a witness (r?,y?) such that
‖y?‖ ≤ β and Cy? = H(ct?) with ct? = Enc(PKE.pk, µ?; r?). By perfect correctness of PKE, the ciphertext
ct? decrypts to µ?. By definition, the message µ? cannot have been queried for a signature. However, it
must have been queried for a hash, as otherwise the equality Cy? = H(ct?) would hold with probability at
most q−n. This implies that the challenger has previously sampled a vector y←DZm,σ such that Cy = H(ct?).
By the Gaussian tail bound (Lemma 2.11), we have ‖y‖ ≤ β = σ

√
m and the probability that y = y?

is 2−Ω(λ). We conclude that y − y? is non-zero, has norm ≤ 2β and satisfies C(y − y?) = 0, providing a
solution to the SISq,n,m,2β instance C.

Theorem 3.2. Assume that PKE is IND-CPA secure and the NIZKAoK is zero-knowledge. Then the blind
signature scheme in Figure 1 satisfies honest signer blindness.

Proof. We argue blindness using the following hybrids.

Hybrid0: This is the genuine honest signer blindness experiment.
Hybrid1: In this hybrid, the proofs πb and πb are replaced with simulated proofs.
Hybrid2: In this hybrid, the ciphertexts ctb and ctb are changed to independent encryptions of 0.

Indistinguishability of hybrids.

1. Hybrid0 and Hybrid1 are indistinguishable in the view of the adversary, because of the zero-knowledge
property of the NIZKAoK.

2. Hybrid1 and Hybrid2 are indistinguishable in the view of the adversary, because of the IND-CPA security
of PKE.

In Hybrid2, the distinguishing advantage of the adversary is 0, because its views for b = 0 and b = 1 are
statistically identical.

Full-Fledged Blindness. Note that the scheme as stated may not satisfy full-fledged blindness. In particular, if
the malicious signer does not discard PKE.sk in the setup phase, it could use it to decrypt the ciphertexts
in the challenge phase and break blindness. However, the security proof above can be extended to handle
full-fledged blindness if we can ensure that PKE.pk has been honestly generated by the adversarial signer,
without a corresponding decryption key. For example, if PKE.pk is computationally indistinguishable from
uniform, then we could replace PKE.pk in the scheme by the output of another hash function H ′ modeled
as a random oracle, on an arbitrary public input. Since the secret key must anyway be discarded in the
construction, setting the public key as the output of the random oracle ensures that the adversarial signer
cannot know the corresponding secret key. In the (full fledged blindness) security proof, we would then
introduce a very first game in which the output of H ′ is replaced by a properly generated PKE.pk. Note that
a maliciously generated C has no impact on blindness since it is not involved in the user’s message to the
signer.

3.3 Efficiency Estimate

We consider the following instantiation of the building blocks.

• For PKE, we can take any lattice-based public-key encryption scheme. It is only required to be IND-CPA,
but it must be perfectly correct. The latter property can typically be guaranteed by tail-cutting error
distributions and increasing the working modulus sufficiently. Also, lattice-based encryption schemes
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typically typically have public keys that are computationally indistinguishable from uniform, as required
for the full fledged blindness adaptation described above. For example, one could use a variant of the
NewHope scheme [7], modified to provide perfect correctness. It is expected that ciphertexts will be of
bitlengths below a few KB.

• For the underlying signature scheme, we recommend using the Falcon scheme [35], which is an efficient
instantiation of the TrapGen-SamplePre framework from [39]. With this choice, the first transcript t will
have size below 2KB and the second transcript will have size below 1KB. Also, that makes the signer
particularly efficient – for instance, using Falcon [35], signing time is in the range 0.15− 0.3 ms depending
on choice of parameters.

• As the hash function is modeled as a random oracle in the unforgeability proof, one could use SHA-3-256.
With the above choices for the public-key encryption and signature schemes, one may need more than 15
rounds for reading the input and a similar number to write the output.

• Unfortunately, as the statement of Equation (3.1) involves a hash function H that is modeled as a random
oracle in the unforgeability proof, it seems we are bound to use an all-purpose NIZKAoK. For example, one
could use an instantiation of Aurora [15]. Estimating a precise cost is difficult, but we do not expect a
proof of size below 100KB. We also do not expect the prover runtime to be below 1 hour, whereas verifier
runtime could be significantly lower. It could be beneficial to use hash functions designed to be compatible
with all-purpose NIZKAoK, such as [8, 40].

4 Two Round Blind Signature from One-More-ISIS

In this section, we describe a significantly more practical scheme, under a new assumption.

4.1 The One-More-ISIS Assumption

We first introduce the one-more-ISIS hardness assumption. As it is a new assumption, we provide a detailed
assessment of potential attacks, in Subsection 4.5.

Informally, the one-more-ISIS assumption states that for any polynomially bounded `, it is difficult to
forge `+ 1 GPV signatures [39], even when given access to up to ` inversions of arbitrary syndromes. We
stress that these are not signature queries, as a query for a message µ corresponds to a uniformly distributed
syndrome H(µ) (modelling H by a random oracle), whereas here the attacker is allowed to make inversion
queries for arbitrary syndromes. As a result, one-more-ISIS could possibly be easier to solve than it is to break
the chosen-message security of the GPV signature scheme.

Definition 4.1. Let q, n,m, σ, β be functions of security parameter λ. The one-more-ISISq,n,m,σ,β assumption
is defined using the following experiment.

1. The challenger C uniformly samples a matrix C ∈ Zn×mq and sends C to adversary A.

2. The adversary adaptively makes queries of the following types to the challenger, in any order.

• Syndrome queries. The adversary A requests C for a challenge vector, to which C replies with a
uniformly sampled vector t← Znq . We denote the set of received vectors by S.

• Preimage queries. The adversary A queries a vector t′ ∈ Znq , to which C replies with a short vector
y′ ← DZm,σ such that Cy′ = t′. We denote by ` the total number of preimage queries.

3. In the end, the adversary A outputs `+ 1 pairs of the form {(yj , tj)}j∈[`+1].

4. The adversary wins if Cyj = tj, ‖yj‖ ≤ β and tj ∈ S for all j ∈ [`+ 1].

The one-more-ISISq,n,m,σ,β assumption states that for every adversary A running in time 2o(λ) making at
most λO(1) preimage queries and 2o(λ) syndrome queries, the probability (over the randomness of A and C)
that A wins is 2−Ω(λ).
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The definition is reminiscent to the chosen target version of the one-more-RSA inversion problem from [14].
We could define a variant of one-more-ISIS inspired from the known target version of the one-more-RSA
inversion problem from [14], in which the set S is restricted to be of size `+ 1. The choice (chosen target) of
formulation made in Definition 4.1 is driven by the security proof of the blind signature scheme. In the RSA
setting, the chosen and known target versions reduce to one another, but this seems difficult to adapt to the
ISIS setting.

4.2 Construction

The construction uses the following building blocks:

1. A hash function H : {0, 1}∗ → Znq that will be modeled as random oracle in the unforgeability proof.
2. A NIZK for the statement of Equation (4.1) (see Figure 2).
3. A CPA-secure PKE scheme PKE that is perfectly correct.

The construction is provided in Figure 2. The parameters q, n,m, σ are set such that Lemma 2.6 is applicable,
the distribution of Ax is close to uniform at Step 1 of the signing algorithm (using Lemmas 2.10 and 2.11
with standard deviation parameter σ/m = Ω(1)), and one-more-ISISq,m,n,σ,2β is hard with β = σ

√
m.

Completeness We make the following observations to argue completeness. From the correctness of SamplePre,
the vector y is small and satisfies Cy = t, where t = Ax+H(µ). This gives us Cy−Ax = H(µ). Furthermore,
the vector x is small by design and ct = PKE.Enc(PKE.pk,x‖y; r) by construction. Hence, the proof π for
Equation (4.1) verifies and the user accepts the proof because of the completeness of NIZK.

We now make a few remarks about the construction. Observe that we choose x to have norm at most
β/m, which is a factor m smaller than that of y. This is because in the security proof, we will construct
solutions to the one-more-ISISq,n,m,σ,2β problem as y −Rx (see Step 5 of the unforgeability proof), where
R← {0, 1}m×m. Thus, choosing ‖x‖ ≤ β/m and ‖y‖ ≤ β allows us to bound the norm of the one-more-ISIS
solution by 2β as desired. Note that by increasing the ratio between the norms of x and y further, one can
decrease the quantity 2β to a value that is arbitrarily close to β (hence possibly weakening the hardness
assumption). Another important component is the inclusion of ciphertext ct = PKE.Enc(PKE.pk,x‖y; r) in
the signature. It enables to circumvent rewinding in the extraction of all the witnesses (xi‖yi) of the QS + 1
message-signature pairs output by the adversary, in the proof of unforgeability (see Step 5). Without it, the
reduction may need to rewind QS + 1 times to extract all the pairs (xi,yi), to construct the one-more-ISIS
solution, leading to a security loss exponential in QS .

4.3 Security

We show that our construction satisfies one more unforgeability and blindness.

Theorem 4.2. Assume that the one-more-ISISq,n,m,σ,2β assumption holds and that NIZK is sound. Then the
blind signature scheme in Figure 2 is one more unforgeable in the random oracle model.

Proof. We construct the proof using the following hybrids.

Hybrid0: This is the genuine one more unforgeability experiment.
Hybrid1 : In this hybrid, the challenger does not discard the decryption key PKE.sk. For every signature σj =

(πj , ctj) output by the adversary (for j ∈ [`+ 1]), it uses PKE.sk to decrypt ctj into a plaintext (xj‖yj)
(which can be ⊥ in case decryption fails). It stores the (xj‖yj)’s.

Hybrid2 : This hybrid differs from the previous one in the way matrix A is chosen. The challenger first
samples a binary matrix R← {0, 1}m×m and sets A = CR.

Indistinguishability of hybrids
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Setup. Gen(1λ): Upon input the security parameter λ, define n,m, q, σ, β = σ
√
m as functions of λ such that

one-more-ISISq,n,m,σ,2β is hard and the scheme is both efficient and complete; then do the following:
• Run (PKE.pk,PKE.sk)←PKE.KeyGen(1λ) and discard PKE.sk.
• Compute (C,TC)← TrapGen(n,m, q).
• Sample A← Zn×mq .
• Output BSig.sk = TC, BSig.vk = (C,A,PKE.pk).

Signing. 〈S(BSig.sk),U(BSig.vk, µ)〉:
1. User: Given the key BSig.vk and a message µ, user U does the following:

• It samples x← DZm,σ/m.
• It computes t = Ax +H(µ).
• It sends t to the signer.

2. Signer: Upon receiving t, signer S does the following:
• It samples a short vector y←SamplePre(C,TC, t, σ); we have Cy = t.
• It sends y to the user.

3. User: Upon receiving y, user U does the following:
• It verifies that ‖y‖ ≤ β and satisfies Cy = t.
• It samples PKE.Enc randomness r and computes

ct = PKE.Enc(PKE.pk,x‖y; r).

• It generates a NIZK π for following statement: Given BSig.vk = (C,A,PKE.pk), ct and µ, there exists r
and vectors x,y such that

‖x‖ ≤ β/m ∧ ‖y‖ ≤ β ∧ Cy −Ax = H(µ) ∧ ct = PKE.Enc(PKE.pk,x‖y; r). (4.1)

• The signature is (π, ct).

Verifying. The verifier accepts if the proof π is valid, and rejects if it is not.

Fig. 2 Blind Signature from one-more-ISIS.

1. The differences between Hybrid0 and Hybrid1 are only concerning the inner computations of the challenger
and not its interactions with the adversary. Hence, the two hybrids are identical in the view of the
adversary.

2. The only difference between Hybrid1 and Hybrid2 is that in the latter A is computed as CR, where R
is a uniform binary matrix, instead of sampling it uniformly randomly from Zn×mq . The two hybrids

are indistinguishable because Lemma 2.10 implies that (C,A) is within statistical distance 2−Ω(λ) from
(C,CR).

We conclude with the following claim.

Claim. Assume that the NIZK argument system is sound and PKE is perfectly correct. Then if there is an
adversary A that makes at most QS signing queries and succeeds in generating QS + 1 signatures in Hybrid2,
then there exists a one-more-ISIS adversary B with QS preimage queries.

Proof. The reduction B is as follows.

1. Upon being challenged by the one-more-ISIS challenger C, with matrix C, algorithm B does the following:

• It samples a uniform binary matrix R and computes A = CR.
• It samples (PKE.pk,PKE.sk)← PKE.KeyGen(1λ).
• It invokes A with (A,C,PKE.pk) as verification key.

2. In response to each (fresh) hash query on input µ from A, algorithm B makes a syndrome query to C.
Challenger C returns a uniform vector t ∈ Znq , which B forwards to A as H(µ).

14



3. To answer a signing query on input t′, algorithm B forwards t′ to C as a preimage query. Challenger C
returns a short vector y′, such that Cy′ = t′. Algorithm B forwards y′ to A.

4. Eventually, adversary A outputs QS + 1 message-signature pairs {µj , (πj , ctj)}j∈[QS+1].
5. If the πj ’s pass verification, then algorithm B decrypts the ctj ’s and obtains QS + 1 corresponding

pairs of short vectors (xj ,yj). If all µj ’s have been hash-queried by A and the vectors (xj ,yj) satisfy
Equation (4.1) for all j ∈ [QS + 1], then B outputs {(yj −Rxj , H(µj))}j∈[QS+1]. If any decryption fails
or any of the above conditions are not satisfied, B aborts.

First note that by the perfect correctness of PKE and the soundness of NIZK, the probability that a
decryption fails is ≤ (QS + 1) · 2−Ω(λ). Next, we claim that for each µj , adversary A must have issued a
corresponding hash query to B. This is because otherwise, there is only a q−n probability that a fresh H(µj)
is equal to Cyj −Axj . Additionally, by the soundness of NIZK, it holds that for all j ∈ [QS + 1]:

‖xj‖ ≤ β/m ∧ ‖yj‖ ≤ β ∧ Cyj −Axj = H(µj).

Observe that because of the way hash queries are answered by B, the value H(µj) is one of the syndromes
returned by C. Define tj = H(µj). Then we get, for all j ∈ [QS + 1],

tj = Cyj −Axj = Cyj −CRxj = C(yj −Rxj).

Since R is a binary matrix, we have ‖yj −Rxj‖ ≤ 2β for all j.

Note that B issues one preimage query for each signing query from A. Since A can issue at most QS
signing queries, algorithm B also issues at most QS preimage queries to C. Hence B is a valid adversary in
the one-more-ISIS game.

Next we show that the construction satisfies honest signer blindness.

Theorem 4.3. Assume that PKE is IND-CPA secure and the NIZK is zero-knowledge. Then the blind signature
in Figure 2 satisfies honest signer blindness.

Proof. We argue blindness using following hybrids.

Hybrid0 : This is the genuine honest signer blindness experiment.
Hybrid1 : This hybrid differs from the previous one in the way the proofs π0 and π1 are computed: instead of

genuinely computing the NIZKs, the challenger simulates them without using the witnesses.
Hybrid2 : This hybrid differs from the previous hybrid in that both ct0 and ct1 encrypt 0 instead of (x0‖y0)

and (x1‖y1), respectively.
Hybrid3 : This hybrid differs from the previous hybrid in the way the challenger computes t0 and t1. Instead

of sampling x0 (resp. x1) and computing t0 = Ax0 +H(µb) (resp. t1 = Ax1 +H(µb̄)), it samples u0

(resp. u1) uniformly and sets t0 = u0 +H(µb) (resp. t1 = u1 +H(µb̄)).

Indistinguishability of hybrids

1. The only difference between Hybrid0 and Hybrid1 is in the way π0 and π1 are computed. The two hybrids
are indistinguishable because of the zero-knowledge property of the NIZK.

2. The only difference between Hybrid1 and Hybrid2 is in the messages being encrypted by ct0 and ct1. The
two hybrids are indistinguishable because of the IND-CPA security of PKE.

3. The only difference between Hybrid2 and Hybrid3 is in the choice of the masking term for H(µ). Since the
vectors x0 and x1 are only used in the computations of the vectors t0 and t1, we have by the leftover
hash lemma (Lemma 2.10), that Ax0 and Ax1 are statistically indistinguishable from uniform u0 and
u1. Hence, Hybrid2 and Hybrid3 are indistinguishable.

Finally, in Hybrid3, the adversary S∗ has zero advantage in guessing the bit b since it is information theoretically
hidden.
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Full-Fledged Blindness. Similarly to the construction in Section 3, the security proof above can be extended
to handle full-fledged blindness if we can ensure that PKE.pk has been honestly generated by the adversarial
signer, without a corresponding decryption key and that the matrix A is uniform. By choosing a suitable
encryption scheme so that PKE.pk is computationally indistinguishable to uniform, one can set PKE.pk as
the output of a random oracle on a publicly-known value. To ensure A is uniform, it can similarly be set as
the output of a random oracle on a publicly known value.

4.4 Concrete Instantiation

The goal of this section is to describe a concrete instantiation of the scheme from Figure 2, and analyze
the size of the resulting signature. The reader can verify the claimed security estimates as well as the sizes
using the script available at https://gitlab.com/ElenaKirshanova/onemoresis_estimates. We use the
following building blocks:

– For the hash function, we use SHA-3-256;
– For the trapdoor generation TrapGen and preimage sampling SamplePre algorithms, we follow Falcon-

512 [35];
– For the IND-CPA secure PKE, we use an adaptation of CRYSTALS-Kyber [10];
– For the NIZK scheme, we follow the protocol from [53, Figure 10]2.

We modify both the preimage sampling routine from Falcon-512 and the CRYSTALS-Kyber encryption
scheme to comply with the requirements of the zero-knowledge proof from [53]. Since it is the zero-knowledge
proof that makes most of the signature size as well as the cost to generate it, we are mainly interested in
making the generation of the proof π efficient, while potentially sacrificing the efficiency of the other routines.
Furthermore, we skip all the security proofs of the building blocks as our modifications do not impact the
underlying hardness assumptions. The reader may refer to the relevant references for these standard proofs.
Instead, we provide the script that estimates the concrete security of the building blocks, as well as the size
of the resulting signatures.

Trapdoor generation and preimage sampling. We instantiate Falcon-512 over the ring R512 = Z[x]/(x512 + 1),
where the computations are taken modulo prime qFalcon = 12301. It allows us to build our TrapGen algorithm
as [35, Algorithm 5] that generates an NTRU secret key as the trapdoor, and to use Klein’s sampler [48]
(also known as the GPV sampler [39]) for our SamplePre algorithm. Our modulus qFalcon slightly differs
from the one proposed in [35], since the zero-knowledge proof construction we use requires x128 + 1 to have
only few (2 in our case) factors modulo qFalcon. Note that our modulus is very close to Falcon’s (12289),
leading to minimal changes for the other scheme parameters and security. Also, this modulus change does not
significantly impact the efficiency of the Falcon-512 preimage sampler [35, Algorithm 10], as the modulus
plays a limited role in it. Oppositely, the change makes key generation and signature verification slower, as
the ring does not enjoy a natural Fourier transform anymore.

Eventually, the TrapGen routine generates an NTRU secret key f ,g ∈ R512, with coefficients of each
polynomial f and g taken from DZ,1.17

√
qFalcon/(2·512)

(see [35, Algorithm 5]), and builds up a short basis for the

corresponding NTRU lattice (as in [35, Algorithm 5]). This enables a SamplePre routine that, given on input t,

outputs a preimage y such that ‖y‖ < 1.1·
√

2 · 512·σFalcon, where σFalcon = 1
π

√
log(4·512·(1+128·264))

2 ·1.17·qFalcon

(see [35, Eq. (2.13-2.14)]). We perform rejection sampling to guarantee that y1 has infinity norm below
a prescribed bound, to allow for smaller parameters in the encryption scheme. For this instantiation, the
relation “Cy = t” from Figure 2 translates into

h · y1 + y2 = t, (4.2)

where h = g/f is the public key, y = [y1||y2] and y1,y2 ∈ R512.

2 Note that we use the version dated 2 March 2022.
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With all the above, we now have concrete values for the parameters n,m, q, β: n = 512, m = 1024,
q = qFalcon = 12301, β = 1.1 ·

√
2 · 512 · σFalcon. Going forward, the transcript of the blind signature scheme

will consist of t and y1 (note that y2 can be recovered as t− h · y1). Using the figures above, we obtain a
transcript size of 1.44KB.

We also modify the way we generate x and hence t. We sample a uniform h′ ∈ R512, choose x1,x2 ∈ R512

with coefficients bounded in `∞-norm and set

t = h′x1 + x2 +H(µ). (4.3)

In particular, we choose ‖(x1‖x2)‖∞ ≤ 2, and use the module-LWE assumption to argue the computational
indistinguishability of t from uniform (as opposed to a statistical argument as in the proof of Theorem 4.3).

Important for our construction is the ability to transform linear relations defined over the ring R512 to
linear relations defined over R128. Following [55, Section 2.8] we can map one linear relation from R512 to 4
linear relations from R128, thus Eq. (4.2) can be viewed as 4 relations over R128. This will become relevant
in the zero-knowledge proof.

IND-CPA secure PKE. We modify the CRYSTALS-Kyber encryption scheme as shown in Figure 3. We use
R128 = Z[x]/(x128 + 1) as underlying ring, by compatibility with the proof system (though we could have
kept Kyber’s Z[x]/(x256 + 1) and viewed it as an extension of R128). We let Sγ denote the set of elements
from R128 bounded by γ in the `∞-norm. The rank of the plaintext space (12) is 3 times the Falcon dimension,
as we will encrypt m = (y1‖x1‖x2): note that we do not encrypt y2 as it can be recovered from m and H(µ)
by using Eqs. (4.2) and (4.3). The `∞-norm bound on all small variables (τ = 3) and the module-LWE
rank (8) are set to obtain a sufficiently high hardness. In Figure 3, all computations are performed modulo a
prime qEnc.

Setup
• τ : `∞-norm bound on all short elements in the scheme
• qEnc: a prime modulus
• p < qEnc: a positive integer

KeyGen()
• Sample A1 ← U(R8×8

128 )
• Sample S1,S2 ← U(S12×8

τ )
• Compute A2 = S1 ·A1 + S2

• Set pk = (A1,A2) and sk = S1

Enc(pk = (A1,A2), m ∈ R12
128)

• Sample s, e1 ← Uniform(S8
τ ), and e2 ← Uniform(S12

τ )
• Compute c1 = A1 · s + e1

• Compute c2 = A2 · s + e2 + p ·m
• Return ct = (c1, c2)

Dec(sk = S1, c = (c1, c2))
• Compute t = c2 − S1 · c1
• Return (t− t mod p)/p

Fig. 3 Instantiation of PKE for Figure 2

For the decryption to be (perfectly) correct we require that

(I) ‖S1 · s + e2 − S2 · e1 + pm‖∞ < qEnc/2, so that c2 − S1 · c1 is not scrambled in the first step of the
decryption algorithm;

(II) ‖S1 · s + e2 − S2 · e1‖∞ < p/2, so that S1 · s + e2 − S2 · e1 is not scrambled in the second step of the
decryption algorithm.
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These requirements should hold for all S1,S2 sampled during key generation, and for all s, e1, e2,m as small
as guaranteed by the zero-knowledge proof. Note that the latter is more demanding than requesting it for
s, e1, e2,m as small as honestly generated, because the proof is for the `2-norm (rather than `∞-norm) and it
batches several norm bounds together to reduce the number of proved norm bounds, at the expense of a
constant factor increase in norm bound.

Furthermore, we set qEnc = 88407287, p = 49126, τ = 3. Note that qEnc = qFalcon · 7187: this is sufficiently
large for perfect correctness, chosen as a multiple of qFalcon to decrease the overall zero-knowledge modulus
(which should be chosen as a multiple of qEnc and qFalcon to simplify the linear relations to be proven), and
with a co-factor that is large enough to avoid too many soundness repetitions in the zero-knowledge proof.
With these parameters, the ciphertext occupies 8.25KB.

Zero-knowledge proof. We instantiate our zero-knowledge proof using [53, Figure 10]. We need to prove
knowledge of y = [y1||y2] and x = [x1||x2] with y1,y2,x1,x2 ∈ R512

∼= R4
128 with small norms, such that

(combining Eqs. (4.2) and (4.3)):

h · y1 − h′ · x1 + y2 − x2 = H(µ) mod qFalcon. (4.4)

We also need to prove the well-formedness of ct, i.e., the existence of s, e1 ∈ R8
128 and e2 ∈ R12

128 that are small
and satisfy the relations of the Enc algorithm from Figure 3 (modulo qEnc) for the message m = y1‖x1‖x2.

We commit to the vector [y1||y2||x1||x2||s||e1||e2], prove two linear relations involving this vector: the
one coming from Eq. (4.4) and the other from the encryption, and prove three `2-norm bounds:

(I) ‖y1||y2‖ ≤ β,
(II) ‖x1||x2‖ ≤

√
2 · 512 · 2,

(III) ‖s||e1||e2‖ ≤ τ
√

8 · 128 + 3 · 512.

We shall not repeat the steps of the zero-knowledge proof from [53], but instead make a guideline on how to
instantiate the protocol in [53, Figure 10]. The reader is advised to follow it using Table 1. Note that the two
linear relations we need to prove incur negligible additional cost in terms of size, see [53, Figure 4].

For concrete parameter selection, we refer the reader to Table 2. We make a few remarks on these choices.
First, we choose qzk to be a multiple of qEnc (which is already a multiple of qFalcon). In particular, we have
qzk = 124781 · 12301 · 7187. This allows us to reduce the number of statements to prove, see [53, Section 6.3].
With this choice we also ensure that the smallest divisor 7187 satisfies qλ > 2128, where λ is a parameter of
the proof whose role is to reduce the soundness error.

The parameters γ1, γ2, γe are rejection sampling parameters. They are set such the expected number of
rejections before producing a valid signature is small. Our choices are inspired from [53]. We also instantiate
the variables κ, l, η, ν as in [53].

The parameter m1 = 4 · 4 + 2 · 8 + 12 + 3 = 47 counts the length of the committed message as a vector
over R128 (adding 3 as we have three norm equations). The parameters n and m2 are chosen such that the
Module-SIS and Module-LWE problems that underlie the zero-knowledge protocol are sufficiently hard.

Following the compression technique of [30], we can reduce the proof size by cutting low-order bits of the
commitment. The variable D = 25 indicates how many low-order bits we cut.

With these parameters, the proof π has size 35.12KB, and the overall signature (including π and ct) has
size 43.37KB. (Recall the transcript has size 1.44KB.) This is for classical core-SVP hardness of 109 bits.
Below, we give precise figures for our security estimates.

Security. Let us summarize our security assumptions and their corresponding bit security levels. Our
estimations can be verified by running the provided python script.

1. The security of Falcon’s signature scheme relies on two assumptions:
(I) Key recovery security relies on the NTRU assumption (i.e., it is hard to recover f ,g from h = g/h).

The estimator from [31] states that this has core-SVP hardness of 135 bits.
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variable description instantiation

ρ # of quadratic eqs. 0

ρeval # of evaluations with const. coeff. 0 0

ve # exact norm proofs 3

vd # non-exact norm proofs 0

s1 committed message in the Ajtai part [y||x||s||e1||e2]

m committed message in the BDLOP part ∅
s [s1||m] [y||x||s||e1||e2]

E1 public matrix proving that ‖E1s− v1‖ ≤ β1
(

Id4 0 0 0 0 0 0
0 Id4 0 0 0 0 0

)
β1 upper bound on ‖E1s− v1‖ β

E2 public matrix proving that ‖E2s− v2‖ ≤ β2
(

0 0 Id4 0 0 0 0
0 0 0 Id4 0 0 0

)
β2 upper bound on ‖E2s− v2‖

√
2 · 512 · 2

E3 public matrix proving that ‖E3s− v3‖ ≤ β3
(

0 0 0 0 Id8 0 0
0 0 0 0 0 Id8 0
0 0 0 0 0 0 Id12

)
β3 upper bound on ‖E3s− v3‖ τ

√
8 · 128 + 3 · 512

v1, v2, v3 public vectors proving that ‖Eis− vi‖ ≤ βi 0 of appropriate dims.

‖x‖ norm of vectors of norms (β
(e)
i )2 − ‖Eis− vi‖2

√
3 · 128

p1, p2, p3 number of rows of E1, E2, E3 8, 8, 28

c(e) 128 ·
∑
i(pi + 1) 6016

α(e) upper bound on ‖E1s− v1‖ . . . ‖E3s− v3||x‖ 5840

Table 1 Instantiation of the protocol from [53, Figure 10]. The left-most column ‘variable’ and the middle
column ‘description’ refer to the notations from [53, Figure 10], the right-most column ‘instantiation’ refers
to our notations.

variable value variable value variable value

qzk 11031549679147 κ 2 n 11

l 2 λ 10 m1 47

γ1 11 η 72 m2 35

γ2 1.85 ν 1 ` 0

γe 3 D 25

Table 2 Concrete parameter selection for the zero-knowledge protocol from [53, Figure 10]. The columns
‘variable’ refer to the notations from [53].
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(II) Forgery security relies on Module-SIS hardness. To estimate it, we use the Dilithium script [30],
which states that this has core-SVP hardness of 121 bits.

2. Given h′, we argue that h′x1 + x2 hides x1,x2 under the Module-LWE assumption. Again, we use the
script from [30], which states that this has core-SVP hardness of 113 bits.

3. The security of the encryption scheme (for both the secret key and the ciphertext) relies on the Module-
LWE assumption. Here we reach core-SVP hardness of 115 bits.

4. The zero-knowledge proof relies on the Module-SIS and Module-LWE assumptions (technically, the
construction of [53] relies on the so-called Extended-Module-LWE, whose hardness is conjectured to be
the same as plain Module-LWE). For Module-SIS (resp. Module-LWE), we obtain 109 bits (resp. 118
bits) of core-SVP hardness.

5. Finally, we estimate the hardness of solving one-more-ISIS with the norm bound to be the norm of the
extracted solution. For this, we assume that h′ is set as x′1 · h + x′2 in the unforgeability proof instead
of “A = CR” (see the proof of Theorem 4.2), using the same Module-LWE assumption as we did to
argue computational indistinguishability from uniform of x1 · h′ + x2, i.e., with ‖x′1‖∞, ‖x′2‖∞ ≤ 2. The

extracted solution is (y1 − x1x
′
1‖y2 − x1x

′
2 − x2), which has `2-norm ≤

√
β2 + 24 · 512 · 4 + 22 · 512 · 2.

Having h, the hardness of finding a preimage of such norm is again a Module-SIS instance, which we
estimate to be at 121 bits of core-SVP hardness. The one-more-ISIS attacks described in the next section
all have higher costs.

4.5 Security Analysis of One-More-SIS

The purpose of this section is to argue why we believe that the new computational problem we introduce,
one-more-ISIS, is hard. We did not succeed in obtaining a reduction from a well-studied problem to one-more-
ISIS, but we still expect that for the parameter ranges relevant to our constructions, this problem cannot be
solved by polynomial or even sub-exponential time attackers.

The hardness of the one-more-ISIS problem as stated in Definition 4.1 primarily depends on the precise
relation between β, the upper bound on the norm of the vectors yi’s the adversary must output, and the
dimensions m and n of the input matrix C. We also assume that σ – the standard deviation parameter of
the preimage queries – is of order Ω(

√
m), which what we would expect from an efficient sampler, e.g. [39].

Note that a significantly smaller standard deviation, e.g., of order O(1), would invalidate the hardness of the
one-more-ISIS assumption as extremely short y’s would enable an adversary to solve one-more-ISIS (see the
discussion below). In this section we make the hardness of the one-more-ISIS problem explicit by describing
the parameter regimes for which this problem can be solved in polynomial time, and for which, as far as we
know, the problem is exponentially hard. We consider two approaches to solve one-more-ISIS: combinatorial
attacks and lattice-based attacks.

Combinatorial attacks. We start by showing an elementary polynomial time algorithm that achieves β =
Θ(
√
mnσ) and requires (q · n) ISIS preimage oracle calls.

Consider the set of n-dimensional vectors A = {ei · a : i ∈ [n], a ∈ Zq}, where the ei’s are the canonical-
basis vectors. The set A is of size q · n. The adversary runs preimage queries for all vectors from A and
receives Gaussian vectors y′’s. Thanks to the Gaussian tail bound (see Lemma 2.11), we have ‖y′‖ ≤ 2

√
mσ

with probability greater than 1− 2−m for all y′’s. Any element from Znq , and thus the challenge t, can be
expressed as a sum of at most n vectors from A (one for each coordinate). The adversary then sums the
corresponding y′’s it received from the ISIS preimage oracle and obtains a new y such that Cy = t. The
resulting y is a valid one-more-ISIS solution for β = Θ(

√
nm · σ) with probability 1− 2−Ω(m).

The algorithm can be generalized to a larger set A. The generalization, presented in Algorithm 4, makes
the attack less efficient, but reduces the bound on β. It is parametrized by Q, the upper bound on the number
of the preimage queries the attacker can issue. This is also the assumed upper bound on the memory capacity
of the attacker, since the attack requires that all the responses are stored.

The correctness of Algorithm 4 is direct: any t ∈ Znq can be efficiently written as a sum of at most dn/we
elements from the set A constructed on Step 2. Note that |A| ≤ n2qw: by definition of w, the algorithm
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Input: The ISIS preimage oracle OISIS(·), a number Q of queries to OISIS, and t ∈ Znq .
Output: A short vector y ∈ Zmq such that Cy = t mod q.

1. Set w = b log(Q/n
2)

log q
c.

2. Let A =

{∑
w·(i−1)<j
≤max{w·i,n}

ej · aj : ∀i ∈
[⌈

n
w

⌉]
, aj ∈ Zq

}
.

3. For all a ∈ A, set T [a] = OISIS(a).
4. Write t = ai1 + . . .+ aidn/we .
5. Output y = T [ai1 ] + . . .+ T [aidn/we ].

Fig. 4 Combinatorial Attack on one-more-ISIS.

indeed makes ≤ Q queries. Finally, we can bound the norm of the output as ‖y‖ < 2
√
b nw c ·m · σ =

Θ(
√

1 + n log q
log(Q/n2) ·

√
m · σ), with probability greater than 1 − 2−Ω(m). The algorithm is correct for any

1 ≤ w ≤ n computed on Step 1, providing a trade-off between the runtime (which is essentially the number Q
of preimage queries) and the bound on β.

Lattice-based attacks. A strategy to attack one-more-ISIS is to use a discrete Gaussian sampler algorithm [48, 39].
This allows to solve one-more-ISIS in poly(m) time with β = Ω(mσ) using O(m2) preimage queries. More
precisely, the attacker does the following:

1. It queries the preimage ISIS oracle Θ(m2) times for t = 0. From the oracle’s answers, it computes a basis
B for Λ⊥q (C) = {y ∈ Zm : Cy = 0 mod q}.

2. Given input t ∈ Znq , it runs a Gaussian sampler [48, 39] instantiated with the basis B and the syndrome
vector t (as in Lemma 2.6). It outputs what the sampler replies.

Let us make several remarks about the above procedure. First, thanks to standard properties of lattice
Gaussian distributions, it indeed suffices to query the ISIS preimage oracle Θ(m2) times in Step 1, in order to
obtain a basis of Λ⊥q (C) with at least constant probability bounded away from 0 (see [66, Corollary 3.16]).
Second, the Gaussian sampler from [24] produces samples from any coset of the lattice with standard deviation
σ ≥ ‖B‖

√
logm, where ‖B‖ is the norm of the longest vector in B. Since ‖B‖ ≤ 2

√
m ·σ (with overwhelming

probability), the sampler will produce valid one-more-ISIS solutions for β = O(mσ
√

logm) in poly(m) time
using Θ(m2) calls to the ISIS preimage oracle.

Observing that one-more-ISIS only cares about the norm of the returned y but not about its actual
distribution, we can slightly improve the bound on β by getting rid of the factor

√
logm. For this purpose, we

replace the Gaussian Sampling procedure by Babai’s Nearest Plane algorithm [11]. This algorithm receives
on input a lattice basis B ∈ Zm×m and a target vector z ∈ Zm, and outputs a lattice vector v such
that ‖v − z‖ ≤ 1

2 (
∑
i∈[m]‖bi‖2)1/2. In our case, the right-hand side is bounded from above by mσ with

probability greater than 1− 2−Ω(m). We run Babai’s Nearest Plane algorithm on input (B, z), where z ∈ Zm
is an arbitrary vector that satisfies Cz = t mod q. Let v = Bcv be the output and let e = v − z. Then we
have t = Cz = C ·Bcv −Ce = −Ce mod q with e being a valid one-more-ISIS solution for β = Θ(mσ).

We discussed some approaches for analyzing the one-more-ISIS problem. Can we do better? A strategy
to improve the above bounds on β is to obtain basis of the lattice Λ⊥q (C) that is shorter than what the
ISIS preimage oracle offers. We can go as far as the Minkowski’s bound suggests, i.e., we can achieve
‖B‖ = λ1(Λ⊥q (C)) ≤ minm′≤m

√
m′ · qn/m′ (here we assume that all lattice minima have essentially the same

norms, which is expected to be the case when C is sampled uniformly). The latter bound is O(
√
n ln q)

when m = Ω(n log q). Vectors of such a small norm can be found by calling shortest vector problem solvers
on Λ⊥q (C). The fastest known such algorithms run in time 2O(m) (see, e.g., [13]). This exponential time

attack enables us to solve one-more-ISIS for β = Θ(
√
mn ln q) by invoking Babai’s Nearest Plane algorithm

on the obtained short basis. Note that the ISIS preimage oracle is only used to obtain a basis of Λ⊥q (C). A

21



trade-off between the quality of β and the runtime is possible: a b-BKZ reduction [42, 68] yields a basis B
with ‖B‖ ≤ bO(m/b) · λ1(Λ⊥q (C)) in time 2O(b), thus leading to β = bO(m/b) ·

√
mn ln q). Note that in order to

outperform the bound on β we have in the polynomial time regime, the BKZ parameter b has to be of order
Θ(m/ log σ), when m = Θ(n log q).

To summarize, we have the run-times for solving one-more-ISIS:

• there exists a combinatorial algorithm that achieves

β = Θ(
√

1 + n log q
log(Q/n2) ·

√
mσ) in time Q and using Q ≥ nq preimage queries;

• there exists a lattice-based algorithm that achieves β = Θ(mσ) in polynomial time using O(m2) preimage
queries; except for very few queries, it is outperformed by the combinatorial algorithm;

• there exists a lattice-based algorithm that achieves

β = 2O( m log log T
log T )√mn log q) in time T without any preimage query (except to obtain a basis of Λ⊥q (C)).

Open questions and potential directions. Let us now formulate some cryptanalytic questions that the new
one-more-ISIS hardness assumptions raises.

I. Improving algorithms for the shortest vector problem with preimage queries. One might
wonder whether we can accelerate existing shortest vector solvers, such as sieving algorithms [4, 60, 13], once
we already have a somewhat short basis. Just from the nature of sieving algorithms it does not seem to be the
case: even to obtain a small constant reduction in the norm of the current shortest vector, sieving generates
and processes 2O(m) vectors which already constitutes its asymptotic cost.

II. Improving Babai’s Nearest Plane with a short generating set. Given access to ISIS preimages,
another direction one can consider is to try to accelerate the closest vector problem (CVP) solvers on Λ⊥q (C),
by exploiting the fact that we have many short vectors from this lattice. The presence of many short vectors
helps to heuristically improve the Voronoi cell-based CVP algorithms [29]. Yet their heuristic correctness and
analysis rely on the presence of the shortest vectors from Λ⊥q (C), which, as we believe, the preimage ISIS
queries do not help to obtain fast.

III. Dual counterpart to one-more-ISIS: one-more-LWE. As LWE can be seen as the ‘lattice dual’ of SIS,
it is tempting to find a one-more-LWE definition that would be ‘lattice dual’ to one-more-ISIS, with hopefully
bi-directional reductions between one-more-ISIS and one-more-LWE. This dual to one-more-ISIS could possibly
shed light on the computation hardness of one-more-ISIS.

We propose the following one-more-LWE definition, and leave it as an open problem to study its relationship
to one-more-ISIS. The attacker is given as input a matrix C ∈ Zn×mq and arbitrarily many vectors ti ∈ Znq of
the form ti = stiC + eti with ei short. The attacker is given access to an LWE oracle that on input t′j (not
necessarily among the input ti’s) returns sj and ej such that stjC + etj = t′j mod q, if such a pair (sj , ej)
exists with a short ej . If ` is the number of LWE oracle queries, the attacker must output `+ 1 pairs (ti, si)
(with vectors t among the inputs).
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51. S. Ling, K. Nguyen, D. Stehlé, and H. Wang. Improved zero-knowledge proofs of knowledge for the ISIS problem,

and applications. In PKC, 2013.
52. V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, 2012.
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