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ABSTRACT
Side-channel leakage simulators allow testing the resilience of cryp-
tographic implementations to power side-channel attacks without
a dedicated setup. The main challenge in their large-scale deploy-
ment is the limited support for target devices, a direct consequence
of the effort required for reverse engineering microarchitecture
implementations. We introduce ABBY, the first solution for the
automated creation of fine-grained leakage models. The main in-
novation of ABBY is the training framework, which can automat-
ically characterize the microarchitecture of the target device and
is portable to other platforms. Evaluation of ABBY on real-world
crypto implementations exhibits comparable performance to other
state-of-the-art leakage simulators.
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1 INTRODUCTION
Technological advancements and twenty years of sustained effort
by the cryptographic community significantly raised the workload
required for successful key extraction. However, the problem of
implementing a secure cryptographic algorithm on a given target
device is not solved. Piling up countermeasures is not a solution as
countermeasures come at the cost of resources. The challenge for a
developer is to balance the presence of countermeasures against
information leaks. As the product changes during development, it
is important to understand if the changes are beneficial or on the
contrary, if they compromise the security of the implementation.

The appeal of side-channel leakage simulators, which model the
instantaneous power consumption of a device, is evident from the
effort directed towards creating such tools [1]. A leakage simulator
transforms high-level code into traces similar to the ones collected
from the target architecture. When correct and informative, sim-
ulators are very advantageous during development and have a
number of benefits compared to actually measured traces. The first
benefit is speed, as generating traces is automated in the case of
leakage simulators, while measuring traces requires the creation
of a setup manually. Additionally, the traces generated by a leak-
age simulator contain no noise and suffer from no misalignment,
while the measured traces require additional signal processing.
The second advantage is shorter time to market, as transforming
a cryptographic implementation into power traces is significantly

more cost-effective and straightforward to operate than creating a
physical setup.

Side-channel attack and defenses both rely on leakage models
which are an abstraction of the physical implementation of the
target device. It was shown that the effectiveness of masking, a
common countermeasure for hardening a cryptographic implemen-
tation, is heavily influenced by the underlying hardware, as shown
by the order-reduction theorem [10]. A fine-grained leakage model
accurately captures the hardware by modeling the microarchitec-
tural implementation of the target device and can be relied upon
when verifying a masked implementation. Although the impor-
tance of fine-grained leakage models has been established [6, 8, 11],
the microarchitecture implementation is considered a trade secret
and therefore it is not captured.

While the methodology for building leakage simulators is known,
the main limiting factor for their wide adoption is the limited num-
ber of supported target devices, a direct consequence of the effort
required for reverse engineering the microarchitecture implemen-
tation. We consider ELMO [9] to be the most sophisticated fine-
grained leakage simulator. As the main barrier to overcome for the
widespread deployment of leakage simulators is the characteriza-
tion of the target device, we ask the following question:
Can we automate the creation of fined-grained leakage models with-
out reverse engineering the micro-architecture implementation?

Contribution. In this work, we answer the question in the af-
firmative. Specifically, we propose a new leakage simulator ABBY,
which uses machine learning for the creation of fine-grained leak-
age models. We compare the performance in detecting leakage
of ABBY with ELMO and show that its performance comes close
without much optimization of the machine learning model. The ad-
vantage of ABBY is twofold: the first is that no reverse engineering
of the target device is required, and the second is that ABBY can
learn nonlinear fine-grained leakage models while existing solu-
tions use linear leakage models, as there are some targets which
exhibit nonlinear behavior, characteristic to small technology size
or special logic styles.
Paper organization: Section 2 briefly introduces the background
on side-channel attacks leakage detection and describes the hard-
ware setup we used. Related works on leakage simulators are men-
tioned in Section 3. Section 4 discusses building the fine-grained
leakage model for ELMO vs ABBY. Section 5 discusses the training
of ABBY. Finally, Section 6 presents the experimental results while
Section 7 concludes the paper.



Figure 1: Setup Block Diagram

Implementation code: The implementation’s of ABBY, will be
available upon paper acceptance.

2 BACKGROUND
Side Channel-Leakage. The power consumption and EM signals
emitted from a device correlate with the processed data and the
executed instructions. The amount of power required to maintain
a signal depends on the logical state of the signal. In CMOS tech-
nology, the predominant choice when manufacturing integrated
circuits, changing the value of a bit requires a different power level
than keeping the value of a bit constant. Therefore, the power
consumption of a circuit directly correlates with the data circuit
processes. Monitoring the physical properties of devices can re-
veal information about the operations they carry and the data they
process. To perform a side-channel attack, an attacker attempts to
correlate the physical properties with the secret values processed
by the device. Other effects, such as variations in signal propagation
time over the circuit, or cross-capacitance effects, all contribute to
the instantaneous power consumption of the device and therefore
correlate with the data processes.
Leakage detection. Test Vector Leakage Assessment (TVLA) [7]
is one of the most popular methods for leakage detection due to
its simplicity and relative effectiveness. It is based on statistical
hypothesis tests and comes in two flavors: specific and non-specific.
The ’fixed-vs-random’ is the most common nonspecific test and
compares a set of traces acquired with a fixed plaintext with another
set of traces acquired with random plaintext. In the case of a specific
test, the traces are divided according to a known intermediate value
tested for leakage. In both cases, Welch’s two-sample t-test for
equality of means is applied for all trace samples. A difference
between two sets larger than a given threshold is taken as evidence
for the presence of a leak.
Instruction Emulators. To build a side channel leakage simulator,
we need an emulator that outputs an instruction trace from the com-
piled machine code. Most emulators are only instruction-accurate
and not cycle-accurate, i.e., ignoring the fact that one instruction
may take more than one clock cycle. It is possible to reach cycle ac-
curacy in emulation when detailed hardware description of all used
peripherals is available. Verilator can convert Verilog hardware

(a) ELMO instruction clusters

(b) ABBY instructions

Figure 2: ELMO instruction clusters vs ABBY instructions

descriptions to cycle-accurate behavioral models. For ARM, these
cycle-accurate models (Arm Fixed Virtual Platforms) are closed-
sourced and do not typically describe other peripherals that might
affect instruction execution speed. ELMO is instruction accurate
and uses Thumbulator to emulate ARM Thumb-1. As a consequence
of the discrepancy between instruction vs cycle accuracy the mea-
sured side-channel traces might not align with the instruction trace.
Hardware Setup. We use an ARM Cortex-M0 processor based on
Armv6-M architecture, manufactured by ST Microelectronics with
STM Discovery Boards. The target board has an STM32F0 (30R8T6)
chip (similar to ELMO target) and an external crystal oscillator
(8MHz). To filter the measurement noise, we modified the board
by removing the power line capacitors and measuring the current
through a current probe (Riscure CP271), which is used as a proxy
for the target’s power consumption. We use a PicoScope 3207B for
data acquisition at a sampling rate of 500MS/s while the target is
running at 8MHz. This oscilloscope can store up to 512Ms due to
memory limitations. We use a physical 48MHz low-pass filter for
the measurement. We are using two acquisition channels, power
signal, and trigger signal. The trigger is fed by a GPIO of the target
when the desirable segment of the code is running. The oscilloscope
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Figure 3: ABBY vs ELMO features to profile power consumption of the chip

will be armed for signal recording as soon as the trigger signal is
detected. Figure 1 shows the setup block diagram.

3 RELATEDWORKS
Leakage simulators. SILK [13], is the first open-source side-channel
leakage simulator, which takes as input the source code of the
cryptographic algorithm and some user-defined parameters (leak-
age function, number of leakage points, etc) and generates power
traces. It captures no specific hardware architecture and targets
data-dependent power consumption. It is suitable for the early
stages of cryptographic algorithm design. Instruction level sim-
ulators (ISA), look at the machine code, compiled for a certain
architecture, to predict side-channel leakage. ISA simulators use
machine code that will be executed by a specific CPU, but do not
require information about the processor or about the process tech-
nology. SAVRASCA [14] takes as input compiled binary code and
using the tracing feature of the SimulAVR tool will output simulated
power traces for AVR architecture. SAVRASCA was used to report a
bug in the code of the implementation used for the DPAv4 trace set.
ASCOLD [10] checks violations of the independent leakage assump-
tion (ILA) for AVR architecture. It takes as input the assembly file of
the masked implementation and a configuration file of the system
and outputs the location of the leakage (line number) and the rule
that was violated. The physical causes for the ILA breaching effects
are device-specific (cannot be generalised ) and counter-intuitive
when related to the assembly description of the target.

Going one level lower are the simulators which capture some of
the microarchitecture effects of the target. These simulators cap-
ture a more descriptive model of the target, at the cost of a bigger
engineering effort. MAPS [2] is a power simulator designed for
the ARM Cortex M3, which takes as input the source code of the
masked implementation and outputs a simulated power trace. To
capture the microarchitecture details, the authors used an HDL file
of the target architecture and focus mostly on the leakage caused
by the pipeline. In most cases, however, HDL files of the target
are not available. We consider ELMO [9] to be the first genuinely
fine-grained leakage simulator for the ARM-Cortex M0/M4 family.
ELMOmodels the power consumption as a linear combination of bit
values and bit changes. Most remarkably, the simulator was created
without detailed information of hardware description or the target
microprocessor. ELMO* [11] improves the leakage model of ELMO
by capturing interactions that span multiple cycles. ROSITA [11]

is a rule-driven code rewrite engine that patches the code auto-
matically once leakage is detected. ROSITA starts with a (masked)
implementation of a cryptographic algorithm, cross-compiled to
produce both the assembly and the binary executable. A very com-
pelling feature of ROSITA is that it extends an existing leakage
detection tool, ELMO [9] to report instructions that leak secret in-
formation. The new detection framework (ELMO∗), uses the binary
file to detect leakage and identify the offendingmachine instruction;
ROSITA then applies a set of rules that replace the leaky instruction
with an equivalent one (functionally) that does not leak. ROSITA
repeats the process until no more leakage is detected.

While the importance of microarchitecture details in a security
analysis has been established [6], [8] access to its implementation
is typically not available. The authors of ELMO had to reverse
engineer the microarchitecture implementation of the target ARM
Cortex M0 processor. The current state of the art allows reverse
engineering a commercial ARM Cortex-M3 microprocessor [6].
The authors note that the current methodology involves intensive
manual effort. However, it is worthwhile as it shows the importance
of capturing microarchitectural effects.

4 BUILDING FINE-GRAINED LEAKAGE
MODELS

4.1 Selecting salient features for the model
ELMO. The critical observation made by McCann et al. [9] when
building the ELMO leakage model is that the power consumption
of the current instruction, 𝐼𝑐 depends on the preceding instruction, 𝐼𝑝
and the subsequent instruction 𝐼𝑠 [12]. ELMO is instruction-accurate,
which has the advantage of allowing the quick identification of a
leaky instruction. Following a cluster analysis to group “similar”
instructions (i.e., which leak information in the same way), the
authors identify five groups, see Figure 2. The groups correspond
to the same processor component: ALU instructions in one group,
shift instructions as another group, load, and stores that interact
with the memory as two or more groups, and the MULS instruction
with a distinct profile due to its single cycle implementation.

Figure 3 (bottom) is a visual representation of the interaction
between the different instructions in the ELMO model. Transitions
for instruction operands across the data bus are captured in the form
of a 32-bit matrix (represented as𝑇 1𝑝 ,𝑇 2𝑝 for previous instruction,
𝑇1𝑝 ,𝑇2𝑝 for current instruction and 𝑇1𝑠 , 𝑇2𝑠 ) for the subsequent
instruction).
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ABBY. Similar to ELMO, ABBY captures the interaction between
instructions in the pipeline registers, see Figure 3(top) and memory
leakage. To simplify the collection of the training data, no assump-
tions about the operand interaction are made. ABBY leaves the
modeling of the relation between operands to the machine learning
model. ABBY also adds memory read/write values for the current
and previous memory access to cover memory leaks, as these were
shown to be important in [11].

As part of the effort to simplify training, we further remove the
clustering of instructions. We keep the necessary Thumb instruc-
tions for crypto algorithms, which represent a total of 44 instruc-
tions for ARM Cortex-M0 including arithmetic, shift, store, load
and multiplication operations. We do not profile branching, stack
operations PUSH, POP, LDR/STR sp, or operations changing the PC
register (Fig. 2) as these operations are not in use for implement-
ing cryptographic algorithms. For store and load operations, we
reserved register r0 to put the memory address of an empty data
section.

4.2 Data collection
ELMO. To reduce the profiling space McCann et al. [6] target only
21 ARM Thumb instructions that are commonly used in block
ciphers. Collection of side-channel data is done in two steps. The
first is the clustering of instructions in five groups as shown in
(Figure 2). For each of the 21 instructions, 5000 traces are acquired
by varying the instruction operands. The second is the support for
sequence dependence, 1000 traces are collected for each all possible
combinations of instructions (53 = 125) (i.e., five groups, 3 pipeline
stages). ELMO requires (21×5000+53×1000 = 230000) data points.

Ignoring instructions such as branching B, BEQ, BL makes sense
as block ciphers avoid to use them to be time constant and to
prevent leaks from branch prediction. These clusters also represent
the internal structure that we could expect from an ARM core as
shift, multiplication, and arithmetic operations do not use the same
part of the CPU.
ABBY. We generate a randomized assembly firmware including
triplet Thumb instructions, to cover the 3-stage pipeline of the
target. We analyze the output to ensure that the instructions are
uniformly chosen and their operand value is uniformly distributed.
As we do not have the clustering limitation (all instructions in one
cluster), we keep all Thumb instructions typical for cryptographic
implementations. We are not profiling the branching, the stack
operations (PUSH, POP, LDR/STR sp), or the operations changing
the PC register (Figure 2) as these instructions are not used for the
implementation of cryptographic algorithms. The result is a group
of 44 instructions for ARM Cortex-M0 including arithmetic, shift,
store, load and multiplication operations. For the store and the load
operations, we reserved register r0 to put the memory address of
an empty data section.

Using the generated firmware, we collect 1 000 triplets1 (or pipeline
states) in a single acquisition. By generating and flashing2 the

1A compromise between the oscilloscope memory and the duration of running Dy-
namic Time Warping for alignment (𝑡 ∼ O(𝑛2)).
2We could run from RAM to preserve flash endurance, but it influences leaks and
the number of cycles per instruction. Running the firmware from flash is closer to
real-world scenarios.
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Figure 4: Possible instruction space in gray vs ABBY and
ELMO in green and blue respectively

firmware 50 000 times, we collect for each triplet of instructions
(with random operands) 50 000×1 000

443 ≈ 587 data points.
Instruction coverage. For a 3-stage pipeline microprocessor, and
considering 56 possible Thumb-instructions for Cortex-M0, the
entire instruction space is 563. Figure 4 shows the coverage of the
instruction space of ELMO vs ABBY. We see that ABBY covers more
instruction combinations compared to ELMO.

5 TRAINING ABBY
Model creation for ABBY is completely automatic and consists
of two steps, dataset generation and model training. The dataset
generation is controlled by a script which runs related scripts for
firmware generation, feature extraction, trace annotation, and labels
the generated dataset.

Figure 5 compares the model creation steps for ABBY with the
creation of the ELMO model, which needs five different steps. Fur-
thermore, as the Figure 5 shows, ELMO needs two steps of acquisi-
tion while ABBY only needs one.

5.1 Preparing the training dataset
We load the firmware with random instructions on the target device
and measure the power while executing the firmware. To label the
measured power samples, we need to identify the corresponding
triplet of instructions. A challenge when annotating the measured
traces with the executed instructions is that different instructions
might take different cycles, depending on the optimizations made
by the manufacturer.
Trace annotation. Our solution, dictated by the simplicity of the
ARM Cortex M0 processor, is not perfect, but it is effective. We use
ELMO as an initially estimated power consumption to compare
with the feature annotation. Next, we replace the value generated by
ELMO with the corresponding value extracted from the measured
traces. ELMO is not cycle-accurate; the measured and estimated
traces do not have the same number of samples. Our solution to
align two time series of varying sizes is Dynamic Time Warping
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Figure 5: Model training steps ELMO vs ABBY
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Figure 6: Xoodoo TVLA result on measured power trace and
ELMOvsABBYmodel for 100K traces(50Kfix vs 50K random)

(DTW), a popular algorithm used for speech recognition. With
this technique, we solve the signal alignment problem and find the
corresponding power consumption value for each instruction triplet
(Figure 8). DTW is not perfect, and alignment errors are possible. As
a result of the first attempt to align the data, 22% of instructions are
dropped. We also expect errors on the remaining data, so perform
several passes. We observe that the alignment distance converges
after four passes (there is no significant improvement with more
iterations).
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Figure 7: Byte-Masked-AES TVLA result on Measured power
trace and ELMO vs ABBY for 100K traces(50K fix vs 50K
random)

Figure 8: Data generation for ABBY, zoom in Figure 5, block
1 of ABBY.
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Table 1: MLP hyperparameter description

Layer Types Details

Input Fully-connected #neurons 388, Relu

Hidden Fully-connected #neurons 16, Relu
Hidden Fully-connected #neurons 16, Relu

Output #neurons 1, Linear

5.2 Fitting the ABBY model
We use a simple Multi-Layer Perceptron (MLP) model to train the
ABBY. We use Tensorflow2 with Keras submodule to build a prepro-
cessing pipeline and a MLP model with 2 hidden layers. The input
layer reads the ABBY features in a normalized form. For normal-
izing operands and memory read/write values, we extended each
value to a 32-bits binary array. For mnemonic assembly instructions
which are not ordinal categorical features, we use one-hot encoding.
The input layer consists of (8×32) + (3×44) = 388 neurons. Table 1
summarizes the model architecture.

After 341 training epochs, our MLP model reach 𝑟2 = 0.9951 on a
training set of ≈ 35Millions samples with a test set of ≈ 15Millions
while 20% of training set used as validation. Although the 𝑟2 metric
evaluates the performance of the model, we apply standard side-
channel evaluation metrics to determine its usefulness for leakage
detection.

6 RESULT AND DISCUSSION
The main goal of any side-channel leakage simulator is to find the
leaks, and determine their source such. There are different leakage
detection methods in side-channel domain, but one of the most
popular is TVLA, see Section 2 for a brief introduction. We applied
TVLA test on two different cryptographic algorithms, AES [5] and
Xoodoo [3]. For the AES implementation, we choose a first-order
protected implementation by Yao et al.[15], which we refer to as
Byte Masked AES. Although this implementation should be secure
against first-order leaks, TVLA indicates leaks both on themeasured
power trace as well as on the simulated power traces by ELMO and
ABBY models(Figure 7). As a proof that ABBY has learned the same
leaks as ELMO, we notice how similar the 𝑡-trace scores produced
by ELMO and ABBY are, with ABBY showing more leakage points
compared to ELMO. Notice the difference in the 𝑥-axis between the
labels of the measured traces (cycles) compared to the labels of the
simulated traces (instructions).

To confirm that the positive results obtained for Masked AES
are not just a lucky coincidence, we compare the 𝑡-test results of
ELMO and ABBY on a different cryptographic algorithm, namely
Xoodoo [3]. Xoodoo is the underlying permutation used in Xoodyak [4],
one of the finalists in the NIST Lightweight Cryptography Stan-
dardization process. As shown in Figure 6, we confirm that also in
this case the output of ABBY is comparable to ELMO model and
the measured power traces.

7 CONCLUSIONS AND FUTUREWORK
We propose ABBY, the first machine learning-based leakage simu-
lator. The main innovation of ABBY is its compact training frame-
work, which does not require reverse-engineering the microarchi-
tecture implementation of the target device. As a result, ABBY
significantly reduces the human effort necessary for the creation
of fine-grained leakage models. ABBY is scalable and can be trans-
ferred to different architectures. We did not investigate the opti-
mizations for the machine learning model used by ABBY, and we
used a simple MLP architecture. The most challenging aspect of
porting ABBY to different platforms is the creation of the labeled
dataset. We used the DTW algorithm, which, although not optimal,
seems to work. As future work, we aim to improve the data gen-
eration, investigate how targeted microarchitecture benchmarks
such as [8] and optimizations of the model architecture can further
enhance the performance of ABBY.
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