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Abstract. We introduce ABBY, an open source side-channel leakage
profiling framework that targets the microarchitecture layer. Existing
solutions to characterize the microarchitecture layer of a given target
require extensive manual effort. The main innovation of ABBY is the
training framework, which can automatically characterize the microar-
chitecture of a target device. To benchmark ABBY, we target an ARM
CORTEX-MO board, for which tools that profile the microarchitecture
already exist. Using ABBY, we create the ABBY-CM0 dataset, which
covers 80% of the entire ARMv6 instruction set. ABBY-CM0 will be the
first open source dataset with detailed information about the microar-
chitecture layer and can be used to create any number of transition-
based leakage models. The main application for such leakage models is
the creation of leakage simulators. A preliminary evaluation of a leakage
model produced with the ABBY-CM0 dataset of real-world crypto im-
plementations shows performance comparable to state-of-the-art leakage
simulators.

Keywords: side-channels, leakage simulator, linear regression, microar-
chitecture

1 Introduction

Kocher et al. [14] showed that when code runs on a chip, it interacts with the
hardware environment. This interaction appears in physical side-channel(s) such
as power [3, 2, 15], electromagnetic emanation(EM) [1, 20], photonic emission [6],
etc. An adversary can take advantage of these side channels and learn about
secret information during processing. Many studies show successful side channel-
based attacks leading to key or secret share recovery on various platforms [12,
13].

Technological advancements and twenty years of sustained effort by the cryp-
tographic community significantly raised the workload required for successful key
extraction. However, the problem of implementing a secure cryptographic algo-
rithm on a given target device is not solved. Piling up countermeasures is not
a solution, as countermeasures come at the cost of resources. The challenge for
a developer is to balance the presence of countermeasures against information
leaks. As the product changes during development, it is important to understand
if the changes are beneficial or, in contrast, if they compromise the security of
the implementation.
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The appeal of side-channel leakage simulators, which model the instantaneous
power consumption of a device, is evident from the effort towards creating such
tools [5]. A leakage simulator generates side-channel measurements from a se-
quence of instructions with the help of a leakage model, a function that describes
how the target devices consume power. In the absence of tools such as leakage
simulators, a security researcher tasked with hardening a cryptographic imple-
mentation will measure traces, detect leakage, change the implementation and
reiterate until the implementation stops leaking. The process is slow, error-prone,
and expensive. A leakage simulator can automate the detection of side-channel
leaks and, more importantly, can be used to explain the cause of a leak.

A leakage simulator transforms high-level code into traces similar to those
collected from the target architecture. When correct and informative, leakage
simulators assist in the design of secure cryptographic implementation. An ad-
ditional benefit is to make side-channel analysis accessible to non-experts.

Side-channel leakage simulators use leakage models to capture the physical
implementation of the target device To be useful, a leakage model must be “cor-
rect” to accurately reflect reality and be informative to be useful for key recovery.
As in [18], we distinguish between value and transition-based leakage models.
The leakage model is value-based if it takes the intermediate values of a crypto-
graphic algorithm as arguments. Typical examples include the popular Hamming
weight (HW) or the identity model (ID). A leakage model is transition-based if
it takes as parameters any pairwise combination of intermediate values [18] such
as the Hamming-distance (HD) model.

Creating a transition-based leakage model requires intensive manual effort
and is specific to the target. The reason is that capturing the interaction of
intermediate values requires profiling the microarchitecture layer, which may
contain hidden storage elements where unexpected interactions between instruc-
tions can occur. Although the importance of fine-grained leakage models has
been established [16, 22, 11], the microarchitecture implementation is considered
a trade secret and, therefore, is not public information. By automating the cre-
ation of various transition-based leakage models, more side channel simulators,
such as ELMO [17] can become available and cover different architectures. Auto-
mated microarchitecture profiling is necessary to have different simulators. This
development can open the way for rule-driven code rewriting engines 1 such as
ROSITA [22] and ROSITA++ [21] that patch the code automatically once the
leakage is detected. Fig 1 shows the functional relationship between these tools,
from an architectural profiler to a side channel code rewriter engine2.

Although the methodology for building leakage simulators is known, the main
limiting factor for their wide adoption is the limited number of supported tar-
get devices, a direct consequence of the effort required to reverse engineering

1 Side-channel code-rewrite engines use leakage simulators to mitigate leakage
2 For Example, ELMO as a side-channel simulator developed its microarchitectural

profiler based on Thumbulator [26](an Instruction Set Simulator). ROSITA devel-
oped a code rewrite engine based on the ELMO* (upgraded ELMO) simulator com-
bined with an assembly code modifier
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Fig. 1: Overview of ABBY, ELMO, and ROSITA in application level design

the microarchitecture implementation. As the main barrier to overcome for the
widespread deployment of leakage simulators is the characterization of the target
device, we ask the following question: Can we automate the creation of transition-
based leakage models without reverse engineering the micro-architecture imple-
mentation?
Contribution. In this work, we answer the question in an affirmative sense. We
propose ABBY, an open-source framework that automatically captures microar-
chitectural leakage. Furthermore, we offer the ABBY-CM0 dataset for ARM
Cortex-M0 chips (STM32F0 families) produced with the ABBY framework.
Based on our knowledge, this is the first open-source dataset to profile the mi-
croarchitectural layer, which can be used to study a target device’s profiling
further. In addition, we develop different transition-based leakage models, which
allow us to create different simulators. We investigate the model’s performance
based on statistical parameters and learn how different microarchitectural fea-
tures contribute to leakage. We compare the performance in detecting leakage
of these simulators with ELMO and show that the performance is comparable
to ELMO. We believe it is possible to improve further the leakage model.
Paper organization: Section 2 briefly introduces the background on side chan-
nel attacks and leakage detection and describes the hardware setup we used. Re-
lated works on microarchitectural leakage simulators are mentioned in Section 3.
Section 4, discusses building transition-based leakage models. In Section 5, we
build several leakage simulators using the ABBY-CM0 data set and discuss their
performance. Section 7 concludes the article.
Implementation code: The implementation of the ABBY and ABBY-CM0
dataset will be available upon acceptance of this article.

2 Background

2.1 Side channel attacks

Power consumption and EM signals emitted from a device correlate with the
processed data and the executed instructions. The amount of power required to
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maintain a signal’s value depends on the signal’s logical state. In CMOS technol-
ogy, the predominant choice when manufacturing integrated circuits, changing
the value of a bit requires a different power level than keeping a bit constant.
Therefore, the power consumption of a circuit directly correlates with the data
processed by the circuit. Monitoring the physical properties of devices can reveal
information about the operations and data processed. To perform a side-channel
attack, an attacker attempts to correlate the observed physical side channels
with the values processed by the device. Other effects, such as variations in
signal propagation time or cross-capacitance effects, contribute to the device’s
power consumption and correlate with the data processes.

2.2 Leakage modeling

Let the set X be the data that we wish to monitor. When using side-channel
analysis, X is typically the set of intermediate values created when transforming
plaintext into ciphertext. We denote by L(X) the leakage model of the vari-
able X. An adversary collecting side-channel traces has access to variable y,
defined using Equation 1. The measured power traces are conventionally consid-
ered noisy, and this Gaussian noise N(0, σ2) is independent of leakage L(X) [10].

Y = L(X) +N(0, σ2) (1)

As L(X) depends on the architectural design of the target and originates from
the interaction between software and hardware. To improve this estimation and
get it close to the real leakage, we consider the most relevant microarchitectural
features of the target, such as instruction interaction, pipeline effects on instruc-
tions, operand values, and memory interactions. In this study, we consider the
target as a “gray box“ model. Although we do not have access to the design of the
chip hardware description layer (white box), we have access to the instruction
set architecture (ISA) and full control of firmware execution.

2.3 Model evaluation

The goal of most statistical models is to predict future events or to help explain
reality[4]. In the former case, the quality of the model is defined by its predictive
power, while the quality of the model of the latter is related to the number of
relevant factors it can identify. In leakage simulators, predictive models are used
to estimate the power consumption of an intermediate variable. Although many
options are possible to fit the leakage model, in this paper we only consider
linear regression. We use coefficient of determination (R2) and cross-validation
to judge the quality of the model we use, as these are popular choices to evaluate
regression models [10]. For readability, we use the notation [10], [17].
R2 measures how much of the variation in the dependent variable can be ex-
plained by the independent (explanatory) variable(s). An R2 value close to one
shows a good fit between the predicted value and the measured value. To com-
pute R2, we need to compute two types of sum of squares (SS). The first param-
eter is called residual sum of square(RSS) which measures how much of the
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explanatory variables’ variation can not be explained by the model and repre-
sents the sum of the squared differences between the actual measurement yi and
the predicted value L̃(Zi)(equation 2).

RSS =

n∑
i=1

(yi − L̃(Zi))
2 (2)

where n is the number of samples. The second parameter explained sum of

square (ESS) measures the variation of the explanatory variables(equation 3).

ESS =

n∑
i=1

(L̃(Zi)− ȳ)2 (3)

The total sum of square(TSS) is the sum of ESS and RSS(equation 4).

TSS = RSS+ ESS =

n∑
i=1

(yi − ȳ)2 (4)

The coefficient of determination R2 can be calculated with equation 5 [10].

R2 =
ESS

TSS
= 1− RSS

TSS
(5)

The disadvantage of using theR2 metric is that its value increases with increasing
number of explanatory variables included in the model. To penalize additional
explanatory variables added to the model and adjust this metric against the
overfitting problem, we look at R2 adjusted denoted by R2

adj .

R2
adj = 1− (1−R2)(n− 1)

(n− p− 1)
(6)

n is the number of samples, and p represents the number of explanatory variables
fed to the model. According to Equation 6, if the number of explanatory variables
is negligible compared to the number of samples(n ≫ p) then R2 ≈ R2

adj .
F-test. To investigate the effect of adding different explanatory variables to the
model, we used the F test introduced in [17]. We investigate the importance of
explanatory variables based on their contribution to the model’s performance.
We check if a reduced model (fitted by a subset of explanatory variables) is
missing a significant contribution compared to a full model, which consists of
the full explanatory variables. Let us consider that B is a reduced model of
model A. Therefore the number of explanatory variables of model A (pA) is
larger compared to the number of explanatory variables of model B (pB), so
we have pA > pB . In this example, the null hypothesis states that the extra
parameters present in model A do not affect the model performance. The F-
statistic is computed based on the residual sum of squares (RSS), while pA−pB
and n− pA are degrees of freedom as shown in equation 7.

F =
(RSSB − RSSA

pA − pB
)

( RSSA

n − pA
)

(7)
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For a specific significance level (normally α = 5%), if the F value is more than the
critical value under the FpA−pB ,n−pA

distribution, the null hypothesis is rejected,
which means that the parameters of model A, which are not present in model B
have a significant effect.

The F-test leads to a model that contains only significant parameters. To
simplify a model further, we consider information-theoretic measures such as
the Akaike Information Criterion (AIC) and the Bayesian Information Criterion
(BIC). AIC scores a model based on the log-likelihood3 (LL), and a low score
means higher performance [7]. To penalize the complexity of the model with the
AIC metric, we use BIC. This metric can be calculated using log-likelihood, the
number of parameters, and the sample size (Equation 8).

AIC = (−2 / n ∗ LL) + (2 ∗ p / n)
BIC = (−2 ∗ LL) + (p ∗ log(n))

(8)

2.4 Instruction Emulators

To build a leakage simulator, we need an emulator that outputs an instruction
trace from the compiled machine code. Most emulators are only instruction-
accurate and not cycle-accurate, i.e., ignoring that one instruction may take
more than one clock cycle. It is possible to achieve cycle accuracy in emulation
when a detailed hardware description of all the peripherals is available. Verilator
can convert Verilog hardware descriptions to cycle-accurate behavioral models.
For ARM, these cycle-accurate models (Arm Fixed Virtual Platforms) are closed
source and do not typically describe other peripherals that might affect instruc-
tion execution speed. ELMO is instruction accurate and uses Thumbulator to
emulate ARM Thumb-1. Due to the discrepancy between instruction vs. cycle
accuracy, the measured side-channel traces might not align with the instruction
trace.

2.5 Hardware Setup

We use two different ARMCortex-M0 processors based on Armv6-M architecture
manufactured by ST Microelectronics with STM Discovery Boards. The target
boards have the STM32F051R8T6 or STM32F030R8T6 chip and an external crystal
oscillator (8MHz). Although we initially tested our framework on both boards,
we continued on STM32F030R8T6 target, to compare the result with the ELMO.
We modified the boards to filter the measurement noise by removing the power
line capacitors and measuring the current through a current probe (Riscure
CP271), which is used as a proxy for the target’s power consumption. We used
a PicoScope 3207B for data acquisition at a sampling rate of 500MS/s while the
target runs at 8MHz. This oscilloscope can store up to 512Ms due to memory

3 Log-likelihood measures the goodness of the fit for a model. The higher the value of
the log-likelihood, the better a model fits a dataset.
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Fig. 2: Setup Block Diagram

limitations. We used a physical 48MHz low-pass filter for the measurement. We
are using two acquisition channels, a power signal and a trigger signal. The
trigger is fed by a GPIO of the target when the desirable segment of the code
is running. The oscilloscope will be armed for signal recording as soon as the
trigger signal is detected. Figure 2 shows the configuration block diagram.

3 Related works

SILK [25], is the first open-source side-channel leakage simulator, which inputs
the source code of the cryptographic algorithm and some user-defined parameters
(leakage function, number of leakage points, etc.) and generates power traces.
It captures no specific hardware architecture and targets data-dependent power
consumption. It is suitable for the early stages of cryptographic algorithm de-
sign. Instruction-level simulators (ISA) look at the machine code compiled for a
certain architecture to predict side-channel leakage. ISA simulators use machine
code that will be executed by a specific CPU, but does not require information
about the processor or the process technology. SAVRASCA [24] takes as input
the compiled binary code and, using the tracing feature of the SimulAVR tool,
will output simulated power traces for the AVR architecture. SAVRASCA was
used to report a bug in the implementation code used for the DPAv4 trace set.
ASCOLD [18] checks violations of the independent leakage assumption (ILA) for
the AVR architecture. It takes as input the assembly file of the masked imple-
mentation and a configuration file of the system. The device shows the location
of the leak (line number) and the rule that was violated. The physical causes of
the ILA breaching effects are device-specific (cannot be generalized) and coun-
terintuitive when related to the assembly description of the target.
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Going one level lower are the simulators, which capture some of the microarchi-
tecture effects of the target. These simulators capture a more descriptive target
model at the cost of a larger engineering effort. MAPS [8] is a power simulator
designed for the ARM Cortex M3, which takes as input the source code of the
masked implementation and outputs a simulated power trace. To capture the
details of the microarchitecture, the authors used an HDL file of the target ar-
chitecture and mainly focused on the leakage caused by the pipeline. In most
cases, however, the target’s HDL files are unavailable. We consider ELMO [17] to
be the first genuinely fine-grained leakage simulator for the ARM-Cortex M0/M4
family. ELMO models power consumption as a linear combination of values and
transitions. Most remarkably, the simulator was created without detailed infor-
mation on the hardware description or the target microprocessor. ELMO* [22]
improves the leakage model of ELMO by capturing interactions that span mul-
tiple cycles. ROSITA [22] is a rule-driven code rewrite engine that automatically
patches the code once a leakage is detected. ROSITA starts with a (masked)
implementation of a cryptographic algorithm, cross-compiled to produce both
the assembly and the binary executable. A very compelling feature of ROSITA is
that it extends an existing leakage detection tool, ELMO [17], to report instruc-
tions that leak secret information. The new detection framework (ELMO∗) uses
the binary file to detect leakage and identify the offending machine instruction;
ROSITA then applies a set of rules that replace the leaky instruction with an
equivalent one (functionally) that does not leak. ROSITA repeats the process
until no more leakage is detected.
While the importance of microarchitecture details in a security analysis has been
established [11], [16] access to its implementation is typically not available.
The authors of ELMO had to reverse engineer the microarchitecture implemen-
tation of the target ARM Cortex M0 processor. The current state of the art
allows reverse engineering a commercial ARM Cortex-M3 microprocessor [11].
The authors note that the current methodology involves intensive manual ef-
fort. However, it is worth considering, as it shows the importance of capturing
microarchitectural effects.

4 Automated Microarchitectural Profiling

4.1 Capturing instructions interaction

The critical observation made by McCann et al. [17] when building the ELMO
leakage model is that the power consumption of the current instruction, Ic de-
pends on the preceding instruction, Ip and the subsequent instruction Is [23].
The reason behind this observation can be found in the three-stage design of the
target pipeline. Not only the instructions, but also the operand values of these
instructions contribute to the power consumption of the chip [17].
Instruction coverage of classical leakages model. Although executing in-
structions is one of the main contributors to the power consumption of the chip;
traditional leakage models only look at the HW or HD of each operand with its
previous value. These models cover neither the pipeline effect nor instructions.
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(a) ELMO instruction clusters (b) ABBY instructions

Fig. 3: ELMO instruction clusters vs ABBY instructions

Fig. 4: ABBY vs ELMO features to profile power consumption of the chip

ELMO instruction coverage. ELMO is instruction-accurate, which has the
advantage of allowing the quick identification of a leaky instruction. Following
a cluster analysis to group “similarinstructions ” (that is, that leak informa-
tion in the same way), the authors identify five groups altogether including 21
instructions, see Figure 3.

The groups correspond to the same processor component: ALU instructions
in one group, shift instructions are another group, load, and stores that interact
with the memory are two or more groups, and the MULS instruction with a
distinct profile due to its single cycle implementation fit in a separate group.
These groups also represent the internal structure that we could expect from
an ARM core, as shift, multiplication, and arithmetic operations do not use the
same part of the CPU.

Figure 4 (bottom) is a visual representation of the interaction between the
different instructions in the ELMO model. Transitions for instruction operands
across the data bus are captured in the form of a 32-bit matrix (represented as
T 1
p , T

2
p for the previous instruction, T 1

c ,T
2
c for the current instruction, and T 1

s ,
T 2
s ) for the subsequent instruction).
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Fig. 5: Possible instruction space in gray vs ABBY and ELMO in green and blue
respectively

ABBY instruction coverage Similar to ELMO, ABBY captures the interac-
tion between instructions in the pipeline registers, see Figure 4(top) and memory
leakage. No assumptions about the operand interaction are made to simplify the
collection of training data. To keep the data collection process simple, ABBY
leaves the modeling of the relation between operands for preprocessing. ABBY
also adds memory read/write values for the current and previous memory access
to cover memory leaks, as these were shown to be important in [22].

As part of the effort to simplify training, we further remove the clustering of
instructions. We keep the necessary Thumb instructions for crypto algorithms,
representing 44 instructions for ARM Cortex-M0, including arithmetic, shift,
store, load, and multiplication operations. We do not profile branching, stack op-
erations PUSH, POP, LDR/STR sp, or operations changing the PC register (Fig. 3)
as these operations are not used for implementing cryptographic algorithms. For
store and load operations, we reserved register r0 to put the memory address of
an empty data section. Furthermore, ignoring instructions such as branching B,
BEQ, BL makes sense as block ciphers avoid using them to be time constant and
to prevent leaks from branch prediction.
For a 3-stage pipeline microprocessor, and considering 56 possible Thumb-instructions
for Cortex-M0, the entire instructions space is 563. Figure 5 shows the coverage
of the instruction space of ELMO vs ABBY. We see that ABBY covers more
instruction combinations compared to ELMO.
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4.2 Automated Firmware creation

We automatically generate randomized assembly firmware, including triplet Thumb
instructions, to cover the 3-stage pipeline of the target. We analyze the output
to ensure that the instructions are uniformly chosen and their operand value is
uniformly distributed. As we do not have the clustering limitation (all instruc-
tions in one cluster), we keep all Thumb instructions typical for cryptographic
implementations. The result is a group of 44 instructions for the ARM Cortex
M0, including arithmetic, shift, store, load, and multiplication operations.

4.3 Trace recording.

Using the generated firmware, we collect 1,000 triplets 4 (or pipeline states) in a
single acquisition. By generating and flashing5 50 000 different Random assembly
firmware automatically, we collect for each triplet of instructions (with random
operands) 50 000×1 000

443 ≈ 587 data points.
Firmware with random instructions is loaded on the target device and power
consumption is measured while the target executes the firmware.

4.4 Trace annotation.

To label the measured power samples, we need to identify the corresponding
triplet of instructions. A challenge when annotating the measured traces with
the executed instructions is that different instructions might take different cycles,
depending on the optimizations made by the manufacturer.

Our solution, dictated by the simplicity of the ARM Cortex M0 processor,
is not perfect, but it is effective. We use ELMO as an initially estimated power
consumption to compare with the feature annotation. Next, we replace the value
generated by ELMO with the corresponding value extracted from the measured
traces. ELMO is not cycle-accurate; the measured and estimated traces do not
have the same number of samples. Our solution to align two time series of vary-
ing sizes is Dynamic Time Warping (DTW), a popular algorithm used for speech
recognition. This technique solves the signal alignment problem and finds the
corresponding power consumption value for each instruction triplet (Figure 6).
DTW is not perfect, and alignment errors are possible. As a result of the first
attempt to align the data, 22% of instructions are dropped. We also expect er-
rors on the remaining data, so we perform several passes. We observe that the
alignment distance converges after four passes (there is no significant improve-
ment with more iterations).

4 A compromise between the oscilloscope memory and the duration of running Dy-
namic Time Warping for alignment (t ∼ O(n2)).

5 We could run from RAM to preserve flash endurance, but it influences leaks and the
number of cycles per instruction. Running the firmware from the flash is closer to
real-world scenarios.
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Fig. 6: Dataset generation process of ABBY

4.5 The ABBY-M0 dataset.

In its original form, the ABBY-CM0 dataset is a file in the format CSV, which
includes ≈ 35 million samples with 11 columns representing all extracted features
(Fig. 4). We need to pre-process features to fit any simulator model on the data
set. Categorical data, Assembly instructions (IP , IC and IS), are hot-encoded
and numerical data are represented in a 32-bit binary system (ID32)

6 instead
of the decimal system (ID10) to decompress information. Furthermore, we also
add HW of operand and memory transaction values with their previous values.
Moreover, the HD of each operand value is calculated and located in the dataset.
Fig.7 shows the shape and dimension of the data set before preprocessing.

Fig. 7: ABBY-M0 Dataset info

6 ID represent the identity model in side-channel
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5 Fitting Power Simulators using the ABBY-M0 dataset

We can fit different simulator models using the ABBY-M0 dataset. One can use
the ABBY-M0 to create different leakage models and even go further to a code
rewriter engine like ROSITA [22] or ROSITA++ [21].

5.1 Fitting Leakage models

We constructed different leakage models using linear regression to evaluate the
ABBY-M0 dataset and investigate microarchitectural leakage. In Equation 9, Y
is the estimated power consumption of the target, β0 is a constant, while βi is
the coefficient of the explanatory variable Xi, and ϵ is the error. A regression
model aims to find the best coefficients for each explanatory variable.

Y = β0 + β1X1 + β2X2 + ...+ βnXn + ϵ (9)

In this study, Y would be our leakage model Y = L(X). In this section, we
fit different leakage models to investigate how the different microarchitectural
features contribute to the leakage.

HW \HD classic leakage model As discussed in Section 4, classical leakage
models do not consider instructions but operands. HW and HD are the most
popular classical leakage models. We fit a leakage model based on the HW of the
previous instruction and the current instruction operand values. Moreover, HD
between each operand’s current and previous values was added to the model.
Furthermore, we add HW for memory interactions. Equation 10 shows the fitted
leakage model.

LHW (X) = [HW(OPs) | HD(OPs) | HW(MRs) | HW(MWs)]β + ϵ (10)

Where:
HW(OPs): a matrix that includes the HW of each operand for the previous and
current instruction.
HD(OPs): a matrix that includes HD between current and previous instructions
for each operand.
HW(MRs): a matrix that includes the HW of the value of the read memory for
the current and previous interaction.
HW(MWs): a matrix that includes the HW of the memory write value for the cur-
rent and previous interaction.

Identity leakage model. The identity model is a very simple classical model
that uses the operand values without changes. Fitting a model based on the
identity of the operand values requires normalization of the data. We chose a
binary representation of the data instead of normalization because dividing the
values to a 32-bit size makes the result less sensitive to small changes. Equation
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AIC

BIC

R2

R2
adj

AIC

Model performance

LHW(X)
LID(X)
LINS(X)
LCH(X)

Fig. 8: Model performance parameters

12 shows the identity leakage model. Where ID2 represents the binary repre-
sentation of values, all other parameters are the same as the HW \HD model,
except that the values are represented as binary instead of HW or HD.

LID(X) = [ID2(OPs) | ID2(MRs) | ID2(MWs)]β + ϵ (11)

Instruction-based leakage model. Based on section4, not only the process-
ing data (operational values), but also the execution of operations (instructions)
contribute to leakage. Concerning the three-stage pipeline of our target, equation
12 models the leakage related to the instructions LINS(X). To fit the mnemonic
assembly instructions, we use a one-hot encoding technique. After one-hot en-
coding, we end up with a 44-bit value representing our 44 supported instructions
in the framework for each instruction level in the pipeline.

LINS(X) = [(IP ) | (IC) | (IS)]β + ϵ (12)

Comprehensive leakage model. To consider the effect of operations and
operand values, we make a leakage model based on operand values and in-
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structions. For operand values, we use identity leakage model (LID(X)) as it
shows slightly better performance compared to HW \HD model7. Combining the
ID with the instruction-based leakage model, we make a more comprehensive

leakage model(LCH(X)) that models not only the instruction and correspond-
ing operand values but also the linear interaction between them.

LCH(X) = LID(X) + LINS(X) (13)

Considering LID(X) and LINS(X) as a reduced model of the comprehensive
LCH(X) model, we applied F-test. The result shows that the combination of
characteristics in LCH (X) shows a significant effect with α = 0.05.
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Fig. 9: Power trace for real measured compared to ELMO and LCH(X)

Figure 8, compares the model’s performance in more detail with metrics such
as AIC, BIC, R2, and R2

adj . As you can see in Fig 6, R2 ≈ R2
adj this is due to

a large sample size (≈ 16 Million) used for model fitting. Fig 9 illustrates a
measured power trace vs. a simulation trace by ELMO and the CH model.
Model selection. We fit all the aforementioned leakage models in the ABBY
data set, and Table 1 summarizes the result. Although the identity leakage

Table 1: Evaluation of leakage models
Model OHE(IP ,IC ,IS) ID(Ops) ID(Mem Bus) HW(Ops) HW(Mem Bus) Rˆ2 adj F-Stat8

LHW (X) X X 0.30 6.92e + 5

LID(X) X X 0.32 9.39e + 5

LINS(X) X 0.57 1.67e + 5

LCH(X) X X X 0.58 1.04e + 5

7 We didn’t consider the complexity of the model in this step and performance came
first. From a complexity point of view, we have ten coefficients for the HW \HD
model, while it is (8 ∗ 32) 256 for the ID. In addition, the identity model might
interact better with the instructions

8 Due to the large sample size(≈ 1.6e + 7) the F-test values are enormously greater
than critical F-Value.
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(a) Correlation based on the real measurement

0 10 20 30 40 50 60
sample

0.000

0.005

0.010

0.015

0.020

0.025

Co
rre

la
tio

n 
Va

lu
e

SBox Out

(b) Correlation based on the CH model
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(c) Correlation based on the ELMO model

Fig. 10: DPA attack based on correlation on a byte-masked AES
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model shows slightly better performance, the classical HW\HD is a very strong
operand leakage model (compared to the identity model), considering its sim-
plicity. The instruction-based leakage model performs better than the operand
leakage model based on the parameter R2

adj. Albeit the comprehensive leakage
model performance increased slightly with combining instructions and operand
values, this model covers the leakage related to both operands and instructions.

6 Model evaluation

The main goal of any side-channel leakage simulator is to find the leaks and
pinpoint their source. Differential power analysis is an effective, low-cost, and
widely known side-channel attack. This attack uses variation in the electrical
power consumption of the target and breaches device security by using statistical
methods such as Pearson’s correlation coefficient [19]. We applied a correlation-
based DPA attack on an AESimplementation [9] to evaluate the ABBY-M0
dataset and the developed CH model. For the implementation of AES, we chose
a first-order protected implementation by Yao et al.[27], which we refer to as
Byte-Masked AES. We apply the attack on the first round S-box output. As
proof that the CH model, developed using the ABBY-M0 dataset, captures the
same leaks as ELMO, we notice how similar the correlation traces produced by
ELMO and ABBY are as shown in Fig. 10. Furthermore, the correlation result
for these simulators is comparable to the real measurement result of the target.

7 Conclusions and Future work

We propose ABBY, the first framework to automate the profiling of the micro-
architectural layer. As a result, ABBY significantly reduces the human effort
necessary to create transition-based leakage models. ABBY is scalable and can
be transferred to different architectures. The most challenging aspect of port-
ing ABBY to different architectures is the creation of the labeled dataset. We
used the DTW algorithm for trace annotation, which, although not optimal,
seems to give satisfactory results. Using the ABBY-CM0 dataset we explored
several leakage models ranging from traditional to transition-based, which in-
clude pipeline effects and instruction interaction. We evaluate and compare the
performance of these leakage models using statistics metrics such as R2 and
F − test and side-channel attacks. When considering side-channel attacks, we
see that instruction-based leakage models such as ELMO and our comprehen-
sive model are superior to traditional ones. When comparing the performance of
ELMO with our comprehensive model, the results are very close, demonstrating
the effectiveness of the ABBY framework.

In future work, our objective is to improve data generation, and investigate
how targeted microarchitecture benchmarks such as [16] and optimizations of
the model architecture can further enhance the performance of ABBY.
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In: Kaliski, B.S., Koç, ç.K., Paar, C. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2002. pp. 29–45. Springer Berlin Heidelberg, Berlin, Heidelberg
(2003)

2. Ambrose, J.A., Aldon, N., Ignjatovic, A., Parameswaran, S.: Anatomy of differen-
tial power analysis for aes. In: 2008 10th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing. pp. 459–466. IEEE (2008)

3. Bertoni, G., Zaccaria, V., Breveglieri, L., Monchiero, M., Palermo, G.: Aes power
attack based on induced cache miss and countermeasure. In: International Con-
ference on Information Technology: Coding and Computing (ITCC’05)-Volume II.
vol. 1, pp. 586–591. IEEE (2005)

4. Bronchain, O., Hendrickx, J.M., Massart, C., Olshevsky, A., Standaert, F.X.: Leak-
age certification revisited: Bounding model errors in side-channel security evalua-
tions. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology – CRYPTO
2019. pp. 713–737. Springer International Publishing, Cham (2019)

5. Buhan, I., Batina, L., Yarom, Y., Schaumont, P.: Sok: Design tools for side-channel-
aware implementations (2021)

6. Carmon, E., Seifert, J.P., Wool, A.: Photonic side channel attacks against rsa. In:
2017 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST). pp. 74–78. IEEE (2017)

7. Chakrabarti, A., Ghosh, J.K.: Aic, bic and recent advances in model selection.
In: Bandyopadhyay, P.S., Forster, M.R. (eds.) Philosophy of Statistics, Hand-
book of the Philosophy of Science, vol. 7, pp. 583–605. North-Holland, Amster-
dam (2011). https://doi.org/https://doi.org/10.1016/B978-0-444-51862-0.50018-6,
https://www.sciencedirect.com/science/article/pii/B9780444518620500186
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