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Abstract. Substantial effort has been devoted to proving optimal bounds for the security of key-
alternating ciphers with independent sub-keys in the random permutation model (e.g., Chen and
Steinberger, EUROCRYPT ’14; Hoang and Tessaro, CRYPTO ’16). While common in the study of
multi-round constructions, the assumption that sub-keys are truly independent is unrealistic since they
are generally highly correlated and generated from shorter keys.
In this paper, we show the existence of non-trivial distributions of limited independence for which a
t-round key-alternating cipher achieves optimal security. Our work is a natural continuation of the work
of Chen et al. (CRYPTO ’14), which considered the case of t � 2 when all sub-keys are identical. Here,
we show that key-alternating ciphers remain secure for a large class of pt � 1q-wise and pt � 2q-wise
independent distributions of sub-keys.
Our proofs proceed by generalizations of the so-called sum-capture theorem, which we prove using
Fourier-analytic techniques.
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1 Introduction

Key-alternating ciphers (KACs) alternate the application of fixed, invertible, and key-independent
permutations P1, . . . , Pt on the n-bit strings with xor-ing t� 1 n-bit sub-keys s0, s1, . . . , st, i.e., the
output of the KAC on input x and sub-keys s⃗ � ps0, s1, . . . , stq is

KACs⃗pxq � st � Ptpst�1 � Pt�1p� � �P2ps1 � P1ps0 � xqq � � � qq ,

where � denotes the bit-wise xor. Several modern block cipher designs are KACs, including
Substitution-Permutation Networks (SPNs) like AES [10], PRESENT [3] and LED [14].

Most theoretical analyses of KACs [13,4,22,18,6,9,16] have proven their security as a (strong)
pseudorandom permutation in a model where the permutations P1, . . . , Pt are randomly and inde-
pendently chosen and can be queried by the adversary. Moreover, the sub-keys s⃗ � ps0, s1, . . . , stq
are also chosen independently.1 These results show that the number of queries q (to the keyed con-
struction, and the permutations) needed to break the construction is roughly q � N t{pt�1q (where
N � 2n), which has been shown to be optimal.

This paper: Security with correlated sub-keys.Real sub-keys are not independent. They
are generated from a shorter key using a specific key schedule algorithm. However, scant progress
has been made in identifying when such key schedules are secure, and independence assumptions
are common even in cryptanalysis. In this paper, we therefore pose the following question:

� A preliminary version of this paper appears in the proceedings of ASIACRYPT 2021. This is the full version.
1 In fact, Chen and Steinberger [6] already noted that their result holds in the case where the underlying subkeys
are t-wise independent. The tight concrete bound proven by Hoang and Tessaro [16] also extends to the t-wise
independent setting.



For which distributions of sub-keys can we still obtain optimal security against q � N t{pt�1q

queries?

We note that this question was partially addressed by Dunkelman et al. [11] for t � 1 and later
by Chen et al. [5], who proved such bounds for the case where t � 2 and the sub-keys satisfy the
constraint s0 � s1 � s2.

2 Here, we consider the extension of their work beyond three rounds.

We also stress that our goal is not to find practical key schedules that are comparable to those
used in actual block cipher designs. Rather, we aim to broaden the understanding of correlated key
schedules and to identify when they preserve optimal security. At present, even modest savings in
randomness to generate the keys are not known for multi-round KACs.

Reducing key dependence for arbitrary rounds. As our first contribution, we show that
for any t-round KAC with t � 1 subkeys, there are key schedules that merely depend on t � 1
independent and uniform keys that achieve q � ΩpN t{pt�1qq security. This generalizes the result for
t � 2 proved by Chen et al. [5] to multi-round instantiations.

We give a general sufficient condition on key distributions for s⃗ that achieves optimal security.
Specifically, our condition considers distributions where the t � 1 sub-keys s⃗ for the t-round KAC
are a linear function of a vector k⃗ of t � 1 “master” keys, denoted as s⃗ � Ak⃗, in which we view
each master key and subkey as an element of the field F2n . The conditions to be met by the key
schedules are:

1. Any t� 2 rows of A must form a matrix of rank t� 2.

2. For any t rows of A

– the t rows must form a matrix of rank t� 1.

– there exists a linear combination of the t rows that gives a zero vector and two neighboring
rows with non-zero coefficients.

For example, a suitable and natural key schedule that satisfies our condition is where s⃗ is from the
pt� 1q-wise independent distribution obtained by evaluating a random polynomial of degree t� 2
at t � 1 distinct points over F2n . In fact, while our condition on key schedules is more restrictive
than pt�2q-wise independence, it still permits simple key schedules for small rounds (e.g, t � 3 and
t � 4) that do not require field multiplication, which may be considered an expensive operation,
i.e., for t � 3, we show that one can set s⃗ � pk0, k0, k1, k1q to have q � ΩpN3{4q. For t � 4, we set
s⃗ � pk0, k1, k2, k0 � k1, k1 � k2q to have q � ΩpN4{5q.
Less independence for more rounds.Of course, we would like to save even more randomness.
We make progress by saving n more bits for a sufficiently large number of rounds. Again, we give a
general condition on distributions characterized by linear functions mapping t � 2 n-bit keys k⃗ to
t�1 keys s⃗, i.e., s⃗ � Ak⃗. For any linear mapping A satisfying the property that each t�2 rows of A
have rank t� 2, our security proof shows, for t ¡ 5, a bound that gives security strictly better than
q � ΩpN pt�1q{tq; for t ¥ 8, we achieve q � ΩpN t{pt�1qq security. Again, one particular instantiation
is obtained by evaluating a random polynomial of degree t� 3 at t� 1 distinct points over F2n .

How far can we go? The end question is ultimately whether we can push our results even
further. Ideally, it would be possible to use a single-key schedule (as in Chen et al.) for an arbitrary
number of rounds. However, as we explain below, the classical approach to prove security for limited

2 Actually, Chen et al. [5] also addressed reducing the number of keys and permutations in parallel. They showed
that a 2-round KAC is secure against q � ΩpN2{3q queries when instantiated by a single permutation and a single
key with a key schedule built over a linear orthomorphism.
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independence is via so-called “sum-capture theorems” [2,23]. In this paper, we show that the sum-
capture theorem necessary to study the trivial key schedule beyond two rounds is not true. Though
this does not suggest that the resulting construction is insecure, improving beyond the results of
this paper would require substantially new counting techniques (see Section 4.3).

Other related work.Another important aspect of theoretical analyses over KACs is reducing
the number of random permutations used in the construction. Recently, Wu et al. [24] showed that
a three-round KAC instantiated with four uniform and independent sub-keys and a single random
permutation is secure against q � ΩpN3{4q adversarial queries. Dutta [12] considered minimizing
the tweakable KAC by reducing the number of random permutations and proved the security of
q � ΩpN2{3q for the 2-round tweakable KAC by Cogliati et al. [7] and 4-round tweakable KAC by
Cogliati and Seurin [8].

1.1 Technical Overview

Our paper follows the well-established paradigm of proving the security of key-alternating ciphers
based on the expectation method by Hoang and Tessaro [16] and generalizations of sum-capture
theorems proposed by Chen et al. [5].

Chain-based analyses. The core of existing analyses proceeds by identifying a set of bad tran-
scripts that contain chains: these are transcripts where the adversary has made direct queries to
P1, P2, . . . , Pt, and/or to the construction, which are linked together by the chosen subkeys. In
the ideal world, such bad transcript would likely become inconsistent with the real world, i.e.,
the probability of obtaining a bad transcript from the real world is zero. Formally, we represent
a transcript as τ � pQE ,Q1, . . . ,Qt, k⃗q, where QE contains queries to the construction and Qis
are the queries to individual permutations. Further, k⃗ are the keys from which the actual sub-keys
s⃗ � ps0, s1, . . . , stq are generated. (Since our statements are independent of whether such queries
occurred in the forward or backward direction, and of their order, we consider the transcript to be
comprised of sets of input-output pairs.) We say that such a τ is bad if the sub-keys ps0, s1, . . . , stq
admit some queries put�1, v0q P QE , pu1, v1q P Q1, . . . , put, vtq P Qt to constitute a chain, i.e., if
there exists an index i such that for all j P t0, . . . , tu with j � i, one has vj � uj�1 � sj , then
we say they form the i-th type of chain. If the sub-keys s⃗ are independent and uniform, then the
number of chains is at most pt � 1q � qt�1 (by a simple union bound over all types of chain); thus,
the probability that the transcript is bad is at most Oppt � 1qqt�1{N tq. (Note that every chain
definition involved only t subkeys.)

Handling limited independence. The preceding argument does not hold if s⃗ is generated, for
example, from pt � 1q-wise independent and uniform n-bit keys, since we can expect (at best) to
prove Oppt� 1qqt�1{N t�1q. We resolve this by considering a generalized version of the sum-capture
quantity that provides a tighter bound over the number of chains; namely, we define

µc⃗pV0,Q1, . . . ,Qt�1, Utq :������
#
pv0, pu1, v1q, . . . , put�1, vt�1q, utq P V0 �Q1 � . . .�Qt�1 � Ut :

t�1̧

i�0

cipvi � ui�1q � 0

+����� , (1)

where V0, Ut � t0, 1un and the coefficients c⃗ � pc0, . . . , ct�1q are field elements of F2n . A bound on
this quantity can be used to non-trivially bound the number of chains, as long as the coefficients
arising are compatible with the underlying method to generate the sub-keys and satisfy certain
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conditions. This in turn help us characterize of which distributions actually yield the desired optimal
security.

Concretely, when the linear coefficients c⃗ � pc0, . . . , ct�1q satisfy the condition that there is an
index 0 ¤ idx   t� 1 such that cidx � 0 and cidx�1 � 0, we prove the tight bound µc⃗ � Θpqt�1{Nq
using Fourier analysis techniques.

Reducing key dependencies further. To obtain our results for constructions with sub-keys
generated from t�2 independent and uniform keys, we need to upper bound an even more restrictive
version of the preceding sum-capture quantity where two linear constraints are imposed, i.e.,

µ
c⃗,d⃗
pV0,Q1, . . . ,Qt�1, Utq :������

#
pv0, pu1, v1q, . . . , put�1, vt�1q, utq P V0 �Q1 � . . .�Qt�1 � Ut :

t�1̧

i�0

cipvi � ui�1q � 0 ,
t�1̧

i�0

dipvi � ui�1q � 0

+����� . (2)

For the 2-constraint case, we specifically examine the coefficients c⃗ � pc0, . . . , ct�1q and d⃗ �
pd0, . . . , dt�1q that characterize the underlying sub-keys generated when the linear key schedule
is pt� 2q-wise independent and uniform. In this case, we show that

- For t ¡ 5, the t-round KAC is secure against q � ωpN t�1
t q queries.

- For t ¥ 8, the t-round KAC has tight security bound (i.e., q � ΩpN t
t�1 q).

Given that (2) is a natural generalization of its one-constraint counterpart, it is tempting to conclude
that upper-bounding (2) is no harder than upper-bounding (1). However, the two constraints make
the problem of upper-bounding (2) much harder. Moreover, the tightness of upper-bounding (1)
crucially relies on a particular step, referred to as the “Cauchy-Schwartz trick” [2,23,5], which does
not seem to apply here. We bypass this limitation by introducing a novel representation for the
upper bound of (2) as the 2-norm of a matrix. In particular, one can interpret the Cauchy-Schwartz
trick upper bound as a special case of the matrix norm bound where each matrix row and column
contains at most one non-zero entry. Then, we use the matrix Frobenius norm, which is easier
to compute for bounding the matrix 2-norm. Though our current technique proves tight security
bound only for t ¥ 8, we believe that the matrix 2-norm is the right characterization and one can
extend the tightness result to t ¥ 4 via a better tool to derive the 2-norm bound, since the usage
of Frobenius norm is, in most cases, not tight3.

While (2) remains a promising candidate for saving two keys, we show that for t � 3, i.e.,
for the 3-round KAC with identical subkey and independent permutations, the quantity of (2) is
lower bounded by q3{N with good probability. Hence, we need a sum-capture quantity with highly
non-trivial characterizations or an alternative proof strategy for the 3-round KAC to obtain the
desired q � ΩpN3{4q security bound.

3 In fact, the Frobenius norm and 2-norm can have up to a
?
N multiplicative gap for N � N matrix (e.g., the

identity matrix), and we believe that a large gap exists in our Frobenius norm bound. However, improving the
2-norm bound requires a more in-depth understanding of our defined matrix for analyzing (2) than we currently
have.
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Good transcript analysis. Since we have bounded the probability of a transcript being bad, we
move to understand the remaining transcripts that we consider to be good. We rely on the expec-
tation method proposed by Hoang and Tessaro [16], which is a generalization of the H-coefficient
method [6,21]. In the expectation method, the final security upper bound is

Security bound ¤ EX1rgpX1qs � PrrX1 is bads ,
where X1 is the random variable representing the transcript generated from the adversary inter-
acting with the ideal world and g : T Ñ r0,�8q is a non-negative function such that gpτq upper
bounds the real-world ideal-world probability ratio of any good transcript τ . The goal is to find a
function g : T Ñ r0,�8q that minimizes the value of EX1rgpX1qs.

It is tempting to believe that the sub-keys must be at least t-wise independent and uniform when
applying the techniques in [16] to achieve the tight security bound for good transcripts. However,
surprisingly, we show (in Section 5) that as long as the underlying sub-keys s⃗ � ps0, . . . , stq are
pt� 2q-wise independent and uniform, we can pick a non-negative function g so that

EX1rgpX1qs ¤ Opqt�1{N tq .
Therefore, as long as the t-round KAC has a key schedule that gives pt� 2q-wise independent and
uniform subkeys, the good transcript analysis gives the optimal bound.

1.2 Paper Organization

In Section 2 we define basic notations and indistinguishability framework. We give the main the-
orems and show tight security for classes of t-round KAC in Section 3, and we analyze the sum
capture quantity for upper-bounding the number of bad transcripts in Section 4. We then provide
the analysis of good transcripts in Section 5 and conclude our theorem proofs in Section 6. Finally
we provide conclusions and open problems in Section 7.

2 Preliminaries

Notations.For a finite set S, we write x
$Ð S to denote that x receives a uniformly sampled value

from S. For an algorithm A, we write y Ð Apx1, . . . ; rq to denote that A takes x1, . . . as inputs,

runs with the randomness r and assigns the output to y. We let y
$Ð Apx1, . . . , q be that A, given

the inputs, is executed over a randomly chosen r, and the resulting value is assigned to y.
We use Fp to denote a finite field of size p. For any two elements u, v P t0, 1un, we use xu, vy �°n

i�1 uivi to denote the inner product of u and v, where ui, vi are the i-th bit of u, v, respectively.
For any number 1 ¤ b ¤ a, we write apbq � apa� 1q � � � pa� b� 1q and take ap0q � 1 by convention.
In all the following, for any two elements u, v P t0, 1un, we take u� v and uv as the field addition
and multiplication in F2n , respectively, where u� v is implemented as the bit-wise xor over t0, 1un.
For a fixed n, we write N � 2n. For any vector u and matrix A, we write uJ and AJ as their
transpose.

PRP security of block ciphers.We study the security of the KAC in the random permutation
model. Let E : K�MÑM be a blockcipher that is constructed over a set of independent, uniformly
random permutations P⃗ � pP1, P2, . . . , Ptq. Let A be an adversary. the strong PRP advantage of
A is defined as

Adv�prp
E pAq :� PrrK $Ð K : AEK ,P⃗ � 1s � PrrP0

$Ð Permpnq : AP0,P⃗ � 1s ,
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where P0 is a random permutation independent of P⃗ and “�” denotes that the adversary A can
query the oracles in both a forward and backward direction.

Indistinguishability framework.We consider a computationally unbounded distinguisher A
interacting with two systems, S0 and S1. The interaction between A and Sb (where b P t0, 1u)
defines a transcript τ � ppu1, v1q, . . . , puq, vqqq that records the q pairs of queries/replies A made
to/received from the system Sb. Let Xb be the random variable representing the transcript. Then
the goal is to upper bound the following statistical distance

∆pX0, X1q �
¸
τ

maxt0,PrrX1 � τ s � PrrX0 � τ su .

Formulating systems.We follow [19] to describe the system behavior of S by associating every
possible transcript τ � ppu1, v1q, . . . , puq, vqqq with a value pSpτq P r0, 1s. One can interpret pSpτq
as the probability that, if the queries u1, . . . , uq in τ are asked sequentially, S will answer with
v1, . . . , vq, respectively. Note that pSp�q is defined only by the underlying system S and is hence
independent of any distinguisher. We also note that pSp�q is not a probability distribution over the
transcripts because the sum over all pSpτq does not necessarily give one.

Since the distinguisher is computationally unbounded, it is sufficient to consider deterministic
distinguishers only. Fix any deterministic distinguisher A, let X denote the transcript distribution
of A interacting with S. It then holds that PrrX � τ s P t0, pSpτqu for any τ because either A issues
the queries u1, . . . , uq when given the answers v1, . . . , vq, leading to PrrX � τ s � pSpτq, or it does
not, resulting in PrrX � τ s � 0.

Let T be the set of transcripts τ that has PrrX1 � τ s ¡ 0. Further, noting that PrrX0 � τ s �
pS0pτq if τ P T , we can rewrite the statistical distance as

∆pX0, X1q �
¸
τ

maxt0, pS1pτq � pS0pτqu �
¸
τ

pS1pτq �max

"
0, 1� pS0pτq

pS1pτq
*

.

The expectation method. We now review the expectation method proposed by [16], which
was developed based on the H-coefficient method [6,21]. In the H-coefficient method, the set of
transcripts T is partitioned into Tgood and Tbad so that for any τ P Tgood, pS0pτq{pS1pτq ¥ 1� ε for
some carefully chosen parameter ε. Then, an upper bound of the advantage directly follows, i.e.,

∆pX0, X1q ¤ ε� PrrX1 P Tbads .
However, instead of giving a uniform bound over all good transcripts, we can associate each τ with
a non-negative value gpτq so that pS0pτq{pS1pτq ¥ 1 � gpτq for every τ P Tgood. Hence, we can
instead derive the upper bound as

∆pX0, X1q ¤
¸

τPTgood

pS1pτq � gpτq �
¸

τPTbad

pS1pτq ¤ EX1rgpX1qs �
¸

τPTbad

pS1pτq ,

where we take the expectation over all τ P T by the fact that gp�q is non-negative. Therefore, we
have the following lemma.

Lemma 1 (The expectation method). If there exists a partition of T � Tgood \ Tbad and a
function g : T Ñ r0,�8q such that for any τ P Tgood, pS0pτq{pS1pτq ¥ 1� gpτq, then

∆pX0, X1q ¤ EX1rgpX1qs � PrrX1 P Tbads .
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3 Main Results

We consider the PRP security of a t-round KAC that is built on t random permutations P⃗ �
pP1, . . . , Ptq over t0, 1un and t � 1 subkeys ps0, . . . , stq where si P t0, 1un. When given input M P
t0, 1un, the t-round KAC outputs

st � Ptpst�1 � Pt�1p� � �P1ps0 �Mq � � � qq .

The sub-keys are generated from the master key denoted as pk0, . . . , kwq, where ki are sampled from
t0, 1un uniformly and independently. Therefore, the length of the master key is pw�1qn bits. Here,
we consider only linear key schedule algorithms, which can be represented as a matrix A over F2n .
We define the column vectors s⃗ � ps0, . . . , stqJ and k⃗ � pk0, . . . , kwqJ, where we naturally take each
n-bit string as an element in F2n and use s⃗Ð Ak⃗ to denote the key-scheduling process.

The case of A being an identity matrix of size pt � 1q � pt � 1q has been well studied, i.e.,
it was proved in [6,16] that, when the subkeys s0, . . . , st are independent and uniform and the
permutations P1, . . . , Pt are independent, any adversary needs at least q � ΩpN t{pt�1qq queries to
achieve a constant distinguishing advantage. We now consider the case where the permutations
are independent but the sub-keys are correlated and generated via linear key schedules from t� 1
independent n-bit keys (considered Theorem 1) or t� 2 independent n-bit keys (Theorem 2).

We starts by providing a security bound of a t-round KAC for a class of key schedules that
generate t� 1 sub-keys from t� 1 independent keys.

Theorem 1. For the t-round KAC constructed over t random permutations P⃗ � pP1, . . . , Ptq, let
the key of KAC be k⃗ � pk0, k1, . . . , kt�2qJ, where kis are independently uniformly sampled from F2n.
Let sub-keys s⃗ � ps0, s1, . . . , stqJ be derived by s⃗ Ð Ak⃗, where A is a pt� 1q � pt� 1q matrix over
F2n, with the rows denoted as A0, . . . , At, such that

1. Any t� 2 rows of A forms a matrix of rank t� 2.
2. For any I � t0, . . . , tu, |I| � t, then the row vectors pAℓqℓPI satisfy that

– pAℓqℓPI forms a matrix of rank t� 1.
– there exist values pcℓqℓPI such that

°
ℓPI cℓAℓ � 0⃗, and there are two indices idx1, idx2 P I

satisfying idx1 � idx2 P t1, tu and cidx1 , cidx2 that are both non-zero.

Then, for any adversary A that issues at most q queries to KAC, P1, . . . , Pt, where 9pt� 2qn ¤ q ¤
N{4,

Adv�prp
KAC pAq ¤ pt2 � t� 1q � 4q

t�1

N t
� 3pt� 1q

c
q2t�1pt� 2qn

N2t�2
.

First, we give a key schedule that gives pt� 1q-wise independent and uniform sub-keys for t-round
KACs with any round t.

Corollary 1. For t   2n, pick distinct elements α0, . . . , αt P F2n and let subkey si � F pαiq,
where F pXq � °t�2

j�0 kj � Xj. Then, an adversary needs ΩpN t{pt�1qq queries to achieve a constant
distinguishing advantage.

Corollary 1 directly follows from the fact that A is a Vandermonde matrix, so every t� 1 rows
of A forms a full-rank sub-matrix. Hence, any t rows of A are linear dependent, with the coefficients
pcℓqℓPI satisfying cℓ � 0 for all ℓ.
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Table 1. q � ΩpNλq for a constant security bound in Theorem 2.

t 3 4 5 6 7 8 9 10 � � �
λ � logN q 0.571 0.720 0.800 0.842 0.870 0.889 0.9 0.909 � � �
t{pt� 1q 0.750 0.800 0.833 0.857 0.875 0.889 0.9 0.909 � � �

Note that by letting t � 2 in Corollary 1, our result implies the optimal security bound of a
2-round KAC with identical subkeys and independent permutations proven by Chen et al. [5].

Though it is implied in the theorem statement that we need the subkeys to be pt � 2q-wise
independent and uniform, for a small round t we can still obtain some simple key schedules that
achieve the optimal bound for q but do not require any field multiplication operations, which may
be considered expensive in key-scheduling.

Corollary 2. Let there be a 3-round KAC with key schedule

s⃗ � pk0, k0, k1, k1q
where k0, k1 are two independently uniform n-bit keys; an adversary then needs ΩpN3{4q queries to
achieve a constant distinguishing advantage.

Corollary 3. Let there be a 4-round KAC with key schedule

s⃗ � pk0, k1, k2, k0 � k1, k1 � k2q
where k0, k1, k2 are three independently uniform n-bit keys; An adversary then needs ΩpN4{5q queries
to achieve a constant distinguishing advantage.

One can check that the sub-keys in Corollary 2 (or Corollary 3) are 1-wise (or pairwise) inde-
pendent and uniform and any t rows form a sub-matrix of rank t � 1 with the coefficients pcℓqℓPI
satisfying the given conditions via Gaussian elimination.

As Theorem 1 gives a tight bound for all t, one may optimistically expect that similar results
can be proven with ease when saving one more key. However, for the t-round KAC with sub-keys
generated from t � 2 keys, we can make only partial progress by proving the following theorem,
which implies tight security only for t ¥ 8.

Theorem 2. For the t-round KAC constructed over t random permutations P⃗ � pP1, . . . , Ptq, let
the key of KAC be k⃗ � pk0, k1, . . . , kt�3qJ, where kis are independently and uniformly sampled from
F2n. Let sub-keys s⃗ � ps0, s1, . . . , stqJ be derived by s⃗ Ð Ak⃗, where A is a pt� 1q � pt� 2q matrix
over F2n such that any t� 2 rows of A form a matrix of rank t� 2. Then, for any adversary A that
issues at most pt� 2qnN2{3 ¤ q ¤ N{4 queries to KAC, P1, . . . , Pt,

Adv�prp
KAC pAq ¤ pt2 � 2tq � p5qq

t�1

N t
� pt� 1q2 � p3qq

2t�2.5

N2t�4
.

Table 1 summarizes the order of q that causes the security bound to be Ωp1q. We observe
that Theorem 2 does not initially give good bound for t ¤ 7. From t ¥ 5, the bound starts
improving relative to q � ΩpN pt�1q{tq, which is obtained by instantiating a pt�1q-round KAC from
the provided t � 2 keys and applying Theorem 1. When t ¥ 8, the bound achieves the optimal
q � ΩpN t{pt�1qq. The tightness results for t ¤ 7 are left open.

A feasible instantiation of Theorem 2 is to let the sub-keys be the evaluations at t� 1 distinct
points of a degree t� 3 polynomial. Then, the following corollary holds.
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Corollary 4. For 8 ¤ t   2n, pick distinct elements α0, . . . , αt P F2n and let subkey si � F pαiq,
where F pXq � °t�3

j�0 kj � Xj. Then, an adversary needs ΩpN t{pt�1qq queries to achieve a constant
distinguishing advantage.

Proof framework. We use the expectation method (i.e., Lemma 1) to prove both theorems.
Given the query record Q⃗ � pQE ,Q1, . . . ,Qtq, we generously allow the adversary A to see the key
k⃗ after making all queries. Therefore, we let the transcript τ � pQ⃗, k⃗q by attaching k⃗ to the end of
Q⃗. In the ideal world, we sample and attach a dummy key k⃗ to Q⃗. Here, we define the set of bad
transcripts for a t-round KAC.

Definition 1 (Bad transcripts). For a t-round KAC, we say a transcript τ � pQ⃗, k⃗q is bad if

k⃗ P BadkeyQ⃗ �
t¤

i�0

BadkeyQ⃗,i ,

where for every i,

BadkeyQ⃗,i :� tk⃗ : s⃗Ð KeySchedulepk⃗q, there exists put�1, v0q P QE , pu1, v1q P Q1, . . . , put, vtq P Qt

s.t. for all 0 ¤ j ¤ t, j � i, vj � sj � uj�1u .

Otherwise, we say that τ is good. We use Tgood to denote the set of all good transcripts and Tbad to
denote the set of all bad transcripts. Hence, T � Tgood \ Tbad.

Then, we break the analysis into the bad and the good transcript cases. We use the generalized
sum-capture quantity in Section 4 as an upper bound for the bad transcripts. We analyze the good
transcripts in Section 5. Section 6 presents the final proof of theorems.

More fine-grained security. In the preceding theorems, we use q to be the uniform upper
bound over all query types. However, we note that our proof technique also provides bounds when
the number of cipher queries qe and the number of permutation queries qp are separated. We provide
the bounds in Appendix A for both theorems but omit the proofs, which are essentially the same
as proving the case for qe � qp but involve more case discussions.

4 Generalized Sum Capture Quantity for KAC

In [5] Chen et al. considered minimizing the 2-round KAC, where they proved a variant of “sum-
capture” results [2,15,1,17,23]. The results are often stated that, for a randomly chosen set A of
size q, the quantity

µpAq :� max
X,Y�Zn

2
|X|�|Y |�q

|tpa, x, yq P A�X � Y : a � x� yu| (3)

is close to its expected value q3{N (when A,X, Y are all chosen at random) with high probability.
In the 2-round KAC with an identical key schedule, the sum-capture quantity is defined as

µpQq :� max
X,Y�Zn

2
|X|�|Y |�q

|tpx, pu, vq, yq P X �Q� Y : x� u � v � yu| , (4)

9



where one can view the query transcript Q derived from the interaction of an adversary A with
the permutation to be equivalent to the set A in (3) defined by A � tu� v | pu, vq P Qu.

However, both (3) and (4) consider only a single random permutation with a single linear
constraint. To generalize the sum-capture quantity so that we can handle the KAC that saves more
keys, we consider the sum-capture quantity that involves pt�1q independently random permutations
and r P t1, 2u linear constraints over F2n for the t-round KAC with a linear key schedule.

For the r � 1 case, we prove the tight bounds of a sum-capture quantity for any choice of
linear constraint, leading to a feasible set of key schedules that saves two keys for an arbitrary
t-round KAC with tight security. However, as we increase the number of constraints to r � 2, the
problem becomes more complicated, and we lack a sufficiently sophisticated technique to yield a
tight bound or handle arbitrary linear constraints. We can prove only a loose upper bound for
the linear-constraints that characterize the underlying sub-keys as being pt� 2q-wise independent,
leading to a partial result for saving three keys of t-round KAC.

Fourier Analysis.To prove the bounds, we rely on the tool of Fourier analysis. In this part we
define some notations for the Fourier analysis over t0, 1um. Given a function f : t0, 1um Ñ R, the
Fourier coefficient of f with α P t0, 1um is defined as

f̂pαq :� 1

2m

¸
xPt0,1um

fpxqp�1qxα,xy .

Then, we have

fpxq �
¸

αPt0,1um

f̂pαqp�1qxα,xy . (5)

For any set S � t0, 1um, we let 1S : t0, 1um Ñ t0, 1u be the 0/1 indicator function of S. Then, the
following properties hold for 1S :

x1Sp0q � |S|
2m

�
¸

αPt0,1um

x1Spαq2 , (6)

@α P t0, 1um : |x1Spαq| ¤ x1Sp0q � |S|
2m

. (7)

4.1 1-constraint Sum Capture Quantity

We associate a 1-constraint sum-capture quantity with a vector of coefficients c⃗ � pc0, c1, . . . , ct�1q
as follows:

µc⃗pV0,Q1, . . . ,Qt�1, Utq :������
#
pv0, pu1, v1q, . . . , put�1, vt�1q, utq P V0 �Q1 � � � � �Qt�1 � Ut :

t�1̧

j�0

cjpvj � uj�1q � 0

+����� .
Lemma 2. Let t ¥ 2. Let P1, . . . , Pt�1 be t � 1 independent uniformly random permutations of
t0, 1un, and let A be a probabilistic algorithm that makes adaptive queries to P1, . . . , Pt�1. Let
Q1, . . . ,Qt�1 be the query transcripts of P1, . . . , Pt�1 interacting with A. Let c⃗ � pc0, . . . , ct�1q be
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any coefficients so that there exists an index 0 ¤ idx   t � 1 satisfying cidx � 0 and cidx�1 � 0.
Then, for any A that makes at most q queries to each permutations,

PrP1,...,Pt�1

�
DV0, Ut � F2n , |V0| � |Ut| � q,

µc⃗pV0,Q1, . . . ,Qt�1, Utq ¥ 3qt�1

N
� 3qt�1{2

a
pt� 2qn

�
¤ 2t

N t
.

We let ΦpQiq :� maxα�0,β�0N
2|y1Qipα, βq| for the query records Q1, . . . ,Qt�1. To show Lemma 2,

we first rely on the following Lemma 3, which states the upper bound in terms of the ΦpQiq we
previously defined. Then, we apply Lemma 4 by Chen et al. [5], which provides an upper bound
for the ΦpQiq term to conclude the proof.

Lemma 3. Fix any c⃗ � pc0, . . . , ct�1q such that cidx � 0 and cidx�1 � 0 for some index 0 ¤ idx  
t� 1, then for any subsets V0, Ut with |V0| � |Ut| � q,

µc⃗pV0,Q1, . . . ,Qt�1, Utq ¤ qt�1

N
� qt�1ΦpQidx�1q .

Proof. The first step is to write µc⃗ as a sum over indicator functions; we then will perform a
Fourier transform over each indicator function. Although the summation will be over many terms
and Fourier coefficients, the key point is that we can eliminate most summation terms and simplify
the equality to sum over only a single Fourier coefficient term.

Here, we sum over the indicator functions.

µc⃗pV0,Q1, . . . ,Qt�1, Utq

�
¸
v0

¸
u1,v1

� � �
¸

ut�1,vt�1

¸
ut

1V0pv0q1Q1pu1, v1q � � �1Qt�1put�1, vt�1q�1Utputq�1Eq

�
0,

t�1̧

j�0

cjpvj � uj�1q
�

,

where 1Eqpx, yq is the equality indicator function so that 1Eqpx, yq � 1 if and only if x � y. Note
that for the equality indicator function, we can perform a Fourier transformation to get

1Eqpx, yq �
¸
α,β

y1Eqpα, βq � p�1qxα,xy�xβ,yy � 1

N
�
¸
α

p�1qxα,x�yy,

where we use the fact that

y1Eqpα, βq �
"
1{N if α � β
0 o.w.

.

We expand each indicator function using a Fourier transform and continue the calculation.

µc⃗pV0,Q1, . . . ,Qt�1, Utq

�
¸

v0,u1,v1,���
ut�1,vt�1,ut

��¸
β0

y1V0pβ0qp�1qxβ0,v0y

��
�� ¸

α1,β1

y1Q1pα1, β1qp�1qxα1,u1y�xβ1,v1y

�� � �
11



�
�� ¸

αt�1,βt�1

{1Qt�1pαt�1, βt�1qp�1qxαt�1,ut�1y�xβt�1,vt�1y

�
�
�¸

αt

y1Utpαtqp�1qxαt,uty

�
� 1

N

�¸
γ

p�1qxγ,
°t�1

j�0 cjpvj�uj�1qy

�
.

Here, notice that all Fourier coefficients depend only on the variables αs, βs and γ, so we can
expand the multiplication and change the order of summation to obtain

µc⃗pV0,Q1, . . . ,Qt�1, Utq
� 1

N
�
¸
β0

¸
α1,β1

� � �
¸

αt�1,βt�1

¸
αt

¸
γ

y1V0pβ0qy1Q1pα1, β1q � � �{1Qt�1pαt�1, βt�1qy1Utpαtq

�
¸
v0

¸
u1,v1

� � �
¸

ut�1,vt�1

¸
ut

p�1qxβ0,v0yp�1qxα1,u1y�xβ1,v1y � � � p�1qxαt�1,ut�1y�xβt�1,vt�1y

� p�1qxαt,uty � p�1qxγ,
°t�1

j�0 cjpvj�uj�1qy

� 1

N
�
¸
β0

¸
α1,β1

� � �
¸

αt�1,βt�1

¸
αt

¸
γ

y1V0pβ0qy1Q1pα1, β1q � � �{1Qt�1pαt�1, βt�1q

�y1Utpαtq �
�¸

v0

p�1qxβ0,v0y�xγ,c0v0y

�
�
�¸

u1

p�1qxα1,u1y�xγ,c0u1y

�
�¸

v1

p�1qxβ1,v1y�xγ,c1v1y

�
� � �
�¸

ut

p�1qxαt,uty�xγ,ct�1uty

�
.

The last equality is simply grouping the inner products that share the same u, v terms. Note that
the field multiplication of c �x can be represented as a matrix Ac

4 that applies to an n-dimensional
vector x over F2. If c � 0, then Ac � O, where we use O to denote an all zero matrix; otherwise,
Ac is a full-rank matrix. Taking the summation over the v0 term as an example, we rewrite the
xγ, c0v0y term as xγ, c0v0y � γJAc0v0 � pAJ

c0γqJv0 � xAJ
c0γ, v0y, where AJ

c0 is the transpose of Ac0 .
So we get

µc⃗pV0,Q1, . . . ,Qt�1, Utq
� 1

N
�
¸
β0

¸
α1,β1

� � �
¸

αt�1,βt�1

¸
αt

¸
γ

y1V0pβ0qy1Q1pα1, β1q � � �{1Qt�1pαt�1, βt�1q �y1Utpαtq

�
�¸

v0

p�1qxβ0�AJ
c0

γ,v0y

�
�
�¸

u1

p�1qxα1�AJ
c0

γ,u1y

��¸
v1

p�1qxβ1�AJ
c1

γ,v1y

�

� � �
�¸

ut�1

p�1qxαt�1�AJ
ct�2

γ,ut�1y

��¸
vt�1

p�1qxβt�1�AJ
ct�1

γ,vt�1y

��¸
ut

p�1qxαt�AJ
ct�1

γ,uty

�
.

4 Since we are taking the natural field interpretation over t0, 1un, where the field addition is the bit-wise xor
operation, we define the i-th column of Ac as the n-dimension vector representation of field element c � νi, where
νi is the field element that has the corresponding representation to be a basis vector with the i-th position being
one and the rest positions being zero.
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It is known that
°

xPt0,1unp�1qxα,xy � N if and only if α � 0; otherwise, it equals zero. We are
interested only in the case where the Fourier coefficients give a non-zero summation. Interestingly,
we can obtain the following equalities that are written in terms of γ, i.e.,

@i P t0, . . . , t� 1u : αi�1 � βi � AJ
ciγ ,

where Aci is full-rank if ci � 0 or Aci � O if ci � 0. Hence, the equality calculation can be greatly
simplified as

µc⃗pV0,Q1, . . . ,Qt�1, Utq � N2t�1
¸
γ

y1V0pAJ
c0γqy1Q1pAJ

c0γ,A
J
c1γq � � �{1Qt�1pAJ

ct�2
γ,AJ

ct�1
γqy1UtpAJ

ct�1
γq

� qt�1

N
�N2t�1

¸
γ�0

y1V0pAJ
c0γqy1Q1pAJ

c0γ,A
J
c1γq � � �y1UtpAJ

ct�1
γq

¤ qt�1

N
�N2t�1

¸
γ�0

|y1V0pAJ
c0γq| � |y1Q1pAJ

c0γ,A
J
c1γq| � � � |y1UtpAJ

ct�1
γq| .

We let

left :� min of i such that ci � 0

right :� max of i such that ci � 0 .

To proceed, we need a case discussion of pleft, rightq. Here, we consider the case of left � 0 and
right � t � 1 (i.e., c0 � 0 and ct�1 � 0). The other cases yield the same upper bound, and we
describe them in appendix B.1 for completeness.

Therefore, we obtain

µc⃗pV0,Q1, . . . ,Qt�1, Utq

¤ qt�1

N
�N2t�1

¸
γ�0

|y1V0pAJ
c0γq| � |y1Q1pAJ

c0γ,A
J
c1γq| � � � |{1Qt�1pAJ

ct�2
γ,AJ

ct�1
γq| � |y1UtpAJ

ct�1
γq|

¤ qt�1

N
�N2t�3

¸
γ�0

|y1V0pAJ
c0γq| �

� q

N2

	t�2
� ΦpQidx�1q � |y1UtpAJ

ct�1
γq|

� qt�1

N
� qt�2NΦpQidx�1q �

¸
γ�0

|y1V0pAJ
c0γq| � |y1UtpAJ

ct�1
γq| ¤ qt�1

N
� qt�1ΦpQidx�1q . (8)

Given the condition that cidx � 0 and cidx�1 � 0, we have N2|{1Qidx�1
pAcidxγ,Acidx�1

γq| ¤ ΦpQidx�1q
for any γ � 0. We also used (7) that, for any α, β, |y1Qipα, βq| ¤ q{N2. We note that the last step
of inequality holds because by (6) we have

°
γ
y1V0pAJ

c0γq2 �
°

γ
y1UtpAJ

ct�1
γq2 � q{N , so we can

apply the Cauchy-Schwartz inequality to obtain the result. This exact inequality step ensures the
tight bound and was referred to as the Cauchy-Schwartz trick in [2,23,5].

Therefore, we proved Lemma 3. [\
The remaining step is to upper bound ΦpQidx�1q. Here, we apply the following lemma, which

has essentially the same proof of Lemma 6 proved by Chen et al. in [5], with the only adjustment
of changing their parameter δ to δ �

a
p12 lnNq{q.
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Lemma 4. Assume that 9pt � 2qn ¤ q ¤ N{2. Fix an adversary making q queries to a random
permutation P . Let Q denote the transcript of interaction of A with P . Then,

PrP,ω

�
ΦpQq ¥ 2q2

N
� 3
a
pt� 2qnq

�
¤ 2

N t
,

where the probability is taken over the random permutation P and the random coins ω used by A.

Plugging in the inequality, we get

µc⃗pV0,Q1, . . . ,Qt�1, Utq ¤ qt�1

N
� qt�1ΦpQidx�1q ¤ qt�1

N
� qt�1

�
2q2

N
� 3
a
pt� 2qnq



� 3qt�1

N
� 3qt�1{2

a
pt� 2qn

with probability at least 1� 2t
Nt . Hence, we proved Lemma 2.

Tightness of Lemma 2.We examine the tightness of 1-constraint sum-capture quantities in two
aspects. The first is, given that c⃗ � pc0, . . . , ct�1q where there are two neighboring ci, ci�1 so that
ci � 0, ci�1 � 0 whether or not the upper bound is tight.

We now give the following proposition, showing that if there exist neighboring coefficients ci � 0
and ci�1 � 0, then for moderately large q (e.g. q ¡ N2{3), µc⃗ ¥ qt�1{2N with high probability. We
defer the detailed proof to Appendix B.2.

Proposition 1. Let q be any positive integer of power of two. Fix any c⃗ � pc0, . . . , ct�1q such that
there exists an index 0 ¤ i   t�1 satisfying ci � 0 and ci�1 � 0. Then, there is an explicit algorithm
A that makes at most q queries to each of P1, . . . , Pt�1, and V0, Ut � F2n that have |V0| � |Ut| � q
so that

Pr

�
µc⃗pV0,Q1, . . . ,Qt�1, Utq ¥ qt�1

2N

�
¥ 1� N

q
� e�q2{8N .

The second proposition, complementary to Proposition 1, states that if c⃗ � pc0, . . . , ct�1q satisfies
that if for any 0 ¤ i   t� 1, either ci � 0 or ci�1 � 0, then µc⃗pV0,Q1, . . . ,Qt�1, Utq can achieve up
to qt, which is larger than qt�1{N . We leave the proof to Appendix B.3.

Proposition 2. Let q be any positive integer of power of two. Fix any c⃗ � pc0, . . . , ct�1q such that
for any 0 ¤ i   t� 1, either ci � 0 or ci�1 � 0. Then, there is an explicit algorithm A that makes
at most q queries to each of P1, . . . , Pt�1, and V0, Ut � F2n that have |V0| � |Ut| � q, so that

µc⃗pV0,Q1, . . . ,Qt�1, Utq ¥ qt .

4.2 2-constraint Sum-Capture Quantity

We now consider the sum-capture quantity for which the number of constraints r � 2. We associate
the 2-constraint sum-capture quantity with two vectors of coefficients, c⃗ � pc0, c1, . . . , ct�1q and
d⃗ � pd0, d1, . . . , dt�1q, as
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µ
c⃗,d⃗
pV0,Q1, . . . ,Qt�1, Utq :������

#
pv0, pu1, v1q, . . . , put�1, vt�1q, utq P V0 �Q1 � � � � �Qt�1 � Ut :

t�1̧

j�0

cjpvj � uj�1q � 0,
t�1̧

j�0

djpvj � uj�1q � 0

+����� . (9)

Though the 2-constraint sum-capture quantity is a natural generalization of the 1-constraint case,
we note that adding only one more constraint makes proving the tightest upper bound of (9) much
harder. Here, we give bounds only over the sum-capture quantity with a specific class of coefficients
c⃗, d⃗ that can be derived from the pt� 2q-wise independently uniform sub-keys. We obtain a bound
that gives the tightest KAC security for t ¥ 8. However, for t   5, our 2-constraint upper bound is
even worse than a reduction-based bound (see Appendix B.4). While it is interesting to investigate
whether our bound can be improved, for t � 3, in particular, we show that the preceding sum-
capture quantity is lower-bounded by Ωpq3{Nq and hence cannot be used to prove q � ΩpN3{4q for
the 3-round KAC with identical sub-keys.

We prove upper bounds for the class of linear constraint coefficients c⃗ � pc0, . . . , ct�1q, d⃗ �
pd0, . . . , dt�1q with the property that c0 � dt�1 � 1, ct�1 � d0 � 0, and for all i P t1, . . . , t � 2u,
ci � 0, di � 0, and for all i, j P t1, . . . , t � 2u such that i � j, cid

�1
i � cjd

�1
j . We justify that

c⃗, d⃗ corresponds to the linear key schedule from t � 2 independent keys that gives pt � 2q-wise
independently uniform sub-keys.

Justification.We use s0, . . . , st�1 to denote the sub-keys. Given that the sub-keys are generated
linearly from t� 2 independent keys and are pt� 2q-wise independently uniform, the middle t� 2
sub-keys s1, . . . , st�2 uniquely fix the original master keys; hence, the first subkey s0 and the last
sub-keys st�1 can be uniquely determined as a linear combination of s1, . . . , st�2, i.e.,

s0 �
t�2̧

i�1

cisi , st�1 �
t�2̧

i�1

disi .

Note that all ci, di should be non-zero because otherwise we could obtain a linear combination
t � 2 sub-keys that sum to zero, breaking the pt � 2q-wise independence. Further, we show by
contradiction that if there exists i, j such that i � j and cid

�1
i � cjd

�1
j , then we pick the set of

sub-keys ts0, st�1u Y tsk | 1 ¤ k ¤ t� 2^ k R ti, juu and have

s0 � cid
�1
i st�1 �

¸
kRt0,i,j,tu

pcid�1
i dk � ckqsk ,

which is a linear dependence among t� 2 sub-keys. Thus, all cid
�1
i must be distinct.

Then, we have the following lemma for the 2-constraint sum-capture quantity.

Lemma 5. Let t ¥ 3. Let P1, . . . , Pt�1 be t � 1 independent uniformly random permutations of
t0, 1un, and let A be a probabilistic algorithm that makes adaptive queries to P1, . . . , Pt�1. Let
Q1, . . . ,Qt�1 be the query transcripts of P1, . . . , Pt�1 interacting with A. Let coefficients c⃗, d⃗ be
defined as above. Then, for any A that makes at most q ¥ pt�2qnN2{3 queries to each permutation,
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PrP1,...,Pt�1

�
DV0, Ut � F2n , |V0| � |Ut| � q,

µ
c⃗,d⃗
pV0,Q1, . . . ,Qt�1, Utq ¥ qt�1

N2
� t � p3qq

2t�3

N t�2
� p3qq2t�2.5

N t�2

�
¤ 2t

N t
.

Discussion.Note that when t ¥ 5, the security bound starts to improve over the t� 1 round KAC

bound q � ΩpN t�1
t q. For t ¥ 8, the security bound achieves optimal security of q � ΩpN t

t�1 q.
As in the 1-constraint case, we prove an upper bound of µ

c⃗,d⃗
conditioning on ΦpQiq being small

for all i.

Lemma 6. Fix c⃗, d⃗ defined as in Lemma 5. Then, conditioning on ΦpQiq ¤ 9q2{N for all 1 ¤ i ¤
t� 1, it holds that for any subsets V0, Ut � F2n with |V0| � |Ut| � q,

µ
c⃗,d⃗
pV0,Q1, . . . ,Qt�1, Utq ¤ qt�1

N2
� t � p3qq

2t�3

N t�2
� p3qq2t�2.5

N t�2
.

Proof. We first expand the quantity as sums over indicator function, and perform Fourier expansion,
grouping inner products as we did for the 1-constraint case. The following shows the calculation
result, and we left the details in Appendix B.5.

µ
c⃗,d⃗
pV0,Q1, . . . ,Qt�1, Utq � N2t�2

¸
α,β

y1V0pθ0qy1Q1pθ0, θ1qy1Q2pθ1, θ2q � � �{1Qt�1pθt�2, θt�1qy1Utpθt�1q

where

θ0 � α, θt�1 � β,

@i P t1, . . . , t� 2u : θi � AJ
ciα�AJ

di
β .

We write Coeff � tθ0, θ1, . . . , θt�1u. Here, we partition the summation into three cases and discuss
the set of pα, βq assignments that falls into each case.

1. At least two θs in Coeff are zero.

2. Exactly one θ in Coeff is zero.

3. No θs in Coeff is zero.

The following claim shows that if case one happens, then all coefficients θ are zero.

Claim 1 If two θs in Coeff are zero, then α � β � 0.

Proof. If θ0 � α � β � θt�1 � 0, then the claim is trivial. If α � θ0 � θi � 0 for some i with
1 ¤ i ¤ t�2, then given that θi � AJ

ciα�AJ
di
β � AJ

di
β and AJ

di
is full-rank (because di � 0), we can

infer that β � 0. Similarly, we can infer α � 0 if β � θt�1 � θi � 0 for some i with 1 ¤ i ¤ t � 2.
Now, if θi � θj � 0 for some i, j such that 1 ¤ i, j ¤ t � 2 and i � j, the choice of pα, βq must
satisfy $&%AJ

ciα�AJ
di
β � 0

AJ
cjα�AJ

dj
β � 0
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implying that AJ
d�1
i�1ci�1

α � pAJ
di�1

q�1AJ
ci�1

α � β � pAJ
dj�1

q�1AJ
cj�1

α � AJ
d�1
j�1cj�1

α. Hence,

�
AJ

d�1
i�1ci�1

�AJ
d�1
j�1cj�1



α �

�
AJ

d�1
i�1ci�1�d�1

j�1cj�1



α � 0 .

Here, α can be non-zero only if d�1
i�1ci�1 � d�1

j�1cj�1. However, as we explained in the pt� 2q-wise
independently uniform property of sub-keys, this is not possible. [\

Let µ1, µ2, µ3 correspond to summation over pα, βq for case one, two, three, respectively.

Proposition 3.

µ1 � qt�1

N2

Proof. Since case one happens only when α � β � 0, we have θi � 0 for all i. Therefore, a direct
calculation using the fact thaty1V0p0q �y1Utp0q � q{N and y1Qip0, 0q � q{N2 proves the bound. [\
Proposition 4.

µ2 ¤ t � p3qq2t�3

N t�2

Since the proof of Proposition 4 can be derived via a moderate change to the proof of the 1-constraint
sum-capture quantity upper bound (i.e., Lemma 2), we left the complete proof to Appendix B.6.

Proposition 5.

µ3 ¤ p3qq2t�2.5

N t�2

Proof (of Proposition 5). We define anN�N matrixM with each entry labeled by pα, βq P F2n�F2n

so that

Mα,β �
#
0 if some θ P Coeff is 0y1Q1pα,AJ

c1α�AJ
d1
βq � � �{1Qt�1pAJ

ct�2
α�AJ

dt�2
β, βq o.w.

Note that M is a 2n � 2n matrix. We also define the column vectors v⃗, u⃗ with each entry labeled

by α P F2n so that v⃗α � {1V0pαq and u⃗α � {1Utpαq. Therefore, we can write µ3 as

µ3 � N2t�2
¸

α,β | Mα,β�0

{1V0pαq �Mα,β � {1Utpβq � N2t�2v⃗JMu⃗ .

Noting that the equivalent definition of the matrix 2-norm is

∥M∥2 :� sup
∥x∥2�1

∥Mx∥2 � sup
∥x∥2�1,∥y∥2�1

yJMx ,

we can use the matrix norm as the upper bound of µ3, that is,

µ3 � N2t�2 � v⃗JMu⃗ ¤ N2t�2 ∥v⃗∥2 ∥M∥2 ∥u⃗∥2 .
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By (6), we can infer that ∥v⃗∥2 �
a°

α v
2
α �

b°
α
y1V0pαq2 �

a
q{N and ∥u⃗∥2 �

a
q{N . We also

use the fact that ∥M∥2 ¤ ∥M∥F , where ∥M∥F �
b°

i,j M
2
i,j is the Frobenius norm. Then, we have

µ3 ¤ N2t�2 �
c

q

N
∥M∥2

c
q

N
¤ qN2t�3 ∥M∥F � qN2t�3

d¸
α,β

M2
α,β ,

where ¸
α,β

M2
α,β �

¸
α,β | Mα,β�0

y1Q1pα,AJ
c1α�AJ

d1βq2 � � �{1Qt�1pAJ
ct�2

α�AJ
dt�2

β, βq2

¤
¸

α,β | Mα,β�0

y1Q1pα,AJ
c1α�AJ

d1βq2 �
p3qq4pt�2q

N6pt�2q

¤ p3qq4pt�2q

N6pt�2q

¸
α,β

y1Q1pα,AJ
c1α�AJ

d1βq2 �
p3qq4pt�2q

N6pt�2q
� q

N2
¤ p3qq4t�7

N6t�10
.

Therefore, we get

µ3 ¤ qN2t�3 � p3qq
2t�3.5

N3t�5
¤ p3qq2t�2.5

N t�2
.

[\
Putting all propositions together, we have

µ
c⃗,d⃗

� µ1 � µ2 � µ3 ¤ qt�1

N2
� t � p3qq

2t�3

N t�2
� p3qq2t�2.5

N t�2
.

[\

4.3 Tightness of 2-constraint Sum-Capture Quantity for 3-round KAC

A natural question is whether the upper bound of the 2-constraint sum-capture quantity can be
improved to give a tight security bound for a t-round KAC when t   7. In particular, the most
interesting case is to prove a tight security bound q � ΩpN3{4q for a 3-round KAC with identical
sub-keys that corresponds to the instantiation in Corollary 4 when t � 3. However, for the 3-round
KAC with an identical key schedule, we prove that it is impossible to show the conjectured optimal
security bound via upper-bounding the sum-capture quantity, because the sum-capture quantity is
lower-bounded by Ωpq3{Nq with high probability, giving µc⃗{N � Ωpq3{N2q instead of the desired
q4{N3. The sum-capture quantity lower bound for a 3-round identical sub-key KAC directly follows
from Proposition 6 with c1 � d1 � 1. We left the proof of proposition to Appendix B.7.

Proposition 6. Let q be any positive integer of power of two. Let t � 2 and fix c⃗ � p1, c1, 0q,
d⃗ � p0, d1, 1q, where c1, d1 are non-zero. Then, there exists an explicit algorithm A that makes at
most q queries to each of P1, P2 and V0, U3 � F2n that have |V0| � |U3| � q, so that

Prrµ
c⃗,d⃗
pV0,Q1,Q2, U3q ¥ q3{2N s ¥ 1� N

q
� e�q2{8N .
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Though Proposition 6 gives a lower bound of Ωpq3{Nq for the sum-capture quantity µ
c⃗,d⃗
, it

does not immediately imply a distinguishing attack against the 3-round KAC. This is because the
number of bad keys generated by our constructed A is at most q, so we have Prrk⃗ P Badkeys ¤ q{N ;
The reason of µ

c⃗,d⃗
being too large is that a bad key may be counted multiple times in the sum

capture quantity. Therefore, we cannot prove the optimal q � ΩpN3{4q bound for a 3-round KAC
with identical sub-keys if overcounting cannot be eliminated.

5 Good Transcript Analysis

We next obtain upper bounds of 1� pS0pτq{pS1pτq for each τ P Tgood in the following lemma.

Lemma 7. If the t-round KAC is instantiated with a key schedule that gives pt � 2q-wise in-
dependently uniform sub-keys, then there exists a function g : T Ñ r0,�8q so that for any
τ � pQ⃗, k⃗q P Tgood,

1� pS0pτq
pS1pτq

¤ gpτq ,

and for any query records Q⃗,

E
k⃗

�
gpQ⃗, k⃗q

�
¤ t2p4qqt�1

N t
.

To obtain the desired function gp�q, we must first understand the ratio pS0pτq{pS1pτq. Given the
transcript τ � pQ⃗, k⃗q where Q⃗ � pQE ,Q1, . . . ,Qtq, we write E Ó QE to denote that the real-world
cipher construction E is consistent with the recorded query QE ; that is, for each px, yq P QE , it
holds that Epxq � y. Similarly, we write Pi Ó Qi to denote that the permutation Pi is consistent
with the recorded query Qi. Then, following [5,16], one can derive that

pS0pQ⃗, k⃗q
pS1pQ⃗, k⃗q

� N p|QE |q � PrrE
k⃗
Ó QE | P1 Ó Q1, . . . , Pt Ó Qts , (10)

where N p|QE |q � NpN � 1q � � � pN � |QE | � 1q. We provide a proof of (10) in Appendix C.1.
To analyze the probability term on the RHS, we take the following graph view for KAC, which

was originally introduced by Chen and Steinberger in [6].

5.1 Graph Definition and a Useful Lemma

Let G be a graph that consists of vertices divisible into m�1 layers L0, . . . , Lm such that each layer
contains exactlyN vertices and edges that can be partitioned intom sets E⃗ � pEp0,1q, Ep1,2q, . . . , Epm�1,mqq
such that Epi,i�1q forms a partial (but possibly perfect) matching from Li to Li�1.

We say a vertex u P Li, where i   m, is right-free if no edge connects u to any vertex in Li�1.
Analogously, we say a vertex v P Lj , where j ¡ 0, is left-free if no edge connects v to any vertex in
Lj�1.

For any vertex u P L0, we define the following probabilistic procedure that generates a path
pw0, w1, . . . wmq from u to a vertex in Lm.

- Let w0 � u.
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- For i from 1 to m, if wi�1 is not right-free and connects to some vertex w1 P Li, then let wi � w1;
otherwise, let wi be uniformly sampled from all left-free vertices in Li.

We write Prru Ñ vs to denote the probability that the path pu,w1, . . . , wmq satisfies wm � v. In
particular, we are interested in the pair of pu, vq where u is right-free and v is left-free.

For the layered graph G, we let UGpa, bq, where a ¤ b, be the set of paths that starts at a left-free
vertex in La and reaches a vertex in Lb. We note that the path in UGpa, bq does not necessarily
end in Lb. We write UGpa, bq � |UGpa, bq|. Note that UGpa, aq denotes the total number of left-free
vertices in La.

Given any σ � ppi0, i1q, pi1, i2q, . . . , pi|σ|�1, i|σ|qq in which i0   i1   � � �   i|σ|, we say σ is an
interesting pa, bq-segment partitions with regard to the index set I � t0, . . . ,mu if i0 � a, i|σ| � b
and for all 1   j   |σ| we have ij P I. We use BIpa, bq to denote the set that contains all interesting
pa, bq-segment partition of the set I. Given a layered graph G, we define the interesting indices of
G as

IpGq :� ti P t0, 1, 2, . . . ,mu | UGpi, iq ¡ 0u .
We are then ready to state the following lemma, a slightly different variant of the lemma proved

by Chen and Steinberger in [6] but with essentially the same proof. We include a version of the
proof in Appendix C.2 for completeness.

Lemma 8. For any graph G defined as above, and any u P L0, v P Lm such that u is right-free and
v is left-free, it holds that

PrruÑ vs � 1

N
� 1

N

¸
σPBIpGqp0,mq

p�1q|σ|
|σ|¹
h�1

UGpih�1, ihq
UGpih, ihq .

5.2 Graph View of KAC

The KAC can also be interpreted in the graph view. Given a transcript τ � pQ⃗, k⃗q, where Q⃗ �
pQE ,Q1, . . . ,Qtq and sub-keys s⃗ � ps0, . . . , stq are generated from the key k⃗, we define Ep2i,2i�1q :�
tpv, v�siq | v P L2iu for i P t0, . . . , tu. That is, L2i and L2i�1 are connected by the “sub-key edges;”
this corresponds to the step of xoring the sub-key si in the KAC execution. For i P t1, . . . , tu, we
let Ep2i�1,2iq :� tpu, vq | pu, vq P Qiu. This corresponds to the queries made to the permutation Pi.
Now, we note that the interesting indices for KAC can only be a subset of t0, 2, 4, . . . , 2tu.

For fixed query records Q⃗, let Zs⃗pa, bq, where a ¤ b, be the total number of paths that connects
a vertex in La and a vertex in Lb when s⃗ being the sub-keys. Note that the paths do not necessarily
start at La or end at Lb. For the ℓ-th cipher query pxℓ, yℓq, let αℓrs⃗s denote the largest possible
index of the layer that is reachable from xℓ when s⃗ being the sub-keys. Let βℓrs⃗s denote the smallest
index of the layer than is reachable from yℓ. In the good key case, we always have αℓrs⃗s   βℓrs⃗s.

Now, to bound the probability PrrE Ó QE | P1 Ó Q1, . . . , Pt Ó Qts, we analyze the following
experiment, which can be divided into |QE | stages.
1. Initially, G0 is defined according to the given transcript τ � pQ⃗, k⃗q.
2. For ℓ from 1 to |QE |, given that Gℓ�1 is defined, the probabilistic path-generating process is

run for the ℓ-th query pxℓ, yℓq P QE over the graph Gℓ�1, from vertex xℓ P L0.
– If the generated path from xℓ does not arrive at yℓ, the experiment outputs 0 and aborts.
– Otherwise, we first set Gℓ � Gℓ�1 and then remove all vertices on the path of pxℓ, yℓq from
Gℓ. The new graph Gℓ will have N � ℓ vertices in each layer.
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3. If G|QE | is successfully defined, the experiment outputs 1.

So, we have

pS0pQ⃗, k⃗q
pS1pQ⃗, k⃗q

� N p|QE |qPrrExppτq � 1s � N p|QE |q
|QE |¹
ℓ�1

Prrxℓ Ñ yℓ | Gℓ�1s .

We are now ready to state the core lemma that defines the function gpQ⃗, k⃗q and prove it using
Lemma 8.

Lemma 9. For any query records Q⃗ with q ¤ N{4 and subkeys k⃗ such that the transcript τ �
pQ⃗, k⃗q P Tgood,

pS0pQ⃗, k⃗q
pS1pQ⃗, k⃗q

¥ 1�
q̧

ℓ�1

¸
1¤a¤b¤t

R2a�1,2b,ℓrs⃗s
¸

σPBIp2a�1,2bq, |σ|¥2

|σ|¹
h�1

Zs⃗pih�1, ihq
N � 2q

,

where the set of interesting indices I of the segment partition set BI is defined as I � t0, 2, . . . , 2tu,
and Ra,b,ℓrs⃗s :� 1pαℓrs⃗s ¥ a, βℓrs⃗s ¤ bq.
Proof. For the ℓ-th cipher query pxℓ, yℓq given the graph support Gℓ�1, we define a graph G from
Gℓ�1 that removes all layers Li for i   αℓrs⃗s and Lj for j ¡ βℓrs⃗s. Thus, in the graph G, we start
at a right-free vertex u P L0 and target a left-free vertex v P Lm, letting us apply Lemma 8.

PrGrpxℓ Ñ yℓq | Gℓ�1s

� 1

N � ℓ� 1

��1�
¸

σPBIpGqp0,mq

p�1q|σ|
|σ|¹
h�1

UGpih�1, ihq
UGpih, ihq

�
� 1

N � ℓ� 1

��1� UGp0,mq
UGpm,mq �

¸
σPBIpGqp0,mq, |σ|¥2

p�1q|σ|
|σ|¹
h�1

UGpih�1, ihq
UGpih, ihq

�
¥ 1

N � ℓ� 1

��1�
¸

σPBIpGqp0,mq, |σ|¥2

|σ|¹
h�1

UGpih�1, ihq
UGpih, ihq

�
¥ 1

N � ℓ� 1

��1�
¸

σPBIpαℓrs⃗s,βℓrs⃗sq, |σ|¥2

|σ|¹
h�1

Zs⃗pih�1, ihq
N � 2q

� . (11)

Now we consider only the case where the lower bound (11) ¥ 0 for all ℓ. Otherwise, Lemma 9
becomes trivially true. Hence, we have

pS0pQ⃗, k⃗q
pS1pQ⃗, k⃗q

¥
q¹

ℓ�1

��1�
¸

σPBIpαℓrs⃗s,βℓrs⃗sq, |σ|¥2

|σ|¹
h�1

Zs⃗pih�1, ihq
N � 2q

�
¥ 1�

q̧

ℓ�1

¸
σPBIpαℓrs⃗s,βℓrs⃗sq, |σ|¥2

|σ|¹
h�1

Zs⃗pih�1, ihq
N � 2q

(12)
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¥ 1�
q̧

ℓ�1

¸
1¤a¤b¤t

R2a�1,2b,ℓrs⃗s
¸

σPBIp2a�1,2bq, |σ|¥2

|σ|¹
h�1

Zs⃗pih�1, ihq
N � 2q

, (13)

where (12) holds since p1�aqp1�bq ¥ 1�a�b for any a, b ¥ 0 and (13) holds because the indicator
function R is non-negative and satisfies Rαrs⃗s,βrs⃗s,ℓrs⃗s � 1. We note that (13) is the exact quantity

we pick for 1� gpQ⃗, k⃗q. [\
Lemma 10. If q ¤ N{4, then

E
k⃗

�� q̧

ℓ�1

¸
1¤a¤b¤t

R2a�1,2b,ℓrs⃗s
¸

σPBIp2a�1,2bq, |σ|¥2

|σ|¹
h�1

Zs⃗pih�1, ihq
N � 2q

�¤ t2 � p4qq
t�1

N t
.

Proof. By the sum of expectation and noting that none of σ P BIp2a� 1, 2bq would have |σ| ¥ 2 if
a � b, we have

E
k⃗

�� q̧

ℓ�1

¸
1¤a¤b¤t

R2a�1,2b,ℓrs⃗s
¸

σPBIp2a�1,2bq, |σ|¥2

|σ|¹
h�1

Zs⃗pih�1, ihq
N � 2q

�
�

q̧

ℓ�1

¸
1¤a b¤t

¸
σPBIp2a�1,2bq, |σ|¥2

Es⃗

��R2a�1,2b,ℓrs⃗s �
|σ|¹
h�1

Zs⃗pih�1, ihq
N � 2q

� .

Hence, it is sufficient to derive bounds for each pa, b, σq. Note that for each a, b, the random variable
R2a�1,2b,jrs⃗s depends only on the sub-keys s0, . . . , sa�2, sb�1, . . . , st, which are pa�2�1q�pt�pb�
1q � 1q � t� b� a� 1 sub-keys in total.

Next, given a fixed σ � ppi0, i1q, pi1, i2q, . . . , pi|σ|�1, i|σ|qq, we analyze the key dependency for
each Zs⃗pih�1, ihq.
1. For pi0, i1q, given that i0 � 2a � 1 is odd and i1 is even, Zs⃗pi0, i1q depends on pi1 � i0 � 1q{2

subkeys between Li0 and Li1 .
2. For any pih�1, ihq where h ¡ 1, given ih�1 is an even number, implying that Lih�1

and Lih�1�1

are connected by “key-edges”, which always form a perfect matching regardless of the sub-key
choice, then, the equality Zspih�1, ihq � Zspih�1 � 1, ihq always holds. And we can see that
Zspih�1 � 1, ihq depends only on pih � ih�1 � 2q{2 sub-keys.

Also note that the sets of dependent sub-keys for Zspih�1, ihq and R2a�1,2b,jrss are disjoint.
After fixing pa, b, σq, putting the results together shows that the total number of sub-keys that each
expectation term depends on is at most

#dependent subkeys � pt� b� a� 1q � i1 � i0 � 1

2
�

|σ|̧

h�2

�
ih � ih�1

2
� 1




� pt� b� a� 1q �
°|σ|

h�1pih � ih�1q � 1

2
� p|σ| � 1q

� t� b� a� 1� 2b� 2a

2
� |σ| � 1

� t� |σ| ¤ t� 2 ,
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...
...

L0 L1

s0

...
...

L2 L3

s1

...
...

L4 L5

s2

...
...

L6 L7

s3

Q1 Q2 Q3

2a� 1 � 1 2b � 6

Zs⃗p1, 6q
Zs⃗p1, 4q Zs⃗p4, 6q

Fig. 1. A 3-round KAC with fixed query records Q1,Q2,Q3. The sub-keys s⃗ � ps0, . . . , s3q are random and to
be sampled. The solid red line indicates that the Zs⃗pleft, rightq, which counts the number of paths from Lleft to
Lright, depends on the corresponding sub-keys. Consider 2a � 1 � 1, 2b � 6; then, R1,6,ℓrs⃗s � 1 and depends on
pa� 1q � p3� bq � 0 sub-keys because any s0 allows xℓ from L0 to reach L1 and yℓ from L7 to L6. For σ � pp1, 6qq,
the value of Zs⃗p1, 6q depends on two sub-keys s1, s2. However, if the σ is further paritioned into pp1, 4q, p4, 6qq, then
Zs⃗p1, 4q depends on s1 but Zs⃗p4, 6q does not depend on any sub-keys, because Zs⃗p4, 6q � Zs⃗p5, 6q � |Q3|.

where we observe that a summation term of pa, b, σq depends on fewer sub-keys if the size of σ is
larger (see Figure 1 for a specific case illustration). Because our construction ensures that any t� 2
sub-keys are independently and uniformly distributed, the random variables in each expectation
terms are mutually independent; hence, we can break the terms into

E
k⃗

�� q̧

ℓ�1

¸
1¤a¤b¤t

R2a�1,2b,ℓrs⃗s
¸

σPBIp2a�1,2bq, |σ|¥2

|σ|¹
h�1

Zs⃗pih�1, ihq
N � 2q

�
¤

q̧

ℓ�1

¸
1¤a b¤t

¸
σPBIp2a�1,2bq, |σ|¥2

Es⃗

��R2a�1,2b,ℓrs⃗s �
|σ|¹
h�1

2Zs⃗pih�1, ihq
N

�
�

q̧

ℓ�1

¸
1¤a b¤t

¸
σPBIp2a�1,2bq, |σ|¥2

Es⃗ pR2a�1,2b,ℓrs⃗sq �
|σ|¹
h�1

Es

�
2Zs⃗pih�1, ihq

N



(14)

¤
q̧

ℓ�1

¸
1¤a b¤t

� q

N

	t�b�a�1 ¸
σPBIp2a�1,2bq,

|σ|¥2

�
2q

N


pi1�i0�1q{2 |σ|¹
h�2

�
2q

N


pih�ih�1q{2

(15)

�
q̧

ℓ�1

¸
1¤a b¤t

� q

N

	t�b�a�1
�

¸
σPBIp2a�1,2bq, |σ|¥2

�
2q

N


p2b�p2a�1q�1q{2
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¤
q̧

ℓ�1

¸
1¤a b¤t

� q

N

	t�b�a�1
�
�
4q

N


b�a�1

¤ t2 � p4qq
t�1

N t
. (16)

In the preceding calculation, (14) holds since the sub-keys are pt � 2q-wise independent. The first
“q{N” term of (15) comes from moving the Es⃗ pR2a�1,2b,ℓrs⃗sq, and inside the summation the “2q{N”
terms are the direct calculation upper bound of Es p2Zs⃗pih�1, ihq{Nq for each pih�1, ihq. Finally, the
first inequality of (16) holds because the size of BIp2a� 1, 2bq is upper-bounded by 2b�a, which is
absorbed into the “2q{N” term, yielding a “4q{N” term. [\

6 Concluding the Proof

6.1 Proof of Theorem 1

Proof. We partition the set of transcripts T � Tgood \ Tbad according to Definition 1. By applying
Lemma 1, we have ∆pX0, X1q ¤ EX1rgpX1qs � PrrX1 P Tbads. We start with bounding the PrrX1 P
Tbads.
Claim.

PrrX1 P Tbads ¤ pt� 1q � 3q
t�1

N t
� 3pt� 1q

c
q2t�1pt� 2qn

N2t�2
� tpt� 1q

N t
.

Proof (of claim). We note that in the system S1, the set of bad keys BadkeyQ⃗ is defined only by

the query records Q⃗ � pQE ,Q1, . . . ,Qtq. Therefore, we have

PrrX1 P Tbads ¤ PrQ⃗
�|BadkeyQ| ¡ C

�� C

N t�1
.

To get the size bound for BadkeyQ, we compute the size of BadkeyQ,i for 0 ¤ i ¤ t. Then, we have

|BadkeyQ⃗,0| ¤ µc⃗0pV1,Q2,Q3, . . . ,Qt�1,Qt, Ut�1q
|BadkeyQ⃗,1| ¤ µc⃗1pV2,Q3,Q4, . . . ,Qt,QE , U1q

...

|BadkeyQ⃗,i| ¤ µc⃗ipVi�1,Qi�2,Qi�3, . . . ,Qt,QE ,Q1, . . . ,Qi�1, Uiq
...

|BadkeyQ⃗,t�1| ¤ µc⃗t�1
pVt,QE ,Q1, . . . ,Qt�2, Ut�1q

|BadkeyQ⃗,t| ¤ µc⃗tpV0,Q1, . . . ,Qt�1, Utq .
where the linear coefficient tuples c⃗i are given by condition 2 of Theorem 1 so that two neighboring
coefficients are non-zero and

@i P t1, . . . , tu : Ui � tu | Dv : pu, vq P Qiu, Vi � tv | Du : pu, vq P Qiu
Ut�1 � tu | Dv : pu, vq P QEu, V0 � tv | Du : pu, vq P QEu .

The size of BadkeyQ⃗,i is bounded by µc⃗i because any key k⃗ P BadkeyQ⃗,i is uniquely mapped to the

sub-keys ps0, . . . , si�1, si�1, stq since the linear mapping has rank t � 1 (stated in condition 2 of
Theorem 1).
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We now can apply Lemma 2 to upper bound BadkeyQ⃗,i with high probability. For every i, by

letting Ci � 3qt�1

N � 3qt�1{2
a
pt� 2qn, we obtain that PrQr|BadkeyQ,i| ¡ Cis ¤ 2

Nt . Therefore,

setting C � °t
i�0Ci, we have

PrrX1 P Tbads ¤ PrQ⃗
�|BadkeyQ| ¡ C

�� C

N t�1

¤
ţ

i�0

PrQ⃗
�|BadkeyQi

| ¡ Ci

�� C

N t�1

¤ 2tpt� 1q
N t

� pt� 1q � 3q
t�1

N t
� 3pt� 1q � q

t�1{2
a
pt� 2qn

N t�1
.

Hence, we proved the claim. [\

The next step is to pick a function g and upper bound EX1rgpX1qs. Note that by condition 1 of
Theorem 1, any t�2 rows of key schedule matrix A have rank t�2, implying that any t�2 sub-keys
are independent and uniform. Therefore, we can apply Lemma 7 and obtain a function g. Noting
that because X1 is sampled from the ideal world, k⃗ is sampled independently of Q⃗. So we have

EX1rgpX1qs � EQ⃗Ek⃗
rgpQ⃗, k⃗qs ¤ EQ⃗

�
t2p4qqt�1

N t

�
� t2p4qqt�1

N t
.

Then, by summing the two quantities and numerical simplifications, the theorem follows. [\

6.2 Proof of Theorem 2

Proof. We again use Definition 1 for the bad transcripts. By applying Lemma 1, we obtain that
∆pX0, X1q ¤ EX1rgpX1qs � PrrX1 P Tbads, where we start with bounding the term PrrX1 P Tbads.
Again, we have PrrX1 P Tbads ¤ PrQ⃗

�|BadkeyQ| ¡ C
� � C

Nt�2 . To get the size bound for BadkeyQ,
we compute the size of BadkeyQ,i for 0 ¤ i ¤ t. Then, we have

|BadkeyQ⃗,0| ¤ µ
c⃗0,d⃗0

pV1,Q2,Q3, . . . ,Qt�1,Qt, Ut�1q
|BadkeyQ⃗,1| ¤ µ

c⃗1,d⃗1
pV2,Q3,Q4, . . . ,Qt,QE , U1q
...

|BadkeyQ⃗,i| ¤ µ
c⃗i,d⃗i

pVi�1,Qi�2,Qi�3, . . . ,Qt,QE ,Q1, . . . ,Qi�1, Uiq
...

|BadkeyQ⃗,t�1| ¤ µ
c⃗t�1,d⃗t�1

pVt,QE ,Q1, . . . ,Qt�2, Ut�1q
|BadkeyQ⃗,t| ¤ µ

c⃗t,d⃗t
pV0,Q1, . . . ,Qt�1, Utq ,

where

@i P t1, . . . , tu : Ui � tu | Dv : pu, vq P Qiu, Vi � tv | Du : pu, vq P Qiu
Ut�1 � tu | Dv : pu, vq P QEu, V0 � tv | Du : pu, vq P QEu .
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Since any t� 2 rows of the key schedule matrix A have rank t� 2, the size of BadkeyQ⃗,i is bounded

by µ
c⃗i,d⃗i

, and we can always choose the sets of linear coefficients c⃗i � pci,0, . . . , ci,t�1q and d⃗i �
pdi,0, . . . , di,t�1q that satisfy the requirements of Lemma 5.

se can now apply Lemma 5 to upper bound BadkeyQ⃗,i with high probability. For every i, by

letting Ci � qt�1

N2 � t � p3qq2t�3

Nt�2 � p3qq2t�2.5

Nt�2 , we obtain that PrQr|BadkeyQ,i| ¡ Cis ¤ 2t
Nt . Therefore,

setting C � °t
i�0Ci, we directly obtain the result

PrrX1 P Tbads ¤ pt� 1q � q
t�1 � 2t

N t
� tpt� 1q � p3qq

2t�3

N2t�4
� pt� 1qp3qq

2t�2.5

N2t�4
.

For the good transcripts, noting that any t�2 rows of key schedule matrix A have rank t�2, implying
that any subset of t � 2 sub-keys is independent and uniform. Therefore, we apply Lemma 7 and

obtain EX1rgpX1qs ¤ t2p4qqt�1

Nt . By summing the two quantities and some numerical simplification,
the theorem follows. [\

7 Conclusion and Open Problems

In this paper, we provided key schedules of limited independence for t-round key-alternating ciphers
achieving tight security. We proved that the t-round key-alternating cipher remains tightly secure
for a class of pt�1q-wise independent sub-key distributions and, when t ¥ 8, for pt�2q-wise sub-key
distributions.

Though our result does not extends to pt � 2q-wise independent sub-key distributions for 3 ¤
t ¤ 7, we expect that a tighter analysis of the matrix 2-norm for the sum-capture quantity should
prove the tightness result for 4 ¤ t ¤ 7. Also, given that we resolved the good key analysis for
pt� 2q-wise independent sub-keys, it would be interesting to investigate new methods for bounding
the bad keys and proving tight security of 3-round KACs with identical key schedules. Another rich
research vein involves the study of whether the tightness result holds for pt� 3q-wise distributions
or beyond.
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Appendix

A More Fine-grained Security of Theorems

A.1 Theorem 1

Here we provide a version of Theorem 1 with the number of construction queries qe and the number
of permutation queries qp being separated. We only provide a proof sketch for the theorem and
lemmas, since the techniques are essentially the same as we were proving for the case of qe � qp.

Theorem 3. For the t-round KAC constructed over t random permutations P⃗ � pP1, . . . , Ptq, let
the key of KAC be k⃗ � pk0, k1, . . . , kt�2qJ in which ki’s are independently uniformly sampled from
F2n. Let subkeys s⃗ � ps0, s1, . . . , stqJ be derived by s⃗Ð Ak⃗ in which A is a pt� 1q � pt� 1q matrix
over F2n, with the rows denoted as A0, . . . , At, such that

1. Any t� 2 rows of A forms a matrix of rank t� 2.

2. For any I � t0, . . . , tu, |I| � t, then the row vectors pAℓqℓPI satisfy that

– pAℓqℓPI forms a matrix of rank t� 1.

– there exists values pcℓqℓPI such that
°

ℓPI cℓAℓ � 0⃗ and there are two indices idx1, idx2 P I
satisfying idx1 � idx2 P t1, tu and cidx1 , cidx2 are both non-zero.

Then for any adversary A that issues at most qe queries to KAC, and at most qp queries to
P1, . . . , Pt, in which 9pt� 2qn ¤ qe, qp ¤ N{4

a. if qe ¤ qp, then

Adv�prp

KACrP⃗ s
pAq ¤ pt� 1q � 4q

1{2
e q

t�1{2
p

N t
� 3pt� 1q

d
qeq

2t�2
p

N2t�2
� pnt2 � 2ntq � t2 � 4qe � p4qpq

t

N t
.

b. if qe ¥ qp, then

Adv�prp

KACrP⃗ s
pAq ¤ pt� 1q � 4q

2
eq

t�1
p

N t
� 3pt� 1q

d
q2eq

2t�3
p

N2t�2
� pnt2 � 2ntq � t2 � 4qe � p4qpq

t

N t
.

We note that both cases come from the same proof but are manipulated in favor of a unified
representation for the class of defined KACs. When qe � qp, both cases provide tight bound. How-
ever, we stress that when qe � qp, both bounds are not necessarily the best possible bound. To
prove a better bound, one may want to further focus on a specific key schedule instead of a class
of key schedule algorithms.

Proof (sketch). We still follow the definition of bad transcripts as we were proving Theorem 1.
The good transcript analysis follows the proof of Lemma 7 identically and contributes the term

t2 � p4qeq�p4qpqtNt .

Here we state a more fine-grained version of sum capture theorem, with all queries are separated.
We note that the proof is identical to the proof of Lemma 2.
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Lemma 11. Let t ¥ 2. Let P1, . . . , Pt�1 be t� 1 independent random permutations of t0, 1un, and
let A be a probabilistic algorithm that makes adaptive queries to P1, . . . , Pt�1. Let Q1, . . . ,Qt�1 be
the query transcripts of P1, . . . , Pt�1 interacting with A. Let c⃗ � pc0, . . . , ct�1q be the coefficients so
that there is an index idx P t0, . . . , t� 2u satisfying cidx � 0 and cidx�1 � 0. Let left be the smallest
index so that cleft � 0 and let right be the largest index such that cright � 0. Let q0, . . . , qt be positive
integers such that 9pt� 2qn ¤ qi ¤ N{2 for every 0 ¤ i ¤ t, then for any A that makes at most qi
queries to Pi,

PrP1,...,Pt�1

�
DV0, Ut � F2n , |V0| � q0, |Ut| � qt, µc⃗pV0,Q1, . . . ,Qt�1, Utq ¥ q0q1 � � � qt�1qt

N
�

�
��?qleftqright�1 �

¹
iPt0,...,tuztleft,right�1,idx�1u

qi

���2q2idx�1

N
� 3
a
pt� 2qnqidx�1

��� ¤ 2t

N t
.

We again upper bound the size of bad key sets by upper bounding their corresponding sum capture
quantity. Note that when applying Lemma 11, we have exactly one quantity in tq0, . . . , qtu being
qe and the rest quantities being qp.

When qe ¤ qp, the above sum capture quantity is maximized if we have qleft � qe. When
qe ¥ qp, we break the second additive terms of above quantity into two terms, i.e., the term that
multiplied by 2q2idx�1{N and the term multiplied by 3

a
pt� 2qnqidx�1. Note that the first term

obtains maximum value if qidx�1 � qe and the second term obtains maximum value if qi � qe for
some i P t0, . . . , tuztleft, right� 1, idx� 1u. [\

A.2 Theorem 2

Here we only provide a bound for the case of qe ¤ qp, which is a reasonable assumption.

Theorem 4. For the t-round KAC constructed over t random permutations P⃗ � pP1, . . . , Ptq, let
the key of KAC be k⃗ � pk0, k1, . . . , kt�3qJ in which ki’s are independently and uniformly sampled
from F2n. Let subkeys s⃗ � ps0, s1, . . . , stqJ be derived by s⃗ � Ak⃗ in which A is a pt � 1q � pt � 2q
matrix over F2n such that any t�2 rows of A forms a matrix of rank t�2. Then for any adversary
A that issues at most qe queries to KAC and qp queries to P1, . . . , Pt,

a. if pt� 2qnN2{3 ¤ qp ¤ N{4, then

Adv�prp

KACrP⃗ s
pAq ¤ pt� 1q2 � 4qe � p4qpq

t

N t
� pt� 1q2 �

?
qe � p3qpq2t�3

N2t�4
.

b. if 9pt� 2qn ¤ qp ¤ pt� 2qnN2{3,

Adv�prp

KACrP⃗ s
pAq ¤pt� 1q2 � 4qe � p4qpq

t

N t
� tpt� 1q

d
qeq5p
N t�1

�
�
5pt� 2q2n2 �

c
qp
N


t�3

� pt� 1q
d

qeq2p
N t�2

�
�
5pt� 2q2n2 �

c
qp
N


t�2

.

We state the following sum capture lemma for proving the above theorem.
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Lemma 12. Let t ¥ 2. Let P1, . . . , Pt�1 be t� 1 independent random permutations of t0, 1un, and
let A be a probabilistic algorithm that makes adaptive queries to P1, . . . , Pt�1. Let Q1, . . . ,Qt�1 be
the query transcripts of P1, . . . , Pt�1 interacting with A. Let c⃗, d⃗ be the coefficients as in Lemma 5.
Let q0, . . . , qt be positive integers exactly one of tq0, . . . , qtu equals qe and the rest equal qp, where
9pt� 2qn ¤ qp ¤ N{2 and qe ¤ qp, then for any A that makes at most qi queries to Pi,

PrP1,...,Pt�1

�
DV0, Ut � F2n , |V0| � q0, |Ut| � qt, µc⃗,d⃗

pV0,Q1, . . . ,Qt�1, Utq ¥
qeq

t
p

N2
�

�t � q
1{2
e q

5{2
p

N
�
�
2q2p
N

� 3
b
pt� 2qnqp

�t�3

� q1{2e qp

�
2q2p
N

� 3
b
pt� 2qnqp

�t�2
�� ¤ 2t

N t
.

Proof (sketch). The general proof paradigm follows the proof of Lemma 6. We let the i-th case to
be that qi � qe and qj � qp for all j � i and proceed with the proof as in Lemma 6. However, we
note that the worst bound comes from the case when q0 � qe or qt � qe.

We again perform Fourier transform and simplification. After obtaining the summation over
Fourier terms, we break the term µ into three cases and show the following propositions. We omit
the proofs of propositions since most of them are case discussions and they are essentially following
their counterpart in Lemma 6 but with some minor numerical manipulations.

Proposition 7.

µ1 �
qeq

t
p

N2
.

Proposition 8. Conditioning on qe ¤ qp and all Pi satisfying ΦpPiq ¤ 2q2i {N � 3
a
pt� 2qnqi,

µ2 ¤ t � q
1{2
e q

5{2
p

N
�
�
2q2p
N

� 3
b
pt� 2qnqp

�t�3

.

Proposition 9. Conditioning on qe ¤ qp and all Pi satisfying ΦpPiq ¤ 2q2i {N � 3
a
pt� 2qnqi,

µ3 ¤ q1{2e qp

�
2q2p
N

� 3
b
pt� 2qnqp

�t�2

.

B Omitted Proofs for Sum Capture Quantities

B.1 Missing Cases Proof of Lemma 3

In this part we provide the complete case discussions for the proof of Lemma 3. Recall that

left :� min of i such that ci � 0

right :� max of i such that ci � 0 ,

then we have left ¤ idx and right ¥ idx� 1 given cidx � 0 and cidx�1 � 0.

- Case 2. left ¡ 0, right   t� 1.

30



µpV0,Q1, . . . ,Qt�1, Utq � qt�1

N

¤ N2t�1
¸
γ�0

|y1V0pAJ
c0γq| � |y1Q1pAJ

c0γ,A
J
c1γq| � � � |{1Qt�1pAJ

ct�2
γ,AJ

ct�1
γq| � |y1UtpAJ

ct�1
γq|

¤ N2t�3
¸
γ�0

q

N
�
� q

N2

	left�1
� |z1Qleft

p0, AJ
cleft

γq| �
� q

N2

	right�left�1
� ΦpQidx�1q

� | {1Qright�1
pAJ

cright
γ, 0q| �

� q

N2

	t�2�right
� q

N

� qt�2N3ΦpQidx�1q �
¸
γ�0

|z1Qleft
p0, AJ

cleft
γq| � | {1Qright�1

pAJ
cright

γ, 0q|

To this point, it is unclear how to directly apply the Cauchy-Schwartz trick, however, a few addi-
tional steps can help us get to similar calculations in Case 1.

We let V 1 � tv | Du : pu, vq P Qleftu, U 1 � tu | Dv : pu, vq P Qright�1u.
Claim. For any α P F2n ,

y1V 1pαq � 1

N
z1Qleft

p0, αq , y1U 1pαq � 1

N
{1Qright�1

pα, 0q .

Proof (of the claim). Because the proof for both equalities are similar, we only prove the first
equality.

By the definition of Fourier transform, we have

z1Qleft
p0, αq � 1

N2

¸
u,vPF2n

1Qleft
pu, vqp�1qx0,uy�xα,vy

� 1

N2

¸
u,vPF2n

1Qleft
pu, vqp�1qxα,vy

� 1

N
� 1

N

¸
vPF2n

1V 1pvqp�1qxα,vy � 1

N
y1V 1pαq

[\
Therefore, by applying the claim, we have

µpV0,Q1, . . . ,Qt�1, Utq � qt�1

N

¤ qt�2NΦpQidx�1q �
¸
γ

|y1U 1pAJ
cleft

γq| � | {1Qright�1
pAJ

cright
γ, 0q|

¤ qt�1ΦpQidx�1q

- Case 3. left � 0, right   t� 1.

In this case we have

µpV0,Q1, . . . ,Qt�1, Utq � qt�1

N
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¤ N2t�3
¸
γ

|y1V0pAJ
c0γq| �

� q

N2

	right�1
� ΦpQidx�1q � | {1Qright�1

pAJ
cright

γ, 0q| �
� q

N2

	t�2�right
� q

N

� qt�2N2ΦpQidx�1q �
¸
γ

|y1V0pAJ
c0γq| � | {1Qright�1

pAJ
cright

γ, 0q|

Let U 1 � tu | Dv : pu, vq P Qright�1u, then we have y1U 1pαq � 1
N
{1Qright�1

pα, 0q for any α. Hence we
get

µpV0,Q1, . . . ,Qt�1, Utq � qt�1

N

¤ qt�2NΦpQidx�1q �
¸
γ

|y1V0pAJ
c0γq| � |y1U 1pAJ

cright
γq|

¤ qt�1ΦpQidx�1q
- Case 4. left ¡ 0, right � t� 1.

The proof for Case 4 is a symmetric case of Case 3.

B.2 Proof of Proposition 1

Proof. Let

ℓ :� min of j such that cj � 0 .

Therefore we have ℓ ¤ i. We define A to be the following algorithm.

1. A queries Pℓ in the backward direction at points c�1
ℓ �X for all 0 ¤ X   q (or sets V0 be the

corresponding queried points if ℓ � 0)
2. A queries Pi�1 in the forward direction at points c�1

i �X for all 0 ¤ X   q.
3. A make q arbitrary queries to each Pj for j R tℓ, i� 1u.
then we are left to count the number of tuples pv0, pu1, v1q, . . . , put�1, vt�1q, utq that satisfies

°t�1
j�0 cjpvj�

uj�1q � 0. Here we consider the case that ℓ ¡ 0 as similar analysis applies to ℓ � 0. The equality
constraint can be rearranged as

ct�1ut �
¸

jPtℓ�1,...,t�1u,j�i�1

pcj�1uj � cjvjq � cℓvℓ � ciui�1 � ci�1vi�1 (17)

in which we drop all terms ci � 0 for i   ℓ per definition of ℓ.
Now we leave puℓ, vℓq P Qℓ and pui�1, vi�1q P Qi�1 undecided and pick other tuples arbitrarily,

giving us qt�1 choices. This corresponds to exactly the LHS of (17) being fixed and the RHS of (17)
being undecided. Then note that by the specification of A, we have 0 ¤ ciui�1   q and 0 ¤ cℓvℓ   q,
so to let (17) hold, we need to pick pui�1, vi�1q so that the higher n� log q bits of ci�1vi�1 equals
the LHS.

To analyze the number of feasible vi�1’s, note that if we group vi�1’s by their higher n� log q
bits of ci�1vi�1 into N{q groups, then one can show that in expectation each group receives q2{N
of vi�1’s. For moderately large q, if vi�1’s are sampled with replacement, then a direct Chernoff
bound can show that every group has the number of vi�1’s that are close to q

2{N with overwhelming
probability. However, given vi�1’s are sampled without replacement, we use the following lemma by
Panconesi and Srinivasan in [20], where they observed that Chernoff bound also holds for negatively
correlated variables.
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Lemma 13 ([20]). Let X1, . . . , Xm be random variables taking values in t0, 1u such that for any
set S � t1, . . . ,mu, Prr�iPS Xi � 1s ¤ ±iPS PrrXi � 1s, let X � °m

i�1Xi and let η � ErXs, then
for any 0   δ   1

PrrX   p1� δqηs ¤ e�δ2η{2 .

Note that in our case, we fix an r P t0, 1un�log q and let Xj � 1 if the higher n � log q bits of the
j-th sampled vi�1 has its ci�1vi�1 equalled r, otherwise Xj � 0. Then we have

Prr
©
iPS

Xi � 1s � qp|S|q{N p|S|q ¤ pq{Nq|S| �
¹
iPS

PrrXi � 1s .

Applying Lemma 13 with δ � 1{2, we have PrrX   q2{2N s ¤ e�q2{8N . Finally taking a union bound
over all r’s, we proved that every group of vi�1’s has at least q2{2N elements with probability at
least 1� pN{qq � e�q2{8N .

Hence, for the qt�1 choices of tuples, we can pick at least q2{2N of pui�1, vi�1q that cancels the
higher n � log q bits of the LHS value of (17). The remaining value is in t0, . . . , q � 1u and hence
can be cancelled to zero by a unique choice of vℓ. [\

B.3 Proof of Proposition 2

Proof. For any i that has ci � 0, we let A query Pi in the backward direction at points c�1
i �X for

all 0 ¤ X   q (or we set V0 be the corresponding queried points if i � 0) and we let A query Pi�1

in the forward direction at points c�1
i � X for all 0 ¤ X   q (or we set Ut be the corresponding

queried points if i � t � 1). Finally A makes arbitrary q queries to any permutations that were
never queried (or pick arbitrary q points for V0, Ut if the points were not set). We note that each
permutation receives exactly q queries because for every 1 ¤ i ¤ t� 1, either ci�1 � 0 or ci � 0, so
the permutation Pi can only receive either q forward queries or q backward queries.

If all ci � 0, then obviously µc⃗pV0,Q1, . . . ,Qt�1, Utq � qt�1. Otherwise, we can rewrite the linear
constraint as ¸

i

cipvi � ui�1q �
¸

i: ci�0

pcivi � ciui�1q � 0

in which for every i satisfying ci � 0, we have 0 ¤ civi   q and 0 ¤ ciui�1   q. So, we can fix an
index j such that cj � 0 and leave the tuple puj , vjq undecided (or v0 undecided if j � 0). Then
we have qt choices over the other t tuples, and the equality constraint

°
i: ci�0pcivi � ciui�1q � 0

uniquely fix a feasible vj so that 0 ¤ cjvj �
°

i�j: ci�0pcivi � ciui�1q � cjuj�1   q. Hence we have

qt feasible choice of tuples in total, giving a lower bound for the sum capture quantity.

B.4 A Reduction-based Bound for 2-constraint Sum Capture Quantity

Proposition 10. With the same setting as in Lemma 5, for any A that makes at most q ¥ pt �
2qnN2{3 queries to each permutations,

PrP1,...,Pt�1

�
DV0, Ut � F2n , |V0| � |Ut| � q, µ

c⃗,d⃗
pV0,Q1, . . . ,Qt�1, Utq ¥ 6qt

N

�
¤ 2pt� 1q

N t�1
.
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Proof (of Proposition 10). Given the 2-constraint sum capture quantity with the specific coefficient
c⃗, d⃗, We show that one can use 1-constraint sum capture quantity to derive an upper bound for
µ
c⃗,d⃗
. Let Ut�1 :� tu | Dv : pu, vq P Qt�1u and c1 � pc0, . . . , ct�2q, then we show that

µ
c⃗,d⃗
pV0,Q1, . . . ,Qt�1, Utq ¤ µ

c⃗1
pV0,Q1, . . . ,Qt�2, Ut�1q .

Given a fix tuple pv0, pu1, v1q, . . . , put�2, vt�2q, put�1, vt�1q, utq P V0�Q1� � � � ,Qt�1�Ut satisfying°t�1
j�0 cjpvj�uj�1q � 0 and

°t�1
j�0 djpvj�uj�1q � 0, one can map the tuple to pv0, pu1, v1q, . . . , put�2, vt�2q, ut�1q P

V0�Q1�� � � ,Qt�2�Ut�1 satisfying
°t�2

j�0 cjpvj�uj�1q � 0 by dropping the term vt�1 and ut (note
that ct�1 � 0). This mapping is injective because vt�1 can be deterministically derived given ut�1 P
Ut�1 and Qt�1, and ut can be calculated deterministically via dt�1put� vt�1q �

°t�2
j�0 djpvj �uj�1q

given d1, d2, . . . , dt�1 are all non-zero. Hence the inequality holds.

Then the proposition follows by applying Lemma 2 to upper bound µ
c⃗1

and noting that q ¥
pt� 2qnN2{3. [\

B.5 Omitted Calculation of µc⃗,d⃗ in Lemma 6

Note that c0 � dt�1 � 1 and ct�1 � d0 � 0, we can write µ
c⃗,d⃗

as

µ
c⃗,d⃗
pV0,Q1, . . . ,Qt�1, Utq

�
¸

v0,u1,v1,...,ut�1,vt�1,ut

1V0pv0q1Q1pu1, v1q � � �1Qt�1put�1, vt�1q1Utputq

� 1eq

�
v0 � u1,

t�2̧

i�1

cipvi � ui�1q
�
1eq

�
ut � vt�1,

t�2̧

i�1

dipvi � ui�1q
�

�
¸

v0,u1,v1,...,ut�1,vt�1,ut

��¸
β0

y1V0pβ0qp�1qxβ0,v0y

��� ¸
α1,β1

y1Q1pα1, β1qp�1qxα1,u1y�xβ1,v1y

�
� � �
�� ¸

αt�1,βt�1

{1Qt�1pαt�1, βt�1qp�1qxαt�1,ut�1y�xβt�1,vt�1y

��¸
αt

y1Utpαtqp�1qxαt,uty

�

�
�

1

N

¸
γ

p�1qxγ,v0�u1�
°t�2

i�1 cipvi�ui�1qy

��
1

N

¸
δ

p�1qxδ,ut�vt�1�
°t�2

i�1 dipvi�ui�1qy

�

� 1

N2

¸
β0,α1,β1,...,αt�1,βt�1,αt

y1V0pβ0qy1Q1pα1, β1q � � �{1Qt�1pαt�1, βt�1qy1Utpαtq

�
�¸

v0

p�1qxβ0,v0y�xγ,v0y

��¸
u1

p�1qxα1,u1y�xγ,v1y

��¸
v1

p�1qxβ1,v1y�xγ,c1v1y�xδ,d1v1y

�

� � �
�¸

ut�1

p�1qxαt�1,ut�1y�xγ,ct�2ut�1y�xδ,dt�2ut�1y

��¸
vt�1

p�1qxβt�1,vt�1y�xδ,vt�1y

�

�
�¸

ut

p�1qxαt,uty�xδ,uty

�
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Here the set of Fourier coefficients that give non-zero sum can be represented in terms of pγ, δq
as $''''''''''&''''''''''%

α1 � β0 � γ
α2 � β1 � AJ

c1γ �AJ
d1
δ

...
αi�1 � βi � AJ

ciγ �AJ
di
δ

...
αt�1 � βt�2 � AJ

ct�2
γ �AJ

dt�2
δ

αt � βt�1 � δ

.

So we obtain

µpV0,Q1, . . . ,Qt�1, Utq � N2t�2
¸
γ,δ

y1V0pγqy1Q1pγ,AJ
c1γ �AJ

d1δq � � �{1Qt�1pAJ
ct�2

γ �AJ
dt�2

δ, δqy1Utpδq .

B.6 Proof of Proposition 4

Proof. We let µ2,i be the sum over all pα, βq that leads to only θi � 0, so we have µ2 �
°t�1

i�0 µ2,i.
Since exactly one θi is zero for some 0 ¤ i ¤ t� 1, we break the indices i into two cases.

Case 1. θi � 0 for 1 ¤ i ¤ t � 2. In this case, it holds that AJ
ciα � AJ

di
β � 0. Hence fixing a

non-zero α gives us a unique non-zero β. Therefore, we have

µ2,i � N2t�2
¸
α�0

y1V0pθ0qy1Q1pθ0, θ1qy1Q2pθ1, θ2q � � �{1Qt�1pθt�2, θt�1qy1Utpθt�1q

in which for j � i, θj � 0 are uniquely fixed by α, and θi � 0. Hence we have

µ2,i ¤N2t�2
¸
α�0

|y1V0pθ0q||y1Q1pθ0, θ1q| � � � |{1Qi�1pθi�2, θi�1q||y1Qipθi�1, 0q|

� |{1Qi�1p0, θi�1q||{1Qi�2pθi�1, θi�2q| � � � |{1Qt�1pθt�2, θt�1q||y1Utpθt�1q|
¤N4

¸
α�0

|y1V0pθ0q| � ΦpQ1q � � �ΦpQi�1q � |y1Qipθi�1, 0q|

� |{1Qi�1p0, θi�1q| � ΦpQi�2q � � �ΦpQt�1q| � |y1Utpθt�1q|

¤N4 �
�
9q2

N


t�3 ¸
α�0

|y1V0pθ0q||y1Qipθi�1, 0q||{1Qi�1p0, θi�1q||y1Utpθt�1q|

¤p3qq
2t�6

N t�7

¸
α�0

|y1V0pθ0q|
q

N2
� q

N2
|y1Utpθt�1q|

�p3qq
2t�4

9N t�3

¸
α�0

|y1V0pθ0q| � |y1Utpθt�1q| ¤ p3qq2t�3

N t�2
.

Case 2. α � θ0 � 0 or β � θt�1 � 0. As the two cases are very similar, we only give a proof
for the case of β � θt�1 � 0.

µ2,0 �N2t�2
¸
α�0

y1V0pθ0qy1Q1pθ0, θ1q � � �{1Qt�1pθt�2, 0qy1Utp0q
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in which for j � t� 1, θj � 0 are uniquely fixed by α, and θt�1 � β � 0. Hence we have

µ2,i ¤N2t�2
¸
α�0

|y1V0pθ0q||y1Q1pθ0, θ1q| � � � |{1Qt�1pθt�2, 0q||y1Utp0q|

�N2
¸
α�0

|y1V0pθ0q| � ΦpQ1q � � �ΦpQt�2q � |{1Qt�1pθt�2, 0q||y1Utp0q|

¤N2 �
�
9q2

N


t�2

�
¸
α�0

|y1V0pθ0q||{1Qt�1pθt�2, 0q| � q

N

�p3qq
2t�3

3N t�3
�
¸
α�0

|y1V0pθ0q||{1Qt�1pθt�2, 0q|

Now we let U 1 � tu | pu, vq P Qt�1u, then we have y1U 1pδq � {1Qt�1pδ, 0q{N for any δ P t0, 1un.
Therefore we have

µ2,i ¤p3qq
2t�3

3N t�3

¸
α�0

|y1V0pθ0q||y1U 1pθt�2q| � 1

N
¤ p3qq2t�3

N t�2
� q

N
¤ p3qq2t�3

N t�2
.

Finally by summing up all terms we obtain µ2 ¤
°t�1

i�0 µ2,i ¤ tp3qq2t�3

Nt�2 . [\

B.7 Proof of Proposition 6

Proof. We design the algorithm A as the following:

1. A queries both V0 at c1 �X for all 0 ¤ X   q.
2. A queries both Ut at d1 �X for all 0 ¤ X   q.
3. A queries P1 at c1 �X for all 0 ¤ X   q in the forward direction.
4. A queries P2 at d1 �X for all 0 ¤ X   q in the backward direction.

We note that the analysis is very similar to Proposition 1. Since A queries P2 in the backward
direction, we have the u2’s are sampled from t0, 1un without replacement. We group the u2’s by
their higher n�log q bits into N{q groups, and show that for moderately large q, with overwhelming
probability, each group has at least q2{2N elements.

We pick an arbitrary r P t0, 1un�log q and let Xj � 1 if the j-th sampled u2 has the higher
n� log q bits equal r, otherwise Xj � 0. Then one can show that for any S � t1, . . . , qu,

Prr
©
jPS

xj � 1s � qp|S|q{N p|S|q ¤ pq{Nq|S| �
¹
jPS

PrrXj � 1s .

Therefore, we can apply the Chernoff bound for negatively correlated variables (i.e., Lemma 13)

and obtain that Prr°q
j�1Xj   q2

2N s ¤ e�q2{8N . By a union bound over all N{q groups, we have

every group maintaining at least q2{2N elements with probability at least 1� pN{qq � e�q2{8N .
Now, we fix an arbitrary pu1, v1q P Q1 out of q choices, then we have at least q2{2N choices of

pu2, v2q P Q2 such that 0 ¤ v1 � u2   q. Therefore we can find a unique v0 P V0 and u3 P U3 so
that v0 � u1 � v1 � u2 � v2 � u3, concluding that the sum capture quantity is lower-bounded by
q3{2N . [\
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C Omitted Proofs for Good Transcript Analysis

C.1 Proof of inequality (10)

Proof. We note that τ � pQ⃗, k⃗q P T is an attainable transcript. By definition, we can write the
ratio as

pS0pQ⃗, k⃗q
pS1pQ⃗, k⃗q

� PrP1,...,PtrE Ó QE , P1 Ó Q1, . . . , Pt Ó Qts
PrP0,P1,...,PtrP0 Ó QE , P1 Ó Q1, . . . , Pt Ó Qts

� PrP1,...,PtrE Ó QE | P1 Ó Q1, . . . , Pt Ó Qts
PrP0,P1,...,PtrP0 Ó QE | P1 Ó Q1, . . . , Pt Ó Qts

in which E is the real-world cipher construction that depends on P1, . . . , Pt and key k⃗. We note
that the second equality directly follows from dividing both nominator and denominator by the
probability PrrP1 Ó Q1, . . . , Pt Ó Qts.

Next we compute the conditional probability term in the denominator, given P0 is independent
from the rest of permutations P1, . . . , Pt, we have

PrP0,P1,...,PtrP0 Ó QE | P1 Ó Q1, . . . , Pt Ó Qts �
|QE |�1¹
i�0

1

N � i
� 1

N p|QE |q
.

Hence we proved the equality. [\

C.2 Proof of Lemma 8

We first restate the lemma.

Lemma 14. For any graph G that consists of m � 1 layers L0, . . . , Lm, with each adjacent layer
forming a (partial) matching, we have that for any u P L0, v P Lm such that u is right-free and v is
left-free,

PrruÑ vs � 1

N
� 1

N

¸
σPBGp0,mq

p�1q|σ|
|σ|¹
h�1

UGpih�1, ihq
UGpih, ihq ,

where BGp0,mq contains all interesting p0,mq-segment partition of G.

Proof. Because all analyses will be performed over graph G, we simplify the notation by letting
Ui,j :� UGpi, jq and Ui,j :� UGpi, jq. We also define the set of indices between a and b as Ipa, bq :�
ti P IpGq | a ¤ i ¤ bu. To prove the lemma, we first need the following intermediate result.

Claim. For any 1 ¤ i ¤ j ¤ m such that i P IpGq,

Prrwi P UGpi, jqs � Ui,j

Ui,i
�
��1�

¸
yPIp1,i�1q

¸
σPBGpy,iq

p�1q|σ|
|σ|¹
h�1

Uih�1,ih

Uih�1,ih�1

�
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Proof. We prove the claim by induction over i. We note that the base case i � 1 P IpGq because
u P L0 is right-free, implying that there exists a left-free vertex in L1. It is trivial that Prrw1 P
U1,js � U1,j{U1,1.

For the inductive case, suppose that for all k P IpGq, k   i the claim holds. We note that for
wi, we have

Prrwi P Ui,js � Ui,j

Ui,i
�
��1�

¸
kPIp1,i�1q

Prrwi P Uk,is
�

� Ui,j

Ui,i
�
��1�

¸
kPIp1,i�1q

Prrwk P Uk,is
� . (18)

The first equality holds because, first, given wi hits at the head of a path in Li, it is impossible to
have wi belonging to any path starts earlier than Li, while also noting that all events wi P Uk,i are
disjoint. Then given wi does not belong to any Uk,i for k   i, the random process samples a vertex
from Ui,i left-free vertices in Li, with Ui,j of them are the head of path that ends no earlier than
layer Lj . The second equality is applying the fact that Prrwi P Uk,is � Prrwk P Uk,is.

Now we plug the equality of Prrwk P Uk,is into (18) and proceed with the calculation.

Prrwi P Ui,js

� Ui,j

Ui,i
�
��1�

¸
kPIp1,i�1q

Uk,j

Uk,k

��1�
¸

yPIp1,k�1q

¸
σPBpy,kq

p�1q|σ|
|σ|¹
h�1

Uih�1,ih

Uih�1,ih�1

�� (19)

� Ui,j

Ui,i
�
��1�

¸
kPIp1,i�1q

Uk,j

Uk,k
�

¸
kPIp1,i�1q

¸
yPIp1,k�1q

Uk,j

Uk,k

¸
σPBpy,kq

p�1q|σ|
|σ|¹
h�1

Uih�1,ih

Uih�1,ih�1

� (20)

� Ui,j

Ui,i
�
��1�

¸
kPIp1,i�1q

Uk,j

Uk,k
�

¸
yPIp1,i�2q

¸
kPIpy�1,i�1q

Uk,j

Uk,k

¸
σPBpy,kq

p�1q|σ|
|σ|¹
h�1

Uih�1,ih

Uih�1,ih�1

� (21)

� Ui,j

Ui,i
�
��1�

¸
kPIp1,i�1q

p�1q � Uk,j

Uk,k
�

¸
yPIp1,i�2q

¸
σPBpy,iq: |σ|¥2

p�1q|σ|
|σ|¹
h�1

Uih�1,ih

Uih�1,ih�1

� (22)

� Ui,j

Ui,i
�
��1�

¸
kPIp1,i�1q

¸
σPBpk,iq

p�1q|σ|
|σ|¹
h�1

Uih�1,ih

Uih�1,ih�1

� . (23)

In the above calculation, (19) comes from directly expanding the Prrwk P Uk,is terms. We switch
the summation of k and y in (21). Note that we get (22) because the second k term is essentially
enumerating a partition point for the interval ty, y�1, . . . , i�1, iu, so we can merge the summation
over k into σ, obtaining σ P Bpy, iq with |σ| ¥ 2. Finally combining the remaining terms give us
summation over σ without size requirement, as in (23).

Hence we completed the inductive step and proved the claim. [\
To further proceed with the remaining proof, we need the following proposition and we will

applying the following equality multiple times in later calculations.
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Proposition 11. For any i P IpGq,
1

Uii
� 1

N
� 1

N

¸
xPIp0,i�1q

Ux,i

Ui,i
.

Proof (of Proposition 11). We have N � Ui,i�
°

xPIp0,i�1q Ux,i because the total N paths that pass
vertices in Li start no later than Li, and no paths start at Lx where x R IpGq. Then we are done
by dividing both sides by N � Ui,i, which is non-zero when i P IpGq. [\

We continue the calculation.

Prrwi P Ui,js

� Ui,j

Ui,i
� Ui,j

Ui,i

¸
yPIp1,i�1q

¸
σPBpy,iq

p�1q|σ|
|σ|¹
h�1

Uih�1,ih

Uih�1,ih�1

(24)

�
��Ui,j

N
� Ui,j

N

¸
xPIp0,i�1q

Ux,i

Ui,i

� (25)

� Ui,j

Ui,i

¸
yPIp1,i�1q

¸
σPBpy,iq

p�1q|σ|
��Ui0,i1

N
�

¸
xPIp0,i0�1q

Ui0,i1

N
� Ux,i0

Ui0,i0

� |σ|¹
h�2

Uih�1,ih

Uih�1,ih�1

(26)

�
��Ui,j

N
� Ui,j

N

¸
xPIp0,i�1q

¸
σPBGpx,iq, |σ|�1

Ui0,i1

Ui1,i1

�
� Ui,j

Ui,i

¸
yPIp1,i�1q

¸
σPBpy,iq

p�1q|σ| � Ui0,i1

N
�
|σ|¹
h�2

Uih�1,ih

Uih�1,ih�1

(27)

� Ui,j

Ui,i

¸
yPIp1,i�1q

¸
σPBpy,iq

p�1q|σ|
¸

xPIp0,i0�1q

Ui0,i1

Ui0,i0

� Ux,i0

N

|σ|¹
h�2

Uih�1,ih

Uih�1,ih�1

(28)

�
��Ui,j

N
� Ui,j

N

¸
xPIp0,i�1q

¸
σPBGpx,iq, |σ|�1

p�1q|σ|Ui0,i1

Ui1,i1

�
� Ui,j

Ui,i

¸
yPIp1,i�1q

¸
σPBpy,iq

p�1q|σ| � Ui0,i1

N
�
|σ|¹
h�2

Uih�1,ih

Uih�1,ih�1

� Ui,j

Ui,i

¸
xPIp0,i�2q

¸
yPIpx�1,i�1q

¸
σPBpy,iq

p�1q|σ|Ui0,i1

Ui0,i0

� Ux,i0

N

|σ|¹
h�2

Uih�1,ih

Uih�1,ih�1

(29)

�
��Ui,j

N
� Ui,j

N

¸
xPIp0,i�1q

¸
σPBGpx,iq, |σ|�1

p�1q|σ|Ui0,i1

Ui1,i1

�
� Ui,j

Ui,i

¸
yPIp1,i�1q

¸
σPBpy,iq

p�1q|σ| � Ui0,i1

N
�
|σ|¹
h�2

Uih�1,ih

Uih�1,ih�1
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� Ui,j

Ui,i

¸
xPIp0,i�2q

¸
σPBpx,iq: |σ|¥2

p�1q|σ|Ux,i0

N

|σ|¹
h�2

Uih�1,ih

Uih�1,ih�1

(30)

�
��Ui,j

N
� Ui,j

N

¸
xPIp0,i�1q

¸
σPBGpx,iq, |σ|�1

p�1q|σ|Ui0,i1

Ui1,i1

�
� Ui,j

N

¸
yPIp1,i�1q

¸
σPBpy,iq

p�1q|σ| �
|σ|¹
h�1

Uih�1,ih

Uih�1,ih�1

� Ui,j

N

¸
xPIp0,i�2q

¸
σPBpx,iq: |σ|¥2

p�1q|σ|
|σ|¹
h�1

Uih�1,ih

Uih�1,ih�1

(31)

� Ui,j

N
� Ui,j

N

¸
σPBp0,iq

p�1q|σ|
|σ|¹
h�1

Uih�1,ih

Uih,ih

In the above calculation, we get the term (25) by applying Proposition 11 to the first term in (24),
and we get (26) by separating the pi0, i1q term in the multiplication out and applying Proposition 11.
By splitting the term (26) we get terms (27) and (28). To get the term (29) from (28), we take out
the summation over x and switch it with summation over y. Merging the terms giving us . In (31)
we switch the denominator term Ui,i outside the summation with the denominator term N inside
the summation. And the terms for x, y ¥ 1 are all canceled, finally giving us the desired equality.

If we slightly tweak the graph G by adding another layer m� 1 with a single edge connecting v
to Lm�1. Then we proved the lemma by computing Prru Ñ vs � Prrwm P Um,m�1s into which we
plugging Um,m�1 � 1. [\
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