
Integral Attacks on Pyjamask-96 and
Round-Reduced Pyjamask-128

Jiamin Cui1,2, Kai Hu1,2, Qingju Wang3, and Meiqin Wang1,2(�)

1 School of Cyber Science and Technology, Shandong University, Qingdao 266237,
Shandong, China.

cuijiamin@mail.sdu.edu.cn,hukai@mail.sdu.edu.cn,mqwang@sdu.edu.cn,
2 Key Laboratory of Cryptologic Technology and Information Security, Ministry of

Education, Shandong University, Qingdao, Shandong, China
3 SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg.

qingju.wang@uni.lu

Abstract. In order to provide benefits in the areas of fully homomor-
phic encryption (FHE), multi-party computation (MPC), post-quantum
signature schemes, or efficient masked implementations for side-channel
resistance, reducing the number of multiplications has become a quite
popular trend for the symmetric cryptographic primitive designs. With
an aggressive design strategy exploiting the extremely simple and low-
degree S-box and low number of rounds, Pyjamask, the fundamental block
cipher of the AEAD with the same name, has the smallest number of
AND gates per bit among all the existing block ciphers (except LowMC
or Rasta which work on unconventional plaintext/key sizes). Thus, al-
though the AEAD Pyjamask stuck at the second round of the NIST
lightweight cryptography standardization process, the block cipher Py-
jamask itself still attracts a lot of attention. Not very unexpectedly, the
low degree and the low number of rounds are the biggest weakness of Py-
jamask. At FSE 2020, Dobraunig et al. successfully mounted an algebraic
and higher-order differential attack on full Pyjamask-96, one member of
the Pyjamask block cipher family. However, the drawback of this attack
is that it has to use the full codebook, which makes the attack less ap-
pealing. In this paper, we take integral attacks as our weapon, which are
also sensitive to the low degree. Based on a new 11-round integral dis-
tinguisher found by state-of-the-art detection techniques, and combined
with the relationship between round keys that reduces the involved keys
, we give the key recovery attack on the full Pyjamask-96 without the
full codebook for the first time. Further, the algebraic and higher-order
differential technique does not work for Pyjamask-128, the other member
of the Pyjamask block cipher family. To better understand the security
margin of Pyjamask-128, we present the first third-party cryptanalysis
on Pyjamask-128 up to 11 out of 14 rounds.

Keywords: Pyjamask, Lightweight cipher, Integral Attack, Division Property,
Monomial Prediction

1 Introduction

Recently, block ciphers implemented in resource-constrained environments have
received a lot of attention with the increasing deployments of small computing
devices. To meet such trend, NIST initiated a lightweight cryptography (LWC)
competition for developing a standard of lightweight cryptographic algorithms.

Pyjamask, as an authenticated encryption with associated data (AEAD)
scheme which targets at side-channel resistance [11], has been selected as one of
the second round candidates for NIST LWC competition. The mode of operation
chosen by the authors is OCB AEAD [16]. The underlying block ciphers contain
two versions: Pyjamask-96 and Pyjamask-128, named according to the block size.
To allow efficient masked implementations, especially for high-order masking, the
S-box layer aggressively minimizes costs in terms of AND gates, which also leads
to relatively slow growth in algebraic degree. At FSE 2020, Dobraunig et al. [9]
noticed this vulnerability and presented an 11.5-round4 higher-order differential
distinguisher. Combined with the solution of linearized systems for monomials
and the guess-and-determine strategy, they proposed a chosen-ciphertext attack
for the full-round Pyjamask-96 using the whole codebook. Later, Tian and Hu [21]
found a 10-round integral distinguisher based on the division property [22,25]
that leads to an 11-round attack of Pyjamask-96 with time complexity 293.8. So
far, there is no third-party analysis for Pyjamask-128.

The integral attack was firstly proposed by Daemen et al. [6] to evaluate
the security of the block cipher Square, and later formalized by Knudsen and
Wagner [15]. It mainly has two steps: the construction of an integral distinguisher
followed by a key recovery step. In order to construct an integral distinguisher,
a structure of plaintexts is chosen firstly and encrypted for a few rounds. If
the corresponding state has an integral property, an integral distinguisher is
obtained, which can be used to perform the key recovery attack with many
techniques.

Detecting integral distinguishers. Currently, the division property, proposed
as a generalized integral property by Todo at EUROCRYPT 2015 [23], is the
most efficient and accurate method of detecting the integral distinguishers. It
can better exploit the algebraic degree information and identify balanced out-
put bits. Its powerfulness was undoubtedly demonstrated by the break of full
MISTY1 [22]. However, the original division property is word-oriented, i.e., it
only exploits the algebraic degree of the non-linear exponents, and could not
utilize the internal structure of ciphers in a fine-grained way. So Todo and Morii
introduced the bit-based division property at FSE 2016 [25], including the con-
ventional bit-based division property and the three-subset bit-based division

4 This 11.5-round distinguisher works under the chosen-ciphertext scenario, so the
last MixRows can be removed naturally, i.e., without the MixRows operation, the
distinguisher is actually 11 full rounds. Our 11-round distinguisher (introduced later)
works under the chosen-plaintext setting, so we cannot remove the MixRows operation
for the distinguisher. However, equivalently, in the key-recovery phase, we can ignore
the last MixRows operation also.

2

property. In [28], Wang et al. showed that the three-subset bit-based division
property could be used to recover the exact superpoly in the cube attack. This
observation was soon refined by Hao et al. in [12] as the three-subset bit-based
division property without unknown subsets (3SDPwoU). Recently, Hebborn et
al. pointed out that the idea behind the 3SDPwoU from the perspective of the
parity set [4] is that the 3SDPwoU actually determined the existence or absence
of a certain monomial in the polynomial of the cipher output. At ASIACRYPT
2020, Hu et al. [14] proposed the concept of the monomial prediction, which is
another language for the division properties from the viewpoint of the polynomial
directly. By counting the so-called monomial trails, they are able to determine
if a monomial of the plaintext or IV appears in the polynomial of the cipher
output. Indeed, the monomial prediction and the 3SDPwoU were proved to be
equivalent [14].

In practice, searching for the division properties or the monomial trails is
time and memory consuming where the complexity is usually the exponential
function of the block size. At ASIACRYPT 2016 [29], Xiang et al. introduced
the Mixed Integral Linear Programming (MILP) models for the conventional
division properties and thereafter the MILP models have been the dominant
tool in this area. Later, the integral attacks on dozens of symmetric primitives
are then improved [27,26,17,5,7].

Techniques used in the key recovery attacks. When mounting the key
recovery attack, we guess some involved round keys, partially decrypt the cor-
responding ciphertexts backwards to the tail of the integral distinguishers and
check whether the summation of the statements is zero. Since the presentation
of the integral attack, many refined key-recovery techniques are presented. The
partial sum technique was one of the most important tools, which was introduced
by Ferguson et al. in [10] to improve the time complexity of integral attacks. The
statement after the distinguisher, the ciphertexts and the involved round keys
can be separated into several parts and considered independently. Thus, we can
reuse some derived partial sum and optimize the time complexity. The original
attack target was AES. They dramatically reduced the complexity of the 6-round
attacks on AES by a factor of 228. Recently, this powerful method has lead to
a significant reduction in the time complexity of the integral attack on the full
MISTY1 [22,3].

Motivation. In order to provide benefits in the areas of fully homomorphic
encryption (FHE), multi-party computation (MPC), or post-quantum signature
schemes, reducing the number of multiplications has become a quite popular
trend for the symmetric cryptographic primitive designs. Unlike earlier designs
such as LowMC [2], or Rasta [8] and many others that follow an unconventional
design approach, e.g., incomplete non-linear layer, Pyjamask follows a classical
design approach to benefit from the mature cryptanalysis methods and secu-
rity arguments. Within this design space, it aggressively reduces the number
of rounds of the internal block ciphers and makes Pyjamask one of the existing
members with the smallest number of AND gates per bit processed. Moreover,
the low number of nonlinear building blocks of Pyjamask allows side-channel

3

countermeasures. Although the AEAD Pyjamask was not selected as the final-
ists of the NIST LWC competition, the block cipher Pyjamask still attracts a
lot of attention because of its low multiplication complexity characteristic. The
most important side effect of the low number of multiplicative operations is the
slow growth of algebraic degree, which makes it vulnerable to the attacks such
as the higher-order differential attacks [9] and the integral attacks [21]. However,
the only attack on the full Pyjamask-96 has to take the whole codebook. We are
naturally interested in whether we can improve the attacks without using the
whole codebook. The algebraic degree of Pyjamask-128 grows much faster than
Pyjamask-96, which the technique in [9] heavily relies on. As a result, their tech-
nique fails when applied to Pyjamask-128. On the other hand, block ciphers with
128-bit block size are more popular since almost all protocols support 128-bit
block ciphers (for the compatibility with AES) rather than 96-bit ones. Thus, it
is of special significance to study the security margin of this 128-bit version of
Pyjamask. Thanks to the development of the division properties recently, we have
more powerful tools to detect the integral distinguishers for Pyjamask. Thus the
security of Pyjamask can be better evaluated by more refined integral attacks.

Our contributions. In this paper, we take state-of-the-art techniques for de-
tecting division properties to give a more fine-grained study of the security
strength of Pyjamask-96 and Pyjamask-128 against the integral attacks. To find
more integral properties, we construct the MILP models for the encryption al-
gorithm considering the effect of the round keys for Pyjamask simultaneously.
11- and 9-round integral distinguishers are established for Pyjamask-96 and
Pyjamask-128, respectively. Based on the new 11-round integral distinguisher
for Pyjamask-96, capturing the relationship between the round keys that dra-
matically reduces the number of involved subkey bits in the key recovery phase
from 165 to 121 bits, we manage to attack the full Pyjamask-96 without the full
codebook for the first time. Equipped with the partial sum and equivalent key
skills, the complexities for some fewer rounds of Pyjamask-96 are also improved.
We also give the first third-party cryptanalysis on Pyjamask-128 up to 11 (out of
14) rounds, which helps to better understand its security margin. All the results
are summarized in Table 1.

Outline. The rest of this paper is organized as follows. In Section 2, we introduce
some background knowledge needed in this paper. The technique of obtaining
the integral distinguishers is described in Section 3. In Section 4, we mainly
describe the key recovery attack on 13-round and 14-round Pyjamask-96. The
attack on Pyjamask-128 is present in Section 5. Finally, the paper is concluded
in Section 6.

2 Preliminaries

2.1 Pyjamask Block Cipher Family

Pyjamask is a family of the block ciphers used by the AEAD Pyjamask, one of
the second-round candidates of the NIST LWC competition. In the remaining

4

Table 1: Comparisons of attack results for Pyjamask-96 and Pyjamask-128
Instance Approach #Round Data Time Reference

Pyjamask-96

Higher-order 9/14 271 CC 267 [9]
Integral 9/14 266 CP 266 Section 4
Higher-order 10/14 287 CC 283 [9]
Integral 10/14 281 CP 281 Section 4
Higher-order 11/14 295 CC 291 [9]
Integral 11/14 293 CP 293.8 [21]
Integral 11/14 290 CP 290 Section 4
Higher-order 12/14 296 CC 296 [9]
Integral 12/14 293 CP 293 Section 4
Higher-order 13/14 296 CC 299 [9]
Higher-order 13/14 294 CC 2125 [9]
Integral 13/14 295 CP 295.2 Section 4.1
Higher-order 14/14 296 CC 2115 [9]
Integral 14/14 295 CP 2122.6 Section 4.2

Pyjamask-128

Integral 5/14 220 CP 223 Section 5
Integral 6/14 252 CP 254 Section 5
Integral 7/14 290 CP 291.5 Section 5
Integral 8/14 290 CP 2107.8 Section 5
Integral 9/14 2112 CP 2112 Section 5
Integral 10/14 2122 CP 2122 Section 5
Integral 11/14 2127 CP 2127 Section 5

CC – chosen ciphertext; CP – chosen plaintext

sections, Pyjamask is always the name of the block ciphers without ambiguity.
Pyjamask includes two members Pyjamask-96 and Pyjamask-128 named according
to the block sizes. Both versions take the same 128-bit length key and have the
same 14 rounds. The internal states are represented as rectangles with t rows
and 32 columns, where t = 3 for Pyjamask-96 and t = 4 for Pyjamask-128.

In the specification [11], the round function of Pyjamask consists of three
steps: AddRoundKey, SubBytes and MixRows. After 14 rounds of iterations, one
additional AddRoundKey is appended at last. In this paper, we equivalently regard
SubBytes, MixRows and AddRoundKey as one full round (see Figure 1) and thus
there is a whitening AddRoundKey before the first round function. The operations
in one round are described as follows,

– SubBytes. The same t-bit S-box is applied to each of the 32 columns of the
internal state in parallel (t = 3 for Pyjamask-96 and t = 4 for Pyjamask-
128). For SubBytes−1, the inverse of the S-box is applied. S3 and S4 used in
Pyjamask-96 and Pyjamask-128 respectively are given by the following table.
The ANFs of S3, S4 and their inverses are given in Appendix A.

5

SubBytes

MixRows

AddRoundKey

x(i)

y(i)

z(i)

x(i+1)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

S S

M0

M1

M2

M3

⊕ ⊕

⊕ ⊕

⊕ ⊕

⊕ ⊕

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

Fig. 1: The round function of Pyjamask-128

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S3(x) 1 3 6 5 2 4 7 0 – – – – – – – –
S4(x) 2 D 3 9 7 B A 6 E 0 F 4 8 5 1 C

– MixRows. For each row Ri of the internal state where 0 ≤ i < 4, the updated
state can be calculated by Mi · RT

i . The binary matrices Mi used in the
MixRows layer are 32× 32 circulant matrices defined as follows:

M0 = cir([1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0]),

M1 = cir([0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1]),

M2 = cir([0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1]),

M3 = cir([0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1]),

where M0, M1, M2 are used for both Pyjamask-96 and Pyjamask-128, and
M3 is only used in Pyjamask-128. The function cir generates a matrix where
the ith row equals the input vector rotated by i positions to the right. The
hamming weight of each row is 11 for M0, M1, M3 and 13 for M2. For
MixRows−1, the matrices are also circulant and the Hamming weight of each
row is 11, 13, 11, 15 for M−1

0 , M−1
1 , M−1

2 , M−1
3 , respectively.

– AddRoundKey. An n-bit round key k(i) for the ith round is extracted from
the key schedule and XORed to the internal state, where 0 ≤ i ≤ 13 and

6

n = 96, 128. The pre-whitening key (which is also the master key as shown
later) is denoted by k(−1).

Key schedule. Pyjamask-96 and Pyjamask-128 share a similar key schedule,
where only the sizes of the subkeys differ due to the extra row in Pyjamask-128.
Let k(−1) be the master key. The same round function is operated on k(−1) for
14 times, and the round keys k(i) for 0 ≤ i ≤ 13 are generated. Note that the
key state in each round is loaded into the 128-bit key state in the same ordering
as the internal state of the encryption.

– MixColumns. Update each column of the key state by the same matrix M ,
where

M =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

and M = M−1.

– MixAndRotateRows. Update the first row of the key state R0 by Mk · RT
0 .

The circular matrix Mk is defined as:

Mk = cir([1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0]).

The hamming weight of each row is 15 for Mk and 11 for M−1
k . R1, R2, R3

are left-rotated by 8, 15 and 18 positions. Namely, they are replaced by
R1≪ 8, R2≪ 15 and R3≪ 18, respectively.

– AddConstant. Four-byte constants are added bitwisely to different bytes in
the key state. The first 28-bit constant is denoted in hexadecimal notation
as 0x243f6a8 while the extra 4-bit constant is the binary representation of
the round index i.

2.2 Notations

In this paper, the state matrix of Pyjamask at the beginning of round i is denoted
by x(i) where 0 ≤ i ≤ 13. The state matrix after the SubBytes and the MixRows
operations of round i are denoted by y(i) and z(i), respectively. Bits of every state
are labeled by 0, 1, 2, . . . , 95 for Pyjamask-96 and 0, 1, . . . , 127 for Pyjamask-128,
illustrated in Figure 1. The jth row vector of the binary matrix Mi is denoted
by Mi[j], 0 ≤ j < 32. We denote the subkey of round i by k(i), and the first
(pre-whitening) key by k(−1). In the key-recovery process, we are interested in
swapping the order of the MixRows operation and the AddRoundKey. As these
operations are linear or affine they can be interchanged, by first XORing the data
with an equivalent subkey and then applying the MixRows operation. We denote
the equivalent subkey for the altered version by u(i), i.e., u(i) = MixRows−1(k(i)).
When we interchange the order of the MixRows operation of round i and the
AddRoundKey, we denote the state right after the AddRoundKey (and just before
the MixRows operation) by z̄(i).

7

2.3 Monomial Prediction

The monomial prediction is a new technique proposed by Hu et al. in [14] to
determine whether a monomial appears in any product of the coordinate func-
tions of a vectorial boolean function f . It provides a new perspective from the
polynomial for the division properties [25,12]. Let f : Fn0

2 → Fnr
2 ,y = f(x) be a

composite vectorial Boolean function of a sequence of smaller vectorial Boolean
functions f (i) : Fni

2 → Fni+1

2 ,x(i+1) = f (i)(x(i)), 0 ≤ i ≤ r − 1, i.e.,

f = f (r−1) ◦ f (r−2) ◦ . . . ◦ f (0).

We use the notation πu(i)(x(i)) to represent a monomial of x(i) related to u(i),
where πu(x) stands for

∏
xui
i and xi, ui is the ith coordinate of the vector

x,u, respectively. Note that πu(i)(x(i)) is also a Boolean function of the x(j) for
j < i. If the ANF of f (i) is available and relatively simple, we can tell whether
the polynomial of πu(i+1)(x(i+1)) contains the term πu(i)(x(i)) for any u(i) and
u(i+1). πu(i)(x(i)) → πu(i+1)(x(i+1)) denotes πu(i+1)(x(i+1)) contains πu(i)(x(i))
according to [14]. Then we introduce the definition of the monomial trail [14].

Definition 1 (Monomial Trail [14]). Let x(i+1) = f (i)(x(i)) for 0 ≤ i < r.
We call a sequence of monomials (πu(0)(x(0)), πu(1)(x(1)), . . . , πu(r)(x(r))) an r-
round monomial trail connecting πu(0)(x(0)) and πu(r)(x(r)) with respect to the
composite function f = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0) if

πu(0)(x(0))→ · · · → πu(i)(x(i))→ · · · → πu(r)(x(r)).

If there is at least one monomial trail connecting πu(0)(x(0)) and πu(r)(x(r)), we
write πu(0)(x(0)) πu(r)(x(r)). Otherwise, πu(0)(x(0)) 6 πu(r)(x(r)).

The monomial prediction is another language for the division property from
the polynomial viewpoint. The paper [14] has shown the equivalence between
3SDPwoU and the monomial prediction. In theory, they are perfectly accurate
in detecting the integral distinguishers by counting the number of monomial
trails. However, counting trails are time and memory consuming in most cases
especially for the block ciphers, then some trade-off between the accuracy and the
efficiency is necessary. The previous division properties (except the 3SDPwoU)
can be regarded as the compromised algorithms of the monomial prediction.
In this paper, we mainly take the fact in Lemma 1 to search for the integral
distinguishers for Pyjamask.

Lemma 1 ([14]). πu(0)(x(0)) πu(r)(x(r)) if πu(0)(x(0)) → πu(r)(x(r)), and
thus πu(0)(x(0)) 6 πu(r)(x(r)) implies πu(0)(x(0)) 9 πu(r)(x(r)).

2.4 MILP Modeling for the Monomial Prediction

In this subsection, we denote by x ∈ Fn
2 ,k ∈ Fm

2 the vectors for the plaintext
and the master key, respectively. Let c be a certain output bit of the targeted

8

cipher, then c is a function of x and k written as c = f(x,k). For a fix constant
u ∈ Fn

2 , we consider the encryption of the following structure of plaintexts

X = {x � u : x ∈ Fn
2}.

Then whether c has the integral property is decided by whether
⊕

x∈X c =⊕
x∈X f(x,k) is a constant (0 or 1), which is further decided by whether for all

possible v ∈ Fm
2 \ {0}, πv(k) ·πu(x) does not appear in the ANF of c = f(x,k).

According to Lemma 1, if for all possible v ∈ Fm
2 \ {0}, πv(k) · πu(x) does not

have the monomial trails connecting c = f(x,k), then
⊕

x∈X c is a constant, and
c is key-independent.

In [25], Todo and Morri proposed the bit-based division properties, but the
time and memory complexities of the corresponding algorithm are O(2n) where
n is the block size. To search for the division properties efficiently, Xiang et
al. introduced the Mixed Integral Linear Programming (MILP) models in [29].
Since then, the MILP model has been the most common tool in the area about
the division properties [27,26,17,5,7].

In the monomial prediction, we take a similar method to construct the MILP
model by modeling the propagation of the monomial trails. Considering a mono-
mial trail

(πu(0)(x(0)), πu(1)(x(1)), . . . , πu(r)(x(r))),

it is enough to only model the vectors of u(i) since the x(i) are only symbolic
variables. Then we only need to model the transitions of (u(0),u(1), . . . ,u(r)).
For any Boolean function y = f(x), every pair of (u,v) is a valid monomial trail
through f if and only if xu → yv. Then we add constraints on (u,v) to force
them be the valid transitions. Since every block cipher can be decomposed into
some smaller components such as XOR, COPY, S-box and the linear layer, we
introduce the MILP models for these functions.

Model 1 (COPY [12]) Let (a)
COPY−−−−→ (b1, b2, ..., bm) denote the monomial

trail through the COPY function, where one bit is copied to m bits. Then, it can
be depicted using the following MILP constraints:

b1 + b2 + . . .+ bm ≥ a;
a ≥ bi, for all i ∈ {1, 2, . . . ,m};
a, b1, b2, ..., bm are binary variables.

Model 2 (XOR [12]) Let (a1, a2, ..., am)
XOR−−−→ (b) denote monomial trail through

an XOR function, where m bits are compressed to one bit using an XOR opera-
tion. Then, it can be depicted using the following MILP constraints:

{
a1 + a2 + ...+ am − b = 0;
a1, a2, ..., am, b are binary variables.

Model for S-box [29,28]. Given an S-box sending an n-bit vector to an m-bit
vector, the monomial trails through the S-box can be represented as a set of

9

(n + m)-dimensional binary vectors which has a convex hull. With the help of
inequality_generator() function in Sagemath [1] set of linear inequalities can
be derived to describe the H-Representation of this convex hull. Then we use
the greedy algorithm [20] to simplify them.

Model for the linear layer [19]. In [19], Sun et al. explained how to deduce a
MILP model of the linear layers for the two-subset bit-based division properties.
Here we slightly modify it for the monomial trails. Let M be a n × n matrix
over F2, which can be represented at the bit level and denote

M =

m0,0 m0,1 · · · m0,n−1
m1,0 m1,1 · · · m1,n−1
...

...
. . .

...
mn−1,0 mn−1,1 · · · mn−1,n−1

where mi,j ∈ {0, 1}. To represent the monomial trails through the linear layer,
we introduce a set of auxiliary binary variables ti,j(0 ≤ i, j ≤ n−1) to decompose
the binary matrix into XOR and COPY operations. Denote (x0, x1, ..., xn−1)→
(y0, y1, ..., yn−1) as a monomial trail of M , then we can construct linear inequal-
ity system as xj

COPY−−−−→ (t0,j , t1,j , ..., tn−1,j) and (ti,0, ti,1, ..., ti,n−1)
XOR−−−→ yi,

where the inequalities for COPY and XOR are from Model 1 and Model 2.

3 Automatic Search Model for Pyjamask and Integral
Distinguishers

3.1 MILP Model for Pyjamask-96 and Pyjamask-128

The works in [12,14] have implied that the 3SDPwoU and the monomial pre-
diction can be used to detect the integral properties for ciphers considering the
key schedule. In this paper, we regard all the round keys are independent input
variables, and the whole model we consider is illustrated in Figure 2. Inspired
by [13], we describe both encryption algorithm and the round keys into the MILP
model. Suppose the length of the block size and the round key is n (n = 96 for
Pyjamask-96 while n = 128 for Pyjamask-128). For 0 ≤ i < r, let πu(i)(x(i)) and
πũ(i)(x̃(i)) denote the monomials of the input and output statements of the ith
round function, respectively. πu(r)(x(r)) denotes a monomial of the ciphertext
we are interested in. Practically, u(r) is set as a unit vector to study a certain bit
of the ciphertext. πv(i)(k(i)) denotes the monomial of the ith round key. We use
inequalities to add constraints for variables u(i), ũ(i) and v(i) according to the
functions between them (recall x(i), x̃(i) and k(i) are only symbolic variables).
The whole process is very similar to [29] except,

1. Besides the encryption, the round keys are also considered. The monomials
πv(i)(k(i)) are treated equivalently as πu(i)(x(i)) when we add constraints.

2. The monomial trails through public functions are described in the models
introduced in Section 2.4 rather than the constraints for the two-subset bit-
based division properties.

10

πu(0)x(0)

πv(0)k(0)

. . .

πv(i)k(i)

. . .

πv(r−1)k(r−1)

public func
⊕

π
ũ(0) x̃(0)

· · · public func
⊕

π
ũ(i) x̃(i)πu(i)x(i)

· · · public func
⊕

πu(r−1)x(r−1) π
ũ(r−1) x̃(r−1)

πu(r)x(r)

Fig. 2: General structure of our MILP model

Initial constraints on (u(0),v(0), . . . ,v(r−1)). Given a structure of plaintexts
that all the active bits are a subset I ⊂ {0, 1, . . . , n− 1}, then we use

{
u
(0)
i = 1, if i ∈ I;
u
(0)
i = 0, if i /∈ I.

to add the initial constraints on u(0). Note we do not add any constraints on
(v(0), . . . ,v(r−1)) to allow (v(0), . . . ,v(r−1)) to be free variables over Fm×r

2 .

Stopping constraints on u(r). If we consider the integral property of the i′th
ciphertext bit, then we use

{
u
(r)
i = 1, if i = i′;

u
(r)
i = 0, if i 6= i′.

to add the stopping constraints on u(r).
Once we obtain the whole MILP model, we then call the MILP solver to

solve the model. If the model is not feasible, for any (v(0), . . . ,v(r−1)) ∈ Fm×r
2 ,

πv(0),...,v(r−1)(k(0), . . . ,k(r−1))·πu(0)(x(0)) has no trails connecting to πu(r)(x(r)),
i.e.,

πv(0),...,v(r−1)(k
(0), . . . ,k(r−1)) · πu(0)(x

(0)) 6 πu(r)(x
(r)), ∀(v(0), . . . ,v(r−1)) ∈ Fm×r

2 .

According to Lemma 1, πv(0),...,v(r−1)(k(0), . . . ,k(r−1)) · πu(0)(x(0)) does not ap-
pear in πu(r)(x(r)) for any (v(0), . . . ,v(r−1)) ∈ Fm×r

2 . Consequently, πu(r)(x(r))
is zero-sum.

Optional Extra Constraint to Obtain More Integral Property. In the
integral attacks, not only the zero-sum ciphertext bits but also the one-sum
ciphertext bits are useful. So we add an extra constraint to exclude the case that
πu(0)(x(0)) πu(r)(x(r)) as follows,

M←
∑

0≤i<r, 0≤j<m

v
(i)
j ≥ 1. (1)

11

In this case, if the model is not feasible, then

πv(0),...,v(r−1)(k
(0), . . . ,k(r−1))·πu(0)(x

(0)) 6 πu(r)(x
(r)), ∀(v(0), . . . ,v(r−1)) ∈ Fm×r

2 \{0}.

According to Lemma 1, πv(0),...,v(r−1)(k(0), . . . ,k(r−1)) · πu(0)(x(0)) does not ap-
pear in πu(r)(x(r)) for any (v(0), . . . ,v(r−1)) ∈ Fm×r

2 \{0}. Consequently, the ith
bit of x(r) is key-independent, i.e., zero-sum or one-sum (the concrete property
can be determined by an additional experiment). All the source codes are avali-
able at https://anonymous.4open.science/r/MILP_pyjamask-006B/. We re-
fer the readers to our codes for more details of the MILP model.

3.2 Integral Distinguishers of Pyjamask-96 and Pyjamask-128

Since the goal for the first step is to obtain the longest distinguisher, e.g., for
Pyjamask-96, we set the 95 bit of the input to active and one bit to constant
to find r-round distinguisher. Then the 96 positions of the constant bits are
traversed. If there are some balanced bits, we increase the round to r + 1 and
repeat the search process until no balanced bits are available. Then we found
a 10.5-round distinguisher for Pyjamask-96 with 96 balanced bits, which can be
naturelly extended to 11 rounds since the MixRows is linear. Then, we try to
reduce the data complexity by minimizing the number of the active bits of the
input as described in [18]. The reduced-round distinguishers can be obtained in
the similar way.

For Pyjamask-96, we found distinguishers up to 11 rounds as follows, where
A, C represent ACTIVE, CONSTANT bits respectively. And B denotes the zero-
sum property while Bc represents the key-independent bits. Note that only
for finding the 11-round distinguisher, we use the extra constraint in Equa-
tion (1). Comparing to the results without the constraint, we find 32 more key-
independent bits (the middle 32 bits denoted by B32c), which helps to reduce the
complexity of the key recovery attack on 14-round Pyjamask-96.

(C32, C32,A9C23)
5R−−→ (B32,B32,B32)

(C32, C32,A17C15)
6R−−→ (B32,B32,B32)

(C10A22, C10A22, C10A22)
7R−−→ (B32,B32,B32)

(C5A27, C5A27, C5A27)
8R−−→ (B32,B32,B32)

(C2A30, C2A30, C2A30)
9R−−→ (B32,B32,B32)

(C1A31, C1A31, C1A31)
10R−−−→ (B32,B32,B32)

(C1A31,A32,A32)
11R−−−→ (B32,B32c ,B32)

For Pyjamask-128, distinguishers up to 9 rounds are available.

12

https://anonymous.4open.science/r/MILP_pyjamask-006B/

(A5C27,A5C27,A5C27,A5C27)
4R−−→ (B32,B32,B32,B32)

(A13C19,A13C19,A13C19,A13C19)
5R−−→ (B32,B32,B32,B32)

(A23C9,A22C10,A23C9,A22C10)
6R−−→ (B32,U32,B32,U32)

(A28C4,A28C4,A28C4,A28C4)
7R−−→ (B32,U32,U32,U32)

(A31C1,A30C2,A31C1,A30C2)
8R−−→ (B32,U32,B32,U32)

(A32, C1A31,A32,A32)
9R−−→ (B32,U32,B32,U32)

4 Key Recovery Attack on Pyjamask-96

In this section, we present the key-recovery attacks for up to 14 rounds of
Pyjamask-96. Since the attacks on rounds less than 13 is simple, here we only
give the details of the attacks on 13- and 14-round Pyjamask-96 based on the
same 11-round distinguisher available in Section 3. For a set of 295 plaintexts
denoted by P with the form of (C1A31,A32,A32), the intermediate state after
11 rounds (say, x(11)) has the form of (B32,B32c ,B32). Taking a pre-computation
with 295 chosen plaintexts, the integral property (zero-sum or one-sum) of the
middle 32-bit ciphertext can be determined. Since the complexities of our attack
on 14-round Pyjamask-96 are significantly larger than 295 (see Table 1), so the
pre-computation is negligible. For the 13-round attack, we only use the 64 bits
with zero-sum property.

As is well known, once an integral characteristic is found, we can take it
to mount a key-recovery attack. If we denote by f the Boolean function that
represents the mapping from the ciphertext of Pyjamask-96 to one of the balanced
intermediate bit of x(11) (the output of the integral distinguisher), then we are
interested in the following equation

∑

p∈P
x(11)[i] =

∑

c∈C
f(c) = 0 (2)

where x(11)[i] is any one balanced bit and C is the corresponding ciphertext
sets encrypted from P. In the process of evaluating Equation (2), we guess the
involved subkey bits used in f , and check whether Equation (2) holds. Those
subkey values which violate Equation (2) will be filtered out and discarded, and
the remaining are the candidates of the correct subkeys.

4.1 Attack on 13-Round Pyjamask-96

By appending two rounds after the distinguisher, we can get a 13-round key
recovery attack on Pyjamask-96. Note that we have changed the order of the
MixRows and AddRoundKey, so the last operation of the 13-round Pyjamask is the
MixRows that can be ignored and then the ciphertext is actually z̄(12). Firstly,

13

we try to write out explicitly the mapping f from z̄(12) to any one balanced bit
of x(11). Without loss of generality, here we take x(11)[0] as an example.

Since the Boolean function of f is too complicated, we split it into two steps
and in each step, we make clear the subkey bits we need to guess.

Step 1: Express x(11)[0] by z̄(11). We first express x(11)[0] in a polynomial of
z̄(11), according to the ANF of the inverse of S3

x(11)[0] = y(11)[0] · y(11)[32] + y(11)[64] + 1

= (z̄(11)[0] + u(11)[0])(z̄(11)[32] + u(11)[32]) + (z̄(11)[64] + u(11)[64]) + 1.

If we have known z̄(11)[0], z̄(11)[32] and z̄(11)[64], through guessing u(11)[0], u(11)[32]
and u(11)[64] we can compute x(11)[0].

Step 2: Express respectively z̄(11)[0], z̄(11)[32], z̄(11)[64] by z̄(12). We first
express z̄(11)[64] in a polynomial of z̄(12) as an example, the processes for z̄(11)[0]
and z̄(11)[32] are similar.

z̄(11)[64] = M−1
2 [0] · (x(12)[64], x(12)[65], . . . , x(12)[95])T

=
∑

i∈I2

x(12)[i]

=
∑

i∈I2

(y(12)[i− 64] · y(12)[i] + y(12)[i− 32] + y(12)[i] + 1)

=
∑

i∈I2

((z̄(12)[i− 64] + u(12)[i− 64]) · (z̄(12)[i] + u(12)[i])

+ (z̄(12)[i− 32] + u(12)[i− 32]) + (z̄(12)[i] + u(12)[i]) + 1)

(3)

where I2 is a set of indices corresponding to the coefficient of M−1
2 [0] (recall

that Mi[j] is the jth row of Mi). For z̄(11)[0] and z̄(11)[32], the index sets are I0
and I1, which corresponds to M−1

0 [0] and M−1
1 [0] respectively. At first glance,

to calculate z̄(11)[64], we need to guess u(12)[i− 64], u(12)[i− 32] and u(12)[i] for
each i ∈ I2, totally 3× |I2| subkey bits. However, Equation (3) can be rewritten
as

z̄(11)[64] =
∑

i∈I2

z̄(12)[i− 64]z̄(12)[i] +
∑

i∈I2

u(12)[i]z̄(12)[i− 64]

+
∑

i∈I2

z̄(12)[i]u(12)[i− 64] +
∑

i∈I2

u(12)[i− 64]u(12)[i]

+
∑

i∈I2

z̄(12)[i− 32]

:::::::::::::

+
∑

i∈I2

z̄(12)[i]

+
∑

i∈I2

u(12)[i− 32] +
∑

i∈I2

u(12)[i] + 1.

(4)

The subkey bits in the underlined term
∑

i∈I2 u
(12)[i − 32] are independent of

other subkey or intermediate state bits, so we can regard the whole as one

14

equivalent subkey bit. Consequently, we now need to guess much less (equivalent)
subkey bits, totally 2×|I2|+1 bits. For z̄(11)[0] and z̄(11)[32], we need 2×|I0|+1
and 2 × |I1| + 1 subkey bits respectively. By removing the 11 reusable subkey
bits u(12)[10], u(12)[20], u(12)[24], u(12)[32], u(12)[39], u(12)[44], u(12)[55], u(12)[65],
u(12)[73], u(12)[86] and u(12)[94], we need 55 subkey bits in u(12) and 3 equivalent
subkey bits

∑
i∈I0 u

(12)[i+64],
∑

i∈I1 u
(12)[i−32],

∑
i∈I2 u

(12)[i−32] to compute
z̄(11)[0], z̄(11)[32] and z̄(11)[64].

The relevant data bits can be compressed similarly as above. To calculate
z̄(11)[64], 3 × |I2| bits in z̄(12) are required. For z̄(11)[0] and z̄(11)[32], we need
3×|I0| and 3×|I1| bits in z̄(12), respectively. By removing the reusable bits, totally
66 data bits in z̄(12) are required, which are highlighted gray in Figure 3. However,
the underwaved term

∑
i∈I2 z̄

(12)[i−32] are also independent from other subkey
or intermediate state bits. So we can pre-compute the whole as one equivalent
data bit for each ciphertext. Then, some of the u(12)[i] make no contribution to
the further calculation and can be removed. For z̄(11)[64], we need 2× |I2| data
bits in z̄(12) and one equivalent data bit c2 =

∑
i∈I2 z̄

(12)[i− 32]. It is the same
for z̄(11)[0] and z̄(11)[32]. The equivalent data bits are c0 =

∑
i∈I0 z̄

(12)[i+64] and
c1 =

∑
i∈I1 z̄

(12)[i− 32], respectively. Consequently, 11 bits in z̄(12) are reduced
in total (indicated by a cross in Figure 3). We now need 58 data bits in z̄(12) for
the calculation of x(11)[0], including 3 equivalent data bits c0, c1 and c2.

Furthermore, the 3 bit equivalent subkey bit
∑

i∈I0 u
(12)[i+64],

∑
i∈I1 u

(12)[i−
32],

∑
i∈I2 u

(12)[i−32] can be merged into the corresponding subkey bits u(11)[0],
u(11)[32], u(11)[64] and consider together. Consequently, only 58 (equivalent) key
bits are required to calculate

∑
p∈P x

(11)[0], including 55 bits in u(12) and 3 bits
in u(11).

Partial Sum An additional technique to reduce the complexity of the attack
is the partial sum technique described in [10]. It observes that the small S-boxes
are applied separately and the output of the MixRows is a linear combination
of several input bits. Then, the relevant subkey bits are divided into relatively
independent parts and guessed one after another. When a part of the subkey is
guessed, the corresponding ciphertext can be compressed with the information
and stored in a counter for further calculation. Meanwhile, the complexity can
also be influenced by the order of guessing. So the trade-off between the increase
of the guessed subkey bits and the decrease in the size of the counters deserves
consideration. We first consider columns in z̄(12) which correspond to only 2
equivalent subkey bits and then the columns related to 3-bit equivalent subkey.

Key Recovery Procedure. We give the process of the 13-round attack with
the observations described before in this section. The attack consists of three
phases.

1. Preparing for the counters:

15

11-Round Distinguisher

+58 bit
c2

c1

c0

2 bit

3 bit

96 bit

Phase 3

Phase 1

Phase 2

k(10)

x(11)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S−1
11

y(11)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

u(11)

z̄(11)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

L−1
11

x(12)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S−1
12

y(12)

64 �Z65 66 67 68 69 70 71 72 �Z73 74 75 76 77 78 79 80 81 82 83 84 85 �Z86 87 88 89 90 91 92 93 �Z94 95
�Z32 33 34 35 36 37 38 �Z39 40 41 42 43 �Z44 45 46 47 48 49 50 51 52 53 54 �Z55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 �Z10 11 12 13 14 15 16 17 18 19 �Z20 21 22 23 �Z24 25 26 27 28 29 30 31

u(12)

z̄(12)

64 �Z65 66 67 68 69 70 71 72 �Z73 74 75 76 77 78 79 80 81 82 83 84 85 �Z86 87 88 89 90 91 92 93 �Z94 95
�Z32 33 34 35 36 37 38 �Z39 40 41 42 43 �Z44 45 46 47 48 49 50 51 52 53 54 �Z55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 �Z10 11 12 13 14 15 16 17 18 19 �Z20 21 22 23 �Z24 25 26 27 28 29 30 31

L−1
12

C

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fig. 3: Key-Recovery of 13-Round Pyjamask-96

1.1 Choose a set of 295 plaintexts P of the form (C1A31,A32,A32), 0 ≤ i <
295.

1.2 Allocate a counter T 0 of size 266 containing 1-bit values and initialized by
0. For each Pi ∈ P, call 13-round Pyjamask-96 (without the last MixRows)
to encrypt Pi and obtain the corresponding ciphertext z̄(12). Take the
cascaded value of the 66-bit value z̄(12)[0−1], z̄(12)[6−10], z̄(12)[12−24],
z̄(12)[29− 30], z̄(12)[32− 33], z̄(12)[38− 42], z̄(12)[44− 56], z̄(12)[61− 62],
z̄(12)[64 − 65], z̄(12)[70 − 74], z̄(12)[76 − 88], z̄(12)[93 − 94] as an index
(denoted by i0) and update T 0 by T 0[i0] = T 0[i0] + 1 (mod 2).

16

1.3 Allocate another counter T 1 of size 258 containing 1-bit values and ini-
tialized by 0. For each T 0, calculate the 58-bit index i1 of T 1.
(a) The first 55-bit index of T 1 can be calculated by taking out the

11-bit value z̄(12)[10], z̄(12)[20], z̄(12)[24], z̄(12)[32], z̄(12)[39], z̄(12)[44],
z̄(12)[55], z̄(12)[65], z̄(12)[73], z̄(12)[86], z̄(12)[94] and cascading the rest
bits in order.

(b) The last 3 bits are derived according to
∑

i∈I0 z̄
(12)[i+64],

∑
i∈I1 z̄

(12)[i−
32] and

∑
i∈I2 z̄

(12)[i− 32].
(c) Update T 1 by T 1[i1] = T 1[i1] + 1 (mod 2).

2. Guessing subkeys in u(12): Based on the 58-bit counter T 1 derived, we
now guess the 55-bit equivalent subkey in u(12).
2.1 The relevant subkey bits of the column 0, 1, 7, 9, 10, 12, 20, 22, 23,

24, 30 in z̄(12) are guessed separately first. For each 2-bit guess, decrypt
through S3 and calculate the contribution to the corresponding z̄(11)[i],
i = 0, 32, 64. We treat the cost of the operation at once as 2 times 3-bit
S-box computations. In total, 22 subkey bits are guessed in this step and
the complexity is around 260 × 11× 2 3-bit S-box computations.

2.2 The relevant subkey bits of the remaining 11 columns in z̄(12) are guessed
separately. For each 3-bit guess, decrypt through S3 and calculate the
contribution to the corresponding z̄(11)[i], i = 0, 32, 64. 33 subkey bits are
guessed in this step and the complexity of this step is around 261×11×2
3-bit S-box computations.

For better understanding, we provide a detailed version of Phase 2 in Ap-
pendix B.

3. Guessing subkeys in u(11): The 3 bits equivalent key in u(11) are guessed in
this step. For each guess, decrypt z̄(11)[0], z̄(11)[32], z̄(11)[64] through the 3-bit
S-box. Keep the subkey where (x(11)[0], x(11)[64]) = (0, 0). The complexity
of this step is around 255+3+3 × 2 3-bit S-box computations.

4. Exhaustive search the rest of the key: The key space is reduced by a
factor of 2−2 for the 58-bit guess. By altering the position of the balanced
bit and repeating the above steps, the key space can be further reduced.
We choose 18 balanced columns and find the remaining subkey bits by an
exhaustive search of 292 possible combinations.

Complexity of the attack In Phase 1.1 and 1.2, the complexity is calculated
as 295 13-round Pyjamask-96 calls and 295 times MixRows operations. The cost
of Phase 1.3, Phase 2 and Phase 3 is calculated as

(260 × 11× 2 + 261 × 11× 2 + 255+3+3 × 2)/32 ≈ 261

times SubBytes operations and 266 × 3/96 = 261 times MixRows operations.
For Phase 4, the same operations repeat for 18 times. The complexity is given
as 18 × 261 + 292 13-round Pyjamask-96 calls. If we regard both SubBytes and
MixRows as half a round of Pyjamask-96, the time complexity is calculated as

17

295 + 295/2/13 + 18× 261/13 + 292 ≈ 295.2

times 13-round Pyjamask-96 calls. The data complexity is 295 plaintexts. As the
counters T 0 for the 18 positions can be prepared together in Phase 1, the memory
complexity is 266 × 18 ≈ 270 bits, which is around 267 bytes.

4.2 Attack on full-Round Pyjamask-96

In this section, we extend one more round to get the full-round attack on
Pyjamask-96. The order of MixRows and AddRoundKey has been changed, so the
ciphertext is actually z̄(13). Before going any further, we would like to briefly dis-
cuss the Fast Fourier Transform (FFT) key recovery technique. Following by the
approach in [24], the key recovery process of 13-round attack can be expressed as∑N

i=1 F2,K′(c
′
i⊕K ′r) = 0, where K ′r and K ′ denotes the 66-bit u(12) and the 3-bit

u(11), respectively. The time complexity is O(23×66×266) for one balanced bit.
So we believe that the FFT technique can acheive similar performance to our
13-round attack on Pyjamask-96 and the description can be simplified. However,
for the full-round attack, this techique fails since we could not truncate K ′r from
the 96-bit u(13).

As is seen in the attack on the 13-round case, the critical point of reducing
the complexity is to reduce the subkey bits we need to guess and the relevant
state bits. However, due to the strong diffusion from the additional round, we
need 165 subkey bits to express one balanced bit of x(11), which exceeds the
size of master key. To express one balanced bit of x(11), we need 3 bits in z̄(11).
Since for one bit in z̄(11) we still need 96 bits in u(13) and at least 33 bits in
u(12), we try to split one bit of z̄(11) into small expressions. Here we take x(11)[0]
as an example. To express x(11)[0], we need z̄(11)[0], z̄(11)[32], z̄(11)[64], which
can be rewritten as

∑
i∈I0 x

(12)[i],
∑

i∈I1 x
(12)[i],

∑
i∈I2 x

(12)[i] respectively. We
then split each Ij , 0 ≤ j ≤ 2 into two disjoint sets Ij,0 and Ij,1 and make clear
the subkey we need to guess for each set. Without loss of generality, we take∑

i∈I1,0 x
(12)[i] as an example, where I1,0 = {38, 40, 42, 45, 46, 47, 48}.

According to Equation (3) and Equation (4), we can express
∑

i∈I1,j x
(12)[i]

by u(12) and z̄(12), and reduce the relevant subkey bits and data bits. In total,
we need 2× |I1,0| data bits in z̄(12) and one equivalent data bit

∑
i∈I1,0 z̄

(12)[i−
32]. The relevant key bits are 2 × |I1,0| bits in u(12) (the equivalent key bit∑

i∈I1,0 u
(12)[i − 32] can be merged into the relevant subkey bit in u(11) and

guessed together).

Next, we show how to take the relationship between the round keys to
further reduce the 2 × |I1,0| bits in u(12) to |I1,0| bits. In the key schedule,
each 128 bit output of the ith round function is composed of the 96-bit round
key k(i) = (k(i)[0], k(i)[1], . . . , k(i)[95]) and an additional 32-bit value k̄(i) =
(k̄(i)[96], k̄(i)[97], . . . , k̄(i)[127]). In the key recovery phase, we are interested in
the relationship between the 128-bit output (k(12), k̄(12)) and (k(13), k̄(13)), So we
introduce a new 128-bit transform MixRows consisting of 4 matricesM0,M1,M2

18

and E , where M0,M1,M2 are the three matrices used in MixRows and E is a
32 × 32 identity matrix. Moreover, it is easy to check that MixRows−1 consists
of M0

−1,M1
−1,M2

−1 and E.
According to the key schedule, let g : F128

2 → F128
2 be a linear transform and

k(12)[i] = g(k(13), k̄(13))[i], 0 ≤ i < 96. The relationship between u(12) and u(13)
is as follows,

u(12)[i] = MixRows−1(k(12))[i]

= MixRows−1 ◦ g(k(13), k̄(13))[i]

= MixRows−1 ◦ g ◦ MixRows(u(13), k̄(13))[i]

= g(u(13), k̄(13))[i]

Therefore, u(12) is a linear function of u(13) and k̄(13). Considering the expression
of u(12)[32] and suppose v(i) and w(i) are the output of Mixcolumns (recall a 4×4
matrix M is used in Mixcolumns) and MixAndRotateRows of the ith round,
respectively, we have

u(12)[32] = M−1[1] · (v(13)[0], v(13)[32], v(13)[64], v(13)[96])

= v(13)[0] + v(13)[64] + v(13)[96]

=
∑

i∈Ik

w(13)[i] + w(13)[81] + w(13)[110]

=
∑

i∈Ik

u(13)[i] + u(13)[81] + k̄(13)[110] + 1

(5)

where Ik is a set of indices corresponding to the coefficient ofM−1
k [0]. So u(12)[32]

relates to only one bit in k̄(13). For other bits in u(12), things is similar. More-
over, bits in every column of u(12) correspond to the same bit in k̄(13) e.g.,
u(12)[0], u(12)[32], u(12)[96] all relate to k̄(13)[110]. Once we guess the full u(13),
we can compute u(12) by the above Equation (5) with the additional knowledge
of one corresponding bit in k̄(13). Since the partial value of u(12) related to u(13)
(e.g., the underlined part of Equation (5)) can be computed beforehand, for one
bit in k̄(13) guessed, we derive the value of three bits in u(12) with only 3 XORs.

We then give the process of the calculation for
∑

i∈I1,0 x
(12)[i], I1,0 = {38, 40,

42, 45, 46, 47, 48}. The relevant data bits are highlighted dark gray in Figure 4.
The process for the other sets are similar.

1. Preparing for the counters:
1.1 Choose a set of 295 plaintexts P with the form of (C1A31,A32,A32),

0 ≤ i < 295.
1.2 Allocate a counter T 0 of size 296 containing 1-bit values and initialized by

0. For each Pi ∈ P, call 14-round Pyjamask-96 (without the last MixRows)
to encrypt Pi and obtain the corresponding ciphertext z̄(13) as an index
(denoted by i0). Update T 0 by T 0[i0] = T 0[i0] + 1 (mod 2).

19

2. Guessing then 96 bits in u(13):

2.1 Partially decrypt through the 15-bit subkey bits u(13)[0− 4], u(13)[32−
36], u(13)[64− 68]. For each 3-bit guess, partially decrypt the ciphertext
through S3. We treat the cost of each above operation as 2 times 3-bit
S-box computations, then the complexity is around 2× (23+96 + 26+96 +
29+96 + 212+96 + 215+96) ≈ 2112.2 times 3-bits S-box computation.

2.2 After all 15-bit subkey bits have been guessed, calculate the contribution
of the 15 bits in x(13) to the 15 bits in z̄(12). Keep the new 96-bit as the
index of the counter. We treat the cost of each above operation as 7/32
times MixRows operations, then the complexity is 296+15× 7/32 ≈ 2108.9

times MixRows operations.
2.3 The remaining 81 bits in u(13) are guessed separately. For each 3-bit

guess, partially decrypt the ciphertext through S3 and calculate the con-
tribution to the 15 bits in z̄(12). We treat the cost of each above operation
as 2 times 3-bit S-box computations and 7/(32×11) times MixRows opera-
tions. The complexity of this step is bounded by 215+96+3×27×2 ≈ 2119.8

times 3-bit S-box computations and 215+96+3×27×7/(32×11) ≈ 2113.2

times MixRows operations.
3. Guessing the 7 bits in k̄(13): Up to now, we have guessed the 96 bit in
u(13). For each 96-bit guess:
3.1 Calculate the 14 expression of u(12)[i] according to the 96 bits in u(13),

i ∈ I1,0. The complexity of this step is 296 times one round inverse key
schedule.

3.2 Guess 7 bits in k̄(13). For each 1-bit guess, derive the relevant 3-bit
u(12) and calculate the contribution to

∑
i∈I1,0 x

(12)[i]. The complexity
is around 2 × (296+1+15 + 296+2+13 + 296+3+11 + 296+4+9 + 296+5+7 +
296+6+5 + 296+7+3) ≈ 2114 times 3-bit S-box computations.

After that, we derive the corresponding value of
∑

i∈I1,0 x
(12)[i] for each 103-

bit subkey guess and store them in a table. The complexity is dominated by
(2112.2+2119.8+2114)/32 ≈ 2114.9 times SubBytes operations and 2108.9+2113.2 ≈
2113.3 times MixRows operations. Then the total complexity is bounded by 2110.6

times 14-round Pyjamask-96.
Then we calculate the table for the other 5 sets . The total complexity is

bounded by 2110.6 + 2108.6 × 3 + 2106.6 × 2 ≈ 2111.4 times 14-round Pyjamask-96.
After all 6 tables have been established, we then go through the relevant

118-bit (u(13), k̄(13)). For each 118-bit key guess, we search for the corresponding
z̄11[0], z̄11[32], z̄11[64]. Then we guess the corresponding 3-bit subkey in u(11)

and keep the subkey where x(11)[0], x(11)[32], x(11)[64] satisfying the tail of 11-
round distinguisher (calculated by 295 11-round encryption). We treat the cost
for searching table as one time 14-round Pyjamask-96 encryption. The time com-
plexity for this step is 2118 × 6 + 2118+3 × 2/(32× 2× 14) ≈ 2120.6 Pyjamask-96
calls. So the total complexity is

295 + 295/(2× 14) + 295 × 11/14 + 2110.6 + 2120.6 ≈ 2120.7

20

times 14-round Pyjamask-96. The key space is reduced by 1/23 each time. We
choose 3 balanced columns and find the remaining key by 2119 exhaustive search.
The time complexity is 2120.7 × 3 + 2120 ≈ 2122.6 times 14-round Pyjamask-96.
The memory complexity is around (2103 + 3× 2102 + 2× 2101)/23 = 2101.6 bytes.

5 Integral Attacks on Round-Reduced Pyjamask-128

In this section we present the attack on Pyjamask-128 with the distinguishers
shown in Section 3. The attack results are summarized in Table 1.

The 11-round attack on Pyjamask-128 is by appending two rounds after the 9-
round distinguisher. For a set of 2127 plaintexts of the form (A32, C1A31,A32,A32),
the intermediate state after 9 rounds has the form of (B32,U32,B32,U32). The
process is depicted in Figure 5. The order of MixRows and AddRoundKey has
been exchanged like 13-round attack of Pyjamask-96. So the ciphertext is actu-
ally z̄(10).

To express one bit in x(9), for example x(9)[0], we need 4 bits in z̄(9) and
4 bits in u(9). Using the same method as Equation (3), we can compress the
relevant data bits by the equivalent data bits c1 =

∑
i∈I1 z̄

(10)[i− 32] and c2 =∑
i∈I2

z̄(10)[i− 32] + z̄(10)[i+ 32]. By removing the reusable bits and redundant
bits, we need 99 bits in z̄(10) and 2 equivalent data bits, which is illustrated in
Figure 5. The equivalent key is utilized similarly, and the involved key bits are
99 bits in u(10) and 4 equivalent bits in u(9). Then we guess the subkey bits
partially and compress the ciphertext.

For each 101-bit equivalent z̄(10), we guess the 99-bit u(10) partially. Each
time, we decrypt the ciphertext through the 4-bit S-box and calculate the con-
tribution to z̄(9)[0], z̄(9)[32], z̄(9)[64], z̄(9)[96]. If we treat the cost of each above
operation as 2 times 4-bit S-box computation, the complexity of this phase is
(2107×21 + 2106×3 + 2105×2 + 2103)×2/32 ≈ 2107.6 times SubBytes operation.

Then we guess the 4 bits in u(9) and compare them with the tail of the
distinguisher. The complexity for this phase is 299+4+4 × 2/32 = 2103 times
SubBytes. The key space is reduced by 1/22 each time. We choose 3 balanced
columns and find the remaining key bits by an exhausitve search of 2122 possible
combinations. The time complexity is dominated by the 2127 times encryption
and the memory complexity is dominated by 2108 × 3/23 ≈ 2106.5 bytes.

For Pyjamask-128 of round r (r = 7, 8, 9), we append 2 rounds after the (r−2)-
round distinguisher. The process is similar. The time complexity is dominated by
the encryption of plaintext for 10- and 9-round attacks, which are 2122 times 10-
round Pyjamask-128 and 2112 times 9-round Pyjamask-128. For 8-round attack,
each time when the key space is reduced by 1/22, we need around 2107.6/(2×8) =
2103.6 times 8-round Pyjamask-128. We repeat the process for 12 times and the
total complexity is 12× 2103.6 + 2106 ≈ 2107.8 times 8-round Pyjamask-128.

For Pyjamask-128 of round r, r = 5, 6, 7, we append 1 round after the (r−1)-
round distinguisher. Then we partially guess 4-bit subkey, decrypt the cipher-

21

texts through S4 and compare with the tail of the distinguisher. For 7-round
Pyjamask-128, the time complexity is 290+4 × 2/(32 × 2 × 7) ≈ 286.2 times 7-
round Pyjamask-128 for each 4-bit guess. We choose 20 balanced columns and
the total complexity is 290 + 290/(2× 7) + 20× 286.2 + 288 ≈ 291.5 times 7-round
Pyjamask-128. For 6-round Pyjamask-128, the time complexity is composed by
252 times 6-round Pyjamask-128, 252 times MixRows−1 and 20× 252+4× 2/(32×
2 × 6) + 2128−4×20 ≈ 252.8 times 6-round Pyjamask-128, which is bounded by
254 times 6-round Pyjamask-128. For 5-round Pyjamask-128, the time complex-
ity is composed by 220 times 5-round Pyjamask-128, 220 times MixRows−1 and
32×220+4×2/(32×2×5) ≈ 221.7 times 5-round Pyjamask-128, which is bounded
by 223 times 5-round Pyjamask-128.

6 Conclusion

This paper studies the security strength of the block ciphers Pyjamask-96 and
Pyjamask-128 against the integral attacks. With a new MILP model for the
division property considering the encryption function and the round keys simul-
taneously, we detect efficient integral distinguishers for both Pyjamask-96 and
Pyjamask-128. For Pyjamask-96, we utilize the 11-round integral distinguisher,
combined with a novel property of the key schedule, to mount a key recovery at-
tack for full Pyjamask-96 without the full codebook for the first time. The results
for fewer rounds, e.g., 13-round Pyjamask-96 are also improved. What’s more, we
give the first third-party cryptanalysis on the Pyjamask-128, which sheds more
light on its security margin. The integral attacks on both versions of Pyjamask
are significant to understand the low degree property of block ciphers.

22

References

1. https://www.sagemath.org/.
2. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and

Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 430–
454. Springer, 2015.

3. Achiya Bar-On and Nathan Keller. A 2ˆ70 attack on the full MISTY1. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of
LNCS, pages 435–456. Springer, 2016.

4. Christina Boura and Anne Canteaut. Another view of the division property. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume
9814 of LNCS, pages 654–682. Springer, 2016.

5. Christina Boura and Daniel Coggia. Efficient MILP modelings for sboxes and
linear layers of SPN ciphers. IACR Trans. Symmetric Cryptol., 2020(3):327–361,
2020.

6. Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher square. In
Eli Biham, editor, FSE ’97, volume 1267 of LNCS, pages 149–165. Springer, 1997.

7. Patrick Derbez and Pierre-Alain Fouque. Increasing precision of division property.
IACR Trans. Symmetric Cryptol., 2020(4):173–194, 2020.

8. Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand, Gre-
gor Leander, Eik List, Florian Mendel, and Christian Rechberger. Rasta: A ci-
pher with low anddepth and few ands per bit. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 662–692.
Springer, 2018.

9. Christoph Dobraunig, Yann Rotella, and Jan Schoone. Algebraic and higher-
order differential cryptanalysis of pyjamask-96. IACR Trans. Symmetric Cryptol.,
2020(1):289–312, 2020.

10. Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David A.
Wagner, and Doug Whiting. Improved cryptanalysis of rijndael. In Bruce Schneier,
editor, FSE 2000, volume 1978 of LNCS, pages 213–230. Springer, 2000.

11. Dahmun Goudarzi, Jérémy Jean, Stefan Kölbl, Thomas Peyrin, Matthieu Rivain,
Yu Sasaki, and Siang Meng Sim. Pyjamask: Block cipher and authenticated en-
cryption with highly efficient masked implementation. IACR Trans. Symmetric
Cryptol., 2020(S1):31–59, 2020.

12. Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang. Mod-
eling for three-subset division property without unknown subset - improved cube
attacks against trivium and grain-128aead. In Anne Canteaut and Yuval Ishai, edi-
tors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 466–495. Springer,
2020.

13. Phil Hebborn, Baptiste Lambin, Gregor Leander, and Yosuke Todo. Lower bounds
on the degree of block ciphers. In Shiho Moriai and Huaxiong Wang, editors,
ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages 537–566. Springer, 2020.

14. Kai Hu, Siwei Sun, Meiqin Wang, and Qingju Wang. An algebraic formulation
of the division property: Revisiting degree evaluations, cube attacks, and key-
independent sums. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT
2020, Part I, volume 12491 of LNCS, pages 446–476. Springer, 2020.

15. Lars R. Knudsen and David A. Wagner. Integral cryptanalysis. In Joan Daemen
and Vincent Rijmen, editors, FSE 2002, volume 2365 of LNCS, pages 112–127.
Springer, 2002.

23

https://www.sagemath.org/

16. Ted Krovetz and Phillip Rogaway. The OCB authenticated-encryption algorithm.
RFC, 7253:1–19, 2014.

17. Baptiste Lambin, Patrick Derbez, and Pierre-Alain Fouque. Linearly equivalent
s-boxes and the division property. Des. Codes Cryptogr., 88(10):2207–2231, 2020.

18. Ling Sun, Wei Wang, and Meiqin Wang. Automatic search of bit-based division
property for ARX ciphers and word-based division property. In Tsuyoshi Takagi
and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS,
pages 128–157. Springer, 2017.

19. Ling Sun, Wei Wang, and Meiqin Wang. Milp-aided bit-based division property
for primitives with non-bit-permutation linear layers. IET Inf. Secur., 14(1):12–20,
2020.

20. Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Auto-
matic security evaluation and (related-key) differential characteristic search: Ap-
plication to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block
ciphers. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I,
volume 8873 of LNCS, pages 158–178. Springer, 2014.

21. Wenqiang Tian and Bin Hu. Integral cryptanalysis on two block ciphers pyjamask
and uBlock. IET Inf. Secur., 14(5):572–579, 2020.

22. Yosuke Todo. Integral cryptanalysis on full MISTY1. In Rosario Gennaro and
Matthew Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages
413–432. Springer, 2015.

23. Yosuke Todo. Structural evaluation by generalized integral property. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of
LNCS, pages 287–314. Springer, 2015.

24. Yosuke Todo and Kazumaro Aoki. FFT key recovery for integral attack. In Dim-
itris Gritzalis, Aggelos Kiayias, and Ioannis G. Askoxylakis, editors, Cryptology
and Network Security - 13th International Conference, CANS 2014, Heraklion,
Crete, Greece, October 22-24, 2014. Proceedings, volume 8813 of Lecture Notes in
Computer Science, pages 64–81. Springer, 2014.

25. Yosuke Todo and Masakatu Morii. Bit-based division property and application to
simon family. In Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS, pages
357–377. Springer, 2016.

26. Qingju Wang, Lorenzo Grassi, and Christian Rechberger. Zero-sum partitions of
PHOTON permutations. In Nigel P. Smart, editor, CT-RSA 2018, volume 10808
of LNCS, pages 279–299. Springer, 2018.

27. Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and Willi
Meier. Improved division property based cube attacks exploiting algebraic proper-
ties of superpoly. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO
2018, Part I, volume 10991 of LNCS, pages 275–305. Springer, 2018.

28. Senpeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. Milp-aided method
of searching division property using three subsets and applications. In Steven D.
Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part III, volume 11923
of LNCS, pages 398–427. Springer, 2019.

29. Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP
method to searching integral distinguishers based on division property for 6
lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, Part I, volume 10031 of LNCS, pages 648–678, 2016.

24

A The ANFs of the S-Boxes and Their Inverse

We give the Algebraic Normal Form (ANF) for the S-boxes used in Pyjamask-96
and Pyjamask-128. The ANF of S3 is given by:

y0 :=x0x2 + x1

y1 :=x0x1 + x0 + x1 + x2

y2 :=x1x2 + x0 + x1 + 1

while the ANF of S4 is given by:

y0 :=x1x2 + x0 + x3

y1 :=x0x1x2 + x1x2x3 + x1x2 + x2x3 + x0 + x1 + x3

y2 :=x0x1 + x1x3 + x3 + 1

y3 :=x1x2x3 + x0x1 + x0x3 + x1x3 + x2x3 + x1 + x2 + x3

In the context of key recovery, we are interested in the inverse of S3 and S4. So
we also give the ANF of S−13 and S−14 . For S−13

x0 :=y0y1 + y2 + 1

x1 :=y1y2 + y0 + y1 + y2 + 1

x2 :=y0y2 + y1 + y2 + 1

while for S−14

x0 :=y0y1y2 + y0y2y3 + y0y3 + y2 + 1

x1 :=y1y2 + y2y3 + y0 + y3

x2 :=y0y2 + y1 + y3

x3 :=y0y2y3 + y0y1 + y0y2 + y1y2 + y1y3 + y2y3 + y0 + y2 + y3 + 1

B Details of Phase 2

Before continuing, we need to explain the procedure of each partial decryption
in Phase 2. Suppose that we compute the contribution of (z̄(12)[0], z̄(12)[64])
to (z̄(11)[0], z̄(11)[32], z̄(11)[64]). The 2 relevant key bits in u(12) are u(12)[0] and
u(12)[64]. For each guess, the steps are as follows:

1. Decrypt (z̄(12)[0], z̄(12)[64]) through 3-bit S-box to x(12)[64]. Remember that
decryption does not contain the contribution of the linear term z̄(12)[32] as
it has been calculated in Phase 1.3. That is

x(12) = (z̄(12)[0] + u(12)[0])(z̄(12)[64] + u(12)[64]) + (z̄(12)[64] + u(12)[64]) + 1

Then the 2-bit value z̄(12)[0], z̄(12)[64] makes no contribution to the further
calculation and can be removed.

25

2. Calculate the contribution of x(12)[64] to z̄(11)[64].

The complexity of the above steps is considered as 2 times 3-bit S-box compu-
tations. Notice that since c0, c1, c2 also contribute to z̄(11)[0], z̄(11)[32], z̄(11)[64]
respectively, we calculate the contribution of z̄(12) to c0, c1, c2. After all the sub-
key bits in u(12) have been guessed, c0, c1, c2 is actually z̄(11)[0], z̄(11)[32], z̄(11)[64].
The details of Step 2 on 13-round attack on Pyjamask-96 is given as follows.

1. Guess the 2 relevant bits in u(12) (u(12)[0], u(12)[64]). For each guess, par-
tially decrypt (z̄(12)[0], z̄(12)[64]) and calculate the contribution to c2. The
complexity of this step is 22+58 × 2 times 3-bit S-box computations.

2. Guess the 2 relevant bits in u(12) (u(12)[1], u(12)[33]). For each guess, par-
tially decrypt (z̄(12)[1], z̄(12)[33]) and calculate the contribution to c0. The
complexity of this step is 24+56 × 2 times 3-bit S-box computations.

3. Guess the 2 relevant bits in u(12) (u(12)[7], u(12)[71]). For each guess, par-
tially decrypt (z̄(12)[7], z̄(12)[71]) and calculate the contribution to c2. The
complexity of this step is 26+54 × 2 times 3-bit S-box computations.

4. Guess the 2 relevant bits in u(12) (u(12)[9], u(12)[41]). For each guess, par-
tially decrypt (z̄(12)[9], z̄(12)[41]) and calculate the contribution to c0. The
complexity of this step is 28+52 × 2 times 3-bit S-box computations.

5. Guess the 2 relevant bits in u(12) (u(12)[42], u(12)[74]). For each guess, par-
tially decrypt (z̄(12)[42], z̄(12)[74]) and calculate the contribution to c1. The
complexity of this step is 210+50 × 2 times 3-bit S-box computations.

6. Guess the 2 relevant bits in u(12) (u(12)[12], u(12)[76]). For each guess, par-
tially decrypt (z̄(12)[12], z̄(12)[76]) and calculate the contribution to c2. The
complexity of this step is 212+48 × 2 times 3-bit S-box computations.

7. Guess the 2 relevant bits in u(12) (u(12)[52], u(12)[84]). For each guess, par-
tially decrypt (z̄(12)[52], z̄(12)[84]) and calculate the contribution to c1. The
complexity of this step is 214+46 × 2 times 3-bit S-box computations.

8. Guess the 2 relevant bits in u(12) (u(12)[22], u(12)[54]). For each guess, par-
tially decrypt (z̄(12)[22], z̄(12)[54]) and calculate the contribution to c0. The
complexity of this step is 216+44 × 2 times 3-bit S-box computations.

9. Guess the 2 relevant bits in u(12) (u(12)[23], u(12)[87]). For each guess, par-
tially decrypt (z̄(12)[23], z̄(12)[87]) and calculate the contribution to c2. The
complexity of this step is 218+42 × 2 times 3-bit S-box computations.

10. Guess the 2 relevant bits in u(12) (u(12)[56], u(12)[88]). For each guess, par-
tially decrypt (z̄(12)[56], z̄(12)[88]) and calculate the contribution to c1. The
complexity of this step is 220+40 × 2 times 3-bit S-box computations.

11. Guess the 2 relevant bits in u(12) (u(12)[30], u(12)[62]). For each guess, par-
tially decrypt (z̄(12)[30], z̄(12)[62]) and calculate the contribution to c0. The
complexity of this step is 222+38 × 2 times 3-bit S-box computations.

12. Guess the 3 relevant bits in u(12) (u(12)[6], u(12)[38], u(12)[70]). For each guess,
partially decrypt (z̄(12)[6], z̄(12)[38], z̄(12)[70]) and calculate the contribution
to c0 and c1. The complexity of this step is 222+3+36 × 2 times 3-bit S-box
computations.

26

13. Guess the 3 relevant bits in u(12) (u(12)[8], u(12)[40], u(12)[72]). For each guess,
partially decrypt (z̄(12)[8], z̄(12)[40], z̄(12)[72]) and calculate the contribution
to c1 and c2. The complexity of this step is 222+6+33 × 2 times 3-bit S-box
computations.

14. Guess the 3 relevant bits in u(12) (u(12)[13], u(12)[45], u(12)[77]). For each
guess, partially decrypt (z̄(12)[13], z̄(12)[45], z̄(12)[77]) and calculate the con-
tribution to c1 and c2. The complexity of this step is 222+9+30×2 times 3-bit
S-box computations.

15. Guess the 3 relevant bits in u(12) (u(12)[14], u(12)[46], u(12)[78]). For each
guess, partially decrypt (z̄(12)[14], z̄(12)[46], z̄(12)[78]) and calculate the con-
tribution to c0 and c1. The complexity of this step is 222+12+27 × 2 times
3-bit S-box computations.

16. Guess the 3 relevant bits in u(12) (u(12)[15], u(12)[47], u(12)[79]). For each
guess, partially decrypt (z̄(12)[15], z̄(12)[47], z̄(12)[79]) and calculate the con-
tribution to c1 and c2. The complexity of this step is 222+15+24 × 2 times
3-bit S-box computations.

17. Guess the 3 relevant bits in u(12) (u(12)[16], u(12)[48], u(12)[80]). For each
guess, partially decrypt (z̄(12)[16], z̄(12)[48], z̄(12)[80]) and calculate the con-
tribution to c0, c1 and c2. The complexity of this step is 222+18+21× 2 times
3-bit S-box computations.

18. Guess the 3 relevant bits in u(12) (u(12)[17], u(12)[49], u(12)[81]). For each
guess, partially decrypt (z̄(12)[17], z̄(12)[49], z̄(12)[81]) and calculate the con-
tribution to c0 and c1. The complexity of this step is 222+21+18 × 2 times
3-bit S-box computations.

19. Guess the 3 relevant bits in u(12) (u(12)[18], u(12)[50], u(12)[82]). For each
guess, partially decrypt (z̄(12)[18], z̄(12)[50], z̄(12)[82]) and calculate the con-
tribution to c0 and c1. The complexity of this step is 222+24+15 × 2 times
3-bit S-box computations.

20. Guess the 3 relevant bits in u(12) (u(12)[19], u(12)[51], u(12)[83]). For each
guess, partially decrypt (z̄(12)[19], z̄(12)[51], z̄(12)[83]) and calculate the con-
tribution to c0, c1 and c2. The complexity of this step is 222+27+12× 2 times
3-bit S-box computations.

21. Guess the 3 relevant bits in u(12) (u(12)[21], u(12)[53], u(12)[85]). For each
guess, partially decrypt (z̄(12)[21], z̄(12)[53], z̄(12)[85]) and calculate the con-
tribution to c0 and c2. The complexity of this step is 222+30+9×2 times 3-bit
S-box computations.

22. Guess the 3 relevant bits in u(12) (u(12)[29], u(12)[61], u(12)[93]). For each
guess, partially decrypt (z̄(12)[29], z̄(12)[61], z̄(12)[93]) and calculate the con-
tribution to c1 and c2. The complexity of this step is 222+33+6×2 times 3-bit
S-box computations.

The total complexity is 260 × 11× 2 + 261 × 11× 2 times 3-bit S-box compu-
tations.

27

C Table Establishment for
∑

i∈I1,0
x(12)[i]

11-Round Distinguisher

Phase 3

Phase 1

Phase 2

96 bit

96 bit

15 bit

1 bit

k(10)

x(11)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S−1
11

y(11)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

u(11)

z̄(11)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

L−1
11

x(12)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S−1
12

y(12)c +

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

u(12)

z̄(12)c +

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

L−1
12

x(13)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S−1
13

y(13)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

u(13)

z̄(13)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

L−1
13

C

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fig. 4: Table Establishment for
∑

i∈I1,0 x
(12)[i]

28

D Key-Recovery of 11-Round Pyjamask-128

9-Round Distinguisher

+101 bit
c2

c1

2 bit

4 bit

128 bit

Phase 3

Phase 1

Phase 2

k(8)

x(9)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

S−1
9

y(9)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

u(9)

z̄(9)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

L−1
9

x(10)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

S−1
10

y(10)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

�Z32 33 34 35 36 37 38 �Z39 40 41 42 43 �Z44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 �Z10 11 12 13 14 15 16 17 18 19 �Z20 21 22 23 �Z24 25 26 27 28 29 30 31

�Z96 97 98 99 100 101 102��HH103 104 105 106 107��HH108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

u(10)

z̄(10)

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

�Z32 33 34 35 36 37 38 �Z39 40 41 42 43 �Z44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 �Z10 11 12 13 14 15 16 17 18 19 �Z20 21 22 23 �Z24 25 26 27 28 29 30 31

�Z96 97 98 99 100 101 102��HH103 104 105 106 107��HH108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

L−1
10

C

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

Fig. 5: Key-Recovery of 11-Round Pyjamask-128

29

