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Abstract. Zero-knowledge proofs are an important tool for many cryptographic protocols and ap-
plications. The threat of a coming quantum computer motivates the research for new zero-knowledge
proof techniques for (or based on) post-quantum cryptographic problems. One of the few directions is
code-based cryptography for which the strongest problem is the syndrome decoding (SD) of random
linear codes. This problem is known to be NP-hard and the cryptanalysis state of affairs has been stable
for many years. A zero-knowledge protocol for this problem was pioneered by Stern in 1993. As a simple
public-coin three-round protocol, it can be converted to a post-quantum signature scheme through the
famous Fiat-Shamir transform. The main drawback of this protocol is its high soundness error of 2/3,
meaning that it should be repeated ≈ 1.7λ times to reach a λ-bit security.
In this paper, we improve this three-decade-old state of affairs by introducing a new zero-knowledge
proof for the syndrome decoding problem on random linear codes. Our protocol achieves a soundness
error of 1/n for an arbitrary n in complexity O(n). Our construction requires the verifier to trust some
of the variables sent by the prover which can be ensured through a cut-and-choose approach. We provide
an optimized version of our zero-knowledge protocol which achieves arbitrary soundness through parallel
repetitions and merged cut-and-choose phase. While turning this protocol into a signature scheme, we
achieve a signature size of 17 KB for a 128-bit security. This represents a significant improvement over
previous constructions based on the syndrome decoding problem for random linear codes.

1 Introduction

Zero-knowledge proofs are an important tool for many cryptographic protocols and applications. Such proofs
enable a prover to prove a statement by interacting with a verifier without revealing anything more than
the statement itself. Zero-knowledge proofs find application in many contexts: secure identification and
signature, (anonymous) credentials, electronic voting, blockchain protocols and, more generally, privacy-
preserving cryptography.

While many zero-knowledge proofs have been proposed for, or are based on, pre-quantum cryptographic
problems (and in particular the discrete logarithm and the integer factoring), these protocols face the threat
of obsolescence with the potential arising of a quantum computer in the coming decades [Sho94]. This
motivates the question of finding efficient post-quantum alternatives to cryptographic protocols, and in
particular, zero-knowledge proofs.

One of the few directions for these post-quantum alternatives is (error correcting) code-based cryptog-
raphy. The generic decoding problem, or equivalently the (computational) syndrome decoding (SD) problem

is a classic problem: given a matrix H ∈ F(m−k)×m2 and a vector y ∈ Fm−k2 , recover a small-weight vector
x ∈ Fm2 such that Hx = y. For random linear codes –i.e. for a random matrix H– this problem is known to
be NP-hard and widely believed to be robust for practical parameters.

In a pioneering work from three decades ago [Ste94], Stern proposed a zero-knowledge protocol to prove
the knowledge of a solution to a syndrome decoding instance. This protocol achieves a soundness error of 2/3
which means that a malicious prover can fool the verifier with probability 2/3. Although an arbitrary security
of (2/3)τ can be achieved by repeating the protocol τ times, the induced communication cost is significant,



which is partly due to this high soundness error. Since the work of Stern, a few papers have proposed
optimizations and implementations (see for instance [Vér96,GG07,AGS11,ACBH13]) but for random linear
codes with standard security levels, the communication cost is still heavy.

In the present paper, we propose a new zero-knowledge protocol for the SD problem which achieves a
soundness error of 1/n with complexity O(n) for an arbitrary chosen n. In a nutshell, and as in Stern protocol,
the solution x is masked by the application of a random permutation σ. However instead of revealing either
σ(x) or σ, we always reveal σ(x) and prove the existence of a permutation σ. To this purpose, we decompose
σ into n masked permutations σ(·) + s := (σ1(·) + s1) ◦ · · · ◦ (σn(·) + sn) which are all committed by the
prover and we let the verifier choose n− 1 of them to be revealed. This way, we can maintain the privacy of
σ while obtaining the desired soundness error of 1/n.

Our construction requires the verifier to trust some of the variables sent by the prover. This can be ensured
by a so-called cut-and-choose phase since these variables are independent of the secret solution x. While
composing our technique with a cut-and-choose phase, the obtained protocol has a similar structure as the
zero-knowledge proof for Boolean circuits proposed by Katz, Kolesnikov and Wang [KKW18] as an efficient
instantiation of the MPC-in-the-head paradigm [IKOS07]. We can therefore apply the same optimizations
(such as the merging of the cut-and-choose phase) to obtain a 5-round zero-knowledge protocol with arbitrary
soundness error 2−λ. If this protocol is used as an identification scheme with a impersonation probability
lower than 2−16 (and SD security of 128 bits), the achieved communication cost is below 2 KB. Used as a
zero-knowledge protocol with a soundness error of 2−128, the communication cost can be made lower than
15 KB. We further detail how to make our zero-knowledge proof non-interactive and turn it into a signature
scheme by applying the Fiat-Shamir transform [FS87,AABN02]. We provide a security proof of the obtained
signature scheme in the random oracle model. For a 128-bit security level, our scheme achieves a signature
size ranging between 17 KB (compact version) and 24 KB (fast version).

In the state of the art, two different directions are followed to build code-based signatures: apply-
ing the Fiat-Shamir transform to an identification scheme or using hash-and-sign paradigm with a code-
based trapdoor function. In the former case, standard techniques results in identification schemes with
high communication cost (implying large signatures) because of the non-negligible soundness error. The
Schnorr-Lyubashevsky approach [Sch90,Lyu09] is a promising way to mitigate this cost. In the hash-and-
sign paradigm, existing schemes based on trapdoor functions are more sensitive to structural attacks. Such
a signature scheme named Wave [DST19] has been proposed in 2018 and is still secured against the current
cryptanalysis state of the art. Our signature has the advantage of being based on one of the oldest and hard-
est problem in code-based cryptography: syndrome decoding of random linear codes while still competing
with existing schemes based on other (presumably weaker) problems in terms of public key and signature
size.

The paper is organized as follows: In Section 2, we introduce the necessary background on the SD
problem and zero-knowledge proofs. We present the basic protocol (achieving 1

n soundness) in Section 3 and
an optimized version (achieving arbitrary soundness) in Section 4. Then, we describe a signature scheme
obtained through the Fiat-Shamir transform in Section 5. To conclude, we provide performance estimations
for different sets of parameters in Section 6 and compare our construction with other zero-knowledge proofs
and signature schemes from the state of the art in Section 7.

2 Preliminaries

Throughout the paper, F2 shall denote the finite field with two elements. For any vector x ∈ Fm2 , the
Hamming weight of x, denoted wt(x), is the number of non-zero coordinates of x. For any m ∈ N∗, the
integer set {1, . . . ,m} is denoted [m]. The set containing all the permutations of [m] is denoted Sm. For
any matrix H ∈ Fm×n2 , the kernel of H, denoted Ker(H), is the set of solutions to the equation Hx = 0.
For a probability distribution D, the notation s ← D means that s is sampled from D. For a finite set S,
the notation s ← S means that s is uniformly sampled at random from S. When the set S is clear from
the context, we sometimes denote s ← $ for a uniform random sampling of s from S. For an algorithm A,
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out ← A(in) further means that out is obtained by a call to A on input in (using uniform random coins
whenever A is probabilistic). Along the paper, probabilistic polynomial time is abreviated PPT.

A function µ : N → R is said negligible if, for every positive polynomial p(·), there exists an integer
Np > 0 such that for every λ > Np, we have |µ(λ)| < 1/p(λ). When not made explicit, a negligible function
in λ is denoted negl(λ) while a polynomial function in λ is denoted poly(λ). We further use the notation
poly(λ1, λ2, ...) for a polynomial function in several variables.

Two distributions {Dλ}λ and {Eλ}λ indexed by a security parameter λ are (t, ε)-indistinguishable if, for
any algorithm A running in time at most t, we have∣∣Pr[A(x) = 1 | x← Dλ]− Pr[A(x) = 1 | x← Eλ]

∣∣ ≤ ε .
The two distributions are said

– computationally indistinguishable if for every t = poly(λ), we get ε = negl(λ);
– statistically indistinguishable if for every (unbounded) t, we get ε = negl(λ);
– perfectly indistinguishable if for every (unbounded) t, we get ε = 0.

2.1 Syndrome Decoding Problem

Definition 1 (Syndrome Decoding Problem). Let m, k and w be positive integers such that m > k and
m > w. The syndrome decoding problem with parameters (m, k,w) is the following problem:

Let H, x and y be such that:

1. H is uniformly sampled from F(m−k)×m2 ,
2. x is uniformly sampled from {x ∈ Fm2 : wt(x) = w},
3. y is defined as y := Hx.

From (H, y), find x.

In the following, a pair (H, y) generated as in the above definition is called an instance of the syndrome
decoding problem for parameters (m, k,w). The syndrome decoding problem is known to be NP-hard. For a
weight parameter w lower than the Gilbert-Varshamov radius τGV(m, k), which is defined as:

w < τGV(m, k) ⇔
(
m

w

)
< 2m−k ,

we know that there exists a unique solution x such that y = Hx with overwhelming probability. Otherwise,
an instance has 1

2m−k ·
(
m
w

)
solutions on average.

There exists two main families of algorithms to solve the syndrome decoding problem: the information
set decoding (ISD) algorithms and generalized birthday algorithms (GBA) [TS16,BBC+19]. To obtain a λ-bit
security, the parameters of the syndrome decoding problem are hence chosen in a way to ensure that both
kind of algorithms run in time greater than 2λ.

2.2 Cryptographic Building Blocks

Definition 2 (Pseudorandom Generator (PRG)). Let G : {0, 1}∗ → {0, 1}∗ and let `(·) be a polynomial
such that for any input s ∈ {0, 1}λ we have G(s) ∈ {0, 1}`(λ). Then, G is a (t, ε)-secure pseudorandom
generator if the following two conditions hold:

– Expansion: `(λ) > λ;
– Pseudorandomness: the distributions

{G(s) | s← {0, 1}λ} and {r | r ← {0, 1}`(λ)}

are (t, ε)-indistinguishable.
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In this paper we shall make use of a tree PRG which is a pseudorandom generator that expands a root
seed mseed into N subseeds in a structured way. The principle is to label the root of a binary tree of depth
dlog2Ne with mseed. Then, one inductively labels the children of each node with the output of a standard
PRG applied to the node’s label. The subseeds (seedi)i∈[N ] are defined as the labels of the N leaves of the
tree. A tree PRG makes it possible to reveal all the subseeds but a small subset E ⊂ [N ] by only revealing
|E| · log(N) labels of the tree (which is presumably much smaller than N − |E|). The principle is to reveal
the labels on the siblings of the paths from the root of the tree to leaves i 6∈ E (excluding the labels of those
paths themselves). Those labels allow the verifier to reconstruct (seedi)i∈E while still hiding (seedi)i 6∈E . In
this paper, we shall denote nodes(mseed, [N ]\E) the set of labels (intermediate seeds) necessary and sufficient
to retreive the subseeds (seedi)i 6∈E while still hiding (seedi)i∈E .

Definition 3 (Collision-Resistant Hash Functions). A family of functions {Hashk : {0, 1}∗ → {0, 1}`(λ) ;
k ∈ {0, 1}κ(λ)}λ indexed by a security parameter λ is collision-resistant if there exists a negligible function ν
such that, for any PPT algorithm A, we have

Pr

[
x 6= x′

∩ Hashk(x) = Hashk(x′)
k ← {0, 1}κ(λ);
(x, x′)← A(k)

]
≤ ν(λ) .

A collision resistant hash function can be used to build a Merkle tree (a.k.a. hash tree). This is a binary
tree in which every leaf node is labelled with the cryptographic hash of a data block vi, and every non-leaf
node is labelled with the cryptographic hash of the labels of its child nodes. Given a collision-resistant hash
function Hash(·), the Merkle hash root for N = 2n input data blocks v1, . . . , vN , denoted Merkle(v1, . . . , vN ),
is hence defined as

Merkle(v1, . . . , vN ) =

{
Hash

(
Merkle(v1, . . . , vN/2) ‖ Merkle(vN/2+1, . . . , vN )

)
if N > 1

Hash(v1) if N = 1

A Merkle tree makes it possible to show the consistence of a small subset E ⊂ [N ] of revealed inputs (vi)i∈E
with the hash root h = Merkle(v1, . . . , vN ) without having to communicate all the other inputs (vi)i/∈E (or
their corresponding hash). The principle is to reveal the sibling paths of (vi)i∈E in the Merkle tree, that we
shall denote auth((v1, . . . , vN ), E), and which contains at most |E| · log(N/|E|) hash values.

We now formally introduce the notion of commitment scheme which is instrumental in many zero-
knowledge protocols.

Definition 4 (Commitment Scheme). A commitment scheme is a triplet of algorithms (KeyGen,Com,Verif)
such that

– KeyGen is a PPT algorithm that, on input 1λ, outputs some public parameters PP ∈ {0, 1}poly(λ) con-
taining a definition of the message space, the randomness space and the commitment space.

– Com is a deterministic polynomial-time algorithm that, on input the public parameters PP, a message x
and the randomness ρ, outputs a commitment c.

– Verif is a deterministic polynomial-time algorithm that, on input the public parameters PP, a message
x, a commitment c and the randomness ρ, outputs a bit b ∈ {0, 1}.

In this article, the public parameter input PP will be made implicit in the calls to Com and Verif.

Definition 5 (Correctness Property). A commitment scheme achieves correctness, if for any message
x and any randomness ρ:

Pr[Verif(x, c, ρ) = 1 | c← Com(x; ρ)] = 1 .

Definition 6 (Hiding Property). A commitment scheme is said computationally (resp. statistically, resp.
perfectly) hiding if, for any two messages x0 and x1, the following distributions

{c | c← Com(x0; ρ), ρ← $} and {c | c← Com(x1; ρ), ρ← $}

are computationally (resp. statistically, resp. perfectly) indistinguishable.
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Definition 7 (Binding Property). A commitment scheme is binding if there exists a negligible function
ν such that, for every (PPT) algorithm A, we have

Pr

 x 6= x′

∩Verif(PP, x, c, ρ) = 1
∩Verif(PP, x′, c, ρ′) = 1

PP← KeyGen();
(x, x′, ρ, ρ′, c)← A(PP)

 ≤ ν(λ) ,

where the probability is taken over the randomness of A and KeyGen. If we restrict A to being PPT, then the
scheme is computationally binding. If the computation time of A is unbounded, then the scheme is statistically
binding.

2.3 Interactive Protocols

A two-party protocol is a triplet Π = (Init,A,B) where Init is an initialization algorithm that, on input 1λ,
produces a pair (inA, inB), and where A and B are two stateful algorithms, called the parties. The parties
originally receive their inputs inA and inB then interacts by exchanging messages, and finally one of the
parties, say B, produces the output of the protocol. More formally, an execution of the protocol consists in
a sequence:

stateA ← A(inA)
stateB ← B(inB)
(MsgA[0], stateA)← A(stateA)

...
(MsgB[i], stateB)← B(stateB,MsgA[i− 1])
(MsgA[i], stateA)← A(stateA,MsgB[i])

...
out← B(stateB,MsgA[n])

The sequence of exchanged messages is called the transcript of the execution, which is denoted

View(〈A(inA),B(inB)〉) := (MsgA[0],MsgB[1], . . . ,MsgA[n]) .

An execution producing an output out is further denoted

〈A(inA),B(inB)〉 → out .

In our exposition, the state of the parties shall be made implicit. We shall then say that an algorithm has
rewindable black-box access to a party A if this algorithm can copy the state of A at any moment, relaunch
A from a previously copied state, and query A (with its current state) on input messages. A variable x is
said to be extractable from A if there exists a PPT algorithm E which, given a rewindable black-box access
to A, returns x after a polynomial number of queries to A.

Interactive proofs. We will focus on a special kind of two-party protocol called an interactive proof which
involves a prover P and a verifier V. In such a protocol, P tries to prove a statement to V. The first message
sent by P is called a commitment, denoted Com. From this commitment V produces a first challenge Ch1 to
which P answers with a response Rsp1, followed by a next challenge Ch2 from V, and so on. After receiving
the last response Rspn, V produces a binary output: either 1, meaning that she was convinced by P, or 0
otherwise. Such an m-round interactive proof with m = 2n+1 (1 commitment + n challenge-response pairs)
is illustrated on Protocol 1.

In the protocols described in the following sections, the verifier shall make some calls to a checking
procedure on input a Boolean expression of the form (x = y), which is denoted Check x = y. This procedure
stops the protocol execution and returns 0 (meaning that V is not convinced) if the Boolean expression
evaluates to false (i.e. x 6= y in the above example) while it does nothing if it evaluates to true: the protocol
execution continues.
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P V
inP inV

[...]
Com−−−−−−−−−−−−−−−−−−→
Ch1←−−−−−−−−−−−−−−−−−−
Rsp1−−−−−−−−−−−−−−−−−−→

...

Chn←−−−−−−−−−−−−−−−−−−
Rspn−−−−−−−−−−−−−−−−−−→

Return out ∈ {0, 1}

Protocol 1: Structure of a m-round interactive proof with m = 2n+ 1.

2.4 Zero-Knowledge Proofs

Informally, a proof of knowledge is an interactive proof in which P aims to convince V that she knows
something. Formally, a proof of knowledge is defined as follows:

Definition 8 (Proof of Knowledge). Let x be a statement of language L in NP, and W (x) the set of
witnesses for x such that the following relation holds:

R = {(x,w) : x ∈ L,w ∈W (x)} .

A proof of knowledge for relation R with soundness error ε is a two-party protocol between a prover P and
a verifier V with the following two properties:

– (Perfect) Completeness: If (x,w) ∈ R, then a prover P who knows a witness w for x succeeds in con-
vincing the verifier V of his knowledge. More formally:

Pr[〈P(x,w),V(x)〉 → 1] = 1,

i.e. given the interaction between the prover P and the verifier V, the probability that the verifier is
convinced is 1.

– Soundness: If there exists a PPT prover P̃ such that

ε̃ := Pr[〈P̃(x),V(x)〉 → 1] > ε,

then there exists an algorithm E (called an extractor) which, given rewindable black-box access to P̃,
outputs a witness w′ for x in time poly(λ, (ε̃− ε)−1) with probability at least 1/2.

Informally, a proof of knowledge has soundness error ε if a prover P̃ without knowledge of the witness
cannot convince the verifier with probability greater than ε assuming that the underlying problem (recovering
a witness for the input statement) is hard. Indeed, if a prover P̃ can succeed with a probability greater than ε,
then the existence of the extractor (algorithm E) implies that P̃ can be used to compute a witness w′ ∈W (x).

Remark 1. In the present article, we focus on proof of knowledge for a syndrome decoding instance defined
by a matrix H and a vector y. The problem parameters m, k and w will be considered to be defined by the
security parameter λ. In this context, the syndrome decoding instance (H, y) is the statement. A witness for
this statement is a vector x such that y = Hx and wt(x) = w.

6



We now recall the notion of (honest-verifier) zero-knowledge proof:

Definition 9 (Zero-Knowledge Proof). A proof of knowledge is {computa-tionally, statistically, per-
fectly} zero-knowledge if, for every malicious PPT verifier Ṽ, there exists a PPT algorithm S (called simu-
lator) which, given the input statement x and rewindable black-box access to Ṽ, outputs a simulated transcript
which is {computationally, statistically, perfectly} indistinguishable from the distribution View(〈P(x,w), Ṽ(x)〉).

Definition 10 (Honest-Verifier Zero-Knowledge Proof). A proof of knowledge is {computationally,
statistically, perfectly} honest-verifier zero-knowledge (HVZK) if there exists a PPT algorithm S (called
simulator) whose output distribution is {computationally, statistically, perfectly} indistinguishable from the
distribution View(〈P(x,w),V(x)〉) obtained with an honest V.

Informally, the previous definition says a genuine execution of the protocol can be simulated without
any knowledge of the witness. In other words, the transcript of an execution between the prover and an
honest verifier does not reveal any information about the witness. By honest-verifier one means that the
verifier messages are correctly sampled according to the protocol. In contrast, a malicious verifier could try
to use another distribution for the messages in order to gain information about the witness. The (strong)
zero-knowledge property requires that an execution of the protocol can be simulated without any knowledge
of the witness for any (possibly malicious) verifier.

3 A Zero-Knowledge Protocol for Syndrome Decoding

Let us have an instance (H, y) of the syndrome decoding problem and let us denote x a solution of this
instance.

3.1 General Idea

We now present the general idea of our protocol. As in the Stern protocol [Ste94], the prover first generates
a random permutation σ and a random mask r ∈ Ker(H), and reveals(

v := σ(x) , x̃ := x+ r
)

(1)

to the verifier. The verifier can then verify that

– y = Hx̃ holds: this ensures that x̃ = x+ r for some mask r ∈ Ker(H),
– wt(v) = w holds: this ensures that x = σ−1(v) is of weight w for any permutation σ.

In order to complete the proof, the prover then needs to convince the verifier that there exists a pair (σ, r)
which jointly satisfies:

1. Hr = 0, and
2. σ(x̃) = v + σ(r).

The first property is independent of the solution x which makes it provable using a cut-and-choose approach
(see details in Section 3.4). Our key idea is a way to prove the second property while achieving an arbitrary
soundness error 1/n.

Our method introduces an affine transformation A(·) = σ(·) + s for a random mask s so that we have:

A(x̃) = σ(x̃) + s = σ(x) + σ(r) + s︸ ︷︷ ︸
q

. (2)

If the verifier trusts that the value q equals A(r) for some r ∈ Ker(H), then she only needs to verify the
equality A(x̃) = v + q to be convinced. Since q is independent of x, ensuring a trustworthy q can also
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be achieved through cut-and-choose (see details in Section 3.4). This leaves us with the task of proving
A(x̃) = v + q.

Let note u := A(x̃). If the prover sends u, the verifier can check u = q + v. To prove A(x̃) = u, we
decompose A into a composition of n affine transformations Ai(·) = σi(·) + si such that A = An ◦ · · · ◦ A1.
The permutation σ and mask s are then defined as

σ = σn ◦ · · · ◦ σ1 and s = sn + σn(. . .+ σ2(s1)) . (3)

The main utility of this decomposition is that revealing all the Ai except one gives no information on A,
provided that Ai is uniformly sampled for every i. In this paradigm, the prover first commit all the Ai and
reveals

u1 := A1(u0)

u2 := A2(u1)

. . .

un := An(un−1)

where u0 := x̃ and un = u by definition. Then, the verifier chooses a random i∗ such that the prover reveals
all the Ai except Ai∗ . The verifier can then check ui = Ai(ui−1) for every i ∈ [n] \ {i∗}. The only chance for
the prover to cheat is to guess i∗ in advance. Therefore, the maximum probability that a malicious prover
can convince the verifier that u = A(x̃) is at most 1/n.

To sum up,

1. The prover samples the random mask r from Ker(H) and n affine transformations Ai(·) := σi(·) + si.
We denote A(·) := σ(·) + s the composition An ◦ · · · ◦A1, with σ and s satisfying (3).

2. The prover reveals q := σ(r) + s, v := σ(x) and x̃ := x+ r.
3. The verifier checks y = Hx̃ and wt(v) = w.
4. The prover reveals ui := Ai(ui−1) for i ∈ {1, ..., n}, with u0 := x̃;
5. The verifier checks un = q + v.
6. The prover commits all the Ai, i.e all the (σi, si);
7. The verifier generates i∗ ← [n]

and sends it to the prover as challenge;
8. The prover reveals {Ai}i6=i∗ .
9. The verifier checks ui = Ai(ui−1) for all i 6= i∗.

If all the checks have passed, the verifier deduces u = A(x̃). Moreover, if q is trusted, then a proof
that u = A(x̃) constitutes a proof of knowledge of a solution x to the syndrome decoding instance. This
protocol is a zero-knowledge protocol with a soundness error of 1/n under the trust hypothesis on q. As
previously mentioned, this trust hypothesis can be fulfilled by using a cut-and-choose approach that we
detail in Section 3.4.

3.2 Description of the Protocol

We give a formal description of our new zero-knowledge proof for syndrome decoding in Protocol 2. For the
sake of simplicity, this description assumes that the value q = σ(r) + s is trusted by the verifier. We denote
this trust requirement with a star in superscript: q?.

3.3 Security Proofs

The following theorems state the completeness, zero-knowledge and soundness (with trusted q) of Protocol 2.
The proofs of Theorems 2 and 3 are provided in appendix.
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Prover P Verifier V
x ∈ Fm2 s.t. wt(x) = w

H ∈ F(m−k)×m
2 , y := Hx H, y := Hx

For i in {1, . . . , n}:
ρi ← {0, 1}λ
(σi, si)← Sm × Fm2
ci = Com((σi, si); ρi)

r ← Ker(H)
σ = σn ◦ · · · ◦ σ1

s = sn + σn(. . .+ σ2(s1))
q? = σ(r) + s
v = σ(x)
x̃ = x+ r
u0 = x̃
For i in {1, . . . , n}:

ui = σi(ui−1) + si
c1,...,cn−−−−−−−−−−−−−−−−−−→
q?−−−−−−−−−−−−−−−−−−→
v,x̃−−−−−−−−−−−−−−−−−−→

u1,...,un−−−−−−−−−−−−−−−−−−→ i∗ ← {1, . . . , n}
i∗←−−−−−−−−−−−−−−−−−−

(σi,si,ρi)i6=i∗−−−−−−−−−−−−−−−−−−→ u0 = x̃
For all i 6= i∗:

Check Verif((σi, si), ci, ρi) = 1
Check ui = σi(ui−1) + si

Check un = v + q?

Check wt(v) = w
Check y = Hx̃
Return 1

Protocol 2: Zero-knowledge proof for syndrome decoding – Simplified version with trusted q?.

Theorem 1 (Completeness). Protocol 2 is perfectly complete, i.e. a prover P who knows a solution x to
the syndrome decoding instance (H, y) and who follows the steps of the protocol always succeeds in convincing
the verifier V.

Proof. For any sampling of the random coins of P and V, if the computation described in Protocol 2 is
genuinely performed then all the checks of V pass. �

Theorem 2 (Zero-Knowledge). Let the commitment scheme Com used in Protocol 2 be {computationally,
statistically, perfectly} hiding. For all malicious PPT verifier Ṽ, there exists a PPT simulator S which, given
rewindable black-box access to Ṽ, outputs a simulated transcript which is {computationally, statistically,
perfectly} indistinguishable from a real transcript between P and Ṽ.

Theorem 3 (Soundness). Suppose that there is an efficient prover P̃ that, on input (H, y),

– builds q honestly, i.e. for any {(σi, si), ρi}i extractable from P̃ and such that Verif((σi, si), ci, ρi) = 1,
there exists r ∈ Ker(H) such that q = σ(r) + s with σ = σn ◦ · · · ◦ σ1 and s = sn + σn(. . .+ σ2(s1));

– convinces the honest verifier V on input H, y to accept with probability

ε̃ := Pr[〈P̃,V〉(H, y)→ 1] > ε

where the soundness error ε is equal to 1/n.

9



Then, there exists an efficient probabilistic extraction algorithm E that, given rewindable black-box access to
P̃, produces with either a witness x such that y = Hx and wt(x) = w, or a commitment collision, by making
in average

4

ε̃− ε
·
(

1 + ε̃ · 2 · ln(2)

ε̃− ε

)
calls to P̃.

3.4 Producing the Trusted Vector

In order to obtain a sound zero-knowledge proof, we need a procedure to build the trusted vector q. One
possible technique is to use the cut-and-choose methodology. Concretely, the prover generates many different
vectors q in a verifiable way, i.e., by committing the randomness used for their generation. Then, the verifier
will ask to the prover to reveal how she built some of the vectors q, namely to open these vectors q.
This opening consists in revealing the corresponding r ∈ Ker(H) as well as the (previously committed)
randomness used to generate the affine transformation A(·). The verifier can then check the consistency of
the commitments, the belonging of r to Ker(H) and the correct computation of q = A(r). Since the prover’s
secret (the solution x to the syndrome decoding instance) is not involved, such an opening does not break
the zero-knowledge property of the protocol. However the opened vectors q become unusable for the protocol
(because the used randomness is revealed). Thus, the prover must use one of the vectors q for which the
building was not opened.

Let M be the number of generated and committed vectors. In the case of the simple protocol with
soundness error 1/n, one only needs a single trusted vector q. The verifier then asks for the opening of M −1
of the generated pairs before running the “trusted” part of the proof. If the prover cheated for more than
one vector, then the verification will always fail. If the prover cheated on one vector, then the probability
that the opening of this vector is not requested by the verifier during the cut-and-choose method is 1/M .

The generation of a trusted vector q via the cut-and-choose method is described in Protocol 3.

Prover P Verifier V
H ∈ F(m−k)×m2 H

For j in {1, . . . ,M}:
For i in {1, . . . , n}:

ρ
[j]
i ← {0, 1}

λ

(σ
[j]
i , s

[j]
i )← Sm × Fm2

c
[j]
i = Com((σ

[j]
i , s

[j]
i ); ρ

[j]
i )

r[j] ← Ker(H)

σ[j] = σ
[j]
n ◦ · · · ◦ σ[j]

1

s[j] = s
[j]
n + σ

[j]
n (. . .+ σ

[j]
2 (s

[j]
1 ))

q[j] = σ[j](r[j]) + s[j]

{c[j]i }i∈[n],j∈[M]−−−−−−−−−−−−−−−−−−→
{q[j]}j∈[M]−−−−−−−−−−−−−−−−−−→ j∗ ← {1, . . . ,M}

j∗←−−−−−−−−−−−−−−−−−−{
r[j],(σ

[j]
i ,s

[j]
i ,ρ

[j]
i )i∈[n]

}
j 6=j∗−−−−−−−−−−−−−−−−−−→

For all j 6= j∗:
For all i:

Check Verif((σ
[j]
i , s

[j]
i ), c

[j]
i , ρ

[j]
i ) = 1

σ[j] = σ
[j]
n ◦ . . . ◦ σ[j]

1

s[j] = s
[j]
n + σ

[j]
n (. . .)

Check Hr[j] = 0

Check q[j] = σ[j](r[j]) + s[j]

Return 1

Protocol 3: Cut-and-choose protocol to produce a trusted vector q.
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This protocol can be composed with the sound phase (Protocol 2) to obtain a standalone 5-round protocol.
This protocol is a zero-knowledge proof for the syndrome decoding problem with a soundness error of

max

{
1

M
,

1

n

}
.

Indeed, the prover has two possible ways to cheat: either she cheats for one of the M vectors during the
cut-and-choose phase, but if this vector is not selected the protocol is aborted (the cheating is discovered);
or she can try to cheat during the sound phase. The prover can try to introduce a mistake in the first phase
( 1
M ) or in the second phase ( 1

n ), but not in both.

For completeness, we depict this standalone version in Protocol 4.

Prover P Verifier V
x ∈ Fm2 s.t. wt(x) = w

H ∈ F(m−k)×m
2 , y := Hx H, y := Hx

For j = 1..M
For i = 1..n:

ρ
[j]
i ← {0, 1}

λ

(σ
[j]
i , s

[j]
i )← Sm × Fm2

c
[j]
i = Com((σ

[j]
i , s

[j]
i ); ρ

[j]
i )

r[j] ← Ker(H)

σ[j] = σ
[j]
n ◦ ... ◦ σ[j]

1

s[j] = s
[j]
n + σ

[j]
n (...+ σ

[j]
2 (s

[j]
1 ))

q[j] = σ[j](r[j]) + s[j]

{c[j]i }i∈[n],j∈[M]−−−−−−−−−−−−−−−−−−→
{q[j]}j∈[M]−−−−−−−−−−−−−−−−−−→ j∗ ← [M ]

j∗←−−−−−−−−−−−−−−−−−−{
r[j],(σ

[j]
i ,s

[j]
i ,ρ

[j]
i )i∈[n]

}
j 6=j∗−−−−−−−−−−−−−−−−−−→ For all j 6= j∗:

σ[j] = σ
[j]
n ◦ . . . ◦ σ[j]

1

s[j] = s
[j]
n + σ

[j]
n (. . .)

Check Hr[j] = 0

Check q[j] = σ[j](r[j]) + s[j]

v = σ[j∗](x)

x̃ = x+ r[j
∗]

u0 = x̃
For i = 1..n:

ui = σi(ui−1) + si
v,x̃−−−−−−−−−−−−−−−−−−→

u1,...,un−−−−−−−−−−−−−−−−−−→ i∗ ← [n]
i∗←−−−−−−−−−−−−−−−−−−

(σ
[j∗]
i ,s

[j∗]
i ,ρ

[j∗]
i )i6=i∗−−−−−−−−−−−−−−−−−−→ u0 = x̃

For all i 6= i∗:

Check Verif
(

(σ
[j∗]
i , s

[j∗]
i ), c

[j∗]
i , ρ

[j∗]
i

)
= 1

Check ui = σ
[j∗]
i (ui−1) + s

[j∗]
i

Check un = v + q[j
∗]

Check wt(v) = w
Check Hx̃ = y
Return 1

Protocol 4: Standalone zero-knowledge proof for syndrome decoding

Remark 2. Since the cut-and-choose does not require the prover secret, it can be executed before the prover
gets its secret key. This step is hence a preprocessing phase of the sound protocol.

11



4 The Five-Round Zero-Knowledge Protocol

In the previous section, we described a new zero-knowledge protocol for the syndrome decoding problem with
a soundness error of max{1/n, 1/M} and complexity O

(
n ·M · poly(λ)

)
for arbitrary chosen parameters n

and M and with λ being the security level of the syndrome decoding instance. In order to obtain a soundness
error close to 2−λ for a target security parameter λ, one can run λ/(log2 min{n,M}) independent repetitions
of the protocol. However using such a simple approach is not optimal in terms of communication.

In this section, we present various optimizations to make our protocol efficient while targeting a standard
security level. As a result, we describe a 5-round HVZK protocol that achieves 2−λ soundness with optimized
communication cost. For instance, for λ = 128, the size of the produced proof can be made lower than 15
KB.

4.1 Presentation of the Optimizations

We present here various optimizations to make our proof more compact. Our first improvement consists
in merging the τ cut-and-choose phases (this was suggested in [KKW18] in a similar context). Then, we
show how the pseudorandom generation of the precomputed values from compact seeds can save a lot of
communication. This can be further improved by using pseudorandom generation trees for the seeds (as
also suggested in [KKW18]). Finally, we show that some values can be recomputed by the verifier and can
hence be trade for commitments in the prover messages. We further describe how to efficiently instantiate
the commitment scheme using a collision-resistant hash function.

Merging of the cut-and-choose phase. As suggested in [KKW18], instead of repeating the cut-and-
choose to obtain a trusted vector τ times, we can perform the cut-and-chose to generate τ trusted vectors
all at once. Specifically, the prover P generate M vectors (for a large enough M) and the verifier requests
the opening of M − τ of these vectors. After checking that the opened vectors have honestly been generated,
the verifier trusts the remaining τ vectors which are then used for the τ independent executions of the sound
phase.

Let us assume that a malicious prover correctly builds k vectors and cheats for M − k vectors. Without
loss of generality, k satisfies k ≥ M − τ , otherwise the cheating prover will have to open a dishonest vector
and the proof will fail. Then, the probability of this malicious prover to successfully passing the merged

cut-and-choose phase is at most
(

k
M−τ

)
·
(
M

M−τ
)−1

. Let γ = M − k ≤ τ denote the number of dishonest
vectors. Conditioned on passing the first phase, her probability of passing the τ executions of the protocol
is at most

1× ...× 1︸ ︷︷ ︸
γ times

(upper bound of the
success probability

for the cheating pairs)

× 1

n
× ...× 1

n︸ ︷︷ ︸
τ − γ times

(success probability for the
unchecked but honest pairs)

=
1

nτ−γ
=

1

nk−M+τ
.

The soundness error is therefore

ε(M,n, τ) := max
M−τ≤k≤M

{ (
k

M−τ
)(

M
M−τ

)
· nk−M+τ

}
.

Some examples of values for M , n and τ to reach a target security λ ∈ {128, 256} are given in the Table 1.

Working with seeds and PRG. In the basic protocol, the variables σi and si are uniformly sampled
at random for every i. This imposes the prover to reveal n − 1 pairs (σi, si) in its final response which is
expensive since si ∈ Fm2 and σi ∈ Sm. Instead, we can sample a random seed sseedi and use a pseudo-random
generator (PRG) to generate the pair (σi, si) from sseedi. This way, whenever the prover wants to reveal
(σi, si), she simply reveals seedi. For a target security of λ bits, the seed only needs to make λ bits: we hence
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n 4 8 16 32 64 128

M 256 293 512 606 842 1291
τ 64 43 32 26 22 19

(a) λ = 128

n 4 8 16 32 64 128

M 512 583 1024 1199 2144 3379
τ 128 86 64 52 43 37

(b) λ = 256

Table 1: Example values of M , n and τ to achieve statistical security λ ∈ {128, 256}. These parameters have
been obtain while minimizing τ for a given n. Then given n and the underlying minimal τ , M is taken to
be as small as possible. NB: Other strategies provide different trade-offs.

trade a message of log2(m!) +m bits for one of λ bits. And to avoid revealing the commitment randomness
ρi, the prover can derive it from another seed seedi. But since the prover wants to reveal both ρi and sseedi
(to get the couple (σi, si)) when she opens the commitment, she can sample ρi and sseedi from the same
seed seedi.

On the other hand, when a vector q is chosen by the verifier to be opened in the cut-and-choose phase,
the prover must reveal (σi, si) for every i ∈ [n] as well as r. In order to save further communication, all the
seedi, as well as the random mask r, can be generated from master seed :

(
r, (seedi)i∈[n]

)
← PRG(mseed).

This way, when the vector q must be open, the prover sends mseed instead of
(
r, (seedi)i∈[n]

)
and replace

k + λ · n bits of communication by λ bits.
Let j ∈ {1, ...,M} denote the index of a precomputed set of variables during the cut-and-choose phase.

In what follows, the master seed will be denoted mseed[j], the n intermediary seeds will be denoted seed
[j]
i

and the n subseeds will be denoted sseed
[j]
i . Figure 1 illustrates the relation between the three types of seeds

and the sampled variables.

For j = 1..M :(
r[j], (seed

[j]
i )i

)
← PRG(mseed[j])

For i = 1..n :

ρji , sseed
j
i ← PRG(seed

[j]
i )

(σ
[j]
i , s

[j]
i )← PRG(sseed

[j]
i )

Fig. 1: Pseudorandom generation in the cut-and-choose phase.

Using generation trees. The previous optimization enables to reduce the communication by replacing
large variables (vectors of Fm2 and [m] → [m] permutations) by compact seeds. As suggested in [KKW18],
we can go one step further by reducing the number of seeds that must be revealed by the prover using a
structured generation.

In the above description, we generate n intermediary seeds seed
[j]
i from a master seed mseed[j]. If all the

intermediary seeds must be opened, then the prover only reveals the master seed, but if the index j is chosen
for the second phase then only n−1 of them must be revealed, which implies (n−1)·λ bits of communication.
In order to avoid this factor (n− 1) we can use a tree PRG (see description in Section 2.2). The principle is

to label the root of a binary tree of depth log2 n with mseed[j]. Then, one inductively labels the children of

each node with the output of a PRG applied to the node’s label. The subseeds (seed
[j]
i )i∈[n] are defined as the

labels of the n leaves of the tree. To reveal (seed
[j]
i )i 6=i∗ , it suffices to reveal the labels on the siblings of the

path from the root of the tree to leaf i∗. Those labels allow the verifier to reconstruct (seed
[j]
i )i 6=i∗ while still

hiding seed
[j]
i∗ . Applying this optimization reduces the communication complexity to λ · log2 n for revealing
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the seeds (seed
[j]
i )i6=i∗ . The same strategy can further be applied to the master seeds (mseed[j])j∈[M ] in the

cut-and-choose phase. By using a generation tree to generate the master seeds from a grandmaster seed, the
communication cost of revealing M − τ master seeds out of M is decreased to λ · τ log2

M
τ bits (instead of

λ · (M − τ) bits).
For the sake of simplicity we shall omit this optimization from the description of our protocol. However,

we stress that it can be applied as is without impact on our security statements.

Keeping the bare minimum. In the basic protocol, the prover sends all the vectors {q[j]}. However those
are large m-bit vectors which can actually be recomputed by the verifier. Indeed,

– if j is among the opened indexes in the cut-and-choose phase, the verifier has access to the master seed

mseed[j]. Thus, she can re-sample the values r[j], (σ
[j]
i , s

[j]
i )i from which q[j] can be recomputed;

– if j is not among the opened indexes, then the verifier has the following relation: u
[j]
n = v[j] + q[j], so that

q[j] can be re-computed as q[j] = u
[j]
n − v[j].

The verifier still needs to check that the prover knew the values of
{
q[j]
}

at the beginning of the interaction.

That is, sending
{
q[j]
}

is replaced by sending commitments of
{
q[j]
}

.
Another similar optimization can be applied in the second phase of the protocol. In the basic version, the

prover sends all the ui to the verifier but since the latter eventually knows (σi, si)i 6=i∗ , she can recompute all
the ui’s, except ui∗ , thanks to the relation: ui = σ(ui−1) + si. Therefore, the prover only needs to send ui∗

to the verifier. Once again, such a modification implies that the ui must be committed by the prover before
receiving i∗.

Hash-based commitments. Since we strive at simplicity and efficiency, whenever possible we use a simple
hash-based commitment scheme defined by Com : x 7→ Hash(x) and Verif : (x, c) 7→ (c = Hash(x)).
Such a scheme is known to be computationally binding under the collision-resistance of Hash, but not
computationally hiding.

To keep the zero-knowledge property for the protocol, the commitments c
[j]
i on the pairs (σ

[j]
i , s

[j]
i ) must

be hiding. For those, we must hence keep a hiding commitment scheme.4 However for the other commitments,

the inputs are not secret: the vector q[j] is committed with the corresponding (c
[j]
i )i in a common hash-based

commitment hj := Hash(q[j], c
[j]
1 , . . . , c

[j]
n ). All these hj commitments are further regrouped into a single hash

value h := Hash(h1, . . . , hM ) which forms the initial commitment of the prover. During the second phase,
after receiving the set J ⊆ [M ] of the τ trusted indexes as challenge from the verifier, the prover commits

all the values (u
[j]
i )i∈[n],j∈J into a single commitment h′ := Hash((u

[j]
i )i∈[n],j∈J).

4.2 Description of the Protocol

After applying the various optimizations described above, we obtain a 5-round HVZK protocol with much
more compact computation which is depicted in Protocol 5. The protocol makes use of one commitment
scheme Com and four hash functions Hash1, Hash2, Hash3 and Hash4, whose output ranges are assumed to
be consistent with the protocol description.

4.3 Security Proofs

We prove hereafter that Protocol 5 achieves completeness, honest-verifier zero-knowledge, and 2−λ-soundness
(for appropriately chosen parameter M , n and τ). The proofs of Theorems 5 and 6 are provided in appendix.

Theorem 4 (Completeness). Protocol 5 is perfectly complete.

4 We might for instance use a computationally hiding hash-based commitment scheme defined as Com : (x, ρ) 7→
Hash(x ‖ ρ) for a long-enough random nonce ρ.
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Prover P Verifier V
x ∈ Fm2 s.t. wt(x) = w

H ∈ F(m−k)×m2 , y := Hx H, y := Hx

mseed[0] ← {0, 1}λ

(mseed[j])j∈[M ] ← PRG(mseed[0])
For j = 1..M

# r[j] is sampled from Ker(H)

r[j], (seed
[j]
i )i ← PRG(mseed[j])

For i = 1..n:

sseed
[j]
i , ρ

[j]
i ← PRG(seed

[j]
i )

c
[j]
i = Com(sseed

[j]
i ; ρ

[j]
i )

(σ
[j]
i , s

[j]
i )← PRG(sseed

[j]
i )

σ[j] = σ
[j]
n ◦ ... ◦ σ[j]

1

s[j] = s
[j]
n + σ

[j]
n (...+ σ

[j]
2 (s

[j]
1 ))

q[j] = σ[j](r[j]) + s[j]

hj = Hash1(q[j], c
[j]
1 , . . . , c

[j]
n )

h = Hash2(h1, . . . , hM )
h−−−−−−−−−−−−−−−−−−→ J ← {J ⊂ [M ] ; |J | = τ}
J←−−−−−−−−−−−−−−−−−−

For j ∈ J :

v[j] = σ[j](x)

x̃[j] = x+ r[j]

u
[j]
0 = x̃[j]

For i = 1..n:

u
[j]
i = σ

[j]
i (u

[j]
i−1) + s

[j]
i

h′j = Hash3(u
[j]
1 , . . . , u

[j]
n )

h′ = Hash4((h′j)j∈J)

(mseed[j])j∈[M ]\J
h′, (v[j], x̃[j])j∈J

−−−−−−−−−−−−−−−−−−→ L = {`j}j∈J ← [n]τ

L←−−−−−−−−−−−−−−−−−−
Ij = [n]\{`j} (

(seed
[j]
i )i∈Ij , u

[j]
`j
, c

[j]
`j

)
j∈J−−−−−−−−−−−−−−−−−−→

For j ∈ [M ]\J :

hj ← mseed[j]

For j ∈ J :

u
[j]
0 = x̃[j]

For i ∈ Ij :
sseed

[j]
i , ρ

[j]
i ← PRG(seed

[j]
i )

c
[j]
i = Com(sseed

[j]
i ; ρ

[j]
i )

(σ
[j]
i , s

[j]
i )← sseed

[j]
i

u
[j]
i = σ

[j]
i (u

[j]
i−1) + s

[j]
i

q[j] = u
[j]
n − v[j]

hj = Hash1(q[j], c
[j]
1 , . . . , c

[j]
n )

h′j = Hash3(u
[j]
1 , . . . , u

[j]
n )

Check y = Hx̃[j]

Check wt(v[j]) = w
Check h = Hash2(h1, . . . , hM )
Check h′ = Hash4((h′j)j∈J)
Return 1

Protocol 5: Five-round HVZK proof for the syndrome decoding problem.

Proof. For any sampling of the random coins of P and V, if the computation described in Protocol 5 is
genuinely performed then all the checks of V pass. �

Theorem 5 (Honest-Verifier Zero-Knowledge). Let the PRG used in Protocol 5 be (t, εPRG)-secure and
the commitment scheme Com be (t, εCom)-hiding. There exists an efficient simulator S which, given random
challenges J and L outputs a transcript which is (t, εPRG + εCom)-indistinguishable from a real transcript of
Protocol 5.
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Theorem 6 (Soundness of Protocol 5). Let

ε := max
M−τ≤k≤M

{ (
k

M−τ
)(

M
M−τ

)
· nk−M+τ

}
. (4)

Suppose there is an efficient prover P̃ such that

ε̃ := Pr[〈P̃,V〉(H, y)→ 1] > ε , (5)

where (H, y) is a random syndrome decoding instance. Then, there exists an extraction algorithm E which,
given rewindable black-box access to P̃, produces with either a witness x such that y = Hx and wt(x) = w,
or a commitment collision, by making in average

4

ε̃− ε
·
(

1 + ε̃ · 8M

ε̃− ε

)
calls to P̃.

5 The Signature Scheme

A signature scheme is a triplet of PPT algorithms (KeyGen,Sign,Verif). On input 1λ for security level λ,
KeyGen outputs a pair (pk, sk) where pk ∈ {0, 1}poly(λ) is a public key and sk ∈ {0, 1}poly(λ) is a private
key (a.k.a. secret key). On input a secret key sk and a message m ∈ {0, 1}∗, Sign produces a signature
s ∈ {0, 1}poly(λ). Verif is a deterministic algorithm which, on input a public key pk, a signature s and
a message m, outputs 1 if s is a valid signature for m under pk (meaning that it is a possible output
s ← Sign(sk,m) for the corresponding sk) and it outputs 0 otherwise. The standard security goal for
signature scheme is the existential unforgeability against chosen message attacks: an adversary A given pk
and a oracle access to Sign(sk, ·) should not be able to produce a pair (s,m) satisfying Verif(pk, s,m) = 1
(for a message m which was not queried to the signing oracle).

In this section, we show how to turn our 5-round HVZK protocol into a signature scheme using the
Fiat-Shamir transform [FS87,AABN02]. After explaining the transformation, we give the description of the
signature scheme and then provide a security proof in the random oracle model (ROM).

5.1 Transformation into a Non-Interactive Scheme

With a straight application of Fiat-Shamir to Protocol 5, we would compute the challenges J and L as:

J := Hash′1(m,h)

and
L := Hash′2

(
m,h, (mseed[j])j∈[M ]\J , (v

[j])j∈J , (x̃
[j])j∈J , h

′) ,
where m is the input message and where Hash′1 and Hash′2 are some hash functions.

But doing so would imply an overhead on the size of the challenges J and L for the security to hold.
Indeed, in [KZ20a], Kales and Zaverucha describe a forgery attack against signature schemes obtained by
applying the Fiat-Shamir transform to 5-round protocols. Adapting this attack to our context yields a forgery
cost of

costforge := min
M−τ≤k≤M

{(
M

M−τ
)(

k
M−τ

) + nk−M+τ

}
.

which is substantially lower than the target forgery cost ε−1, for ε being the soundness error of Protocol 5
(see Theorem 6).
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A numerical analysis of the parameters shows that we get a more efficient signature scheme by turning
Protocol 5 into a 3-round protocol before applying the Fiat-Shamir transform. Instead of waiting the challenge

J from the verifier, the prover can directly commit v[j], x̃[j] and {u[j]i } for all j ∈ {1, . . .M}. Thus the verifier
can send both challenges J and L at the same time. For this purpose, the prover will compute

h′j = Hash(v[j], x̃[j], u
[j]
1 , . . . , u

[j]
n )

for all j ∈ {1, . . . ,M} and she will send h′ = Hash(h′1, . . . , h
′
M ) to the verifier. After receiving challenge

(J, L), the prover sends h′j for j 6∈ J to enable the verifier to rebuild h′. In order to decrease the cost of
sending all these h′j , she can use a Merkle tree: after committing h′ = Merkle(h′1, . . . , h

′
M ), proving the

consistence of (h′j)j∈J with the hash root h′ can be done by revealing at most τ · log2

(
M
τ

)
labels of the

Merkle tree (instead of M − τ labels).
The resulting 3-round protocol is also an honest-verifier zero-knowledge protocol with the same soundness.

It can indeed be checked that the described modification has essentially no impact on the proofs of Theorem 5
(honest verifier zero-knowledge) and Theorem 6 (soundness). While the communication cost is slightly greater
for this 3-round version than for the original 5-round protocol, the transformation into a non-interactive
scheme does not suffer the aforementioned attack, which allows much better parameters. Now the application
of Fiat-Shamir applies to compute the challenges J and L as

(J, L) := Hash′(m,h, h′) .

Moreover since we have h = Hash2(h1, . . . , hM ) and the hj ’s are known by the verifier, we can directly
compute the challenges J and L as:

(J, L) := Hash′(m,h1, . . . , hM , h
′) .

On the other hand, since we work in the random oracle model for the signature, we can replace the
commitment scheme Com of the Protocol 5 by a single hash function Hash0. We can then avoid sampling a

commitment randomness and hence we can merge the seeds seed
[j]
i and sseed

[j]
i .

5.2 Description of the Signature Scheme

In our signature scheme, the key generation algorithm randomly samples a syndrome decoding instance
(H, y) of the syndrome decoding problem with solution x (i.e. y = Hx) with security parameter λ. In order
to make the key pair compact, the matrix H is pseudorandomly generated from a λ-bit seed. Specifically, a
call to the KeyGen algorithm outputs a pair (pk, sk) :=

(
(seedH , y),mseed

)
generated as follows:

1. mseed← {0, 1}λ
2. (seedH , x)← PRG(mseed) where x is sampled in {x ∈ Fm2 | wt(x) = w}
3. H ← PRG(seedH)
4. y = Hx; pk = (seedH , y); sk = mseed

For the sake of simplicity, we omit the re-generation of H and x from the seeds in the exposition below
and assume pk = (H, y) and sk = (H, y, x).

The signature algorithm. Given a secret key sk = (H, y, x) and a message m ∈ {0, 1}∗, the algorithm
Sign proceeds as follows:

Step 0: Choose uniform mseed[0] ∈ {0, 1}λ and use it to generate value mseed[1], . . . , mseed[M ] with
TreePRG.

Step 1: For each j ∈ [M ]:

1. Use mseed[j] to generate values seed
[j]
1 , . . . , seed[j]n and r[j] ∈ Ker(H) with TreePRG.
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2. For i ∈ [n], sample σ
[j]
i , s

[j]
i using seed

[j]
i and compute c

[j]
i := Hash0(seed

[j]
i ).

3. (Cut-and-choose phase) Compute

σ[j] := σ[j]
n ◦ · · · ◦ σ

[j]
1

s[j] := s[j]n + σ[j]
n (· · ·+ σ

[j]
2 (s

[j]
1 ))

q[j] := σ[j](r[j]) + s[j]

4. (Sound phase) Compute

v[j] := σ[j](x)

x̃[j] := x+ r[j]

u
[j]
0 := x̃[j]

u
[j]
i := σ

[j]
i (u

[j]
i−1) + s

[j]
i for all i ∈ [n]

5. Compute hj := Hash1(q[j], c
[j]
1 , . . . , c

[j]
n ) and h′j := Hash2(v[j], x̃[j], (u

[j]
i )i).

Step 2: Compute
(J, L) := Hash′(m,h1, . . . , hM , h

′)

with h′ := Merkle(h′1, . . . , h
′
M ), where J ⊂ [M ] is a set of size τ and L is a list {`j}j∈J with `j ∈ [n].

The signature includes (J, L).

Step 3: For each j ∈ J , the signer includes v[j], x̃[j], c
[j]
`j

, u
[j]
`j

and nodes[j] := nodes(mseed[j], [n]\{lj}),
where nodes() returns the minimal nodes which enable to rebuild the tree leaves at input indices
in the generation tree with input master seed (see Section 2). Also, the signer includes nodesM :=

nodes(mseed[0], [M ]\J) and authMerkle := auth((h′1, . . . , h
′
M ), J), where auth(·) returns the Merkle nodes

needed to open the paths for the leaves at indices i ∈ J in the corresponding Merkle tree (see Section 2).

The verification algorithm. Given a public key pk = (H, y), a signature s and a message m ∈ {0, 1}∗,
the algorithm Verif proceeds as follows:

Step 0: Parse the signature s as

(J, L, nodesM, authMerkle, {v[j], x̃[j], nodes[j], c[j]`j , u
[j]
`j
}j∈J) .

Step 1: Use nodesM to rebuild mseed[j] for each j 6∈ J . Then for every j 6∈ J , use mseed[j] to compute hj
as in the signature algorithm.

Step 2: For every j ∈ J :

1. Use nodes[j] to rebuild seed
[j]
i for each i 6= `j .

2. For i 6= `j , set c
[j]
i := Hash0(seed

[j]
i ) and get σ

[j]
i , s

[j]
i using seed

[j]
i .

3. Compute

u
[j]
i = σ

[j]
i (u

[j]
i−1) + s

[j]
i for all i 6= `j

q[j] = u[j]n − v[j]

4. Compute hj := Hash1(q[j], c
[j]
1 , . . . , c

[j]
n ).

5. Compute h′j := Hash2(v[j], x̃[j], (u
[j]
i )i).

6. Check Hx̃[j] = y.
7. Check wt(v[j]) = w.

Step 3: Rebuild h′ as Merkle(h′1, . . . , h
′
M ) using {h′j}j∈J and authMerkle. Then check that (J, L) equals

Hash′(m,h1, . . . , hM , h
′).
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5.3 Security Proof

We now state the security of our signature scheme in the following theorem. The proof is provided in
Appendix F.

Theorem 7. Suppose the PRG used is (t, εPRG)-secure and any adversary running in time t has at most an
advantage εSD against the underlying syndrome decoding problem. Model Hash0, Hash1, Hash2 and Hash′ as
random oracles where Hash0, Hash1, Hash2 have 2λ-bit output length. Then any adaptive chosen-message
adversary, running in time t, making qs signing queries, and making q0, q1, q2, q′ queries, respectively, to
the random oracles, succeeds in producing a valid forgery with probability upper bounded as

pforge ≤ O(qs · τ · εPRG) +O

(
(q0 + q1 + q2 +Mnqs)

2

2λ

)
+ εSD + q′ · ε(M,n, τ),

where

ε(M,n, τ) := max
M−τ≤k≤M

{ (
k

M−τ
)(

M
M−τ

)
· nk−M+τ

}
.

6 Performances

6.1 Communication Cost and Signature Size

In the following analysis, we exclude the challenges from the communication cost since they are of very
moderate impact and they does not appear in the signature. The communication then consists into

– Com := h,
– Res1 :=

(
(mseed[j])j 6∈J , h

′, (v[j], x̃[j]
)
j∈J) and

– Res2 :=
(
(seed

[j]
i )i 6=`j , u

[j]
`j
, c

[j]
`j

)
j∈J .

Whereas u
[j]
`j

are full vectors of Fm2 , v[j] are only vectors of weight w and x̃[j] are vectors from {x̃ | Hx̃ = y},
which can be respectively encoded in log2

(
m
w

)
bits and k bits.

Thanks to the use of PRG trees, the communication cost for master seeds is at most τ · log2
M
τ · λ bits

(for τ · log2
M
τ intermediate tree seeds instead of M − τ leaf seeds) and the communication cost for subseeds

is log2(n) · λ bits (for log2(n) intermediate tree seeds instead of n− 1 leaf seeds).
So, the total communication cost (in bits) of the protocol is

Cost = CostCom + CostRes1 + CostRes2

= 4λ+ λ · τ · log2

M

τ
+ τ ·

[
2λ+ (m+ k) + log2

(
m

w

)
+ λ · log2(n)

]
The signature is composed of the same elements, except on two points:

– We need to add the sibling paths of {h′j}j∈J in the Merkle tree to be able to rebuild h′. The communication

cost for those paths is at most (2λ) · τ · log2
M
τ bits (for τ · log2

M
τ intermediate tree labels).

– Since both challenges are merged, there is a single hash value to represent them. And using it and the
other components in the signature, it is possible to deduce h and h′.

Thus the signature size (in bits) is

Size = 2λ+ (3λ) · τ · log2

M

τ
+ τ ·

[
2λ+ (m+ k) + log2

(
m

w

)
+ λ · log2(n)

]
.
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6.2 Choice of the SD Parameters

In order to simplify the analysis, we place ourselves in a parameter range where the Hamming weight of the
secret solution x is close but slightly below the Gilbert-Varshamov bound. This ensures the unicity of the
solution with high probability while increasing the difficulty of finding solutions. Furthermore, this choice
prevents the applicability of GBA methods. As a consequence, we only need to estimate the complexity of
ISD algorithms. Previous studies of such parameters such as [TS16,BBC+19] have argued that the algorithm
of May, Meurer and Thomae [MMT11] is the most practical choice in the cryptographic range, as it outper-
forms algorithms with better asymptotics, e.g. the algorithm from [BJMM12]. Since the algorithm is quite
sophisticated and involves several levels of recursion, we simplify the analysis by only considering the cost
of the ISD loop, the size of lists at the top-level of their matching technique and the cost of merging these
lists. More precisely, with m, k and w being given as input we choose two parameters ` and p and compute
the following lower bound on the complexity of the attack:(

m
w

)(
k+`
p

)(
m−k−`
w−p

) · (L+
L2

2`−p

)
with L :=

(
k+`
p/2

)
2p

.

Optimizing for ` and p yields a slightly conservative estimate for the security level, which we used while
choosing our parameters. Given these considerations, we suggest the following concrete parameters to achieve
λ ∈ {128, 192, 256} bits of security:

– for λ = 128: (m = 1280 , k = n/2 , w = 132)
– for λ = 192: (m = 1920 , k = n/2 , w = 200)
– for λ = 256: (m = 2432 , k = n/2 , w = 258)

6.3 Impact of the Other Parameters

We have fixed the SD parameters, we now need to choose the remaining parameters: n, M and τ . For a given
n, the best proof size is achieved by minimizing τ , and then we take the minimal possible value for M . This
is illustrated by Figure 2.

Figure 2 gives the proof size and the required parameter M w.r.t. the parameter n for 128-bit and 256-
bit security. We observe that the value of M explodes when we try to achieve very compact signature by
increasing n. Since M has a direct impact on the computation time, this parameter provides a trade-off
between proof size and computation.

(a) For 128-bit security (b) For 256-bit security

Fig. 2: Best proof size (and the used M) according to the parameter n.
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We implemented the signature scheme in C. To sample the permutations, we choose the Fisher–Yates
approach where we sample numbers by groups in order to minimize the pseudo-randomness consumption
and the rejection rate. In our implementation, the pseudo-randomness is generated using AES in counter
mode and the hash function is instantiated with SHAKE. We benchmarked our scheme on a 3.8 GHz Intel
Core i7 CPU which supports AVX2 and AES instructions. All the reported timings were measured on this
CPU while disabling Intel Turbo Boost.

We instantiate two trade-offs per security level: the first one lowering communication cost to produce
short signatures, and the second one lowering computational cost to get a fast signature computation. We
obtain the parameters and sizes described in Table 2. We provide the measured computational performances
of our signature implementation in Table 3.

The overhead in the computation of our implementation is the uniform sampling (and its application)
of the M · n permutations. We tried to implement them as efficiently as possible without introducing a bias
using AVX instructions set, but it remains quite expensive. A way to improving the performances of the
scheme would be to have a very efficient algorithm for random permutations (for example, by restricting the
set in which the permutations are sampled).

λ Aim
Parameters |pk| |sk| ZK Protocol Signature
n M τ |proof| (max) |sgn| (max) |sgn| (avg, std)

128 Fast 8 187 49 96 16 21 232 24 372 23 102, 196

128 Short 32 389 28 96 16 13 952 17 540 16 344, 236

192 Fast 8 283 73 144 24 47 400 54 396 51 635, 364

192 Short 32 578 42 144 24 31 344 39 396 36 639, 434

256 Fast 8 379 97 184 32 80 832 93 220 88 412, 559

256 Short 32 767 56 184 32 53 888 68 196 63 165, 655

Table 2: Parameters (n,M, τ) with the achieved communication costs (in bytes). The average signature size
and standard deviation has been measured over 10 000 experiments.

λ Aim Keygen Sign Verify

128 Fast
0.02 ms

83 632 cycles
12.9 ms

50 641 201 cycles
12.2 ms

47 191 119 cycles

128 Short
0.02 ms

82 990 cycles
62.3 ms

248 805 564 cycles
56.6 ms

220 959 117 cycles

192 Fast
0.04 ms

140 704 cycles
33.9 ms

132 963 552 cycles
32.5 ms

125 421 336 cycles

192 Short
0.04 ms

140 558 cycles
142.9 ms

569 571 538 cycles
125.6 ms

492 359 196 cycles

256 Fast
0.06 ms

225 112 cycles
64.2 ms

248 736 806 cycles
62.7 ms

240 925 977 cycles

256 Short
0.06 ms

224 560 cycles
259.4 ms

1 029 393 486 cycles
229.9 ms

895 729 132 cycles

Table 3: Benchmarks of our signature implementation. Timings are the averaged over 10 000 measurements.
The CPU clock cycles have been measured using SUPERCOP (https://bench.cr.yp.to/supercop.html).
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7 Comparison

In this section, we compare our scheme to different code-based and post-quantum signature schemes. We start
with an analysis of generic zero-knowledge techniques based on MPC-in-the-head paradigm when applied to
the syndrome decoding problem. We then compare our scheme with code-based signatures from the literature,
as well as other post-quantum signature schemes.

7.1 Comparison with Generic MPC-in-the-Head Techniques

To build a zero-knowledge protocol for the syndrome decoding problem, a possible approach consists in
applying generic techniques based on the MPC-in-the-head paradigm [IKOS07], and in particular the efficient
scheme due to Katz, Kolesnikov and Wang [KKW18] (on which relies the last version of the Picnic signature
scheme). Such techniques give a way to build a zero-knowledge protocol proving, for a given boolean circuit
C, that the prover knows a witness x such that C(x) = 1. The communication cost of the resulting protocol
depends mainly on the number of AND gates in the circuit C. To get a zero-knowledge proof for the syndrome
decoding problem, we can simply apply theses techniques to a circuit CH,y which on input x ∈ Fm2 computes

CH,y(x) =

{
1 if Hx = y and wt(x) = w
0 otherwise

.

We describe a natural approach to build such a circuit while trying to minimize the number |CH,y| of
AND gates in supplementary material. The obtained values for |CH,y| are summarized in n Table 4. Applying
the KKW scheme [KKW18], the obtained communication cost (in bits) is given by

4λ+ λ · τ · log2

M

τ
+ τ ·

(
2|CH,y|+m+ λ · log2(n) + 2λ

)
.

As for our construction, the communication cost depends on the chosen value n,M, τ . In Table 4, the
obtained communication cost is given for each set of syndrome decoding parameters. We observe that a
simple application of generic MPC-in-the-head techniques on the syndrome decoding problem results in a
communication cost which is significantly heavier than with our construction.

Security m k w |CH,y| Best size for n = 8 Best size for n = 32

128 1280 640 132 ≈ 3800 ≈ 52 KB ≈ 33 KB

192 1920 960 200 ≈ 5300 ≈ 110 KB ≈ 71 KB

256 2432 1216 258 ≈ 6100 ≈ 175 KB ≈ 112 KB

Table 4: Communication costs of a pure-MPC approach.

Remark 3. There exists various schemes which convert a boolean circuit into a zero-knowledge protocol
using the MPC-in-the-head paradigm, but for the range of 300-100000 AND gates, the protocol described in
[KKW18] has the smallest communication cost.

7.2 Comparison with Other Code-Based Signature Schemes

In the state of art, there exists two types of signatures. On one hand, there are schemes based on the Fiat-
Shamir transform of identification schemes. However, classical approaches to produce identification schemes
from code-based problems, like the famous Stern protocol, give large signatures because of the large soundness
error of the underlying identification scheme (2/3 or 1/2). To avoid this issue, a solution consists in relying
on different code-based problems. For instance, LESS is a recent scheme for which the security relies on the
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hardness of the Linear Code Equivalence problem [BMPS20]. Another direction is to find a way to adapt
the Schnorr-Lyubashevsky approach to code-based cryptography. Durandal is a recent scheme following this
approach [ABG+19]. On the other hand, the hash-and-sign paradigm using trapdoors is also a popular way
to derive signature schemes. Wave is such a recent code-based signature scheme in this paradigm [DST19].
However, such schemes are often more vulnerable to structural attacks.

Scheme Name Year |sgn| |pk| tsgn tverif

Stern 1993 62.5 KB 0.09 KB - -

Durandal - I 2018 3.97 KB 14.9 KB 4 ms 5 ms
Durandal - II 2018 4.90 KB 18.2 KB 5 ms 6 ms

LESS - I 2020 12.4 KB 1.07 KB - -
LESS - II 2020 19.0 KB 1.75 KB - -
LESS - III 2020 7.8 KB 0.92 KB - -

Wave 2019 2.07 KB 3.2 MB 300 ms -

Our scheme (fast) 2021 22.6 KB 0.09 KB 13 ms 12 ms
Our scheme (short) 2021 16.0 KB 0.09 KB 62 ms 57 ms

Table 5: Comparison of our scheme with signatures from the literature (128-bit security). The performance
of Stern protocol is computed for the same SD parameters as us. Reported timings are from the original
publications: Wave has been benchmarked on a 3.5 Ghz Intel Xeon E3-1240 v5, while Durandal on a 2.8
Ghz Intel Core i5-7440HQ.

Our proposal is a signature scheme built from a zero-knowledge identification protocol with arbitrary
soundness error. In Table 5, we compare the performances of our scheme with the current code-based signa-
ture state of the art, for the 128-bit security level.

Our scheme is comparable to Durandal and LESS for the |sgn| + |pk| metric, and much lighter than
Wave which features heavy public keys. Regardless of the key size, Wave currently achieves the shortest
signatures. In terms of security, our scheme has the advantage of relying on the hardness of one of the oldest
problem of the code-based cryptography: the syndrome decoding of random linear codes in Hamming weight
metric. Previous schemes based on this problem are obtained from the Stern identification protocol (and its
variants). As we observe from Table 5 signatures obtained with our scheme are three times shorter.

7.3 Comparison with other Post-Quantum Signature Schemes

Finally, we compare in Table 6 our construction with some signature schemes aiming at post-quantum
security and which are based from symmetric cryptography primitives (either based on hash tree or on the
MPC-in-the-Head paradigm).

All these schemes have short public and private keys (all under 100 bytes for 128-bit security), which is
why we omit the key sizes in the comparison table. Compared to our scheme, Picnic3 [KZ20b] –which also
relies on the KKW scheme [KKW18]– has better performances. On the other hand, our scheme is arguably
more conservative in terms of security since Picnic is based on the hardness of inverting LowMC [ARS+15],
a cipher with unconventional design choices, while our scheme is based on the hardness of the syndrome
decoding problem on linear codes, which has a long cryptanalysis history and is believed to be very robust.
BBQ [dDOS19] and Banquet [BdK+21] are two other schemes based on the MPC-in-the-Head paradigm
and for which the security is based on the hardness of inverting AES (instead of LowMC) which is a more
conservative choice. Our signature has better performances than BBQ and is comparable to Banquet. In
contrast, it is not competitive with SPHINCS+ [BHK+19] which can achieve shorter signature sizes and
very efficient verification. Let us stress that our implementation is a proof of concept which has not been
deeply optimized and that some speed-up could probably be obtained by a thorough implementation study
(in particular for the sampling and application of permutations). This issue is let open to further research.
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Scheme Name |sgn| tsgn tverif

Our scheme (short) 16.0 K 62 57

Our scheme (fast) 22.6 K 13 12

SPHINCS+-128s 7.7 K 239 0.7

SPHINCS+-128f 16.7 K 14 1.7

Picnic3 12.3 K 5.2 4.0

BBQ 31.6 K - -

Banquet (short) 13.0 K 44 40

Banquet (fast) 19.3 K 6 5

(a) For 128-bit security

Scheme Name |sgn| tsgn tverif

Our scheme (short) 61.7 K 259 230

Our scheme (fast) 86.3 K 64 62

SPHINCS+-256s 29.1 K 310 1.5

SPHINCS+-256f 48.7 K 39 2.9

Picnic3 47.6 K 18 13

BBQ 133.7 K - -

Banquet (short) 52.8 K 191 175

Banquet (fast) 81.5 K 28 22

(b) For 256-bit security

Table 6: Comparison of our scheme with some post-quantum signature based on symmetric cryptography
primitives. The sizes are in bytes and the timings are in milliseconds. The benchmarks for the other schemes
have been obtained on an Intel Xeon W-2133 CPU at 3.60GHz. the values for SPHINCS+ and Banquet
are extracted from the Banquet article [BdK+21] and the values for Picnic3 are extracted from its original
article [KZ20b].
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A Splitting Lemma

In our proofs, we shall make use of the following lemma from [PS00]:

Lemma 1 (Splitting Lemma). Let X and Y be two finite sets, and let A ⊆ X × Y such that

Pr
[
(x, y) ∈ A | (x, y)← X × Y

]
≥ ε .

For any α ∈ [0, 1), let

B =
{

(x, y) ∈ X × Y
∣∣∣ Pr

[
(x, y′) ∈ A | y′ ← Y

]
≥ (1− α) · ε

}
.

We have:

1. Pr
[
(x, y) ∈ B | (x, y)← X × Y

]
≥ α · ε

2. Pr
[
(x, y) ∈ B | (x, y)← A

]
≥ α .
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B Proof of Theorem 2 (Zero Knowledge of Protocol 2)

Proof. We first describe a way to generate an identical distribution to the internal variables of Protocol 2
and then describe the zero-knowledge simulator.

Identical distribution One way to generate an identical distribution to that of variables of Protocol 2 is as
follow:

1. Sample x̃← {x̃ | Hx̃ = y}.
2. Sample q ← Fm2 .
3. Sample v ← {v ∈ Fm2 | wt(v) = w}.
4. For every i ∈ [n] \ {i∗}, sample Ai ≡ (σi, si) uniformly.
5. For i ∈ {1, . . . , i∗ − 1}:

compute ui := Ai(ui−1) with u0 := x̃.
6. For i from n− 1 down to i∗:

compute ui := A−1i+1(ui+1) with un := v + q.
7. Randomly sample Ai∗ ≡ (σi∗ , si∗) such that:

– ui = Ai∗(ui∗−1)
– α = σi∗(β) with {

α := σ−1i∗+1 ◦ · · · ◦ σ−1n (v)

β := σi∗−1 ◦ · · · ◦ σ1(x)
.

Zero-Knowlegde Simulator The simulator S proceeds as follows:

– It first samples a random challenge i∗ from {1, . . . , n};
– It then performs steps 1 to 6 of the above description and computes commitments ci’s for the (σi, si)’s,

for all i 6= i∗;
– Note that the simulator cannot perform step 7 because it requires the knowledge of x (to get β). Instead,

the simulator computes a commitment ci∗ for a random pair (σi∗ , si∗);
– The simulator calls Ṽ with Com := ({ci}i, q, v, x̃, {ui}i) and, restart the simulation from scratch if Ṽ

does not return i∗, and output the simulated transcript otherwise.

The output transcript is independent and identically to the genuine transcript except for ci∗ . Distinguishing
then means breaking the commitment hiding property.

�
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C Proof of Theorem 3 (Soundness of Protocol 2)

Proof. Let us first show how to extract the syndrome decoding solution x from a few transcripts satisfying
specific conditions. We will then show how to get such transcripts from a rewindable black-box access to P̃.

Transcripts used for extraction. We assume that we can extract two transcripts

T1 := ({ci}i, q?, v, x̃, {ui}i,Ch1 := i∗1, (σi, si, ρi)i 6=i∗1 )

T2 := ({ci}i, q?, v, x̃, {ui}i,Ch2 := i∗2, (σ
′
i, s
′
i, ρ
′
i)i 6=i∗2 ) .

Using these two transcripts, we next show that it is possible to extract a solution of the syndrome
decoding instance defined by H and y. We can assume that the (σi, si)i 6∈{i∗1 ,i∗2} and (σ′i, s

′
i)i 6∈{i∗1 ,i∗2} are

mutually consistent between the two transcripts, since otherwise we find a commitment collision for at least

one of the commitments {ci}i. So, we know (σ
[j0]
i , s

[j0]
i ) for all i ∈ {1, . . . , n} from T1 and T2. We define

(σi∗1 , si∗1 ) := (σ′i∗1 , s
′
i∗1

).

Extraction of x from T1 and T2. In the following, we will denote VCh1
(resp. VCh2

) the set of checked equations
at the end of the transcript with Ch1 (resp. Ch2) as challenge.

Let us define σ := σn ◦ · · · ◦ σ1 and x′ := σ−1(v). We simply return x′ as a candidate solution for x.
Because wt(v) = w (from VCh1

or VCh2
), we have wt(x′) = w. We now show that we further have y = Hx′.

Thanks to VCh1 , we know that

∀i ∈ [n]\{i∗1}, ui = σi(ui−1) + si.

And thanks to VCh2 , we get the remaining equation

ui∗1 = σi∗1 (ui∗1−1) + si∗1 .

So, we know that

un = sn + σn(sn−1 + σn−1(. . .+ σ2(s1 + σ1(u0))))

= sn + σn(sn−1 + σn−1(. . .+ σ2(s1 + σ1(x̃))))

= (σn ◦ · · · ◦ σ1)︸ ︷︷ ︸
σ

(x̃) + sn + σn(sn−1 + σn−1(. . .+ σ2(s1)))︸ ︷︷ ︸
s

= σ(x̃) + s

(6)

Now, we have

Hx′ = Hσ−1(v)

= Hσ−1(un − q) from VCh1
or VCh2

= Hσ−1(σ(x̃) + s− q) from 6

= Hx̃−Hσ−1(q − s)
= y −Hσ−1(q − s) from VCh1 or VCh2

Since q has been honestly built and {(σi, si)}i has been extracted from P̃, we know there exists r ∈ Ker(H)
such that

q = σ(r) + s.

And so,
Hx′ = y −Hσ−1(σ(r)) = y −Hr = y.

So, we well obtain Hx′ = y −Hσ−1(σ(r)) = y −Hr = y.
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Extraction of T1 and T2 from P̃. Let now show how to extract these two transcripts from P̃. We want these
transcripts to be with the same commitment Com from the prover but with different challenges. We define
the following extractor E .

Extractor E :

1. Repeat +∞ times:

2. Run P̃ with honest V to get transcript T
3. If T0 is not a successful transcript, go to the next iteration
4. Do N1 times:

5. Run P̃ with honest V and same rCom as for T to get T ′

6. If T is a successful transcript s.t. its challenge is not
the same than for T0, return (T, T ′)

Throughout the proof, we denote succP̃ the event that P̃ succeeds in convincing V. By hypothesis, we

have Pr[succP̃ ] = ε̃. We shall further denote by RCom the randomness of P̃ that is used to generate the initial
commitment Com = ({ci}i, q?, v, x̃, {ui}i).

Let us fix an arbitrary value α ∈ (0, 1) such that (1−α)ε̃ > ε, it exists since ε̃ > ε. Let rCom be a possible
realisation of RCom. We will say that rCom is good if

Pr[succP̃ | RCom = rCom] ≥ (1− α)ε̃. (7)

By the Splitting Lemma 1 (see Appendix A) we have

Pr[RCom is good | succP̃ ] ≥ α . (8)

Let us define the collision event of T and T ′ as the event

Col(T, T ′) := “T and T ′ has the same challenge Ch” .

When T is fixed and T ′ is random, the collision event occurs with probability

pcol := Pr[Col(T, T ′)] =
1

n
= ε .

Let us lower bound the probability that an iteration of the inner loop find a right couple (T, T ′) when
Rcom is good:

p := Pr[succT
′

P̃ ∩ ¬Col(T, T
′) | RCom good] .

We have

p = Pr[succT
′

P̃ | RCom good]− Pr[succT
′

P̃ ∩ Col(T, T ′) | RCom good]

≥ (1− α) · ε̃− Pr[succT
′

P̃ ∩ Col(T, T ′) | RCom good] by 7

≥ (1− α) · ε̃− Pr[Col(T, T ′) | RCom good]

= (1− α) · ε̃− Pr[Col(T, T ′)] by independence

= (1− α) · ε̃− ε > 0

Let define p0 := (1 − α) · ε̃ − ε. By running P̃ with the same rCom as for the good transcript N1 times,
we hence obtain a second non-colliding transcript T ′ with probability at least 1/2 when

N1 ≈
ln(2)

ln
(

1
1−p0

) ≤ ln(2)

p0
. (9)
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Without assumption on RCom, the probability to find a couple when T is successful satisfies:

Pr[found | succTP̃ ]

≥ Pr[RCOM good | succTP̃ ] · Pr[found | succTP̃ ∩RCOM good] ≥ α

2
.

Let C denotes the number of calls to P̃ made by the extractor before finishing. While entering a new
iteration:

– the extractor makes one call to P̃ to obtain T ,

– if T is not successful, which occurs with probability (1− Pr[succTP̃ ]),

◦ the extractor continues to the next iteration and makes an average of E[C] calls to P̃,

– if T is successful, which occurs with probability Pr[succTP̃ ],

◦ the extractor makes at most N1 calls to P̃ in the inner loop of E ,

◦ then E quits the inner loop without returning a couple of transcripts, which occurs with probability
Pr[not found | succTP̃ ], the extractor continues to the next iteration and makes an average of E[C]

calls to P̃,

◦ otherwise, if the inner loop returns a non-empty list, the extractor stops and no more calls to P̃ are
necessary.

The mean number of calls to P̃ hence satisfies the following inequality:

E[C] = 1 + (1− Pr[succTP̃ ]) · E[C]︸ ︷︷ ︸
T unsuccessful

+ Pr[succTP̃ ] ·
(
N1 + Pr[not found | succTP̃ ] · E[C]︸ ︷︷ ︸

T successful

)
which gives

E[C] ≤ 1 + (1− ε̃) · E[C] + ε̃ ·
(
N1 +

(
1− α

2

)
· E[C]

)
≤ 1 + ε̃ ·N1 + E[C] ·

(
1− ε̃ · α

2

)
≤ 2

α · ε̃
· (1 + ε̃ ·N1)

≤ 2

α · ε̃
·
(

1 + ε̃ · ln(2)

(1− α) · ε̃− ε

)
To obtain an α-free formula, let us take α such that (1 − α) · ε̃ = 1

2 (ε̃ + ε). We have α = 1
2

(
1− ε

ε̃

)
and

the average number of calls to P̃ is upper bounded as

4

ε̃− ε
·
(

1 + ε̃ · 2 · ln(2)

ε̃− ε

)
which concludes the proof. �
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D Proof of Theorem 5 (HVZK of Protocol 5)

Proof. Let us describe the simulator S. Let us denote (J, L) the input of the simulator. First, S randomly

picks the master seeds seed[0].

– For j ∈ [M ]\J , S follows honestly the protocol since it does not need to know the secret.
– For j ∈ J , S uses the same method than the one described in the proof of the Theorem 2 (appendix B):
◦ Sample x̃[j] ← {x̃ | Hx̃ = y}.
◦ Sample q[j] ← Fm2 .
◦ Sample v[j] ← {v ∈ Fm2 | wt(v) = w}.
◦ For every i ∈ [n] \ {i∗}, sample A

[j]
i ≡ (σ

[j]
i , s

[j]
i ) uniformly.

◦ For i ∈ {1, . . . , i∗ − 1}:
compute u

[j]
i := A

[j]
i (u

[j]
i−1) with u

[j]
0 := x̃[j].

◦ For i from n− 1 down to i∗:
compute u

[j]
i := (A

[j]
i+1)−1(u

[j]
i+1) with u

[j]
n := v[j] + q[j].

◦ Compute commitments c
[j]
i ’s for the (σ

[j]
i , s

[j]
i )’s, for all i 6= i∗.

◦ Computes a commitment c
[j]
i∗ for a random pair (σ

[j]
i∗ , s

[j]
i∗ ).

The output transcript is independent and identically to the genuine transcript except for the randomness

sampling and c
[j]
i∗ when j ∈ J . Distinguishing then means breaking the pseudorandomness property or

breaking the commitment hiding property.
�
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E Proof of Theorem 6 (Soundness of Protocol 5)

Proof. Let us first show how to extract the syndrome decoding solution x from a few transcripts satisfying
specific conditions. We will then show how to get such transcripts from a rewindable black-box access to P̃.

Transcripts used for extraction. We assume that we can extract three transcripts

Ti = (Com(i),Ch
(i)
1 ,Rsp

(i)
1 ,Ch

(i)
2 ,Rsp

(i)
2 ) for i ∈ {1, 2, 3} , (10)

from P̃, with Ch
(i)
1 := J (i), Ch

(i)
2 := {`(i)j }j∈J(i) , which satisfy:

1. Com(1) = Com(2) = Com(3) = h,

2. there exists j0 ∈ (J (1) ∩ J (2)) \ J (3) s.t. `
(1)
j0
6= `

(2)
j0

3. T1 and T2 are success transcripts (i.e. which pass all the tests of V),

4. seed[j0] from Rsp
(3)
1 is consistent with the (σ

[j0]
i , s

[j0]
i ) from T1 and T2.

Using these three transcripts, we next show that it is possible to extract a solution of the syndrome

decoding instance defined by H and y. We can assume that all the revealed q[j] and (σ
[j]
i , s

[j]
i ) are mutually

consistent between the three transcripts, since otherwise we find a hash collision. So, we know (σ
[j0]
i , s

[j0]
i )

for all i ∈ {1, . . . , n} from T1 and T2.

Extraction of x from T1, T2 and T3. For this part, we will only consider the variables of the form (∗)[j0], so
we will omit the superscript for the sake of clarity. In the following, we will denote VTi

the set of checked
equations at the end of the protocol with Ti for i ∈ {1, 2, 3}.

Let us define σ := σn ◦ ... ◦ σ1 and x′ := σ−1(v). We simply return x′ as a candidate solution for x.
Because wt(v) = w (from VT1

or VT2
), we have wt(x′) = w. We now show that we further have y = Hx′.

Thanks to VT1 , we know that

∀i ∈ [n]\{`j0}, ui = σi(ui−1) + si .

And thanks to VT2 , we get the remaining equation

uj0 = σj0(uj0−1) + sj0 .

So, we know that

un = sn + σn(sn−1 + σn−1(...+ σ2(s1 + σ1(u0))))

= sn + σn(sn−1 + σn−1(...+ σ2(s1 + σ1(x̃))))

= (σn ◦ ... ◦ σ1)︸ ︷︷ ︸
σ

(x̃) + sn + σn(sn−1 + σn−1(...+ σ2(s1)))︸ ︷︷ ︸
s

= σ(x̃) + s .

Now, we have

Hx′ = Hσ−1(v)

= Hσ−1(un − q) from VT1 or VT2

= Hσ−1(σ(x̃) + s− q) from the previous calculus

= Hx̃−Hσ−1(q − s)
= y −Hσ−1(q − s) from VT1 or VT2

From VT3
, we get that there exists r ∈ Ker(H) such that

q = σ(r) + s .

So, we well obtain Hx′ = y −Hσ−1(σ(r)) = y −Hr = y.
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Extraction of T1, T2 and T3 from P̃. Throughout the proof, we denote succP̃ the event that P̃ succeeds in

convincing V. By hypothesis, we have Pr[succP̃ ] = ε̃. We shall further denote by Rh the randomness of P̃
which is used to generate the initial commitment Com = h.

Let us fix an arbitrary value α ∈ (0, 1) such that (1− α)ε̃ > ε, it exists since ε̃ > ε. Let rh be a possible
realization of Rh. We will say that rh is good if it is such that

Pr[succP̃ | Rh = rh] ≥ (1− α) · ε̃ . (11)

By the Splitting Lemma 1 (see Appendix A) we have

Pr[Rh good | succP̃ ] ≥ α . (12)

Our extractor first obtains a successful transcript T0 by running the protocol making calls to P̃ with
honest verifier requests. If this T0 corresponds to a good rh, then we can obtain further successful transcripts
with “high” probability by rewinding the protocol just after the initial commitment Com = h. Based on this
assumption, a sub-extractor E0 will build a list of successful transcripts T , all with same initial commitment.
For every T ∈ T , we denote JT the set J (first challenge) for this transcript, as well as J̄T := [M ] \ JT , and
LT = {`T,j}j∈JT the set L (second challenge) for this transcript. We further denote

J̄(T ) :=
⋃
T∈T

J̄T

which is the set of indexes j ∈ [M ] for which q[j] has been opened, as well as

C(T ) := {j | ∃T, T ′ ∈ T s.t. j ∈ JT ∩ JT ′ and `T,j 6= `T ′,j}

which is the set of indexes j ∈ [M ] for which all the (σ
[j]
i , s

[j]
i )i have been revealed.

For a certain number N1 of iterations, the sub-extractor E0 tries to feed the list T until the following
stop condition is reached:

C(T ) ∩ J̄(T ) 6= ∅ .

If this condition is reached then we have three transcripts T1, T2, T3 ∈ T such that

∃j ∈ (JT1 ∩ JT2) ∩ J̄T3 : `T1,j 6= `T2,j

which is what we need to recover x (as explained above). We formally describe the sub-extractor routine in
the following pseudocode:

Sub-extractor E0 (on input a successful transcript T0):

1. T = {T0}
2. Do N1 times:

3. Run P̃ with honest V and same rh as T0 to get T
4. If T is a successful transcript:
5. T ← T ∪ {T}
6. If C(T ) ∩ J̄(T ) 6= ∅, return T .
7. Return ∅.

Let us know evaluate the probability that the stop condition is reached in a given number of iteration
N1. In the following, we naturally denote J(T ) :=

⋃
T∈T JT , the set of indexes j ∈ [M ] which have been

used in the second phase for at least one transcript T ∈ T . Note that we always have C(T ) ⊆ J(T ).
Consider a loop iteration in E0 at the beginning of which we have a list T of successful transcripts such

that C(T ) ∩ J̄(T ) = ∅ (i.e. the stop condition has not been reached) and a transcript T sampled at Step 3.
We consider the three following events:
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– the event E1 := {J(T )  J(T ∪ {T})} which implies that the set J(T ) will be increased at Step 5 when
T ← T ∪ {T} if T is a successful transcript,

– the event E2 := {C(T )  C(T ∪{T})} which implies that the set C(T ) will be increased at Step 5 when
T ← T ∪ {T} if T is a successful transcript,

– the event E3 := {C(T ∪ {T}) ∩ J̄(T ∪ {T}) 6= ∅} which implies that the stop condition will be reached
at Step 6 if T is a successful transcript.

The above events are defined with respect to the randomness of the two challenges in T . Note these events
do not require that T is a successful transcript.

Let us lower bound the probability to have a good transcript T and one of the three events occuring in
the presence of a good Rh:

p := Pr[succP̃ ∩ (E1 ∪ E2 ∪ E3) | Rh good] .

We have:

p = Pr[succP̃ | Rh good]− Pr[succP̃ ∩ (Ē1 ∩ Ē2 ∩ Ē3) | Rh good]

≥ (1− α) · ε̃− Pr[succP̃ ∩ (Ē1 ∩ Ē2 ∩ Ē3) | Rh good] by (11)

≥ (1− α) · ε̃− Pr[Ē1 ∩ Ē2 ∩ Ē3 | Rh good]

= (1− α) · ε̃− Pr[Ē1 ∩ Ē2 ∩ Ē3] by independence.

Now, we have

Ē2 ∩ Ē3 ⇔ C(T ) = C(T ∪ {T}) ∩ C(T ∪ {T}) ∩ J̄(T ∪ {T}) = ∅
⇔ C(T ) = C(T ∪ {T}) ∩ C(T ) ∩ J̄(T ∪ {T}) = ∅
⇔ C(T ) = C(T ∪ {T}) ∩ (C(T ) ∩ J̄(T )) ∪ (C(T ) ∩ J̄T ) = ∅
⇔ C(T ) = C(T ∪ {T}) ∩ (C(T ) ∩ J̄T ) = ∅
⇔ C(T ) = C(T ∪ {T}) ∩ C(T ) ⊆ JT

which also gives

Ē2 ∩ Ē1 ∩ Ē3 ⇔ C(T ) = C(T ∪ {T}) ∩ C(T ) ⊆ JT ⊆ J(T ) .

So we can further lower bound p as:

p ≥ (1− α) · ε̃− Pr[C(T ) ⊆ JT ⊆ J(T ) ∩ C(T ) = C(T ∪ {T})]
= (1− α) · ε̃− Pr[C(T ) ⊆ JT ⊆ J(T )]

× Pr[C(T ) = C(T ∪ {T}) | C(T ) ⊆ JT ⊆ J(T )]

= (1− α) · ε̃−

(|J(T )|−|C(T )|
τ−|C(T )|

)(
M
τ

) ·
(

1

n

)τ−|C(T )|

By defining k := M − |C(T )|, we have(
|J(T )| − |C(T )|
τ − |C(T )|

)
=

(
|J(T )| − |C(T )|
|J(T )| − τ

)
=

(
k − (M − |J(T )|)

M − τ − (M − |J(T )|)

)
≤
(

k

M − τ

)
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The first equality holds from
(
x
y

)
=
(
x
x−y
)

(for any x, y ∈ N) while the second holds by definition of k. The

inequality holds from
(
x
y

)
≥
(
x−z
y−z
)

(for any x, y, z ∈ N with z < x, y). We hence finally get:

p ≥ (1− α) · ε̃−
(

k
M−τ

)(
M

M−τ
)
· nk−M+τ

≥ (1− α) · ε̃− ε

To summarize, in the presence of a good Rh, the probability of the event succP̃ ∩ (E1 ∪ E2 ∪ E3) (i.e.
getting a successful transcript T which yields one the the three events E1, E2, or E3) is lower bounded by
(1− α) · ε̃− ε > 0. Moreover, the event succP̃ ∩ E1 can occur at most M − τ times, because JT0 ⊆ J(T ) ⊆
{1, . . . ,M}. And the event succP̃ ∩ E2 can occur at most τ times before further implying E3 (because if
|C(T )| ≥ τ then adding one more term to C(T ) systematically implies E3). We deduce that after M + 1
occurrences of succP̃ ∩ (E1 ∪ E2 ∪ E3), the event E3 must have occurred at least once.

Let us now define

N1 =
4M

p0
with p0 := (1− α) · ε̃− ε . (13)

And let X ∼ B(N1, p0) a binomial distributed random variable with parameters (N1, p0). The probability
that E0 reaches the stop condition and returns a non-empty list for a successful transcript T0 with good Rh
satisfies:

Pr[E0(T0) 6= ∅ | succT0

P̃ ∩Rh good] ≥ Pr[X > M ]

= Pr

[
X

N1
− p0 >

M

N1
− p0

]
= 1− Pr

[
X

N1
− p0 <

M

N1
− p0

]
= 1− Pr

[
X

N1
− p0 < −

3

4
p0

]
≥ 1− Pr

[∣∣∣∣ XN1
− p0

∣∣∣∣ > 3

4
p0

]
≥ 1− p0 · (1− p0)

N1 · p20 ·
(
3
4

)2 (14)

= 1− 16

9
· 1− p0

4 ·M
= 1− 4

9
· 1− p0

M

≥ 1− 4

9
≥ 1

2

The inequality (14) holds from the Bienaymé-Techbychev inequality. Thus, using N1 = 4M
p0

, the probability

to reach the stop condition assuming a good Rh is at least 1/2. Without assumption on Rh, the probability
to reach the stop condition satisfies:

Pr[E0(T0) 6= ∅ | succT0

P̃ ]

≥ Pr[Rh good | succT0

P̃ ] · Pr[E0(T0) 6= ∅ | succT0

P̃ ∩Rh good] ≥ α

2
.

Let us now describe the complete extractor procedure:
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Extractor E :

1. Repeat +∞ times:

2. Run P̃ with honest V to get transcript T0
3. If T0 is not a successful transcript, go to the next iteration
4. Call E0 on T0 to get list of transcripts T
5. If T 6= ∅, return T

Let C denotes the number of calls to P̃ made by the extractor before finishing. While entering a new
iteration:

– the extractor makes one call to P̃ to obtain T0,

– if T0 is not successful, which occurs with probability (1− Pr[succT0

P̃ ]),

◦ the extractor continues to the next iteration and makes an average of E[C] calls to P̃,

– if T0 is successful, which occurs with probability Pr[succT0

P̃ ],

◦ the extractor makes at most N1 calls to P̃ in the loop of E0,

◦ then E0 returns an empty list (the stop condition is not reached), which occurs with probability
Pr[E0(T0) = ∅ | succT0

P̃ ], the extractor continues to the next iteration and makes an average of E[C]

calls to P̃,

◦ otherwise, if E0(T0) returns a non-empty list, the extractor stops and no more calls to P̃ are necessary.

The mean number of calls to P̃ hence satisfies the following inequality:

E[C] = 1 + (1− Pr[succT0

P̃ ]) · E[C]︸ ︷︷ ︸
T0 unsuccessful

+ Pr[succT0

P̃ ] ·
(
N1 + Pr[E0(T0) = ∅ | succT0

P̃ ] · E[C]︸ ︷︷ ︸
T0 successful

)
which gives

E[C] ≤ 1 + (1− ε̃) · E[C] + ε̃ ·
(
N1 +

(
1− α

2

)
· E[C]

)
≤ 1 + ε̃ ·N1 + E[C]

(
1− ε̃ · α

2

)
≤ 2

α · ε̃
· (1 + ε̃ ·N1)

=
2

α · ε̃
·
(

1 + ε̃ · 4 ·M
(1− α) · ε̃− ε

)
To obtain an α-free formula, let us take α such that (1 − α) · ε̃ = 1

2 (ε̃ + ε). We have α = 1
2

(
1− ε

ε̃

)
and

the average number of calls to P̃ is upper bounded as

E[C] ≤ 4

ε̃− ε
·
(

1 + ε̃ · 8 ·M
ε̃− ε

)
which concludes the proof. �
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F Security Proof of the Signature Scheme

We give herafter the proof of Theorem 7. This proof is a carbon copy of the security proof of the Picnic
signature scheme [CDG+, Theorem 6.2] with few adaptations to our context.

Proof (Theorem 7). Fix some attacker A. Let qs denote the number of signing queries made by A; let q0,
q1,q2, respectively, denote the number of queries to Hash0, Hash1, Hash2 made by A, and let q′ denote the
number of queries to Hash′ made by A. To prove security we define a sequence of experiments involving A,
where the first corresponds to the experiment in which A interacts with the real signature scheme. We let
Pri[·] refer to the probability of an event in experiment i. We let t denote the running time of the entire
experiment, i.e., including both A’s running time and the time required to answer signing queries and to
verify A’s output.

Experiment 1. This corresponds to the interaction of A with the real signature scheme. In more detail: first
KeyGen is run to obtain (H, y, x), and A is given the public key (H, y). In addition, we assume the random
oracles Hash0, Hash1, Hash2, and Hash′ are chosen uniformly from the appropriate spaces. A may make
signing queries, which will be answered as in the signature algorithm; A may also query any of the random
oracles. Finally, A outputs a message/signature pair; we let Forge denote the event that the message was not
previously queried by A to its signing oracle, and the signature is valid. We are interested in upper-bounding
Pr1[Forge].

Experiment 2. We abort the experiment if, during the course of the experiment, a collision in Hash0,
Hash1, or Hash2 is found. Suppose q = max{q0, q1, q2}, then the number of queries to any oracle throughout
the experiment (by either the adversary or the signing algorithm) is at most (q +Mnqs). Thus,

|Pr1[Forge]− Pr2[Forge]| ≤ 3 · (q +Mnqs)
2

2 · 22λ
.

Experiment 3. The difference with the previous experiment is that, when signing a message m we begin
by choosing (J, L) uniformly. Steps 1 and 3 of the signing algorithm are computed as before, but in step 2
we simply set the output of Hash′ equal to (J, L). Formally, a signature on a message m is now computed
as follows:

Step 0:

– Choose uniform (J, L), where J ⊂ [M ] is a set of size τ , and L = {`j}j∈J with `j ∈ [n].

– Choose uniform mseed[0] ∈ {0, 1}λ and use it to generate value mseed[1], ..., mseed[M ] with TreePRG.

Step 1: For each j ∈ [M ]:

1. Use mseed[j] to generate values seed
[j]
1 , . . . , seed[j]n and r[j] ∈ Ker(H) with PRG.

2. For i ∈ [n], sample σ
[j]
i , s

[j]
i using seed

[j]
i and compute c

[j]
i := Hash0(seed

[j]
i ).

3. (Cut-and-choose phase) Compute

σ[j] := σ[j]
n ◦ · · · ◦ σ

[j]
1

s[j] := s[j]n + σ[j]
n (· · ·+ σ

[j]
2 (s

[j]
1 ))

q[j] := σ[j](r[j]) + s[j]

4. (Sound phase) Compute

v[j] := σ[j](x)

x̃[j] := x+ r[j]

u
[j]
0 := x̃[j]

u
[j]
i := σ

[j]
i (u

[j]
i−1) + s

[j]
i for all i ∈ [n]
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5. Compute hj := Hash1(q[j], c
[j]
1 , . . . , c

[j]
n ) and h′j := Hash2(v[j], x̃[j], (u

[j]
i )i).

Step 2: Set Hash′(m,h1, . . . , hM , h
′) equal to (J, L), with h′ := Merkle(h′1, . . . , h

′
M ),. The signature

includes (J, L).

Step 3: For each j 6∈ J , the signer includes mseed[j], h′ in the signature. Also, for each j ∈ J , the signer

includes v[j], x̃[j], (seed
[j]
i )i 6=`j , c

[j]
`j

and u
[j]
`j

.

The only difference between this experiment and the previous one occurs if, in the course of answering
a signing query, the query to Hash′ in step 2 was ever made before (by either the adversary or as part of
answering some other signing query). Letting InputCollG denote this event, we have

|Pr3[Forge]− Pr2[Forge]| ≤ Pr3[InputCollG].

Experiment 4. The difference with the previous experiment is that the signer now chooses uniform

{seed[j]i }i∈[n] for all j ∈ J . That is, signatures are now computed as follows:

Step 0:

– Choose uniform (J, L), where J ⊂ [M ] is a set of size τ , and L = {`j}j∈J with `j ∈ [n].

– Choose uniform mseed[0] ∈ {0, 1}λ and use it to generate value mseed[1], ..., mseed[M ] with TreePRG.

Step 1: For each j ∈ [M ]:

1. If j 6∈ J , use mseed[j] to generate values seed
[j]
1 , ..., seed[j]n and r[j] ∈ Ker(H) with a PRG. If j ∈ J ,

choose uniform seed
[j]
1 , ..., seed[j]n ∈ {0, 1}λ and r[j] ∈ Ker(H).

2. For i ∈ [n], sample σ
[j]
i , s

[j]
i using seed

[j]
i and compute c

[j]
i := Hash0(seed

[j]
i ).

3. (Cut-and-choose phase) Compute

σ[j] := σ[j]
n ◦ · · · ◦ σ

[j]
1

s[j] := s[j]n + σ[j]
n (· · ·+ σ

[j]
2 (s

[j]
1 ))

q[j] := σ[j](r[j]) + s[j]

4. (Sound phase) Compute

v[j] := σ[j](x)

x̃[j] := x+ r[j]

u
[j]
0 := x̃[j]

u
[j]
i := σ

[j]
i (u

[j]
i−1) + s

[j]
i for all i ∈ [n]

5. Compute hj := Hash1(q[j], c
[j]
1 , . . . , c

[j]
n ) and h′j := Hash2(v[j], x̃[j], (u

[j]
i )i).

Step 2: Set Hash′(m,h1, . . . , hM , h
′) equal to (J, L), with h′ := Merkle(h′1, . . . , h

′
M ),. The signature

includes (J, L).

Step 3: For each j 6∈ J , the signer includes mseed[j], h′ in the signature. Also, for each j ∈ J , the signer

includes v[j], x̃[j], (seed
[j]
i )i 6=`j , c

[j]
`j

and u
[j]
`j

.

It is easy to see that if the pseudorandom generator is (t, εPRG)-secure, then

|Pr4[Forge]− Pr3[Forge]| ≤ qs · τ · εPRG

and
|Pr4[InputCollG]− Pr3[InputCollG]| ≤ qs · τ · εPRG.
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We now bound Pr4[InputCollG]. Fix some previous query (m,h1, . . . , hM , h
′) to Hash′, and look at a query

Hash′(m̂, ĥ1, . . . , ĥM , ĥ
′) made while responding to some signing query. (In the rest of this discussion, we

will use ·̂ to represent values computed as part of answering that signing query.) For some fixed j ∈ Ĵ , it is

not hard to see that the probability of the event ĥj = hj is maximized if hj was output by a previous query

Hash1(q[j], c
[j]
1 , ..., c

[j]
n ), and each c

[j]
i was output by a previous Hash0(seed

[j]
i ). (In all cases, the relevant prior

query must be unique since the experiment is aborted if there is a collision in Hash0 or Hash1.) In that case,

the probability that ĥj = hj is at most

(2−λ + 2−2λ)n + 2−2λ ≤ 2 · 2−2λ

(assuming n ≥ 3), and thus the probability that ĥj = hj for all j ∈ Ĵ is at most 2−τ ·(2λ−1). Taking a union
bound over all signing queries and all queries made to Hash′ (including those made during the course of
answering signing queries), we conclude that

Pr4[InputCollG] ≤ qs · (qs + q′) · 2−τ ·(2λ−1).

Experiment 5. The difference with the previous experiment is that:

– For each j ∈ J , choose uniform c
[j]
`j

(i.e., without making the corresponding query to Hash0).

– For each j 6∈ J , choose uniform h′j (i.e., without making the corresponding query to Hash2).

So, signatures are now computed as follows:

Step 0:

– Choose uniform (J, L), where J ⊂ [M ] is a set of size τ , and L = {`j}j∈J with `j ∈ [n].

– Choose uniform mseed[0] ∈ {0, 1}λ and use it to generate value mseed[1], ..., mseed[M ] with TreePRG.

Step 1: For each j ∈ [M ]:

1. If j 6∈ J , use mseed[j] to generate values seed
[j]
1 , ..., seed[j]n and r[j] ∈ Ker(H) with a PRG. If j ∈ J ,

choose uniform seed
[j]
1 , ..., seed[j]n ∈ {0, 1}λ and r[j] ∈ Ker(H).

2. For i ∈ [n], sample σ
[j]
i , s

[j]
i using seed

[j]
i and compute{

c
[j]
`j

is chosen uniformly in {0, 1}2λ if j ∈ J
c
[j]
i := Hash0(seed

[j]
i ) for all other i, j

.

3. (Cut-and-choose phase) Compute

σ[j] := σ[j]
n ◦ · · · ◦ σ

[j]
1

s[j] := s[j]n + σ[j]
n (· · ·+ σ

[j]
2 (s

[j]
1 ))

q[j] := σ[j](r[j]) + s[j]

4. (Sound phase) Compute

v[j] := σ[j](x)

x̃[j] := x+ r[j]

u
[j]
0 := x̃[j]

u
[j]
i := σ

[j]
i (u

[j]
i−1) + s

[j]
i for all i ∈ [n]
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5. Compute hj := Hash1(q[j], c
[j]
1 , . . . , c

[j]
n ). For j ∈ J , set h′j := Hash2(v[j], x̃[j], (u

[j]
i )i); otherwise,

choose uniform h′j ∈ {0, 1}2λ.

Step 2: Set Hash′(m,h1, . . . , hM , h
′) equal to (J, L), with h′ := Merkle(h′1, . . . , h

′
M ),. The signature

includes (J, L).

Step 3: For each j 6∈ J , the signer includes mseed[j], h′ in the signature. Also, for each j ∈ J , the signer

includes v[j], x̃[j], (seed
[j]
i )i 6=`j , c

[j]
`j

and u
[j]
`j

.

The only difference between this experiment and the previous one occurs if, during the course of answering

a signing query, seed
[j]
`j

(for some j ∈ J) is queried to Hash0 at some other point in the experiment, or

(v[j], x̃[j], (u
[j]
i )i) (for some j 6∈ J) is ever queried to Hash2 at some other point in the experiment. Denoting

this event by InputCollH , we thus have

|Pr5[Forge]− Pr4[Forge]| ≤ Pr5[InputCollH ].

Experiment 6. We again modify the experiment. Now, for j ∈ J the signer uses the HVZK simulator (see
Theorem 5), that we shall denote S, to generate the views of the parties in an execution of a sound phase.

This results in {seed[j]i }i 6=`j , q[j], v[j], x̃[j] and u
[j]
`j

. From the respective views, {u[j]i }i 6=`j can be computed,

and hj , h
′
j can be computed as well. Thus, signatures are now computed as follows:

Step 0:

– Choose uniform (J, L), where J ⊂ [M ] is a set of size τ , and L = {`j}j∈J with `j ∈ [n].

– Choose uniform mseed[0] ∈ {0, 1}λ and use it to generate value mseed[1], ..., mseed[M ] with TreePRG.

Step 1: For j 6∈ J :

1. Use mseed[j] to generate values seed
[j]
1 , ..., seed[j]n and r[j] ∈ Ker(H) with a PRG.

2. For i ∈ [n], sample σ
[j]
i , s

[j]
i using seed

[j]
i and compute c

[j]
i := Hash0(seed

[j]
i ).

3. (Cut-and-choose phase) Compute

σ[j] := σ[j]
n ◦ · · · ◦ σ

[j]
1

s[j] := s[j]n + σ[j]
n (· · ·+ σ

[j]
2 (s

[j]
1 ))

q[j] := σ[j](r[j]) + s[j]

4. Let hj := Hash1(q[j], c
[j]
1 , ..., c

[j]
n ). Choose uniform h′j ∈ {0, 1}2λ.

For j ∈ J :

1. Compute ({seed[j]i }i6=`j , q[j], v[j], x̃[j], u
[j]
`j

)← S(`j). Compute {u[j]i }i6=`j based on this information.

2. Choose uniform c
[j]
`j
∈ {0, 1}2λ. For all other i, set c

[j]
i := Hash0(seed

[j]
i ).

3. Let hj := Hash1(q[j], c
[j]
1 , ..., c

[j]
n ) and h′j = Hash2(v[j], x̃[j], (u

[j]
i )i).

Step 2: Set Hash′(m,h1, . . . , hM , h
′) equal to (J, L), with h′ := Merkle(h′1, . . . , h

′
M ),. The signature

includes (J, L).

Step 3: For each j 6∈ J , the signer includes mseed[j], h′ in the signature. Also, for each j ∈ J , the signer

includes v[j], x̃[j], (seed
[j]
i )i 6=`j , c

[j]
`j

and u
[j]
`j

.

Observe that the secret x is no longer used for generating signatures. Recall, the adversary against simulator
has distinguishing advantage εPRG + εCom where εCom is zero since we are in the Random Oracle Model and
we remove the collisions in Experiment 2. It is immediate that

|Pr6[Forge]− Pr5[Forge]| ≤ τ · qs · εPRG
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and
|Pr6[InputCollH ]− Pr5[InputCollH ]| ≤ τ · qs · εPRG.

We now bound Pr6[InputCollH ]. For any particular signing query and any j ∈ J , the value seed
[j]
`j

has
min-entropy at least λ and is not used anywhere else in the experiment. Similarly, for any j 6∈ J , the value
(v[j], x̃[j]) has min-entropy at least λ, since the input is λ-bit, and is not used anywhere else in the experiment.
Thus,

Pr6[InputCollH ] ≤M · qs · (Mqs + q0 + q2) · 2−λ.

Experiment 7. We first define some notation. At any point during the experiment, we classify a pair (hj , h
′
j)

in one of the following ways:

1. If hj was output by a previous query Hash1(q[j], c
[j]
1 , . . . , c

[j]
n ), and each c

[j]
i was output by a previous query

Hash0(seed
[j]
i ) where the ({seed[j]i }i, q[j]) forms a valid preprocessing (i.e.,

(
σ[j]
)−1 (

q[j] − s[j]
)
∈ Ker(H)),

then say (hj , h
′
j) defines correct preprocessing.

2. If hj was output by a previous query Hash1(q[j], c
[j]
1 , . . . , c

[j]
n ), and each c

[j]
i was output by a previous query

Hash0(seed
[j]
i ), and h′j was output by a previous query Hash2(v[j], x̃[j], u

[j]
1 , . . . , u

[j]
n ) where {seed[j]i }i, q[j],

v[j], x̃[j], {u[j]i }i are consistent with an online execution (but the ({seed[j]i }i, q[j]) may not form a valid
preprocessing), then say (hj , h

′
j) defines correct execution.

3. In any other case, say (hj , h
′
j) is bad.

(Note that in all cases the relevant prior query, if it exists, must be unique since the experiment is aborted
if there is ever a collision in Hash0, Hash1, or Hash2.)

In Experiment 7, for each query Hash′(m,h1, ..., hM ,Merkle(h′1, . . . , h
′
M )) made by the adversary (where

m was not previously queried to the signing oracle), check if there exists an index j for which (hj , h
′
j) defines

correct preprocessing and correct execution. We let Solve be the event that this occurs for some query to

Hash′. Note that if that event occurs, the {seed[j]i }i, q[j], v[j], x̃[j] (which can be determined from the oracle
queries of the adversary) allow computation of x′ for which Hx′ = y and wt(x′) = w. Thus, Pr7[Solve] ≤ εSD.

We claim that
Pr7[Forge∧Solve] ≤ q′ · ε(M,n, τ).

To see this, assume Solve does not occur. For any query Hash′(m,h1, ..., hM ,
Merkle(h′1, . . . , h

′
M )) made during the experiment (where m was not previously queried to the signing oracle),

let Pre denote the set of indices for which (hj , h
′
j) defines correct preprocessing (but not correct execution),

and let k = |Pre|. Let (J, L) be the (random) answers from this query to Hash′. The attacker can only
possibly generate a forgery (using this Hash′-query) if (1) [M ]\J ⊂ Pre, and (2) for all j ∈ Pre ∩ J , the
value `j is chosen to be the unique party such that the views of the remaining parties are consistent. Since

|M\J | = M − τ , the number of ways the first event can occur is
(

k
M−τ

)
; given this, there are k − (M − τ)

elements remaining in Pre ∩ J . Thus, the overall probability with which the attacker can generate a forgery
using this Hash′-query is

ε(M,n, τ, k) =

(
k

M−τ
)
· nM−τ(

M
M−τ

)
· nτ

=

(
k

M−τ
)(

M
M−τ

)
· nτ−M+τ

≤ ε(M,n, τ) := max
k
{ε(M,n, τ, k)}.

The final bound is obtained by taking a union bound over all queries to Hash′.
�
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G Boolean Circuit for Syndrome Decoding problem

Let us define a circuit for the boolean function CH,y defined as

CH,y : x ∈ Fm2 7→
{

1 if Hx = y and wt(x) = w
0 else

.

Since H ∈ F(m−k)×m2 is public, it is hardcoded into the circuit so that computing Hx is free in terms
of AND gates. To compute wt(x), we need to sum all the bits of x, which involves AND gates to deal with
carry propagation. To minimize the number of carries, and hence of AND gates, a possible strategy is to use
a binary tree as follows:

– Let us denote ` := dlog2(w + 1)e. For the sake of simplicity, we assume that m is a multiple of 2`.

– We split the m bits of x in t blocks of 2` bits.

– For each block of size 2`, we sum all the bits with a tree:

◦ At the first level of the tree, we sum the bits two by two to obtain 2`

2 2-bit values.

◦ At the second level of the tree, we sum the previous 2-bit values two by two to obtain 2`

4 3-bit values.
...

◦ At the `-th level of the tree, we sum the two previous (`− 1)-bit values to obtain a single `-bit value.

The resulting number of AND gates for one 2`-bit block is

2`−1 · a(1) + 2`−2 · a(2) + . . .+ 1 · a(`)

where a(i) denotes the number of AND gates in an addition on i bits.

– We have t sum-blocks of ` bits. We now sum all these blocks using an additional overflow bit to keep in
memory if the sum exceeds 2`. The resulting number of AND gates for this step is

(t− 1) · a′(`)

where a′(`) denotes the number of AND gates in an addition on ` bits with the overflow bit.

So the total number of AND gates to compute wt(x) is

t ·
∑̀
i=1

2`−i · a(i) + (t− 1) · a′(`) .

For the addition circuit, we can use a full adder circuit and so{
a(i) = 1 + 2 · (i− 1) = 2i− 1
a′(`) = 1 + 2 · (`− 1) + 1 = 2`

.

Once Hx and wt(x) are computed, the circuit just need to check that Hx = y and wt(w), and for that
it needs (m− k) + l AND gates.
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