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Abstract. Collision resistance and collision finding are now extensively
exploited in Cryptography, especially in the case of quantum computing.
For any function f : [M ]→ [N ] with f(x) uniformly distributed over [N ],
Zhandry has shown that the number Θ(N1/3) of queries is both neces-
sary and sufficient for finding a collision in f with constant probability.
However, there is still a gap between the upper and the lower bounds of
query complexity in general non-uniform distributions.
In this paper, we investigate the quantum query complexity of collision-
finding problem with respect to general non-uniform distributions. In-
spired by previous work, we pose the concept of collision domain and a
new parameter γ that heavily depends on the underlying non-uniform
distribution. We then present a quantum algorithm that uses O(γ1/6)
quantum queries to find a collision for any non-uniform random func-
tion. By making a transformation of a problem in non-uniform set-
ting into a problem in uniform setting, we are also able to show that
Ω(γ1/6 log−1/2 γ) quantum queries are necessary in collision-finding in
any non-uniform random function.
The upper bound and the lower bound in this work indicates that the
proposed algorithm is nearly optimal with query complexity in general
non-uniform case.

Keywords: Quantum, Query complexity, Collision-finding algorithm,
Compressed oracle technique, Non-uniform distribution, Lower bound

1 Introduction

The quantum computation has brought threats to classical cryptography since
Shor’s seminal article [25]. In the black-box model, the advantage of quantum
computing embodied the fact that a quantum adversary may take input or out-
put in the form of a quantum superposition, which potentially allows to gain
advantages that might not be possible in traditional computations. As a result,
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many classical public key encryption systems, including Diffie-Hellman proto-
col [12] and RSA cryptosystem [24], are broken by Shor’s factoring and discrete-
log algorithms [25]. The Grover’s algorithm [18] allows greatly to improve the
efficiency of the adversary by accelerating the speed for solving the search prob-
lems. Many cryptographic schemes that are secure in classical computation may
no longer be applicable to the quantum world [6, 13,19,21].

Faced with the threats from quantum computing, people widely investigate,
as in classical computation, the complexity of quantum computing. One expects
to figure out, to each problem, the problem-solving capabilities and limitations
of quantum computing by considering the number of queries in the black-box
model.

In this work, we manage to further explore both upper and lower bound of
quantum query complexity of collision-finding problem in generally non-uniform
random functions.

Collision resistance is one of important properties in cryptography. For any
positive integers M,N , let [M ] be the set {1, . . . ,M}. A collision to a func-
tion f from [M ] to [N ] is a couple of distinct inputs x1, x2 ∈ [M ] such that
f(x1) = f(x2). The collision-resistant hash functions in cryptography empha-
size the difficulty in finding collisions. They are broadly employed in various
cryptographic primitives [8, 9, 15].

It has been well studied on the complexity of finding a collision in quantum
setting. In view of the upper bounds, Brassard et al. [11] showed that O(N1/3)
queries are sufficient to find a collision in a two-to-one function. Ambainis [3]
proved that O(M2/3) quantum queries are sufficient to achieve a collision with
constant probability in a function f : [M ] → [N ] by quantum walk, in which f
should be guaranteed to have at least one pair of collisions.

Zhandry [30] proposed an algorithm that takes O(N1/3) quantum queries to
find a collision in a uniformly random function. Targhi et al. [14] and Balogh et
al. [7] proved, separately, that O(2β/3) quantum queries are sufficient to find a
collision in a non-uniform random function, where β is the collision-entropy of
distribution D (cf. Definition 1.).

In terms of lower bounds, Aaronson and Shi [1] proved thatΩ(N1/3) quantum
query is necessary to find a collision in any function f : [N ] → [N ], where
f is a two-to-one function. Which has been further extended to the case of
small range by Kutin [22] and Ambainis [4] independently. Yuen [28] proved
that Ω(N1/5/poly logN) quantum queries are necessary in finding a collision in
a uniformly random function f : [N ] → [N ]. Zhandry [30] improved this bound
further to Ω(N1/3) in a uniform function from [M ] to [N ].

Targhi et al. proved a lower bound Ω(2k/9) in a non-uniform random function
[26], in the case that for any x ∈ [M ] the output of f(x) is selected according to
a distribution D over [N ], which possesses the min-entropy k. Targhi and Unruh
improved the previous lower bound to Ω(2k/5) [14]. Balogh et al. [7] recently
improved that lower bound to Ω(2k/3).

One should note that Zhandry’s results claim that, in a uniform random
function f from [M ] to [N ], that Θ(N1/3) quantum queries are both necessary
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and sufficient to find a collision [30], and thus give the tight upper and lower
bounds in uniform case.

In the research of collision-finding problem with respect to general non-
uniform distributions, however, from the reviews above and also the summa-
rization in Table 1, we see that there lacks currently a tight upper and lower
query complexity bound characterizing as in uniform settings.

Table 1. Recent complexity results to collision-finding problem

Literatures Distribution Upper Bound Lower Bound

[Zha15] [30] uniform O(N1/3) Ω(N1/3)

[TTU16] [26] non-uniform Ω(2k/9)

[EU18] [14] non-uniform O(min{2β/3, 2k/2}) Ω(max{2β/9, 2k/5})
[BES18] [7] non-uniform O(min{2β/3, 2k/2}) Ω(max{2β/6, 2k/3})

Existing algorithms in this setting, for example in [7], gain optimum bounds
valid to some special distributions, as is pointed out later in the context, not in
generally non-uniform distributions. Hence, exploiting further characterization
of query complexity of collision-finding in non-uniform functions is deserved from
theoretical point of view as well as in practical applications in cryptography. For
example, non-uniform functions were used in cryptographic systems such as the
famous Fujisaki-Okamoto construction [16] and further discussions in [5, 27].

This work aims to work out an (almost) optimal upper and lower bounds on
numbers of quantum queries for collision-finding problem in general non-uniform
random functions.

1.1 Contributions

In this work, we firstly propose a collision-finding algorithm and analyze its
quantum query complexity, and then show a quantum query complexity lower
bound in any non-uniform function. Both the upper bound and the lower bound
are characterized in a new proposed collision parameter, and finally result in
tighter bounds.

In [14], Targhi et al. showed that, provided that only min-entropy is used in
describing the collision-finding complexity in non-uniform random functions, the
upper bound O(2k/2) and the lower bound Ω(2k/3) are both the best possible
ones. The gap between the upper and lower bounds there hints us that min-
entropy might not be good enough in describing query complexity of the collision-
finding problem.

This leads us to seek more finer parameter that may reflect more properties of
underlying distributions. In this work we propose a new collision parameter γ in
investigating the quantum query complexity of collision-finding in non-uniform
random functions.

For any constant c > 1, we start with a partition, called c-partition which is
somewhat similar as in [17], to divide the domain [N ] into a sequence of subsets
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{S1, . . . , S`} according to the weight of distribution D : {p1, · · · , pN}. To denote
p(Si) as the maximal probability of elements in Si of size ni, then γ(c) is defined
to be the minimum one among all 1/nip

3(Si). Although the value of γ(c) is
dependent on c, but later in Proposition 7, we show that the constant c does
not affect the magnitude of query complexity, and hence we may mention γ now
and then rather than γ(c).

In terms of this parameter, we are able to compose a new algorithm which suc-
ceeds in collision-finding with O(γ1/6) quantum queries and also prove the num-
ber Ω(γ1/6/

√
log γ) of quantum queries are necessary for any collision-finding

algorithms over non-uniform distributions. Since the two bounds almost meet,
we believe parameter γ is an appropriate one in describing the query complexity
of collision-finding.

We should point out that the proposed parameter in calculation, as the
collision-entropy does (cf. Definition 1), will need more information about the
distribution than the min-entropy does. Indeed, before running the proposed
collision-finding algorithm, it needs to find the right collision domain Si at first,
which is somewhat different from existing algorithms which only taking the min-
entropy as input. This is based on the observation that the key to improve the
acceleration in algorithm is to find the most suitable collision search range (which
is called collision domain in the context, cf. Definition 3), and that should be
inevitable to make use of the information of underlying distribution. This might
also be understood as a trade-off between getting a finer algorithm and using
neat property like the min-entropy.

This requirement is often implicitly assumed (or by default) in practice. An
example is in the CCA quantum security proof to the famous Fujisaki-Okamoto
transformation [5,27]. In the proof there, one has to ensure that it is hard for any
polynomial quantum algorithm to find collisions (c, c′) in non-uniform random
function g = f ◦H = f(δ,H(δ, c)), where H is a uniform random function and f
is the encryption algorithm in the asymmetric encryption scheme. An adversary
not only has oracle access to f , but also know the underlying structure of the
encryption algorithm (for example, the adversary knows in advance that f is
actually the ElGamal encryption algorithm, which means the construction of this
scheme is based on DDH assumptions). Which means, the adversary is able to
analyze the distribution of pre-image of the encryption algorithm (namely for any
δ ∈ {0, 1}m and y ∈ {0, 1}n, and to calculate Pr[y = f(δ,H(δ, c)) : c ← coin]).
That implies the adversary is capable and likely to know all the information
about corresponding distribution of the non-uniform random function g.

In addition, the enhanced lower bound here can be used in the CCA security
proof of FO transformation as the replacement of the corresponding component
in the proof (such as Lemma 11, in full version of [5]), which will result a tighter
reducible bound in the CCA security of FO transformation.

1.2 Technical Overview

Now we present the main ideas and techniques in this work.
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The parameter γ and its properties. A novel parameter γ is proposed in this
work, aiming at accurately describing the quantum computational complexity
of collision-finding problem in general non-uniform random functions.

In the course of our research, we observe that there is a significant difference
between quantum and classical computing in solving the collision-finding prob-
lem in the non-uniform case. Specifically, the acceleration effects in quantum
computing in more restricted search scope may be performed better. This fact
is counterintuitive to the classical setting. That means, in the classical case it is
always easier to find any collision in a set than in any of its subsets.

Based on this observation, the key point to effectively find a collision is to
seek the most suitable search range, which is referred as collision domain in
this work. Given non-uniform distribution D with weight sequence {p1, . . . , pN},
assuming without lose of generality that p1 ≥ p2 ≥ · · · ≥ pN , we choose a
constant threshold c > 1 (which is proved not essential to the complexity and
will be discussed later in Proposition 7), and partition domain [D] accordingly
into a series of subsets.

For any non-uniform distribution D over [N ], we want to make a partition
of [N ]. For this purpose, a constant c is chosen to control the size of partition,
so that in each part S of the partition, the ratio pj/pi for any i, j ∈ S does not
exceed the threshold c > 1. The larger c is, the fewer parts in partition there
would be.

Given the threshold c > 1, we start to collect all index j ∈ [N ] satisfying
p1 ≥ pj > p1/c as a set S1. Let n1 := |S1| and p(S1) := p1. And then let
S2 be the collection of all j ∈ [N ] such that p(S2) ≥ pj > p(S2)/c, where
p(S2) := pn1+1. Continuing this process, it finally divides [N ] into a series of
subsets S1, S2, . . . , S` with |Si| = ni for i = 1, . . . , `. We name this partition
as c-partition. If let γi(c) := 1/nip

3(Si) for each i ∈ [`], the parameter γ(c) is
defined as the smallest one among γi(c). Suppose γ(c) = γk0(c), the subset Sk0
is named as the collision domain and k0 is the smallest such index among [`].

We give the relations of γ(c) in Section 5 (see Proposition 4 and 5), with the
min-entropy k and collision-entropy β used in existing algorithms and show that
both the upper bound and lower bound in this work are at least as better as
the best prior result in [7]. To indicate superiority of the result in this work, we
supply an example such that max{β1/6, 2k/3} � γ1/6(c)� min{β1/3, 2k/2}.

The proposed collision-finding algorithm in this work will take the collision
domain as input, comparing to previous algorithms which mainly take min-
entropy or collision-entropy as inputs. To make the computation of collision
domain simple in application, we show a result in Proposition 6 to reduce the
actual range to locate the collision domain.

Although γ(c) depends on the classification of discrete sequence with con-
stant c, we are able to show, in Proposition 7, the relative error between γ(c1)
and γ(c2) is O(1) as long as c1, c2 > 1 are constants. That claims that the pa-
rameter γ(c) is NOT affected in the magnitude of query complexity bounds,
provided c is a constant.
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The algorithm and complexity upper bound. With the parameter γ(c)
defined as above, the algorithm is intuitively designed as follows. First, to use
Grover’ algorithm finding a list L of elements in collision domain Sk0 , and then
to adopt standard collision algorithm to find a collision in L. It uses adaptive-
ly adjusted search domain according to the underlying distribution to achieve
acceleration, which has been missed in previous algorithms.

For this purpose, some changes to the BBHT algorithm must be made so
as to be used in our algorithm. The BBHT algorithm in [10] gives the expected
number of queries when the algorithm succeeds, while we expect to get a relation,
depending on the number of queries, to indicate the success probability of the
algorithm. The changes here are actually a de-randomized version of BBHT
algorithm.

Finally, we show that proposed collision-finding algorithm makes O(γ1/6(c))
queries succeeds with probability Ω(1). To some extent it implies that the param-
eter γ(c) exploits the more significant information of a non-uniform distribution
in collision-finding, resulting in a better acceleration.

The lower bound. Exploring the lower bound in terms of γ(c) is a little bit
involved. To obtain the lower bound of query complexity, we firstly estimate the
success probability restricted over each Sr (Problem 1 in Section 4.2), where
Sr is any subset partitioned in c-partition. Then, the success probability of the
problem is bounded by the sum of the upper bounds of the success probabilities
over all Sr. In such a way, we are able to calculus a lower bound.

To attack the restricted problem, one idea is to adapt techniques like Zhandry’s
compressed oracle. That technique makes a quantum algorithm capable of “record-
ing” when accesses to a quantum random oracle. That is useful to derive a
quantum lower bound because of its “recording property”. However, Zhandry’s
technique in [31] is with respect to uniform random functions. We therefore
transform the problem into another one (Problem 2), a problem with respect to
unform distribution. In such a way, the compressed oracle technique in quantum
random oracle model (QROM) proposed by Zhandry is successfully exploited.

The transformation technique in this work might be of independent interest-
ing in lower bound exploration in the non-uniform random case.

The transformed problem splits into several sub-problems of the same type
according to c-partition, and each sub-problem can be calculated the corre-
sponding upper bound of the success probability after q quantum queries by

compressed oracle technique. From this, we can show Ω(γ1/6(c) · δ−1/2c ) as a
quantum lower bound.

At last, by the properties of c-partition, we show δc = O(k), where k is the
min-entropy of distribution D. On the other hand, we prove in Section 5 that
k = Θ(log γ(c)) (Proposition 4). We hence obtain Ω(γ1/6(c)/

√
log γ(c)) as a

quantum query complexity lower bound for collision-finding problem in general
non-uniform distributions.

The structure of the paper is as follows. In Section 2, we give some definitions
(including c-partition) and preliminaries. In Section 3, a new collision-finding
algorithm and its correctness are presented. The quantum query complexity of
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the algorithm is also analyzed. In Section 4, a lower bound to collision-finding
problem is proved by adapting Zhandry’s compressed oracle technique. In the last
Section, the relations of parameter γ(c) with min-entropy and collision-entropy
are shown, and some other properties are discussed.

2 Preliminaries

2.1 Notations and Definitions

In this paper, M,N are positive integers, and [N ] is the set {1, . . . , N} and
[M..N ] is the set {M,M + 1, . . . , N} if M ≤ N . The set NM is the collection
of all functions from [M ] to [N ], and f ← NM refers to the uniformly random
sampling from NM . If D is a distribution over [N ], then DM represents the
distribution over NM such that Prf←DM [f(x) = y] = D(y) for any x ∈ [M ]
independently. We denote pi := D(i) and assume, without loss of generality,
that p1 ≥ p2 ≥ · · · ≥ pN due to the property of symmetry.

The following definitions appeared in the literatures and will be referred later.

Definition 1 (Min-Entropy& Collision-Entropy [7]). The min-entropy of
a probabilistic distribution D is k := − log2(maxyD(y)) which is − log2 p1 in

our setting. The collision-entropy of D is defined as β := − log2(
∑N
i=1 p

2
i ).

In the literature of collision-finding, the upper and lower bounds of query
complexities were described in terms of min-entropy k or collision-entropy β.
For example, in classical computation, the best upper bound is O(2β/2) and
the lower bound is Ω(2k/2). In this paper, however, we show that in quantum
world, the complexity of collision-finding in non-uniform distribution may not
be completely characterized by these two parameters. In order to narrow the
gap between upper and lower bounds mentioned above, more properties of non-
uniform distributions have to be considered. With such a point of view, we divide
the set [N ] into several parts according to {p1, . . . , pn}, which is described as
follows.

For any probabilistic distribution D over [N ], we assume its weights satisfying
p1 ≥ p2 ≥ · · · ≥ pN in the whole paper. For any c > 1, we divide [N ] into a
series of subsets S1, S2, . . . , S` with respect to D: S1 is the collection of index
i ∈ [N ] such that pi > p1/c, with p(S1) := p1 and |S1| = n1; S2 then contains
all indexes j ∈ [N ] − S1 such that pj > p(S2)/c, and p(S2) is the largest one
among {pi | i ∈ S2}, and hence p(S2) = pn1+1 (since p1 ≥ p2 ≥ · · · ≥ pN ), and
so forth. In other words, the subset Si’s are in some sense the maximal sets of
indexes whose corresponding weight differ by a constant factor c > 1. Formally,

Definition 2 (c-partition). Given constant c > 1 and a distribution D over
[N ] as above. The c-partition of [N ] with respect to D is a partition {S1, . . . , S`}
of [N ] such that

|Si| := ni, [N ] = ∪`i=1Si, Si ∩ Sj = ∅ (for any i 6= j),

where Si, (i = 1, . . .) recursively defined as follows:
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– Let S1 := {j ∈ [N ] | p1 ≥ pj > p1/c}. To denote n1 := |S1| and p(S1) := p1.
– For i ≥ 2, let

Si := {j ∈ [N ] | p(Si) ≥ pj >
p(Si)

c
}, ni := |Si|. (1)

Where p(Si) ∈ {p1, . . . , pN} satisfies

p(Si) := max{pj : j ∈ [N ]−
i−1⋃
k=1

Sk}. (2)

For any constant c > 1 and a (non-uniform) distribution D over [N ], we
define the so called collision parameter γ(c) with respect to c-partition in the
same notations as above, as follows.

Definition 3 (Collision Parameters & Collision Domains). For any real
number c > 1 and a probabilistic distribution over [N], let c-partition of [N ]
with respect to D as above. The γ(c) defined as follows is called the collision
parameter of D with respect to c, for i = 1, . . . , `,

γi(c) := 1/nip
3(Si), γ(c) := min

i∈[`]
{γi(c)}. (3)

Let k0, referred as the index of collision domain later in context, be the smallest
k0 ∈ [`] such that γ(c) = γk0(c), then Sk0 is called the collision domain of D
with respect to c.

Remark 1. The notion “collision parameter” proposed here will be in place of
“min-entropy and collision-entropy” appeared in current literatures. It heavily
dependants on the distribution D in evaluations. This is similar as “collision-
entropy” in prior work, that also needs the whole information of D to calculate.
In addition, it is not hard to check that for any uniform distribution D and
c > 1, γ1/6(c) is just the same as 2β/3 and 2k/2 in magnitude, the latter is
proved optimal in that case.

In general case (namely in arbitrary non-uniform distribution), comparing
with existing collision variables, the collision parameter proposed here will give
more concise characterizations for both upper and lower queries bounds to
collision-finding problem. Moreover, although the parameter γ(c) is formally
related to the classification of discrete sequence, we are able to prove the fact
that the query complexity in γ(c) is NOT affected in the magnitude as long as
c is a constant. The analysis of these two points is presented in Section 5.

2.2 Grover’s Algorithm and BBHT Algorithm

In [18], Grover proposed a quantum algorithm for database search problem,
demonstrating the powerful acceleration effect of quantum computing on this
issue.
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Lemma 1 (Grover’s Algorithm [18]). Given a boolean function f : [N ] →
{0, 1} such that there is only one x0 ∈ [N ] satisfying f(x0) = 1, there is a quan-
tum algorithm that requires O(

√
N) queries to find x0 in constant probability.

Boyer et al. [10] proposed a generalized algorithm so as to be applied to
the case of multiple solutions to the search problem even without knowing the
number of solutions in advance. That surmounts the restriction in Grover’s algo-
rithm that there exists only one x0 ∈ [N ] satisfying f(x0) = 1. The generalized
algorithm is now referred as BBHT algorithm.

Lemma 2 (BBHT [10]). Given a boolean function f : [N ] → {0, 1} and t =
|f−1(1)|, there is a quantum algorithm that may find x0 ∈ [N ] with f(x0) = 1
with O(

√
N/t) expected queries.

BBHT algorithm starts with uniform superposition state |ψ0〉 =
N−1∑
i=0

1√
N
|i〉

in the workspace. In this algorithm, let T be the solution space of f , that is, the
set of all x that satisfy f(x) = 1, and F := [N ]\T , then the input also can be
written as

|ψ0〉 = α0

∑
i∈T

1√
t
|i〉+ β0

∑
j∈F

1√
N − t

|j〉 .

Where α0 =
√

t
N = sin θ.

After q quantum queries, one gets the superposition as

|ψq〉 = αq
∑
i∈T

1√
t
|i〉+ βq

∑
j∈F

1√
N − t

|j〉 .

Where αq = sin(2q + 1)θ. It was proved that the algorithm may find the pre-
image of 1 with constant probability.

2.3 Some Probabilistic Inequalities

The following are some probabilistic inequalities used in subsequent sections.

Lemma 3 (Höffding’s Inequality). Let X1, . . . , Xn be a sequence of inde-
pendent random variables such that Xi with values in [ai, bi] for i ∈ [n] and
X =

∑n
i=1Xi. If the expectation E(X) = µ, we have, for any t,

Pr[µ−X ≥ t] 6 exp
( −2 t2∑n

i=1 (ai − bi)2
)
.

If we know something about the variance of random variables in addition to
the expectation, in some cases, we can get a tighter bound.

Lemma 4 (Bernstein Inequality). Let X1, . . . , Xn be a sequence of indepen-
dent random variables with values in [0, 1] and X =

∑n
i=1Xi. If the expectation

E(X) = µ and the variances Var(X) = σ2, we then have, for any t,

Pr[µ−X ≥ t] 6 exp
( −t2/2
σ2 + t/3

)
.
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3 A New Algorithm and Its Query Complexity

In Section 3.1, we will review an algorithm in [7], which achieve the optimal
acceleration effect in some specific non-uniform distributions. That is, the query
complexity of the algorithm matches that of the lower bound in some cases.
After careful inspection, we find it is not optimal in general case. That leads us
to some insightful observations to the collision-finding problem of non-uniform
random functions, and motivates the algorithm in this work. In Section 3.3, a
new collision-finding algorithm and its query complexity upper bound in terms
of γ(c) will be presented.

3.1 Motivations

Balogh, Eaton, and Song [7] proposed an excellent collision-finding algorithm
(referred as BES algorithm) based on the collision-entropy β. It applies Ambai-
nis’s quantum walk algorithm [3] as a subroutine for element distinctness. Which
may be sketched (among others) as follows:

BES Algorithm (sketch)

1. Choose M ′ ⊂M arbitrarily such that |M ′| = 2β/2.
2. Run Ambainis’s algorithm for function f |M ′ : [M ′]→ [N ]
3. Output (x, x′) if Ambainis’s algorithm output (x, x′); Otherwise output ⊥

The excellent point of this algorithm lies that, based on the Element Dis-
tinctness problem, the requirement for M is minimal in the sense that even if
f ← DM has only one collision, the algorithm will be able to find it successfully.

Though with very well performance in many cases, however after careful
inspection, the approach is found to have space to improve the acceleration
effect in some setting. The following is an example, though somewhat artificial.
For M,N > 1, let D be a distribution over [N ] such that

p1 :=
1

2n
, p2 = p3 = · · · = pN :=

2n − 1

(N − 1)2n
.

for any integer n > 0. Then for N = 22n, to find a collision by BES algorithm
requires Θ(2β/3) = Θ(22n/3) = Θ(22k/3) queries since the min-entropy k = n in
this case. The query complexity is even much higher than the other bound 2k/2

by Grover’s algorithm at this time.

Observations and motivations. The random distribution will bring us more
information when exploring the query complexity, which is reflected on the fact
that a random function provides additional specific information about the sam-
pling distribution, namely D: {p1, p2, . . . , pN}, and how to optimally make use
of this information to a random function should be the key point to finding more
efficient algorithm than to an arbitrary given function.

For a uniform random function f ← NM , the information is expressed in
a concise manner, namely p1 = p2 = · · · = pN = 1

N . All the information now
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can be explained by the sole parameter N , so the query complexity of a uniform
function is only determined by N (and the other parameter M is to guaran-
tee the existence of collision). While in the case of general non-uniform random
functions, the probabilistic weights of the non-uniform distribution avoids this
advantage. The query complexity of a non-uniform function would heavily de-
pendent on p1, . . . , pN . That is the main ingredients in comparing a non-uniform
distribution with a uniform distribution.

Let’s try to figure out the obstacle in non-uniform case when investigating
the query complexity. For uniformly chosen f ← NM and for any S1, S2 ⊆ [N ]
with |S1| = |S2|, we have

Pr
f←NM

[f(x) = f(x′), f(x) ∈ S1] = Pr
f←NM

[f(x) = f(x′), f(x) ∈ S2]

for any x, x′ ∈ [M ]. However, the equation would do not hold with non-uniform
distributions. This fact may conduct a problem when the former collision-finding
algorithm is adopted to achieve acceleration: For any two sets S1, S2 ⊆ [N ] such
that |S1| = |S2|, when a quantum collision-finding algorithm is adopted, the
cost for finding a collision in S1 may be much less than the cost for finding
a collision in S2. Therefore, it’s necessary to try to avoid spending numerous
quantum queries which may not have much effect in collision-finding. An effective
approach might be to use the Grover’s algorithm while limiting the search scope,
which means that the search range S should not be too large.

On the other side, the search domain S should not be too small. Informally,
the reason why the collision-finding problem is (arguably) potentially easier than
the inverting problem is that there is no prefixed point in the collision problem,
which allows the collision problem to have greater searching freedom, and hence
might reduce its computational complexity to certain extent.

Above all, a balance should be taken when selecting research domain S, and
the specific equilibrium result depends on the underlying non-uniform distribu-
tion.

In view of current algorithms in literatures, the BES algorithm introduced
as above sets [N ] as the search domain, while the others set the search domain
to S = {1} using Grover algorithm. All of them do not make full use of the
information provided by the distributions.

That motivates us to propose the notion of c-partition in this work. By divid-
ing [N ] into a sequence of subsets, the part with the best quantum acceleration
effect is determined according to distribution. An (almost) optimal quantum
collision-finding algorithm is designed for non-uniform functions based on these
arguments.

3.2 A Modification of BBHT Algorithm

In our collision-finding algorithm, the BBHT algorithm will be loaded as a sub-
routine. It expects to have a relation depending on the number of queries to
describe the success probability, while BBHT in [10] provides only the expected
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number of queries when the algorithm succeeds. We have to modify BBHT to
adapt the requirement.

To this purpose, the BBHT Algorithm is slightly changed so as to control
the number of queries allowed. Actually the modification can be seen as a de-
randomised version of BBHT algorithm. The modified algorithm is presented as
Algorithm 1.

Algorithm 1 Modified BBHT Algorithm

Input: A boolean function f : [N ]→ {0, 1} and an integer q > 0.
Output: An element x ∈ [N ] such that f(x) = 1 or ⊥.
1: Do Expt0: Choose x0 ← [N ] uniformly at random
2: For i = 1 to blog3 qc+ 1 to do

Experiment Expti: to perform 3i−1 Grover iterations for uniform superposition
state, and then get xi.

3: Check if there is an x∗ ∈ {x0, x1, . . . , xblog3 qc+1} such that f(x∗) = 1. If so, output
x∗; otherwise, output ⊥.

The algorithm above is composed of several experiments Expti, and the algo-
rithm succeeds as long as one of these experiments succeeds. The total number
Q of queries for the above algorithm is

Q :=

blog3 qc+1∑
i=1

3i−1 + blog3 qc+ 2 < 3.6 q .

The success probability of modified BHHT algorithm is concluded as following.

Theorem 1. For any boolean function f : [N ]→ {0, 1} and t0 := |f−1(1)| > 0,
the algorithm above makes at most 3.6q queries to find a pre-image of 1 with

probability at least min{1/2, q
2t0
3N }.

The proof of Theorem 1 will use the following fact, and the proof is easy and
hence omitted.

Proposition 1. If the increasing sequence {ai}i∈N of reals satisfies ai+1 < 3ai
for all i ∈ N, and limi→+∞ ai = +∞, then for any b > a1, there is an integer
j ∈ N such that b/3 ≤ aj < b.

Proof of Theorem 1. From Lemma 2 and the note there, we see that Expt0
succeeds with probability sin2 θ = t0/N . For any i ≥ 1, the success probability

of Expti is sin2
(

2 · 3i−1 + 1
)
θ.

For our purpose, let a0 := θ, ai := (2 · 3i−1 + 1)θ and b := 3π/4. We have
0 < a0 = θ ≤ π/2 < 3π/4 = b, and ai+1 = (2 · 3i + 1)θ < 3(2 · 3i−1 + 1)θ = 3ai
for all i. Proposition 1 tells that there is a j such that π/4 ≤ aj < 3π/4. Let
j be the least such index. We then have sin2 aj ≥ 1/2. There are two possible
cases for j.

12



1. If j ≤ blog3 qc+ 1, then Exptj succeeds with probability at least 1/2. Hence,
the algorithm succeeds with probability at least 1/2.

2. If j > blog3 qc+1, we will have 0 < ablog3 qc+1 < π/4, since ai is an increasing
sequence and j is the least index such that π/4 ≤ aj < 3π/4. In this case,

0 < 2qθ
3 < (2 · 3blog3 qc + 1)θ = ablog3 qc+1 < π/4. Hence

Pr[Exptblog3 qc+1 succeeds] = sin2
(
(2 · 3blog3 qc + 1)θ

)
> sin2 2qθ

3

∗
≥
(2
√

2

π
· 2 q

3
· sin θ

)2
>
q2t0
3N

.

Where inequality (*) holds since sinαθ ≥ 2
√
2

π ·α·sin θ provided 0 < αθ < π/4
for any α > 0.

The combination of the two cases above establishes the conclusion. �

3.3 A New Collision-Finding Algorithm

We now propose a new collision-finding algorithm for random functions. Ac-
cording to Definition 2, given D is a distribution over [N ], let DM represent the
distribution over NM such that Prf←DM [f(x) = y] = D(y) for any x ∈ [M ] in-
dependently. The codomain [N ] of f ← DM is partitioned into ` parts S1, . . . , S`.
We will use collision domain S := Sk0 as the input of the algorithm. The algo-
rithm is presented as Algorithm 2.

Algorithm 2 Collision-Finding Algorithm in Non-uniform Functions

Input: Collision domain S and a function f : [M ]→ [N ] with f ← DM .
Output: A collision (x1, x2) or ⊥.
1: Construct a function F1 : [M ]→ {0, 1} such that F1(x) = 1 iff f(x) ∈ S. Let L be

a dynamic constructed set which initially is emptyset L = ∅.
2: Run Algorithm 1 with F1 and q1 to search for x such that F1(x) = 1. Query
y := f(x) and check whether y ∈ S. If yes, add (x, y) into L; otherwise discard it.

The process repeats until L contains t pairs of elements and to go to the next
step; or repeats 4 t times, and Algorithm halts with |L| < t and outputs ⊥.

3: Check the elements in L. If there exist (x1, y1), (x2, y2) ∈ L such that x1 6= x2 and
y1 = y2, output (x1, x2) and halt. Otherwise to go to the next step.

4: Construct a function F2 : [M ] → {0, 1} such that F2(x) = 1 iff there exists
(x0, y0) ∈ L such that f(x) = y0 and x 6= x0. Invoke the modified BBHT algorithm
with F2 and q2 to get an x1 ∈ [M ].

5: If there is (x2, y2) ∈ L such that f(x1) = y2, then output (x1, x2); otherwise ⊥.

The parameters t, q1 and q2 in Algorithm 2 will be discussed and determined
later in the context. Essentially, t = 3

√
nk0 (see discussions after Theorem 4),

q1 = O(1/
√
nk0p(Sk0)) (Lemma 5), and q2 = O(1/

√
t p(Sk0)) (Lemma 7).

Now we justify the correctness and the complexity of the algorithm in the
following theorem.

13



Theorem 2. For any constant c > 1, suppose D be a probabilistic distribution
over [N ] with M > 12c2/p(Sk0), where k0 is the index of collision domain defined
in Definition 3, then with O(γ1/6(c)) queries, Algorithm 2 will find a collision
to f ← DM with probability Ω(1).

Remark 2. The algorithm’s requirements for M are described in terms of p(Sk0),
which may not be particularly intuitive. In Section 5, we will show that the
condition of M can be relaxed to M = Ω(23k/2) or M = Ω(N).

The whole subsection 3.4 is devoted to the proof of Theorem 2.

3.4 Proof of Theorem 2

From Definition 2 of c-partition, we know that p(Si) is pn1+...ni−1+1 for any
i ∈ [`], and is, in fact, the maximum one in {pj , j ∈ Si}. Also, we have that
p(Si)/c ≤ pj ≤ p(Si) for arbitrary j ∈ Si.

Let Tf be the set of all the x such that f(x) ∈ S = Sk0 , and its size as
|Tf |. For convenience, we call a function f ← DM well-behaved if and only if
|Tf | > 2Mnk0p(Sk0)/3c. We then have the following conclusion.

Proposition 2. For any constant c > 1, under the condition of Theorem 2, the
random function f is well-behaved with constant probability.

Proof of Proposition 2. For any j ∈ Si and the collision domain S = Sk0 , we
have, according to Definition 3 that

p(Si)/c ≤ pj ≤ p(Si), and nk0p(Sk0)/c ≤
∑
i∈Sk0

pi ≤ nk0p(Sk0).

Let random indicator Tf,x = 1 iff f(x) ∈ Sk0 . It holds that |Tf | =
∑

x∈[M ]

Tf,x,

and for any x ∈ [M ],

E[Tf,x] =
∑
i∈Sk0

pi ≥
nk0p(Sk0)

c
, and

Var[Tf,x] =
( ∑
i∈Sk0

pi

)
·
(

1−
∑
i∈Sk0

pi

)
< nk0p(Sk0).

By Bernstein’s inequality (Lemma 4) and the definition of well-behaved function,
we get

Pr
f←DM

[f is not well-behaved] ≤ Pr
f

[
M E[Tf,x]− |Tf | > Mnk0p(Sk0)/3c

]
≤ exp

( −(Mnk0p(Sk0))2/18c2

Mnk0p(Sk0) +MNk0p(Sk0)/9c

)
= exp

(
− Mnk0p(Sk0)

18c2 + 2c

)
.
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Since M > 12c2

p(Sk0 )
and nk0 ≥ 1, we get f is well-behaved with probability

1− e− 3
5 > 2/5 from inequality above. Which concludes Proposition 2. �

Let suc denote the event that Collision-Finding Algorithm successfully finds
a collision. According to Proposition 2, we have

Pr
f←DM

[suc] =
∑
f

Pr[f ] · Pr[suc | f ] ≥
∑

f : well-behaved

Pr[f ] · Pr[suc | f ]

≥
( ∑
f : well-behaved

Pr[f ]
)
·min

f
{Pr[suc | f is well-behaved]}

>
2

5
·min

f
{Pr[suc | f is well-behaved]}. (4)

The last inequality is inherited from the proof of Proposition 2.
Notice that the key to the success of the algorithm is whether Step 2 can

successfully find t pairs (to denote as suc2) and whether Step 3 or Step 4 can
actually find a collision pair (to denote as suc3 and suc4 respectively). Namely
our algorithm succeeds iff suc2 happens and one of suc3, suc4 happens. That is,

min
f
{Pr[suc | f is well-behaved]}

= min
f :well-behaved

{
Pr[suc2 | f ] · Pr[suc3 ∨ suc4 | f ∧ suc2]

}
≥ min
f :well-behaved

Pr[suc2 | f ] · min
f :well-behaved

Pr[suc3 ∨ suc4 | f ∧ suc2]. (5)

Note that the probabilities in the equation above are determined by f and
the query number q in the corresponding step. For convenience, let

P q1 := min
f :well-behaved

Pr[suc2 | f ], (6)

P q2 := min
f :well-behaved

Pr[suc3 ∨ suc4 | f ∧ suc2]. (7)

We are going to show, for sufficiently large q, that P q1 and P q2 have lower
bounds asymptotically to 1. Which, in turn from (5), implies that promised f is
well-behaved, Algorithm 2 finds the collision with bounded error.

Estimations of P q1 and P q2 . We show the following two results.

Theorem 3. For any constant c > 1 and any well-behaved random function
f ← DM , Algorithm 2 succeeds in Step 2 with the probability at least 1−exp(− t

2 )

after making at most 21.6t
√
c/
√
nk0p(Sk0) queries.

Theorem 4. Suppose it has successfully obtained t pairs in Step 2 of Collision-
Finding Algorithm, then for any constant c > 1 and any well-behaved ran-
dom function f ← DM , the algorithm, which makes at most 32.4

√
c/
√
t p(Sk0)

queries, will find a collision with the probability at least 1
2 · (3/4− e

−t/2).
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According to the two conclusions, the algorithm will find a collision with high
probability with at most O(max(t/

√
nk0p(Sk0), 1/

√
tp(Sk0))) queries. It’s easy

to see that when t := O( 3
√
nk0), namely t√

nk0p(Sk0 )
= Θ( 1√

t p(Sk0 )
), the order of

magnitude of the number of queries reaches the minimum, which will be

O(
t√

nk0p(Sk0)
) = O(

1√
t p(Sk0)

) = O((nk0p
3(Sk0))−1/6) = O(γ1/6(c)) (8)

In other words, for t := 3
√
nk0 , the algorithm with O(γ1/6(c)) queries may suc-

cessfully find a collision with probability Ω(1).
We also obtain the following straightforward conclusion.

Lemma 5. For any well-behaved random function f , the modified BBHT algo-
rithm that makes at most q1 := 5.4

√
c/
√
nk0p(Sk0) queries will find a pre-image

of 1 for F1 with probability at least 1/2.

We now give the proof of Theorem 3 by combining the Höffding’s inequality
with the proposition.

Proof of Theorem 3. Let the modified BBHT algorithm be repeated in Step
2 independently 4t times, then the total query number is at most q, where
q = 4 t q1 = 21.6 t ·

√
c/
√
nk0p(Sk0).

Let random indicator Xi be 1 iff the i’th run of the modified BBHT success-
fully gets an element in L, and |L| =

∑4 t
i=1Xi. The expected value E(|L|) ≥ 2 t.

By Höffding’s inequality,

P q1 = 1− Pr[|L| < t] ≥ 1− Pr[E[|L|]− |L| ≥ t] ≥ 1− exp(− t
2

).

Which ends the proof of Theorem 3. �

The remaining part of this subsection is to prove Theorem 4. We have to
make some preparations.

We classify the list L := {(xi, yi) | i = 1, . . . , t} obtained in Step 2 into four
cases. We call a pair (x, y) white if |f−1(y)| ≥Mp(Sk0)/6c, for convenience:

– Case 1: There exists i, j, i 6= j such that (xi, yi) = (xj , yj) ∈ L.
– Case 2: For any i 6= j, xi 6= xj in L and there exist i, j such that yi = yj .

Hence, list L contains a collision in this case.
– Case 3: For any i, j, i 6= j, it holds xi 6= xj , yi 6= yj in L, and the total

number of white pairs is at least t/4.
– Case 4: For any i, j, i 6= j, it holds xi 6= xj , yi 6= yj in L, and the total

number of white pairs is less than t/4.

Before to analyze the happening possibility of each case, we investigate each
pair (x, y) in L getting in the algorithm. Since each x there is the output of mod-
ified BBHT algorithm, x is hence uniformly sampled from the solution space Tf
of F1. Denote Pi as the probability that L is in case i, for i = 1, 2, 3, 4. Then we
discuss case by case as follows.

Case 1: We show that L is in case 1 with small probability P1.
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Lemma 6. For any well-behaved random function f and t <
√
nk0 , we have

P1 < 1/4.

Proof of Lemma 6. Since each xi is uniform from Tf , we have:

P1 = 1−
t−1∏
i=0

|Tf | − i
|Tf |

≤ 1−
t−1∏
i=0

(
1− 3 c i

2Mnk0p(Sk0)

)
< 1− exp

(
−

t∑
i=1

3 c i

2Mnk0p(Sk0)

)
<

3 c2 (t+ 1)2

4Mnk0p(Sk0)
< 1/4.

Where M > 12 c2/p(Sk0) is used in the last inequality above. �

Case 2: It’s easy to see that in this case, our algorithm will output a collision
with probability 1.
Case 3: In this case, yi 6= yj for any i, j, since M > 12 c2/p(Sk0) and the number
of white pairs is at least t/4, the total number of solutions for F2 is at least

t

4
·
(M p(Sk0)

6c
− 1
)

+
3t

4
· 0 > 1

2
· M tp(Sk0)

24c
.

By Theorem 1, we have in this case:

Lemma 7. For any well-behaved random function f , Algorithm 2, making at
most q2 := 32.4

√
c/
√
t p(Sk0) queries, will find a pre-image of 1 for F2 with

error at most 1/2.

Case 4: We show that P4 is negligible in t as follows.

Lemma 8. Suppose f ← DM is well-behaved and L contains t pairs in Step 2,
then the probability that L contains at most t/4 white pairs is at most e−t/2.

Proof of Lemma 8. Let’s calculate the probability of getting a white pair from
sampling in an experiment. By the meaning of white pair, we know:

Pr[(xi, yi) is white] ≥
|Tf | − (nk0 − 1) · M p(Sk0 )

6c

|Tf |
>

3

4
.

Let `w be the number of white pairs in L. Since each pair is obtained inde-
pendently at random, by repeating t times, the expected value of `w is at least
3t/4. Again, by Höffding’s inequality, we have:

P4 ≤ Pr[L contains at most t/4 white pairs]

≤ Pr[E[`w]− `w > t/2]

≤ exp
(
−

2 · t
2

4

t

)
= e−t/2.
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That ends the proof of Lemma 8. �

To combine the results discussed as above, we finally come to the proof of
Theorem 4, as follows.

Proof of Theorem 4. Combining with the propositions above, we have, within at
most 32.4

√
c/
√
t p(Sk0) queries, the success probability in Step 3 or 4 is at least

P q2 =

4∑
i=1

Pr[L is in Case i] · Pr[suc3 ∨ suc4 | f ∧ L is in Case i]

> 1 · P2 +
1

2
· P3 >

1

2
· (P2 + P3)

>
1

2
· (3/4− e−t/2).

As desired in Theorem 4. �

Overall, the conclusions of Equations (4), (5), (6), (7), together with Theorem
3 and Theorem 4 will finally give the result in Theorem 2.

4 The Lower Bound

In this section, we are going to exploit a query complexity lower bound, during
which the compressed oracle technique is adapted. For this purpose, we firstly
introduce Zhandry’s compressed oracle in Section 4.1. We then turn the collision-
finding problem with respect to non-uniform functions into another problem with
uniform functions, for which we are able to use compressed oracle technique to
give a lower bound to the transformed problem as shown in Theorem 6 in Section
4.3. The relation of their success probabilities for two problems is then shown
in Section 4.2. With Corollary 1 (a variant of Theorem 6), we explore the lower
bound in Section 4.4 and get the main result in Theorem 7. In last subsection
we discuss the parameter δc appeared in Theorem 7, which leads to an almost
tight lower bound.

4.1 Zhandry’s Compressed Oracle

There are two models of oracles in quantum computing called, respectively, the
standard oracle and phase oracle. These two are widely used in quantum com-
putation in the black-box setting. By using the Hadamard transformation, these
two oracles have been shown to be completely equivalent, so only phase oracle
will be introduced here.

Let AO be a q-query quantum algorithm which is given oracle access to a
function O from NM . Let |ψstart〉 be the input state for AO and |ψend〉 the
output state before the final measurement. A quantum computation performed
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by A with q queries is generally described as the product of a series of unitary
transformations, in the following form:

|ψend〉 = UqO . . . U1OU0|ψstart〉.

Where U0, . . . , Uq are some unitary operators independent of the input x. Let
|ψi〉 denote the state before the i’th query, which is

|ψi〉 =
∑
x,y,z

aix,y,z|x, y, z〉.

Here x denotes the input register, y is the output register and z is some auxiliary
bits.

A Phase oracle is a unitary transformation as follows:∑
x,y,z

ax,y,z|x, y, z〉 →
∑
x,y,z

(−1)y·f(x)ax,y,z|x, y, z〉

for any random function f → NM .
Zhandry discovered that O could be written in another form, in which f

would be written as a truth table |f〉 = |f(0), f(1) . . . f(M − 1)〉, and a query
to O should be considered as a quantum entanglement as follows:∑
x,y,z

ax,y,z|x, y, z〉 ⊗
∑
f

1√
NM
|f〉 →

∑
x,y,z

(−1)y·f(x)ax,y,z|x, y, z〉 ⊗
∑
f

1√
NM
|f〉.

Compressed phase oracle: In the model of compressed phase oracle [31],
the superposition state

∑
|f〉 in phase oracle above will be replaced by a database

D which is initialized as D := ∅. When the adversary makes a query to the
compressed phase oracleO on |x, y, z,D〉, it performs in sequence of the following
steps:

1. If there is no (x, y∗) ∈ D, it performs the map:

|x, y, z〉 ⊗ |D〉 → |x, y, z〉 ⊗ 1√
2n

∑
w

|D ∪ (x,w)〉.

If there is (x, y0) ∈ D, then check whether binary pairs in D should be
deleted. More specifically, it performs the map:

1√
2n

∑
y0

(−1)z
′·y0 |D ∪ (x, y0)〉 →

{
1√
2n

∑
y0

(−1)z
′·y0 |D ∪ (x, y0)〉, if z′ 6= 0;

|D〉, if z′ = 0.

2. Perform the following unitary transformation:

|x, y, z〉 ⊗ |D ∪ (x,w)〉 → (−1)y·w|x, y, z〉 ⊗ |D ∪ (x,w)〉.

3. Perform the Step 1 again.
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Zhandry proved that the two random oracles are equivalent. That is, for any
adversary A, phase oracle and compressed phase oracle are perfectly indistin-
guishable. Moreover, under the compressed oracle model, the database attached
is very likely to record the information obtained by the adversary. The details,
verbatim quoted from the original paper, are as follows:

Lemma 9 (Lemma 5 in [31]). Consider a quantum algorithm A making
queries to a random oracle H and outputting tuples (x1 . . . xk, y1, . . . yk, z). Let R
be a collection of such tuples. Suppose with probability p, A outputs a tuple such
that (1) the tuple is in R and (2) H(xi) = yi for all i. Now consider running A
with the compressed phase oracle, and suppose the database D is measured after
A produces its output. Let p′ be the probability that (1) the tuple is in R, and (2)
D(xi) = yi for all i (and in particular D(xi) 6= ⊥). Then

√
p <
√
p′ +

√
k/2n.

This indicates compressed oracle’s record reliability to ensure that if A can find
a solution to a problem with a non-negligible probability, it can also be found in
D with a non-negligible probability (provided that k is small enough).

In the collision-finding problem, the output of any quantum algorithm will
be a binary pair, namely k = 2. This hints us a new way to seek about lower
bound. Although the density matrices [2] and the polynomials [29] approaches
are usually adapted to derive the quantum lower bound proofs. Zhandry’s tech-
nique allows to turn attentions to the changes in D after each query (notice any
unitary operators Uj can not change the database D), which would be, in some
cases, more intuitive and convenient [20,23].

4.2 Transformation from Non-Uniform Case to Uniform Case

Since the compressed oracle is equivalent to the phase oracle only for the uniform
random functions and it might not be easy directly to apply in non-uniform
setting, we therefore have to turn the collision-finding problem in non-uniform
setting into another problem in uniform setting with a larger range.

For a given random distribution D over [N ], we have c-partition defined as
in Definition 2 and Definition 3. With the same notations as in Definitions, we
pose the following problem.

Problem 1. For any r ∈ [`], let f : [M ]→ [N ] be a function chosen according to
non-uniform distribution DM , the problem is to find a collision (x, x′) such that
f(x) = f(x′) ∈ Sr.

The problem is the same as the general collision-finding problem except that a
constraint f(x) ∈ Sr is posed. It is easy to see that if an adversary A successfully
finds a collision in general, then Problem 1 should be solved for some Sr. Hence,
the success probability of A is bounded by the SUM of the upper bounds of the
success probabilities for solving Problem 1 over all Sr (as shown in Inequality
(26) in Section 4.4). In this way, we will show the number of queries necessary
for collision-finding.

In order to estimate the success probabilities to Problem 1, we turn to the
following corresponding problem.
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Problem 2. For the r ∈ [`], let g : [M ] → [KN ] be a function chosen from
(KN)M uniformly at random, where K is a large integer (cf. Theorem 5 for the
possible values of K). To define si ⊆ [KN ] as follows (i = 1, . . . , N + 1).

si :=



[
1 .. bKNp1c

]
, for i = 1;[

1 +
i−1∑
j=1

bKNpjc ..
i∑

j=1

bKNpjc
]
, for i ∈ [2, N ];

[KN ] \ (
N⋃
i=1

si), for i = N + 1.

The problem is to find two distinct inputs x, x′ such that g(x), g(x′) ∈ sk for
some k ∈ Sr.

The following result reveals the relation between these two problems above:

Theorem 5. If there exists a q-query quantum algorithm A that solves Problem
1 with probability P1, then there exists a q-query quantum algorithm B that solves
Problem 2 with probability P2 such that

P1 −P2 ≤
2 q2

K
.

It tells us that, for large enoughK, if there exists an algorithmA solving Problem
1 with success probability Ω(1), then there will have an algorithm B solving
Problem 2 successfully with probability Ω(1).

In other words, if we get an upper bound of success probability with q queries
solving Problem 2, we will get an upper bound of success probability with q
queries solving Problem 1. That is, we use Problem 2 to functions with uniform
distributions to simulate the problem 1 to functions with non-uniform distribu-
tions. Moreover, the larger the K is, the better the simulation does.

Proof of Theorem 5. Firstly, assume that all weights pi of distribution D are
rational numbers for all i ∈ [N ]. There are large enough K such that all KNpi
are positive integers. To set K as one of such kind of integers in this case.

For any g ← (KN)M , to define the function hg such that hg(x) := y iff
g(x) ∈ sy for any x ∈ [M ] and y ∈ [N ].

In this way, since for any i ∈ [N ], KNpi is a positive integer, thus for any
x ∈ [M ], y ∈ [N ],

Pr
g←(KN)M

[hg(x) = y] = Pr
g←(KN)M

[g(x) ∈ sy] =
bKNpyc
KN

=
KNpy
KN

= py. (9)

That means, if A only makes oracle access to hg, the function hg defined is
a non-uniform random function according to DM . Since Problem 2 is to find
a collision (x, x′) on hg and hg(x) ∈ Sr. We get, in this case, Problem 2 is
equivalent to Problem 1.

We now turn to the case when some pi are irrational numbers. Intuitively
from (9), as long as K large enough, hg previously defined for g ← (KN)M and
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f ← DM are tending to be equivalent, which means that any quantum algorithm
will take great cost to distinguish between them (and the cost increases with K),
the success probabilities in two problems are almost equal. Formally, we make
the following calculus.

For any g ← (KN)M , to set function h′g as follows: For any x ∈ [M ],

h′g(x) :=

{
y, if g(x) ∈ sy and y ∈ [N ] ;

z, if g(x) ∈ sN+1, and z ← D′ .

Where D′(y) := (KNpy − bKNpyc)/|sN+1| for any y ∈ [N ].
We see that for any x ∈ [M ], y ∈ [N ], with respect to g ← (KN)M , we have

Pr[h′g(x) = y]

= 1 · Pr[g(x) ∈ sy] + Pr[g(x) ∈ sN + 1] · Pr[h′g(x) = y | g(x) ∈ sN+1]

=
bKNpyc
KN

+
KNpy − bKNpyc

|sN+1|
· |sN+1|
KN

=
KNpy
KN

= py.

In other words, h′g is exactly a non-uniform random function according to DM .
Suppose B wants to solve Problem 2 for a uniform random function g, then

B can produce a function h′g by using the above method and only give oracle
access to A. Let P1 be the probability that A finds a solution of Problem 1:
(x1, x2), and P2 be the probability that (x1, x2) is also a solution of Problem 2.
We have

P1 := Pr[(x1, x2), x1 6= x2, h(x1) = h(x2) ∈ Sr : h← DM , (x1, x2)← Ah]

= Pr[(x1, x2), x1 6= x2, h
′
g(x1) = h′g(x2) ∈ Sr : g ← (KN)M , (x1, x2)← Ah

′
g ]

< Pr
g←(KN)M

[(x1, x2), x1 6= x2, g(x1) = g(x2) ∈ si, i ∈ Sr : (x1, x2)← Bg]

+ Pr[(x1, x2),∃xi s.t. g(xi) ∈ sN+1 : g ← (KN)M , (x1, x2)← Bg]
≤ P2 + 2 Pr[g(x) ∈ sN+1 : g ← (KN)M , x← Cg] = P2 + 2 Pr[find]. (10)

Where C be any algorithm inverting g and

Pr[find] := Pr[g(x) ∈ sN+1 : g ← (KN)M , x← Cg].

It should be noted from (10) that the gap between P1 and P2 is not excess
two times the success probability of the database search problem for uniformly

random function. Since |sN+1|
KN < 1

K , according to lower bound of database search
problem [31], after q queries, we have

Pr[find] ≤ q2

K
.

As desired. �

The result in Theorem 5 allows us, when considering the collision-finding
problem, to focus on Problem 2, which is with respect to uniform random func-
tions. That also makes the compressed oracle technology useful for our purpose.
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4.3 Lower Bound for Problem 2

The main result in this subsection is following theorem.

Theorem 6. Given r > 0 and distribution D as in last section, for any quantum

algorithm, Ω(γ
1/6
r (c)) quantum queries are necessary to solve Problem 2 with

constant probability.

Let S′r :=
⋃
j∈Sr

sj and sj defined in last section, then we have the following

lemma. The proof uses the compressed oracle technique, and mainly adopts the
ideas from [23] and [31].

Lemma 10. For any quantum algorithm that makes q queries to compressed
random oracle O, the probability that D contains at least i pre-images of S′r

after the q-th query is at most
(
eq
√
nrp(Sr)/i

)i
.

Proof of Lemma 10. Let’s calculate the probability of getting x that satisfies
g(x) ∈ S′r after q quantum queries, where S′r :=

⋃
j∈Sr

sj .

For this purpose, we use the same idea as in [31] to classify the basic states.
Suppose just before q’th query the joint state as

|ψ〉 =
∑

x,y,z,D

αx,y,z,D|x, y, z〉 ⊗ |D〉,

then we can divide the basic states into four kinds P,Q,R, S. Where

1. P be the projection onto the span of all basic states |x, y, z〉 ⊗ |D〉 with
(x′, y0) ∈ D and y0 ∈ S′r. (In this way, ‖P |ψ〉‖2 is just the probability that
D contains at least one pre-image of S′r)

2. Q be the projection onto the span of all states |x, y, z〉 ⊗ |D〉 such that (a)
there is no (x′, y0) ∈ D, y0 ∈ S′r, and (b) there is no (x, y′) ∈ D, and (c)
y 6= 0.

3. R be the projection onto the span of all states |x, y, z〉⊗|D〉 satisfying that (a)
there is (x, y′) ∈ D, y ∈ [KN ]/S′r, and (b) there is not (x′, y0) ∈ D, y0 ∈ S′r
and (c) y 6= 0.

4. T be the projection onto the span of all states |x, y, z〉 ⊗ |D〉 such that (a)
D does not contain (x′, y0) and (b) y = 0.

According to the classification above, it is easy to see that

‖POP |ψ〉‖ ≤ ‖P |ψ〉‖, and ‖POT |ψ〉‖ = 0 . (11)

For convenience, we call a pair (x, y) good iff y ∈ S′r for the rest of our proof.
For a basic states |x, y, z〉 ⊗ |D〉, there is an extra good pair in D after a query
iff it’s in the support of Q or R.
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Consider Q. From the definitions of P,Q, we see that

POQ|ψ〉 = P ·
∑

x,y 6=0,z,D,w

αx,y,z,D|x, y, z〉 ⊗
(−1)y·w√
KN

|D ∪ (x,w)〉

=
∑

x,y 6=0,z,D

∑
w∈S′r

(
(−1)y·w√
KN

αx,y,z,D)|x, y, z〉 ⊗ |D ∪ (x,w)〉.

Therefore, ‖POQ|ψ〉‖2 ≤ |S
′
r|

KN ‖Q|ψ〉‖
2. Where

|S′r| = |sn1+···+nr−1+1|+ · · ·+ |sn1+···+nr−1+nr | ≤ nrKNp(Sr).

That is,

‖POQ|ψ〉‖ ≤
√
nrp(Sr)‖Q|ψ〉‖ . (12)

On the other hand, there is:

POR|ψ〉 = PO
∑

x,y,z,D,y′

αx,y,z,D,y′ |x, y, z〉 ⊗ |D ∪ (x, y′)〉

=
∑

x,y,z,D

( ∑
w∈S′r

∑
y′

− (−1)y·(w⊕y
′)

KN
αx,y,z,D,y′

)
|x, y, z〉 ⊗ |D ∪ (x,w)〉

Then from the Cauchy-Schwartz inequality,

‖POR|ψ〉‖2 ≤ K2N2nrp(Sr)

K2N2
·

∑
x,y,z,D,y′

‖αx,y,z,D,y′‖2 = nrp(Sr)‖R|ψ〉‖2.

Therefore,

‖POR|ψ〉‖ ≤
√
nrp(Sr)‖R|ψ〉‖ . (13)

In conclusion, we have: ‖PO|ψ〉‖ ≤ ‖P |ψ〉‖ +
√
nrp(Sr), that is, after q

queries, D contains a pre-image of S′r with probability at most O(q2nrp(Sr)).
Using the similar idea from [23], one may extend the conclusion above to the

case that D contains at least i pre-image of S′r. We can think of the pre-images
numbers of S′r in D and i as a counter, which is initially set to i = 0. Each query
is going to turn a binary pair in D that doesn’t meet the criteria into one that
meets the requirements with probability O(

√
nrp(Sr)), and then to increment

the number in the counter by 1.
More formally, we define Pi be the projection onto the span of all states

|x, y, z〉 ⊗ |D〉 with D containing at least i pre-image of S′r. Then we get

‖PiO|ψ〉‖ ≤ ‖Pi|ψ〉‖+
√
nrp(Sr)‖P ′i−1|ψ〉‖ ≤ ‖Pi|ψ〉‖+

√
nrp(Sr)‖Pi−1|ψ〉‖

for any i ≥ 1. The notation P ′i−1 indicates that the projection onto the span of
all states |x, y, z〉 ⊗ |D〉 with D containing exact i− 1 pre-image of S′r.
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It’s obvious that ‖P ′i−1|ψ〉‖ ≤ ‖Pi−1|ψ〉‖ and ‖P ′j |ψstart〉‖ = 0 for any integer
j. After q quantum queries that D contains at least i pre-image iff the counter
has changed at least i times. Then after q quantum queries, it holds that, by
Stirling’s approximation,

‖Pi|ψend〉‖ ≤ ‖Pi|ψstart〉‖+ C(q, i) ·
(√

nrp(Sr)
)i

< (q
√
nrp(Sr))

i/i! <
(
e q
√
nrp(Sr)/i

)i
. (14)

Hence we get the conclusion of Lemma 10. �

By the similar ideas as above, we can also get the following result.

Lemma 11. For any quantum algorithm making queries to compressed O, then
after one query to a basic states |x, y, z〉⊗ |D〉, the amplitude on D containing a
solution of Problem 2 can only increase by O(

√
i p(Sr)) , where i is the number

of good pairs in database D.

Proof of Lemma 11. We only need to make minor changes to the partition
projection for our purpose. To divide the basic states into the following kinds
P ′, Q′, R′, T ′ as follows.

1. P ′ be the projection onto the span of all states that ∃(x1, y1), (x2, y2) ∈ D
satisfying y1, y2 ∈ sk, sk ⊆ S′r(namely D contains a solution of Problem 2).

2. Q′ be the projection onto the span of all states |x, y, z〉⊗ |D〉 satisfying that
(a) ¬∃(x1, y1), (x2, y2) ∈ D such that y1, y2 ∈ sk, sk ⊆ S′r.
(b) ¬∃(x, y′) ∈ D, and (c) y 6= 0 .

3. R′ be the projection onto the span of all state |x, y, z〉 ⊗ |D〉 satisfies that
(a) ¬∃(x1, y1), (x2, y2) ∈ D such that y1, y2 ∈ sk, sk ⊆ S′r.
(b) ∃(x, y′) ∈ D whether y′ is a member of S′r or not, and (c) y 6= 0.

4. T ′ be the projection onto the span of all states |x, y, z〉⊗ |D〉 satisfying that
¬∃(x1, y1), (x2, y2) ∈ D such that y1, y2 ∈ sk, sk ⊆ S′r and y = 0 .

Any basic states must be contained in one of the support of P ′, Q′, R′, T ′.
Similarly it’s obvious that

‖P ′O|x, y, z〉 ⊗ |D〉‖ ≤ ‖P ′|x, y, z〉 ⊗ |D〉‖

for basic state |x, y, z〉 ⊗ |D〉 in the support of P ′ and

‖P ′O|x, y, z〉 ⊗ |D〉‖ = 0

for basic state |x, y, z〉⊗ |D〉 in the support of T ′, which means that the Lemma
11 holds in these cases.

Since the proofs for the remaining two cases are similar and the results are
the same, only one of them is proved here. For basic state |x, y, z〉 ⊗ |D〉 in the
support of Q′, after q’th queries, a new binary pair will be added to the database,
so we have

P ′O|x, y, z〉 ⊗ |D〉 = |x, y, z〉 ⊗
∑
w∈S

(−1)y·w√
KN

|D ∪ (x,w)〉. (15)
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Where S is a union of skj which satisfies that ∃(x, y) ∈ D, y ∈ skj . We denote
K as the collection of all such kj and K ⊆ Sr. Then S =

⋃
k∈K

sk. The cardinality

of S is determined by the composition of D in the basic state. Since D contains
exactly i good pairs just before q’th query, namely |K| = i, and

|S| =
∑
k∈K
bKNpkc ≤ iKNp(Sr). (16)

From (15) and (16) we get

‖P ′O|x, y, z〉 ⊗ |D〉‖2 ≤ |S|
KN

≤ i p(Sr).

In other words, we have

‖P ′O|x, y, z〉 ⊗ |D〉‖ ≤
√
i p(Sr) . (17)

In conclusion, for any quantum algorithm that make queries to compress
random oracle O, then after one query to a basic states |x, y, z〉 ⊗ |D〉, the am-
plitude on D containing a solution of Problem 2 can only increase by

√
ip(Sr) ,

where i is the number of good pairs in database D. That concludes Lemma 11. �

To denote Φi as the set of databases containing exactly i good pairs. The
discussions above allow us to get

‖P ′O|ψ〉‖ ≤ ‖P ′|ψ〉‖+ ‖P ′O · (I − P ′)|ψ〉‖

≤ ‖P ′|ψ〉‖+
∥∥∥ nr∑
i=1

(√
i p(Sr)

∑
x,y,z,D∈Φi

αx,y,z,D|x, y, z〉 ⊗ |D〉
)∥∥∥ (18)

≤ ‖P ′|ψ〉‖+
( nr∑
i=1

(
i p(Sr)

∑
x,y,z,D∈Φi

α2
x,y,z,D

))1/2
.

With these preparations, we finally come to the proof of Theorem 6.

Proof of Theorem 6. Let’s start when nr = Θ(1), namely there exists a constant
C > 0 such that nr < C.

In this case, we denote Φ′ the set of databases which contains at least one
good pair just before q-th query, then:( nr∑

i=1

(
i p(Sr)

∑
x,y,z,D∈Φi

α2
x,y,z,D

))1/2
≤
(
C p(Sr)

∑
x,y,z,D∈Φ′

α2
x,y,z,D

)1/2
≤
(
C p(Sr) · e q

√
C p(Sr)

)1/2
≤ e1/2C3/4q1/2p3/4(Sr).

Together with (18), we get

‖P ′O|ψ〉‖ ≤ ‖P ′|ψ〉‖+ e1/2C3/4q1/2p3/4(Sr).
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So after q queries, the success probability P2 in solving Problem 2, as defined in
Theorem 5, will be

√
P2 = ‖P ′|ψend〉‖ ≤ ‖P ′|ψstart〉‖+

q∑
i=1

e1/2C3/4q1/2p3/4(Sr)

< e1/2C3/4q3/2p3/4(Sr).

So in this case, a quantum algorithm with q queries can solve Problem 2 with
probability at most O(q3p3/2(Sr)). In other words, Ω((nrp

3(Sr))
−1/6) quantum

queries are necessary to solve Problem 2 with constant probability for any quan-
tum algorithm.

Now, we consider the remaining case when nr is not a constant. That is, it
holds that 1/nr = o(1).

Let ji := max{2e · i
√
nrp(Sr), n

1/4
r } for any i ∈ [q]. We have( nr∑

i=1

(
i p(Sr)

∑
x,y,z,D∈Φi

α2
x,y,z,D

))1/2

≤

√√√√jq−1∑
i=1

(
i p(Sr)

∑
x,y,z,D∈Φi

α2
x,y,z,D

)
+

√√√√ nr∑
i=jq

(
i p(Sr)

∑
x,y,z,D∈Φi

α2
x,y,z,D

)
≤
√
jqp(Sr)

∑
x,y,z,D∈Φi,i<jq

α2
x,y,z,D +

√
nrp(Sr)

∑
x,y,z,D∈Φi,i≥jq

α2
x,y,z,D

≤
√
jqp(Sr) · 1 +

√
nrp(Sr) ·

(e q√nrp(Sr)
jq

)jq
.

Again with (18), we get, in this case

‖P ′O|ψ〉‖ ≤ ‖P ′|ψ〉‖+
√
jqp(Sr) +

√
nrp(Sr) ·

(e q√nrp(Sr)
jq

)jq
. (19)

Since ji is an increasing sequence, it has

‖P ′|ψend〉‖ ≤
q∑
i=1

(√
jip(Sr) · 1 +

√
nrp(Sr) ·

(e i√nrp(Sr)
ji

)ji)
=

q∑
i=1

√
jip(Sr) · 1 +

q∑
i=1

√
nrp(Sr) ·

(e i√nrp(Sr)
ji

)ji
≤
√
jqp(Sr) +

q∑
i=1

√
nrp(Sr) ·

(e i√nrp(Sr)
ji

)ji
. (20)

According to the definition of ji, it holds that

√
nrp(Sr) ·

(e i√nrp(Sr)
ji

)ji
≤
√
nrp(Sr) ·

(1

2

)n1/4
r ,
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and hence

q∑
i=1

√
nrp(Sr) ·

(e i√nrp(Sr)
ji

)ji
≤ q
√
nrp(Sr) ·

(1

2

)n1/4
r

. (21)

Since one may, in order for solving Problem 2, use Grover’s algorithm twice
to find two distinct inputs x, x′ such that g(x), g(x′) ∈ si for i ∈ Sr. In other
words, there is a ready upper bound O(p−1/2(Sr)) for Problem 2, so we assume
q = O(p−1/2(Sr)). These, together with (20) and (21), give

√
P2 = ‖P ′|ψend〉‖ ≤ q

√
jqp(Sr) +

q∑
i=1

√
nrp(Sr) ·

(e i√nrp(Sr)
ji

)ji
≤ q
√
jqp(Sr) + q

√
nrp(Sr) ·

(1

2

)n1/4
r

≤ q
√
jqp(Sr) + n1/2r ·

(1

2

)n1/4
r

. (22)

From jq = max{2e · q
√
nrp(Sr), n

1/4
r } ≥ n1/4r , it holds that√

jq
nr
≥ n−3/8r = Ω(2−n

1/4
r ).

That is, 1/2n
1/4
r = O(

√
jq/nr). So we have

√
P2 ≤ q

√
jqp(Sr) + q

√
nrp(Sr) ·

(1

2

)n1/4
r

= q
√
nrp(Sr) ·

√
jq
nr

+ q
√
nrp(Sr) ·

(1

2

)n1/4
r

≤ q
√
nrp(Sr) ·

(√ jq
nr

+
(1

2

)n1/4
r
)

≤ q
√
nrp(Sr) · (1 +O(1))

√
jq
nr

= O
(
q
√
jqp(Sr)

)
. (23)

Next we consider two cases according to the value of jq.

When jq = n
1/4
r , from (23), we have

P2 = ‖P ′|ψend〉‖2 ≤ O
(
q2jqp(Sr)

)
= O

(
q2n1/4r p(Sr)

)
. (24)

However, when jq = n
1/4
r , we have

q <
n
1/4
r

2e
√
nrp(Sr)

.
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These, together with (24) and nr = ω(1), give

P2 = O(n−1/4r ) = o(1).

When jq = 2e · q
√
nrp(Sr), we have

P2 = O
(
q3n1/2r p3/2(Sr)

)
. (25)

It is not hard to see that the Equations (24) and (25) and the discussions
above indicate that if the success probability for a collision-finding quantum
algorithm with q queries is a constant, it should be

q = Ω((nrp
3(Sr))

−1/6) = Ω(γ1/6r ) .

Which is the conclusion of Theorem 6. �

As a variant of Theorem 6, the following result is obtained directly from
Equations (24) and (25).

Corollary 1. For any quantum algorithm by making q queries, the success prob-

ability in solving Problem 2 is at most O(max{q3n1/2r p3/2(Sr), q
2n

1/4
r p(Sr)}).

In the next section, we will work out the lower bound for collision-finding in
the non-uniform random functions by this corollary.

4.4 The Lower Bound for Collision-Finding

We now explore a quantum query lower bound for collision-finding problem with
respect to non-uniform distributions.

Recall the definition that S′r :=
⋃
j∈Sr

sj as in last section, we get

Pr
f←DM

[
f(x) = f(x′), x 6= x′ : (x, x′)← Af

]
= Pr
f←DM

[f(x) = f(x′), x 6= x′, f(x) ∈
⋃̀
r=1

Sr : (x, x′)← Af ] (26)

≤
∑̀
r=1

Pr
f←DM

[f(x) = f(x′), x 6= x′, f(x) ∈ Sr : (x, x′)← Af ]

According to Theorem 5, there is an algorithm B such that

Pr
f←DM

[f(x) = f(x′), x 6= x′, f(x) ∈ Sr : (x, x′)← Af ]

≤ Pr
g←(KN)M

[g(x), g(x′) ∈ sj , x 6= x′, sj ⊂ S′r : (x, x′)← Bg] + q2/K
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which in turn implies from (26)

Pr
f←DM

[
f(x) = f(x′), x 6= x′ : (x, x′)← Af

]
≤
∑̀
r=1

Pr
g←(KN)M

[g(x), g(x′) ∈ sj , x 6= x′, sj ⊂ S′r : (x, x′)← Bg] + `q2/K.

By Corollary 1, we have

Pr[g(x), g(x′) ∈ sj , x 6= x′, sj ⊂ S′r : (x, x′)← Bg, g ← (KN)M ]

≤ O(max{q3n1/2r p3/2(Sr), q
2n1/3r p(Sr)}) (27)

for any i ∈ [`]. To combine Inequalities (26) and (27), we have

Pr[f(x) = f(x′), x 6= x′ : (x, x′)← Af , f ← DM ]

≤ `q2/K +
∑̀
r=1

O
(

max{q3n1/2r p3/2(Sr), q
2n1/3r p(Sr)}

)
(28)

≤ O
(∑̀
r=1

max{q3n1/2r p3/2(Sr), q
2n1/3r p(Sr)}

)
.

The last inequality holds since `/K can be as small as required with large enough
K. In fact, when distribution D is given, ` is fixed.

By the upper bound for q in Theorem 2, we assume q < γ1/6(c) ≤ γ
1/6
r (c).

That implies

max{q3n1/2r p3/2p(Sr), q
2n1/3r p(Sr)} = q2n1/3r p(Sr).

for any any r ∈ [`]. Hence from Inequality (28), we have:

Pr
f←DM

[f(x) = f(x′), x 6= x′ : (x, x′)← Af ] ≤ O(q2
∑̀
r=1

n1/3r p(Sr))

= O(q2 · δc max
r
{(nrp3(Sr))

1/3}) = O(δcq
2γ−1/3(c)). (29)

Where

δc :=

∑̀
r=1

(nrp
3(Sr))

1/3

maxr{(nrp3(Sr))1/3}
=

∑̀
r=1

γ
−1/3
r (c)

γ−1/3(c)
.

The Inequality (29) implies that if success probability for collision-finding is a

constant, then q = Ω(γ1/6(c) · δ−1/2c ). This gives the main conclusion of this
section as follows.

Theorem 7. For any quantum collision-finding algorithm with respect to a non-

uniform distribution, Ω(γ1/6(c) · δ−1/2c ) queries are necessary to find a collision
with constant probability.
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That the lower bound obtained here is an almost tight one compared with the
upper bound from Theorem 2.

Specially, when D is a uniform distribution, for any constant c > 1, one can
easily get δc = 1 and γ(c) = N2, and hence the upper bound and lower bound
here meet as Θ(γ1/6(c)) = Θ(N1/3) as shown in [30].

We let readers convince themselves that the lower bound and the upper
bound here also meets on flat-k-distribution and δ-k distribution (cf. [7]), re-
spectively. The two distributions are referred there to illustrate the algorithms’s
optimality. These hint that the upper bound and lower bound obtained in this
work possess more generality.

In the following section, we will estimate the value of δc to derive a concise
lower bound.

4.5 Estimation of Upper Bound of δc

We now estimate δc appeared in the lower bound in last section. We prove the
following upper bound for δc mentioned above. That will lead a nearly tight
lower bound.

Proposition 3. We have δc = O(k) for any non-uniform distribution D and
any constant c > 1. Where k = − log p1 is the min-entropy of D.

Proof. Let bi := γ
−1/3
i (c)/γ−1/3(c) for all i ∈ [`]. We rearrange the list b1, . . . , b`

in non-increasing order and denote it as a1, . . . , a` with a1 = 1, ai ≤ 1 for any i ∈
[`] and obviously

∑̀
i=1

ai =
∑̀
i=1

bi =

∑̀
r=1

γ
−1/3
r (c)

γ−1/3(c)
= δc (30)

Let ak = γ
−1/3
ik

(c)/γ−1/3(c), and hence a3k = nikp
3(Sik)/nk0p

3(Sik0 ), where
k0 is the collision domain index in Definition 3. By c-partition, it holds that
nikp(Sik) ≤ c. Hence we have

c p(Sik)2 ≥ nikp(Sik)3 = a3kγ
−1 ≥ a3k · 2−3 k.

The last inequality is by Proposition 4 that γ1/6(c) ≤ 2k/2 for any constant
c > 1. It implies, for any k ∈ [`]

p(Sik) ≥ 1√
c
· a3/2k · 2−3 k/2. (31)

It is easy to see that δc ≤ `, otherwise δc =
∑`
i=1 ai ≤ `·a1 < δc for decreasing

sequence ai with a1 = 1, which is impossible.
Next, we show there is a j ≤ b l

bδc/2cc that satisfies ajbδc/2c ≥ 1/(j + 1)4. For

otherwise, if ajbδc/2c < 1/(j + 1)4 for all j ≤ b l
bδc/2cc, then by (30),
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δc =
∑̀
i=1

ai =

b δc2 c∑
i=1

ai +

2b δc2 c∑
i=b δc2 c+1

ai + · · ·+
∑̀

i=b l
bδc/2c

c·b δc2 c+1

ai

< bδc
2
c ·
(

1 +
1

24
+ · · ·+ 1

(b 2`δc c+ 1)4

)
< bδc

2
c ·
∞∑
j=1

1

j4
<

9

8
· bδc/2c < δc.

This is a contradiction. Let j0 be the smallest j ≤ b l
bδc/2cc satisfying the in-

equality aj0b δc2 c
≥ 1/(j + 1)4. Together with (31), it implies, for all k ∈

[
j0b δc2 c

]
p(Sik) ≥ 1√

c
· a3/2k · 2−3k/2

≥ 1√
c
· a3/2
j0b δc2 c

· 2−3k/2 ≥ 1√
c · (j0 + 1)6 · 23k/2

. (32)

On the other hand, from the definition of min-entropy k, for all k ∈
[
j0b δc2 c

]
,

1/2k = p1 ≥ p(Sik) (33)

According to (32) and (33), we get, by definition of c-partition,

1

2k
·
√
c · (j0 + 1)6 · 2 3k

2 ≥
max{p(Sik)}k∈j0b δc2 c
min{p(Sik)}k∈j0b δc2 c

≥ cj0b
δc
2 c.

Namely, we have

δc ≤
k + 12 log2(j0 + 1) + log2 c

j0 log2 c
+ 2 = O(k).

As desired. �

This conclusion together with Theorem 7 shows thatΩ(γ1/6(c)/
√
k) quantum

queries are necessary to find a collision for any non-uniform random function and
any constant c > 1. Combining with Proposition 4 which we will prove in the
next section, we can get our final lower bound: Ω(γ1/6(c)/

√
log γ(c)), compared

with the upper bound O(γ1/6(c)) in Theorem 2, that it is nearly a tight lower
bound.

5 An Analysis on the Properties of γ(c)

In Definition 2, we have introduced the parameter γ(c). In this section, we explore
some properties of γ(c). We will present the relations of γ with the min-entropy
k and collision-entropy β, respectively. An upper bound of p(Sk0) is given so as
to help to simplify the calculation of collision parameter and collision domain
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whenever using Algorithm 2. In the last, we show that the constant c in partition
does not affect the magnitude of query complexity in collision-finding.

First of all, we point out a fact that will be frequently used in the subsequent
proofs. Since

∑N
i=1 pi = 1, we have by c-partition that, for any k ∈ [`]:

nkp(Sk) ≤
∑̀
i=1

nip(Si) = c
∑̀
i=1

nip(Si)

c
≤ c

N∑
i=1

pi = c. (34)

We now show a relation between parameter γ and min-entropy k.

Proposition 4. For any non-uniform distribution D and any constant c > 1,
it holds that 22 k/c ≤ γ(c) ≤ 23 k. Where k = − log p1 is the min-entropy.

Proof. By definition of γ(c), ni = |Si| for all i ∈ [`] and n1 ≥ 1, we get at once

γ−1(c) = max
i∈[`]
{nip3(Si)} ≥ n1p31 ≥ p31 = 2−3 k.

Which implies γ(c) ≤ 23k.

On the other hand, according to (34), we have

γ−1(c) = nk0p
3(Sk0) ≤ c p2(Sk0) ≤ cp21 ≤ c · 2−2 k.

That is γ(c) ≥ 22 k/c. As desired in Proposition 4. �

The results in Propositions 3, Proposition 4 and in Theorem 7 claim the
following conclusion.

Corollary 2. The number Ω(γ1/6(c)/
√

log γ(c)) of quantum queries are neces-
sary for any algorithms of collision-finding in random functions.

The relation between γ and collision-entropy β is shown as follow.

Proposition 5. For any non-uniform distribution D and any constant c > 1,

we have 1
c · 2

β ≤ γ(c) < 16c3

(c−1)2 · 2
2β.

Proof. Recall that γ−1(c) = maxi∈[`]{nip3(Si)} = nk0p
3(Sk0). From (34), we

know

γ−1(c) ≤ c p2(Sk0) ≤ c ·
N∑
i=1

p2i = c · 2−β .

That is 2β/c ≤ γ(c).

On the other side, since p(Si) > c p(Si+1) by c-partition for any i ∈ [` − 1].
We have
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2−2β =
( N∑
i=1

p2i

)2
≤
(
n1p

2(S1) + · · ·+ n`p
2(S`)

)2
≤
( k0∑
j=1

nk0p
2(Sk0) ·

(
p(Sk0)/p(Sj)

)
+

∑̀
j=k0+1

njp
2(Sj)

)2
≤
( k0∑
j=1

1

ck0−j
nk0p

2(Sk0) +
∑̀

j=k0+1

njp
2(Sj)

)2
<
( c

c− 1
· nk0p2(Sk0) +

∑̀
j=k0+1

njp
2(Sj)

)2
. (35)

If let α > 0 satisfy

∑̀
j=k0+1

njp
2(Sj) = α · nk0p2(Sk0). (36)

Then, (35) becomes

2−2β < (
c

c− 1
+ α)2 · nk0p(Sk0) · nk0p3(Sk0) . (37)

While α can be bounded, for any non-uniform distribution D, as follows.

α =

∑̀
j=k0+1

njp
2(Sj)

nk0p
2(Sk0)

≤
∑̀

j=k0+1

p(Sk0)

p(Sj)

≤
l−k0∑
j=0

1

cj
· p(Sk0)

p(S`)
<

c

c− 1
· p(Sk0)

p(S`)
<

3 c

c− 1
· p(Sk0)

p(S`)
.

Hence, we estimate 2−2β respectively in the following three cases.

– When 0 < α < 3c
c−1 , from (37) we have

2−2β < (
c

c− 1
+

3 c

c− 1
)2 · c · nk0p3(Sk0) <

16 c3

(c− 1)2
· γ−1(c). (38)

– When 3 c
c−1 ≤ α <

3 c
c−1 ·

p(Sk0 )

p(Sk0+1)
, since from (36) that

α · nk0p2(Sk0) =
∑̀

j=k0+1

njp
2(Sj) ≤ (

∑̀
j=k0+1

njp(Sj)) · p(Sj) ≤ c p(Sk0+1) .
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Therefore

nk0p(Sk0) ≤ c p(Sk0+1)/α p(Sk0) < 3 c2/α2(c− 1).

Again, from (37) for any constant c > 1,

2−2β < (α+
c

c− 1
)2

3 c2 γ−1(c)

(c− 1) · α2

≤ (
4α

3
)2

3 c2 γ−1(c)

(c− 1) · α2
=

16 c2 γ−1(c)

3(c− 1)
. (39)

– When 3 c
c−1 ·

p(Sk0 )

p(Sk0+k)
≤ α < 3 c

c−1 ·
p(Sk0 )

p(Sk0+k+1)
holds for some k ∈ [` − k0 − 1].

From (36), we know

α · nk0p2(Sk0) =
∑̀

j=k0+1

njp
2(Sj)

≤
k0+k∑
j=k0+1

njp
2(Sj) + (

∑̀
j=k0+k+1

njp(Sj)) · p(Sk0+k+1)

≤ nk0p2(Sk0) ·
( k0+k∑
j=k0+1

p(Sk0)

p(Sj)

)
+ c p(Sk0+k+1) . (40)

by 3 c
c−1 ·

p(Sk0 )

p(Sk0+k)
≤ α, we get

k0+k∑
j=k0+1

p(Sk0)

p(Sj)
<

k−1∑
j=0

1

cj
· p(Sk0)

p(Sk0+k)
<

c

c− 1
· p(Sk0)

p(Sk0+k)
≤ α

3
. (41)

To combine (40) and (41) gives

α · nk0p2(Sk0) ≤ nk0p2(Sk0) · α
3

+ c p(Sk0+k+1).

Therefore, using α < 3c
c−1 ·

p(Sk0 )

p(Sk0+k+1)
, simple computation will get

nk0p(Sk0) ≤ 3 c p(Sk0+k+1)

2αp(Sk0)
<

9 c2

2(c− 1)α2

which implies, still from (37) and c > 1, that

2−2β < (α+
c

c− 1
)2 · 9c2

2(c− 1)α2
· γ−1(c) <

16 c3

(c− 1)2
· γ−1(c) . (42)

Equations (38), (39) and (42) together affirm that

γ(c) <
16 c3

(c− 1)2
· 22β .

As desired. �
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From Table 1, we see Proposition 4 and 5 show that, in general non-uniform
distribution, the upper bound and lower bound here in parameter γ are always
at least as good as the best prior results.

In the following, we present an example to show that the results here can be
better in general.

Example 1. Let M,N > 0 be two integers such that N := 22n − 27n/4 + 1 for
a large integer n > 0, a non-uniform distribution D with weights defined as
follows.

pi :=


2−n, for i = 1;

2−5n/4, for i ∈ [2, 1 + 2n];

2−2n, for i ∈ [2 + 2n, 22n − 27n/4 + 1].

The calculation show that the min-entropy is k = n, and the collision entropy is
β ≈ 3n/2 for sufficiently large n. Namely, it will have the upper bound: O(2n/2)
and the lower bound: Ω(2n/3) in [7].

If, for sufficiently large n and any constant c > 1, we divide the set [N ] into
three parts with n1 = 1, n2 = 2n, n3 ≈ 22n, we will have

γ1/6(c) = γ
1/6
2 (c) = (2−n)1/6 · (25n/4)1/2 = 211n/24.

In this case, our lower bound is

Ω(γ1/6/
√

log γ) = Ω(211n/24/n) > max{2β/6, 2k/3} = 2n/3.

And the upper bound in this work is

O(γ1/6) = O(211n/24) < min{2β/3, 2k/2} = 2n/2.

That is, in this case, both the upper bound and the lower bound obtained in
this work are better than the best prior bounds.

The following technique result will allow to simplify the calculation of colli-
sion domain in c-partition.

Proposition 6. For any non-uniform distribution D, we have

p(Sk0) ≥ max

{
c−1/2 · 2− 3k

2 ,
c2 − 1

c2N

}
.

Where p(Sk0) satisfies nk0p
3(Sk0) = γ−1(c), and k = − log p1 is the min-entropy.

Proof. According to Definition 3, we have

nk0p
3(Sk0) ≥ n1p31 ≥ 2−3k.

On the other hand, according to (34) we know

nk0p
3(Sk0) ≤ nk0p(Sk0) · p2(Sk0) ≤ c p2(Sk0).
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Hence c p2(Sk0) ≥ 2−3k, namely p(Sk0) ≥ c−1/2 · 2− 3k
2 .

For other case, since

1 =

N∑
i=1

pi ≤
k0−1∑
i=1

nip(Si) +
∑̀
i=k0

nip(Si)

≤ p(Sk0) ·
∑̀
i=k0

ni +

k0−1∑
i=1

nip(Si) (43)

≤ p(Sk0) ·N +

k0−1∑
i=1

nip(Si)

Since for any j < k0, it holds c(k0−j) · p(Sk0) ≤ p(Sj) by c-partition, hence

njp(Sj) ≤ nk0p(Sk0) · (p(Sk0)/p(Sj))
2 ≤ 1

c2(k0−j)
nk0p(Sk0).

(43) becomes

1 ≤ p(Sk0) ·N + nk0p(Sk0) ·
k0−1∑
i=1

1

c2i

≤ Np(Sk0) · (1 +

∞∑
i=1

1

c2i
) =

c2

c2 − 1
·Np(Sk0).

Namely p(Sk0) ≥ c2−1
c2N . That finishes the proof. �

The result above also implies that in calculation the collision parameter and
the collision domain, one only needs seek the sets Si satisfying p(Si) = Ω(2−3k/2)
or p(Si) = Ω(N−1).

Moreover, in the upper bound proof, for any constant c > 1, it also allows to
replace the condition ofM in Theorem 2 fromM > 12c2/p(Sk0) toM = Ω(23k/2)
or M = Ω(N).

The following proposition indicates that the choice of c does not affect the
order of magnitude of γ(c) (as long as c > 1 is a constant).

Proposition 7. For any non-uniform distribution D and constants c1, c2 sat-

isfying c2 > c1 > 1, we have
c31−1
c31c

3
2
· γ(c1) < γ(c2) ≤ 2c31 · γ(c1).

Proof. Given two constants satisfying c2 > c1 > 1, we denote by {S(1)
1 , . . . , S

(1)
` }

and {S(2)
1 , . . . , S

(2)
`′ } the partition results, respectively, by the c1-partition and

c2-partition of [N ] with respect to D. Similarly, we let n
(j)
i be the size of S

(j)
i

and p(j)(Si) the maximum one in {pk, k ∈ S(j)
i }. In addition, we also let p̄(j)(Si)

be min{pk | k ∈ S(j)
i } in this section.
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Assume that S
(1)
i∗ as the collision domain of D in c1-partition. Accordingly,

γ(c1) := γi∗(c1). By the definition of c-partition and that c2 > c1 > 1, there

exists a i0 ∈ [`′−1] that satisfies S
(2)
i0
∪S(2)

i0+1 ⊃ S
(1)
i∗ and p(2)(Si0+1) ≥ p̄(1)(Si∗).

That is, it takes at most two sets in c2-partition to cover S
(1)
i∗ .

Now we turn to estimate γi0(c2) and γi0+1(c2). Since that S
(2)
i0
∪S(2)

i0+1 ⊃ S
(1)
i∗ ,

we have n
(2)
i0

+ n
(2)
i0+1 ≥ n

(1)
i∗ , namely

max{n(2)i0 , n
(2)
i0+1} ≥ n

(1)
i∗ /2. (44)

Moreover, for any non-uniform distribution D, we know

p(2)(Si0) > p(2)(Si0+1) ≥ p̄(1)(Si∗) > p(1)(Si∗)/c1. (45)

Therefore, from (44) and (45) we can get:

max{γ−1i0 (c2), γ−1i0+1(c2)} = max{n(2)(i0)
(p(2)(Si0))3, n

(2)
i0+1(p(2)(Si0+1))3}

≥ n
(1)
i∗

2
· (p

(1)(Si∗)

c1
)3 =

1

2c31
· n(1)i∗ (p(1)(Si∗))

3

=
1

2c31
· γ−1(c1). (46)

It implies that γ(c2) ≤ min{γi0(c2), γi0+1(c2)} ≤ 2c31 · γ(c1).

For the other part of the proof, assume γ(c2) := γj∗(c2) for some j∗. From
the definition of c-partition, we can use at most b ln c2ln c1

c + 2 sets in c1-partition

to cover S
(2)
j∗ . Suppose there is a j0 that satisfies

j0⋃
k=j0−b ln c2ln c1

c−1

S
(1)
k ⊃ S(2)

j∗ and p(1)(Sj0) ≥ p̄(2)(Sj∗).

It implies

n
(2)
j∗ ≤

b ln c2ln c1
c+1∑

k=0

n
(1)
j0−k (47)

On the other hand, for any non-uniform distribution D, it holds that

p(1)(Sj0) ≥ p̄(2)(Sj∗) > p(2)(Sj∗)/c2 . (48)

Moreover, for any i, we have p(1)(Si−1) ≥ c1p(1)(Si), therefore

p(1)(Sj0−k) ≥ ck1p(1)(Sj0) (49)
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for any k ∈
[
b ln c2ln c1

c+ 1
]
. In conclusion, combining (47), (48) and (49), we have:

γ−1(c2) = γ−1j∗ (c2) = n
(2)
j∗ (p(2)(Sj∗))

3

≤ (p(2)(Sj∗))
3 ·
b ln c2ln c1

c+1∑
k=0

n
(1)
j0−k ≤ c

3
2

b ln c2ln c1
c+1∑

k=0

n
(1)
j0−k · (p

(1)(Sj0))3

≤ c32

b ln c2ln c1
c+1∑

k=0

1

c3k1
· n(1)j0−k · (p

(1)(Sj0−k))3 = c32

b ln c2ln c1
c+1∑

k=0

1

c3k1
· γ−1j0−k(c1)

≤ c32 · γ−1(c1)

b ln c2ln c1
c+1∑

k=0

1

c3k1
≤ c61c

3
2 − 1

c61 − c31
· γ−1(c1)

<
c31c

3
2

c31 − 1
· γ−1(c1). (50)

Namely γ(c2) >
c31−1
c31c

3
2
· γ(c1). That finishes the proof. �
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