
Le Mans: Dynamic and Fluid MPC for Dishonest
Majority

Rahul Rachuri1, Peter Scholl1

Aarhus University, {rachuri, peter.scholl}@cs.au.dk

Abstract. Most MPC protocols require the set of parties to be active
for the entire duration of the computation. Deploying MPC for use
cases such as complex and resource-intensive scientific computations
increases the barrier of entry for potential participants. The model of
Fluid MPC (Crypto 2021) tackles this issue by giving parties the flexibility
to participate in the protocol only when their resources are free. As such,
the set of parties is dynamically changing over time.
In this work, we extend Fluid MPC, which only considered an honest
majority, to the setting where the majority of participants at any point in
the computation may be corrupt. We do this by presenting variants of the
SPDZ protocol, which support dynamic participants. Firstly, we describe
a universal preprocessing for SPDZ, which allows a set of n parties to
compute some correlated randomness, such that later on, any subset of
the parties can use this to take part in an online secure computation. We
complement this with a Dynamic SPDZ online phase, designed to work
with our universal preprocessing, as well as a protocol for securely realising
the preprocessing. Our preprocessing protocol is designed to efficiently
use pseudorandom correlation generators, thus, the parties’ storage and
communication costs can be almost independent of the function being
evaluated.
We then extend this to support a fluid online phase, where the set of
parties can dynamically evolve during the online phase. Our protocol
achieves maximal fluidity and security with abort, similarly to the previ-
ous, honest majority construction. Achieving this requires a careful de-
sign and techniques to guarantee a small state complexity, allowing us to
switch between committees efficiently.

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to jointly compute
a function on their inputs, while preserving privacy, that is, not revealing anything
more about the inputs than can be deduced from the output of the function. MPC
can be applied in a wide range of situations, including secure aggregation, private
training or evaluation of machine learning models, threshold signing and more.

Most MPC protocols work under the assumption that the set of parties in-
volved in the computation is fixed throughout the protocol. Although committee-
based MPC and player-replaceability schemes have existed for a while, re-
cently more practically oriented models have been proposed such as Fluid

MPC [CGG+21] and YOSO [GHK+21]. These models support protocols with
a dynamically evolving set of parties, where participants can join and leave the
computation as desired, without interrupting the protocol. This enables a more
flexible model, where parties can sign up to contribute their resources towards a
large-scale, distributed computation, without having to commit for the duration
of the entire protocol. This is particularly important for large-scale, long-running
tasks such as complex scientific computations, such as Folding@home. In the
maximally fluid setting, this concept is pushed to the limit, where each partici-
pant is only required to sign up for a single round of the protocol. This gives the
most possible flexibility for any server who may wish to participate.

The YOSO (you only speak once) paradigm [GHK+21] also considers max-
imally fluid MPC protocols, with some differences in the model. Unlike Fluid
MPC, they separately study the role assignment problem, where they show how
to leverage a blockchain to randomly assign the committee of parties who will
take part in each round. With their mechanism, the identity of any member of
the current committee is only revealed after they have published their message.
This allows for much stronger security guarantees, since an adversary has no way
to identify which servers are involved in the computation — and hence who to
corrupt — until the role played by the server has already been terminated.

Both of these works give information-theoretically secure protocols in the
honest majority setting, where in any given round of the protocol, the majority of
the computing parties should be honest. Fluid MPC achieves security with abort,
where a malicious party can prevent the protocol from terminating, while YOSO
achieves the stronger notion of guaranteed output delivery (but is less efficient).

1.1 Our Contributions

In this work, we study MPC with dynamically evolving parties in the dishonest
majority setting. This gives much stronger security guarantees, since we only
require that in any given round of the computation, there is at least one honest
party taking part. However, it is also more challenging than honest majority. We
now elaborate on our contributions and some technical background.

The challenge of fluidity and dishonest majority. In the dishonest ma-
jority setting, most practical MPC protocols are based on authenticated secret-
sharing using information-theoretic MACs, such as in the SPDZ [DPSZ12] or
BDOZ [BDOZ11] protocols. These protocols rely on a preprocessing phase, using
more expensive, “public-key” style cryptography, to generate a large amount of
correlated randomness that is consumed in a lightweight online phase. Unfortu-
nately, this means that each party has to maintain a large state (the correlated
randomness), the size of which grows linearly with the complexity of the func-
tion being computed. This is problematic for achieving Fluid MPC, since when
changing from one committee of parties to another, the natural approach is to se-
curely transfer the entire state to the new committee. Ideally, we want this state
transfer process to be independent of the function being computed, to avoid the
communication complexity blowing up.

2

Key Tool: Universal Preprocessing for Dynamic Parties. Before aiming
for Fluid MPC, we look at a simpler model which allows just a single change
in the set of computing parties during the protocol. We consider a universal
preprocessing phase, where all of the parties P1, . . . , Pn who may wish to be
involved in the computation must take part. Later, any subset of the n parties
can get together and run a fast, online protocol, without having to interact with
anybody else. We assume the inputs to the protocol are provided by the online
subset of parties (though with standard techniques such as [DDN+16], we can
also support inputs from external parties).

Recall that in SPDZ, the parties need to preprocess authenticated multipli-
cation triples, denoted JaK, JbK, JcK, where a and b are secret, random finite field
elements and c = a · b. These values are secret-shared with MACs, given by

JxK := (xi,mi,∆i)i∈[n]

where party Pi has the share ∆i of the global MAC key ∆ =
∑

∆i, and also the
shares xi,mi, satisfying x =

∑
xi and x ·∆ =

∑
mi over the field.

Instead of producing fully authenticated triples like this, we produce a weaker
form of partial triple, where c is unauthenticated, and not fully computed: every
pair of parties (Pi, Pj) will get a two-party additive sharing of ai · bj . This suffices
to reconstruct a share ci, by adding up Pi’s relevant sharings of a

ibj , together
with aibi.

Importantly, this also enables any subset of parties P ⊂ [n] to obtain a triple,
by restricting to the shares ai, bi for i ∈ P, and summing up the relevant shares
of the products to get a ci for this committee. A similar trick also works to get
the MACs on a and b, since each MAC is just a secret-shared product with the
fixed key ∆. Therefore, it’s enough to give out two-party shares of ai∆j and
bi ·∆j for every i ̸= j.

We show how to realize this type of preprocessing using simple, pairwise
correlations between every pair of parties, in the form of oblivious linear function
evaluation (OLE) and vector-OLE. We ensure correctness of the authenticated
JaK, JbK shares using a consistency check, which we formalize via a multi-party
vector-OLE functionality. However, our protocol does not guarantee correctness of
the shares of cross-products ai ·bj . We therefore model these errors via adversarial
influence in the preprocessing functionality.

PCG-Friendliness. An important feature of our preprocessing protocol is that
it is PCG-friendly, meaning that it can be implemented using pseudorandom
correlation generators (PCGs) [BCG+19b]. A PCG allows two parties to take
a pair of short, correlated seeds, and expand them to produce a much larger
quantity of correlated randomness. There are efficient PCGs for vector-OLE,
based on variants of the LPN assumption [BCGI18,BCG+19a,WYKW21], and
for OLE under a variant of ring-LPN [BCG+20]. By supporting PCGs in our
preprocessing, we obtain communication and storage complexities as small as
O(n log|C|) field elements per party, for an arithmetic circuit C. Prior to our
work, we stress that even with a statically chosen online phase, there was no

3

practical, multi-party SPDZ-like protocol1 that could support a preprocessing
phase with this feature with good concrete efficiency — ours is the first protocol
to support this “silent” feature.

Dynamic Variant of SPDZ Online Phase. One issue with our universal
preprocessing is that, since the c terms of triples are not authenticated, we cannot
use the same online phase as SPDZ. Instead, we modify the online phase so that in
each multiplication, we first authenticate c before using a triple to multiply. Since a
malicious party may have introduced errors in c, we then need to add a verification
phase, to check the multiplications are correct. We do this following the approach
of Chida et al. [CGH+18] (also used by the honest majority Fluid compiler
of [CGG+21]). Here, as well as computing the circuit, the parties compute a
randomised version of the circuit, where each wire value has been multiplied by
a secret, random value r ∈ Fp. At the end of the computation, the parties run a
batch verification process to check consistency of the two computations. We show
that this guarantees our protocol is correct, even with our weaker preprocessing
protocol which allows malicious parties to introduce special types of errors into c.

Overall, the communication cost of our dynamic online protocol is only 4
field elements on top of the SPDZ online phase [DPSZ12,DKL+13], which costs
2 elements. However, this comes with the benefits of (1) a dynamically chosen
online committee, and (2) a PCG-friendly preprocessing phase, where each party’s
communication and storage complexity is almost independent of the circuit size.

Maximally Fluid Online Phase. We now turn to the harder task of obtaining
an online phase where the set of computing parties can dynamically change. We
focus on the most challenging goal of maximal fluidity, where in each round,
a different committee can sign up to receive one message from the previous
committee, before sending one message and going offline.

This brings additional obstacles when it comes to preprocessing data, as well
as verifying MACs on opened values during the online protocol. The first hurdle
is that, even though our universal preprocessing allows any committee to obtain
a multiplication triple, these triples end up being authenticated under different
MAC keys, depending on the committee.

As a first attempt to deal with this MAC key inconsistency, one could have
the current committee, Pcurr, securely reshare their current state of intermediate
computation values, including their MAC key ∆Pcurr , to the next committee, Pnext.
To proceed further, however, Pnext will need authenticated triples under the same
MAC key. Our preprocessing phase, on the other hand, only allows them to obtain
triples under a different key ∆Pnext . To avoid this issue, Pcurr would instead have
to reshare all of the triples needed for the rest of the circuit evaluation, after
which, Pnext would use some of these, reshare to the next committee and so on.
This incurs a huge blow up in communication cost, which we would like to avoid.

1 In the two party setting, an efficient PCG-based SPDZ preprocessing protocol was
given in [BCG+19b].

4

Our method for dealing with this is a secure key-switching procedure, which
allows Pcurr to transfer a shared JxK to Pnext in a single round, while switching
to Pnext’s MAC key. Another constraint we have from the model is that Pnext

cannot send any messages to Pcurr. At first glance, it may seem impossible, since
Pcurr should not have any information on the next key. However, we show that by
leveraging the power of our universal preprocessing, key-switching can be done
with just a single set of messages from Pcurr to Pnext.

In addition to securely switching keys, another challenge in our maximally fluid
protocol is how to check MACs on opened values. We cannot use the batched MAC
check from SPDZ, since this involves storing a large state, which has to be passed
around until the end of the protocol. Instead, we modify this to an incremental
procedure, where only a constant-sized state needs to be transferred in each round.
We adopt a similar incremental protocol to verify multiplications, where, as in our
Dynamic SPDZ protocol, we use the same randomised circuit idea as [CGH+18].

1.2 Related Work

Bracha [Bra85] introduced the idea of using committees in distributed protocols
with a large number of parties, which has been used in a number of MPC protocols
since. One recent example is [GSY21], which constructs committee-based MPC
when up to 1/3 of the parties may be corrupt, achieving a construction that scales
to hundreds of thousands of parties. Although part of their protocol is based on
SPDZ, they do not support the notion of a dynamically chosen subset of parties
from the preprocessing set carrying out the online computation. Concretely,
their online phase for circuit evaluation costs 7x higher than SPDZ, whereas we
estimate that we only suffer a 3x overhead. A detailed analysis of the costs is
provided in Section 6.

Another relevant work is [SSW17], which outsources SPDZ preprocessing to
an external set of parties. However, unlike our protocol, this requires resharing
the entire preprocessing data from the external set to the online committee. We
avoid this in Dynamic SPDZ, by relying on our universal preprocessing.

The area of proactive security has long considered the notion of an adversary
who can corrupt different parties throughout the computation. These works
typically use a proactive secret sharing scheme, where secrets are maintained by
an ever-changing set of parties. Works such as [HJKY95,MZW+19] show security
in the presence of a mobile adversary that can corrupt and uncorrupt parties
at different points in the protocol. More recently, [BGG+20,GKM+20] construct
secret-sharing protocols for the case of honest majority with active security. The
model used in these papers also splits the work done by each committee into two
parts, one used to do the computation with parties interacting only within the
committee, and one used to perform a secure state-transfer to the committee that
comes after them. The primary difference between Fluid SPDZ and proactive
MPC is the motivation and the behaviour of the adversary. In proactive schemes,
the adversary typically operates with a “corruption budget” that limits the
adversary from being able to corrupt parties arbitrarily. We do not make such
an assumption, and our motivation primarily comes from giving parties in a

5

computation the ability to drop in and out, while minimising the minimum
number of rounds they have to stay on for. In addition, we try to achieve a small
state complexity, so that switching committees is not communication intensive.

2 Preliminaries and Security Model

2.1 Preliminaries

We use κ as the security parameter and ρ as the statistical security parameter.
Bold letters such as a are used to indicate vectors, and a[i] refers to the i-
th element of the vector. We write [a, b] to denote the set of natural numbers
{a, . . . , b} and [a, b) = {a, . . . , b− 1}.

Additional Functionalities. We make use of some standard functionalities in
the paper, which are detailed in Appendix A. These include a functionality for
oblivious transfer FOT, coin-tossing FRand, commitment FCommit, and a weak
equality test FEQ, that checks equality of two private inputs, while always
revealing one party’s input to the adversary.

2.2 Modelling Fluid MPC in Dishonest Majority

The remainder of this subsection covers definitions pertaining to the Fluid model.
Computation broadly proceeds in 4 phases – preprocessing, input, execution, and
output. This is similar to that of Fluid MPC [CGG+21], with the addition of
a preprocessing phase, which is used to generate data-independent information
in the form of multiplication triples, to be used in the execution phase. In
the preprocessing phase, we require all parties who wish to take part in the
computation at some later point to be active, and after this they may go offline.
The execution phase proceeds in epochs, where each epoch runs among a fixed
set of parties, or committee. An epoch contains two parts, the computation phase,
where the committee performs some computation, followed by a hand-off phase,
used to securely transfer the current state to the next committee.

Fluidity. The computation phase of each epoch may take several rounds of
interaction. Fluidity is defined as the minimum number of rounds in any given
epoch of the execution phase. We say that a protocol achieves maximal fluidity if
the epoch only lasts for one round. This means each server in the committee does
some local computation, before sending a single message to the next committee
in the hand-off phase. In the input and output phases, we not not measure
fluidity, instead, the committee may interact for several rounds to share inputs
or reconstruct the outputs.

A server is said to be “active” in the computation if it either performs
computations or sends and/or receives messages. Therefore, a server participating
in epoch i is active starting from the hand-off phase of epoch i− 1, until the end
of the hand-off phase of epoch i.

6

Committee formation. The committees used in each epoch may be either fixed
ahead of time, or chosen on-the-fly throughout the computation. Fixing them
ahead of time can be useful, for instance, in a volunteer sign-up based model,
where servers can volunteer to participate in any epoch, and stay on for any
number of epochs depending on their resource constraints. On the other hand,
choosing committees on-the-fly may be desirable in settings closer to the YOSO
model [GHK+21], where a role-assignment mechanism is used to ensure that the
next committee is only revealed at the last possible moment.

In this work, we do not distinguish between these two cases, and instead
simply require that during the hand-off phase of epoch i, the current committee,
denoted Pi, knows the identities of the parties in the next committee Pi+1. We
make no assumptions or restrictions about the overlap between committees. As
in [CGG+21], the formation process can be modelled with an ideal functionality
that samples and broadcasts committees according to the desired mechanism.

Corruption. Our model allows all-but-one of the servers who are active at the
start of any given epoch to be corrupted, where the set of corrupt parties is
fixed at the beginning of the epoch. Formally, this corresponds to an R-adaptive
adversary from [CGG+21]. Here, at the beginning of epoch i with committee
Pi, the adversary may adaptively choose a set of servers in Pi to be corrupted,
and then learns the entire state of each corrupted server in any prior epochs. For
the duration of epoch i, this set of corrupted parties is then fixed and cannot
change. To rule out the adversary learning information on prior epochs, a server
S may be corrupted in epoch i only if this does not lead to any prior epoch j
with committee Pj becoming entirely corrupt.

We use this model for the online phase of our fluid MPC protocol. Note that
for our dynamic SPDZ protocol, where the online committee does not change, this
corresponds to the more common notion of static security. In the preprocessing
phase for both dynamic SPDZ and our fluid MPC protocol, we have only proven
security against a static adversary. While for fluid MPC, we would ideally also
like the preprocessing to be adaptively secure, this is particularly challenging in
the dishonest majority setting, and is known to imply strong primitives like non-
committing encryption. In fact, since no practical adaptively secure preprocessing
protocols are even known for the standard SPDZ protocol [DPSZ12], we view
this as an interesting open problem.

2.3 Security Model

To model fluid MPC, we adopt the arithmetic black box model (ABB), which is
an ideal functionality FABB in the universal composability framework [Can01].
The functionality allows for a set of parties P1, . . . , Pn to input their values,
perform computations on them, and receive the outputs. The functionality is
parameterised by a finite field Fp, and supports native operations of addition
and multiplication in the field.

We instantiate FABB with the Dynamic SPDZ protocol (ΠSPDZ-Online), which
uses a preprocessing phase between a set of parties, and supports a dynamically

7

chosen subset to perform the online phase. The preprocessing phase is used to
set up partially authenticated, partially formed triples using pairwise MACs
similar to BDOZ [BDOZ11] and TinyOT [HSS17]. We adapt the vector OLE
from Wolverine [WYKW21], and PCGs from [BCG+19a] and use them to form
the partial triples.

To model Fluid MPC, we modify FABB to support computations with dynamic
committees, as functionality FDABB in Fig. 1. The main difference is that now,
the functionality keeps track of the currently active committee in a variable Pcurr.
In operations which are part of the execution phase, where the committee may
change, the functionality receives the identity of the next committee from the
currently active parties (if it receives inconsistent inputs, we assume it aborts).
In our protocol, the Batch Multiply command is the only part of the execution
phase with interaction, so this is where any changes in committee might take
place. We have Pcurr provide the next committee Pnext as input, and then wait
for another message from Pnext, who will provide a subsequent committee P ′

next.
This is because our multiplication protocol takes place over two rounds, so it
inherently allows up to two committee changes whenever it is called (if we want
to support maximal fluidity).

In practice, with our protocol it is possible to interleave multiplications, so
that a new multiplication can be started before the old one has finished (reducing
round complexity). However, for simplicity, we do not model this in FDABB.

We instantiate FDABB with a Fluid Online (ΠFluid-Online) protocol. It extends
the model of Fluid MPC [CGG+21] which only works for the honest majority
case, to the dishonest majority setting with active security. It uses the same
preprocessing phase as Dynamic SPDZ, but the online phase supports committees
switching. Parties can leave the computation by securely transferring their state
to the subsequent committee, and rejoin the computation at a later point.

3 Universal Preprocessing for Dynamic Committees

In this section, we present the preprocessing phase used in our two online protocols.
Our main design goals are (1) to allow a flexible and dynamic choice of participants
during the online phase, and (2) to obtain a silent preprocessing phase, where
the storage and communication complexities are (almost) independent of the
function being computed. The section is organised in a top-down manner, where
we start by describing an ideal preprocessing functionality, and then gradually
explain our protocol for realising it.

Overview. In Fig. 2, we present an overview of the functionalities and protocols
used for the preprocessing. In this section, we focus on realising FPrep, using
variants of oblivious linear function evaluation (OLE), as well as how to realise
a multi-party variant of vector-OLE (FnVOLE). Some of the remaining building
blocks we use to implement this are deferred to Appendix D.

8

Functionality FDABB

Parameters: Finite field Fp, and set of parties Pmain = {P1, . . . , Pn}. The func-
tionality assumes all parties have agreed upon public identifiers idx, for each
variable x used in the computation. For a vector x = (x1, . . . , xm), we write
idx = (idx1 , . . . , idxm).

Initialise: On input (Init,Pcurr) from Pi, for i ∈ [1, n], where each Pi sends the
same set Pcurr ⊂ Pmain, initialise Pcurr as the first active committee.

Input: On input (Input, idx, x) from some Pi ∈ Pmain, and (Input, idx) from all
parties in Pcurr, store the pair (idx, x).

Add: On input (Add, idz, idx, idy) from Pi, for every Pi ∈ Pcurr, compute
z = x+ y and store (idz,z).

Batch Multiply: On input (Mult,Pnext, idz, idx, idy) from every Pi ∈ Pcurr:

– Compute z = x ∗ y.
– Update Pcurr := Pnext.
– Wait to receive a message (MultFinish,P ′

next) from every Pi ∈ Pcurr. Then,
store the batch of products (idz,z) and update Pcurr := P ′

next.

Output: On input (Output, idz) from every Pi ∈ Pcurr, where idz has been stored
previously, retrieve (idz,z) and send it to the adversary. Wait for input from the
adversary, if it is Deliver, send the output to every Pi ∈ Pcurr. Otherwise, abort.

Fig. 1: Functionality for a dynamic arithmetic black box

FPrep Fig. 3

FnVOLE 3 Fprog
VOLE 23 F ci

spsVOLE 21

FsVOLE 20

Fprog
OLE 4

ΠPrep

ΠnVOLE Πprog
VOLE

Πci
spsVOLE

ΠPrep

Fig. 2: Preprocessing Flow

3.1 Preprocessing Functionality

Let Pmain = {P1, . . . , Pn} be the set of all parties who may want to participate
in the online phase.

Authenticated Secret Sharing. For the preprocessing, we use two kinds of
secret sharing. [x] denotes that x ∈ Fp is additively shared between the parties,

9

that is, x = x1 + . . .+ xn where Pi holds x
i. We also use pairwise authenticated

shares, indicated by ⟨x⟩. Here, in addition to an additive share of x, each party
holds an information-theoretic MAC on their share with every other party, who
holds a corresponding MAC key. The MAC of Pi’s share xi under Pj ’s key is

defined as M i
j = Kj

i +∆j · xi, where Pi holds the MAC M i
j and Pj holds the

local key Kj
i as well as the global key ∆j (which is fixed for all MACs). While

the shares xi lie over the field Fp, we allow MAC keys and MACs to be in an
extension field Fpr , giving a forgery probability of p-r, in case p is not large
enough for the desired statistical security level.

If x is only shared between a smaller committee PC ⊂ Pmain, we write [x]PC .
Similarly, for pairwise MACs, we can consider a sharing between two (possibly
overlapping) committees PA,PB ⊂ Pmain, where PA holds shares and MACs on
x, while PB holds the corresponding MAC keys:

⟨x⟩PA,PB =
(
{xi,

(
M i

j

)
j∈PB

}i∈PA
, {∆j , (Kj

i)i∈PA
}j∈PB

)
When the committees are clear from context, we will sometimes omit them and
simply write ⟨x⟩ or [x].

If all the parties in P of size n have a sharing ⟨x⟩P , where x = x1 + · · ·+ xn,

any two subsets PA,PB can locally convert this into a sharing ⟨x′⟩PA,PB of a
different value x′ =

∑
i∈PA

xi. This procedure is done by simply restricting the
relevant shares and MACs to those corresponding to the two committees. We
denote it as follows:

RestrictShares(⟨x⟩P ,PA,PB)→ ⟨x′⟩PA,PB

In our protocols, we rely on the fact that if the original shares of x were
uniformly random, then so is the resulting value x′.

Functionality (Fig. 3). The aim of FPrep is to allow arbitrary committees
to obtain [·] and ⟨·⟩-shared values, in the form of random authenticated field
elements, and partial triples. The functionality begins with an initialization phase,
which models the setting up of the necessary data to obtain up to mR random
values and mT multiplication triples. Then, either the Rand or Trip command can
be queried by a pair of dynamically-chosen committees (Pcurr,Pnext), who obtain
the appropriate shares. We assume that each query uses a distinct index k, which
is necessary to ensure that in our protocol, the corresponding preprocessing data
is not reused when another committee produces a triple.2

A key difference between our functionality and previous works like SPDZ
[DPSZ12,DKL+13] is that our triples are only partially authenticated. In a ran-
dom triple (a, b, c) where c = a · b, the values a and b are authenticated with
pairwise MACs, while c is only additively shared. This is a crucial aspect which
allows our protocol to support dynamically-chosen parties, and also achieving a
communication overhead that is significantly less than the circuit size.

2 In our online phases, we assume the parties have a means of agreeing upon the
ordering of committees to ensure that the indices queried to FPrep are not reused.

10

Functionality FPrep

Parameters: Finite fields Fp and Fpr , parties P1, . . . , Pn, adversary A and set
of honest parties PH .
Functionality: Generates triples with unauthenticated c, and authenticated
random values.

Init: On receiving (Init,mT ,mR) from Pi, for i ∈ [1, n], where mT is the upper
bound on the number of triples and mR on random values, sample a MAC key
∆i ← Fpr , send ∆i to Pi and ignore subsequent Init commands from Pi.
Random Value: On input (Rand,Pcurr,Pnext, k) from every Pi ∈ Pcurr ∪ Pnext,
where k ∈ [1,mR] and Rand has not been queried before with the same k:

1. Sample shares ri ← Fp, for i ∈ Pcurr.
2. For each i ∈ Pcurr and j ∈ Pnext \ {i}, sample Kj

i ← Fpr and let M i
j =

Kj
i +∆j · ri.

3. Let ⟨r⟩Pcurr,Pnext =
(
ri, (M i

j ,K
j
i)j∈Pnext\{i}

)
i∈Pcurr

, and output the relevant
shares, MACs and MAC keys to the parties in Pcurr,Pnext.

Triple: On input (Trip,Pcurr,Pnext, k), from every Pi ∈ Pcurr ∪ Pnext, where
k ∈ [1,mT] and Trip has not been queried before with the same k:

1. Run the steps from Random Value twice, to create sharings ⟨a⟩ , ⟨b⟩.
2. Additive errors: Wait for A to input {δia, δib}i∈PH∩Pcurr , each in Fp. Let

c = a · b+
∑

i∈PH∩Pcurr
(ai · δia + bi · δib).

3. Sample shares ci ∈ Fp, for i ∈ Pcurr, such that
∑

i∈Pcurr
ci = c. Let [c]Pcurr :=

(ci)i∈Pcurr .
4. Output ⟨a⟩Pcurr,Pnext , ⟨b⟩Pcurr,Pnext , [c]Pcurr to the parties in Pcurr,Pnext.

Corrupt parties: In addition to additive errors, corrupt parties may choose
their own randomness for all sharings, namely ri in Rand, ai, bi, ci in Trip, as well
as any MACs and MAC keys they receive. The honest parties’ shares/MACs/keys
are adjusted accordingly.

Fig. 3: Functionality for the preprocessing

3.2 Preprocessing Protocol

Our protocol for realising FPrep consists of two main building blocks: a 2-
party OLE functionality, and an n-party vector-OLE (VOLE) functionality; we
elaborate on these below, and later (in Section 3.3) show how they can be realized.
These are used for computing the unauthenticated shares of c in multiplication
triples, and authenticated shares of random values, respectively.

Programmable OLE. We use a functionality for random, programmable oblivi-
ous linear evaluation (OLE), Fprog

OLE , shown in Fig. 4. This is a two-party func-
tionality, which computes a batch of secret-shared products, i.e. random tuples

11

(ui, vi), (wi, xi), where wi = uixi + vi, over the field Fp. The programmability re-
quirement is that, for any given instance of the functionality, the party who obtains
ui or vi can program these to be derived from a chosen random seed. This allows
e.g. the same random ui’s to be used in a different instance of Fprog

OLE . We model
the programmability with a function Expand : S → Fm

pr , which deterministically
expands the chosen seed into a vector of field elements. When instantiating the
functionality, the expansion function will correspond to some kind of secure PRG.

Multi-party programmable VOLE. Vector oblivious linear evaluation (VOLE) can
be seen as a batch of OLEs with the same xi value in each tuple, that is, a vector
w = ux+ v, where x ∈ Fp is a scalar given to one party. Here, while x lies in
the field Fp, the remaining values are in the extension field Fpr , since we use
VOLE to generate MACs. In multi-party VOLE, shown as FnVOLE in Fig. 5, every
pair of parties (Pi, Pj) is given a random VOLE instance wi

j = uixj + vj
i . The

functionality guarantees consistency, in the sense that the same ui or xj values
will be used in each of the instances involving Pi or Pj . While unlike the OLE
functionality, the ui, xi values in FnVOLE are not programmable, we do require
that the functionality outputs to Pi a short seed representing ui, so that Pi can
later use this as an input to program Fprog

OLE .

Functionality Fprog
OLE

Parameters: Finite field Fpr , and expansion function Expand : S → Fm
p with

seed space S and output length m.
The functionality runs between parties PA and PB .

On receiving sa from PA and sb from PB , where sa, sb ∈ S:

1. Compute u = Expand(sa), x = Expand(sb) and sample v ← Fm
p .

2. Output w = u ∗ x+ v to PA and v to PB .

Corrupt parties: If PB is corrupt, v may be chosen by A. For a corrupt PA,
A can choose w (and then v is recomputed accordingly).

Fig. 4: Functionality for programmable OLE

Protocol. Given these building blocks, we use the preprocessing protocol ΠPrep

(Fig. 6) to generate partially authenticated triples and authenticated random
values between dynamically chosen committees. As discussed earlier, the key
observation is that it suffices to generate a batch of pairwise secret-shared
products, between every pair of parties, which can later be combined to produce
preprocessing amongst an arbitrary subset of the parties.

The protocol is relatively straightforward, involving no interaction other than
calling the relevant functionalities. In the Init phase of the protocol, each party

12

Functionality FnVOLE

Parameters: Finite field Fpr , and expansion function Expand : S → Fm
p with

seed space S and output length m. The functionality runs between P1, . . . , Pn.

Initialise: On receiving Init from Pi, for i ∈ [1, n], sample ∆i ← Fpr , send it to
Pi, and ignore all subsequent Init commands from Pi.
Extend: On receiving (Extend) from every Pi ∈ P:

1. Sample seedi ← S, for each Pi ∈ P.
2. Compute ui = Expand(seedi).
3. Sample (vj

i)j ̸=i ← Fm
pr for i ∈ P, j ̸= i. Retrieve ∆i and compute wi

j =

ui ·∆j + vj
i .

4. If PB is corrupt, receive a set I from A. If seed ∈ I, send success to PB and
continue. Else, send abort to both parties, output seed to PB and abort.

5. Output
(
(seedi,wi

j),v
i
j

)
j ̸=i

to Pi, for Pi ∈ P.

Corrupt parties: A corrupt Pi can choose ∆i and seedi. It can also choose
wi

j (and vj
i is recomputed accordingly) and vi

j .
Global key query: If Pi is corrupted, receive (guess,∆

′) from A with ∆′ ∈ Fn
pr .

If ∆′ = ∆, where ∆ = (∆1, . . . ,∆n), send success to Pi and ignore any
subsequent global key query. Else, send (abort,∆) to Pi, abort to Pj and abort.

Fig. 5: Functionality for n-party VOLE

Pi initializes FnVOLE, obtaining a random MAC key ∆i. Parties use the Extend
command of FnVOLE to authenticate their shares with every other party. Towards
this, each Pi calls FnVOLE twice, which picks two random seeds sia, s

i
b and expands

them into the shares ai, bi. It outputs to Pi the pairwise MACs on its shares
of the triples, along with the seeds. Each pair (Pi, Pj) then use Fprog

OLE to obtain
2-party sharings of the products ai ∗ bj , for each j ̸= i.

Later, when a triple is required by the committees Pcurr,Pnext, every party
in the committee Pcurr sums up its pairwise shares of the product terms corre-
sponding to one triple, obtaining a share of a · b, where a, b are the sum of the
corresponding shares within that committee. The second committee Pnext does
not have any shares of a · b, but instead obtains the MAC keys on the a, b shares
from the previous FnVOLE outputs. To obtain authenticated random values, a
similar procedure is done using only FnVOLE to add MACs.

Note that, if a corrupt party Pi inputs an inconsistent seed sia or sib into F
prog
OLE ,

the resulting triple will be incorrect. This is modelled by the additive errors that
may be introduced in FPrep.

In Appendix B, we prove the following.

Theorem 1. Suppose that Expand : S → Fm
p is a secure pseudorandom genera-

tor. Then, the protocol ΠPrep securely implements the functionality FPrep in the
(FnVOLE,Fprog

OLE)-hybrid model, when up to n− 1 out of n parties are corrupted.

13

Protocol ΠPrep

Parameters: Finite field Fpr , number of triples mT , random values mR, and
expansion function Expand : S → Fm

p with seed space S and output length m.
Init: Run the following two stages among all the parties in Pmain.
Triples setup: repeat the following, until ≥ mT outputs have been obtained
(each iteration produces m).

1. Each Pi calls FnVOLE with Init, receiving ∆i.
2. Each Pi, for i ∈ [1, n], calls FnVOLE twice, with input Extend and receives

the seeds sia, s
i
b. Use the outputs to define vectors of shares ⟨a⟩ , ⟨b⟩ such

that ai = Expand(sia) and bi = Expand(sib).
3. Every ordered pair (Pi, Pj) for i, j ∈ [1, n] calls Fprog

OLE with Pi sending sia
and Pj sending sjb, and it sends back ui,j to Pi and vj,i to Pj , such that
ui,j + vj,i = ai ∗ bj .

Random values setup: repeat the following, until ≥ mR outputs have been
obtained.

1. Every Pi, for i ∈ [1, n], samples a seed sir ∈ S and calls FnVOLE with input
(Extend, sir) from Pi, forming ⟨r⟩.

Triples: To get the k-th triple in committees Pcurr,Pnext:

1. Let ⟨a′⟩ , ⟨b′⟩ be the k-th shares from ⟨a⟩ , ⟨b⟩. The parties run
RestrictShares(⟨a′⟩ , ⟨b′⟩ ,Pcurr,Pnext) to obtain ⟨a⟩Pcurr,Pnext , ⟨b⟩Pcurr,Pnext .

2. Each Pi ∈ Pcurr computes ci = ai · bi +
∑

j∈Pcurr\{i}(u
i,j [k] + vi,j [k]).

3. The parties output the triple (⟨a⟩Pcurr,Pnext , ⟨b⟩Pcurr,Pnext , [c]Pcurr).

Random Values: To get the k-th random value in committees Pcurr,Pnext, the
parties take ⟨r′⟩, the k-th random value from ⟨r⟩, and run RestrictShares to
convert this to ⟨r⟩Pcurr,Pnext .

Fig. 6: Protocol for preprocessing

3.3 Instantiating Multi-Party VOLE

In multi-party VOLE, each party Pi runs an instance of random VOLE with
every other party Pj . We model two-party random VOLE as the functionality
Fprog

VOLE in Fig. 23, and show how to realize it in Section 3.3. To allow parties to
use the same random input in different VOLE instances, the functionality is also
programmable, similarly to Fprog

OLE .

The main challenge in realizing FnVOLE is to guarantee that each party uses
the same programmed input across every instance of Fprog

VOLE with other parties.
For instance, a corrupt party Pi could potentially use different ∆i values as
the sender, or different seeds for ui as the receiver across instances. To prevent
this, we use a consistency check to prevent parties from using different inputs
across the instances. The check involves taking a random linear combination of

14

the outputs of Fprog
VOLE and opening the sum, and is similar to the ΠTripleBucketing

protocol from [HSS17], except we work over a general finite field rather than F2.
Another difference is that we formalize the resulting protocol and show it

realizes the multi-party VOLE functionality, while in [HSS17], the check was only
used as part of a larger protocol. To prove this, we had to introduce the Global
key query command in FnVOLE, which allows corrupt parties to try to guess the
honest parties’ global scalars (MAC keys).

The final protocol for ΠnVOLE appears in Fig. 7.

Protocol ΠnVOLE

Parameters: Extension field Fpr , parties P1, . . . , Pn.
Initialise: Each party Pi samples ∆i ← Fpr . Every ordered pair of parties
(Pi, Pj) calls Fprog

VOLE with (Init,∆i), Init respectively.
Random Values: To create m authenticated random values ⟨r1⟩ , . . . , ⟨rm⟩,

1. Each party Pi samples a seed si.
2. Each ordered pair of parties (Pi, Pj) calls Fprog

VOLE, with Pi sending (Extend, si)
and Pj sending Extend.

3. Use the outputs of Fprog
VOLE to define ⟨r1⟩ , . . . , ⟨rm⟩ , ⟨t⟩ ∈ Fpr .

4. Each Pi does the following to check the consistency of inputs to Fprog
VOLE:

(a) Call FRand together with other parties to get random values χ1, . . . , χm ∈
Fpr .

(b) Locally compute

⟨C⟩ =
m∑
i=1

χi · ⟨ri⟩+ ⟨t⟩

(c) Pi has a share Ci, the MACs and keys (M i
j ,K

i
j)j ̸=i from ⟨C⟩.

(d) Pi rerandomizes the share locally by sending a zero share to the other
parties. Call the randomised shares Ĉi.

(e) Broadcasts Ĉi and reconstructs C =
∑n

i=1 Ĉ
i

(f) Pi calls FCommit with n+ 1 values:

Ci, (Zi
j)j ̸=i = M i

j , Zi
i = (Ci − C) ·∆i −

∑
j ̸=i

Ki
j

5. Parties open their commitments and check that
∑n

i=1 Z
i
j = 0, for j ∈ [1, n].

In addition, each Pi checks that Zj
i = Ki

j + Cj ·∆i. If any of the checks
fail, abort.

Fig. 7: Protocol for Consistent VOLE

Consistency Check: Since Fprog
VOLE does not guarantee that each party uses

the same seed si or scalar ∆i with every other party, we need some sort of a
consistency check to detect malicious behaviour. The high level idea is for parties

15

to compute random linear combinations on the outputs of Fprog
VOLE, securely open

the sum and check that it is zero. This check is similar to the one from [HSS17],
wherein it was used to check TinyOT triples.

The protocol starts with each (Pi, Pj) running Fprog
VOLE between them twice,

once with Pi as the sender and once as the receiver. Recall that for a value
v, Pi holds the share ⟨v⟩ = (vi, {M i

j ,K
i
j}j ̸=i). Using the outputs of Fprog

VOLE,
each Pi can define its shares of ⟨r1⟩ , . . . , ⟨rm⟩ , ⟨t⟩ ∈ Fpr locally. To compute
a random linear combination, parties call FRand and receive χ1, . . . , χm ∈ Fpr .
They can locally compute shares of ⟨C⟩, and reconstruct C by broadcasting the
shares. We wish to check

∑n
i=1 Z

i
j = 0 for j ∈ [1, n], where {Zi

j}i ̸=j = M i
j and

Zi
i = (Ci−C) ·∆i−

∑
j ̸=i K

i
j . Parties commit and open their shares, and locally

check that each
∑n

i=1 Z
i
j = 0. If any of them fail, they abort.

An analysis of the check is provided in Appendix C, along with the proof for
the following theorem:

Theorem 2. Protocol ΠnVOLE UC-securely computes FnVOLE in the presence of a
static malicious party corruption up to n− 1 in the (Fprog

VOLE,FCoin,FCommit)-hybrid
model.

The Missing Pieces: Programmable OLE and VOLE. We now describe
how to realize the two missing building blocks used in our preprocessing protocol,
namely 2-party programmable OLE and VOLE.

Realizing Fprog
OLE . This can be realized in a number of ways, for instance, based on

linearly homomorphic encryption [BDOZ11]. However, this would give a protocol
with communication that scales linearly in m, the number of OLEs. Instead,
we rely on the recent work of [BCG+20], which uses a variant of the ring-LPN
assumption to obtain communication that is logarithmic in m. While the OLE
functionality from [BCG+20] is not programmable, we observe that their protocol
easily supports programmable inputs, so suffices for our application.

Realizing Fprog
VOLE. Unlike the OLE protocol from [BCG+20], this work starts

with a building block called single-point VOLE, where the vector u contains a
single, non-zero element, which is assumed to be sampled at random. When we
need programmability, however, we cannot assume this. We therefore modify
the underlying single-point VOLE from [WYKW21] to support programmable
inputs, and show that the resulting protocol is still secure. We show how this
can then be used to build programmable VOLE, with essentially the same steps
as [WYKW21]. The full details of this are given in Appendix D.

4 Dynamic SPDZ

We now show how to use our preprocessing to obtain a dynamic variant of
the SPDZ protocol [DPSZ12,DKL+13]. The preprocessing is performed between
the entire set of parties Pmain = {P1, . . . , Pn}, and later, when an online phase

16

committee Pcurr ⊂ Pmain wants to run MPC, they non-interactively select the
relevant preprocessing data, and run our online phase. We consider evaluating
arithmetic circuits over Fp for a large enough (superpolynomial) p, and will use
FPrep entirely over Fp (i.e. not using the extension field Fpr).

Since our preprocessing is significantly weaker than SPDZ — due to faulty
and partially authenticated triples — we cannot use the same online phase for
multiplications. Instead, in our multiplication protocol, we will first have the
parties add a MAC to the ‘c’ component of a triple (using a preprocessed random
authenticated value), and then use the fully authenticated triple to multiply.
Since the triples may be faulty, to verify multiplications we take the approach
of [CGH+18], where parties compute two versions of the circuit: one with the
actual inputs and one with a randomised version of the inputs. At the end of
the protocol, they first run a MAC Check protocol to verify correctness of the
opened values in multiplication, as in SPDZ. If this check succeeds, they open
the random value used to compute the randomised circuit. Using that, they take
a random linear combination of wires in both circuits and check that they are the
consistent. We start by describing the online phase protocol ΠSPDZ-Online, before
analysing the verification process and concluding with a cost analysis.

SPDZ Sharing, Share Conversion and Opening. A SPDZ share of v ∈ Fp

contains a vector of additive shares ([v], [∆], [∆ · v]), where the shares are held
by each Pi within the current committee Pcurr. We denote this by J·KPcurr , and
omit Pcurr when it is clear from context. Note that the MAC key ∆ is fixed for
every sharing in the same committee.

Given a pairwise authenticated sharing ⟨x⟩Pcurr,Pcurr , the parties can locally
convert this into a SPDZ sharing with the procedure ΠConvert:

ΠConvert(⟨x⟩Pcurr,Pcurr) : Pi outputs
(
xi,∆i,∆i · vi +

∑
j∈Pcurr

(M i
j −Ki

j)
)

where M i
j ,K

i
j are Pi’s MACs and MAC keys from the ⟨·⟩ sharing. By inspection,

this gives a consistent sharing JxKPcurr .
We let ΠOpen denote the opening protocol, which given JxK or [x] has all parties

send to each other their shares xi and reconstruct x =
∑

xi. This procedure
does not check the MACs, so it may be unreliable. To check the MAC on an
opened value (after running ΠOpen), we use the standard SPDZ MAC check
protocol [DKL+13], shown in Fig. 8.

Online Protocol. ΠSPDZ-Online (Fig. 9) begins with each Pi in a set of parties
Pcurr ⊆ Pmain querying FPrep to receive an authenticated random value ⟨t⟩, where
Pi knows t, and every other party has a share of the MAC. Pi uses this to generate
J·K sharing of its input x. This takes one round, where Pi sends x+ t to everyone
else, along with a fresh sharing of x. The parties then use their MACs from ⟨t⟩
to obtain the MAC share for JxK. For the randomised circuit evaluation (used to

17

Protocol ΠSPDZ-MAC

Usage: Parties in Pcurr want to check the MACs on opened values (A1, . . . , Am).

1. Parties in Pcurr call FRand to obtain random values χ1, . . . , χm ∈ Fp.
2. Compute A =

∑m
j=1 χj ·Aj and [γ] =

∑m
j=1 χj · [∆ ·Aj].

3. Compute [σ] = [γ]− [∆] ·A. Each Pi ∈ Pcurr calls FCommit with input [σ].
4. Parties open their commitments and check that

∑n
i=1[σ] = 0. If not, output

abort, else output continue.

Fig. 8: Protocol to check MACs in Dynamic SPDZ

check multiplications), during initialization the parties first use FPrep to obtain a
random sharing JrK. Then, whenever an input JxK is authenticated, the parties
multiply it with JrK, using a triple from FPrep.

Addition and multiplication by a public constant are standard operations,
performed locally by every party on its shares. Multiplication is the more chal-
lenging operation as we do not have fully authenticated triples. The first step is
to call FPrep twice to get two triples (JaK, JbK, [c]), (Ja′K, Jb′K, [c′]), as well as two
random values JlK, Jl′K, incrementing the corresponding counter after each call.
JlK, Jl′K are used to authenticate [c], [c′] of the triples. This is done by computing
[l+ c], [l′ + c′] locally, and opening the values by broadcasting the shares. Parties
can then locally compute the MAC on c as ∆i · (l + c)− [∆ · l] for Pi. However,
since we do not check the correctness at this point, the MACs in JcK, Jc′K might
have an additive error chosen by the adversary. In addition, the c part of the
triple may have errors, since this is allowed by FPrep.

Let Pi be an honest party in Pcurr. In a triple (a, b, c), ci can have additive
errors of the form {δj,ia ·bi+δj,ib ·ai}j∈PA , where δ

j,i
a , δj,ib are chosen by a malicious

Pj in FPrep. We show in Appendix E that these errors do not give the adversary
any additional power compared to injecting additive errors to the output of
multiplications in the online phase, and will be detected by our verification
procedure. Using the potentially inconsistent triples, parties then compute the
multiplications x · y, rx · y by opening Jx − aK, Jy − bK, Jrx − a′K, Jy − b′K in
the standard way of using Beaver triples. To open J·K-shared values, parties
broadcast arithmetic shares of the value and continue with the computation. At
the end of the protocol, the verification phase computes a MAC Check on all the
authenticated values that had been opened. The protocol for the online phase of
Dynamic SPDZ appears in Fig. 9.

Note that for a multiplication x ·y, it is important that [l+ c] is not opened in
the same round as Jx− aK, Jy − bK. This is because if we do, a rushing adversary
can perform the following attack: To make the illustration simpler, we consider
only two parties Pi, Pj in the committee. Suppose the adversary Pj introduces

an error δj,ib · ai with an honest party Pi, using the errors in FPrep. The adversary
then waits until it receives x−a, and when opening [l+c], injects another additive

18

Protocol ΠSPDZ-Online

Init: Each Pi ∈ Pmain sends (Init,mT ,mR) to FPrep and receives ∆i. Later,
when Pcurr ⊆ Pmain wants to run the online phase, each Pi ∈ Pcurr sets count =
0, rcount = 0, and calls FPrep with (Rand,Pcurr,Pcurr, rcount) to obtain JrK.
Input: To share an input x, Pi inputs (Rand, Pi,Pcurr, rcount) to FPrep to get
⟨t⟩, where Pi knows t. Then,

1. Pi samples shares of x such that x =
∑

j∈Pcurr
xj and sends (xj , x+ t) to

each Pj ∈ Pcurr. Pi sets its share (∆ · x)i = ∆i · (x + t) − (∆t)i, where
(∆t)i = ∆i · t−

∑
j∈Pcurr\{Pi} M

i
j .

2. Each Pj ∈ Pcurr \ {Pi} sets its share to be JxK = (xj ,∆j · (x+ t)− (∆t)j),
where (∆t)j = Kj

i .
3. Each Pi ∈ Pcurr runs Multiplication below on JxK and JrK to get Jr · xK.a

Addition: To perform addition, JzK = JxK + JyK, each Pi ∈ Pcurr locally adds
their shares of JxK, JyK, and JrxK, JryK to get Jx+ yK, Jr(x+ y)K.
Addition by Constant: To compute JzK = Jx+ cK, a designated party (say
Pj) adds c to its share xj , and all parties add ∆ic to their MAC share.
Multiplication by Constant: To compute JzK = k ·JxK, each Pi ∈ Pcurr locally
multiply the public constant k to shares of JxK to get JkxK, Jr · (kx)K.
Multiplication: To compute JzK = JxK·JyK and JrzK = JrxK·JyK, each Pi ∈ Pcurr:

1. Calls FPrep twice with inputs (Trip,Pcurr,Pcurr, count), incrementing count af-
ter each call. FPrep outputs shares of the triples (⟨a⟩ , ⟨b⟩ , [c]), (⟨a′⟩ , ⟨b′⟩ , [c′]).

2. Calls FPrep with (Rand,Pcurr,Pcurr, rcount) twice to receive ⟨l⟩ , ⟨l′⟩. Increment
rcount after each call.

3. Applies ΠConvert on (⟨a⟩ , ⟨b⟩ , ⟨a′⟩ , ⟨b′⟩ , ⟨l⟩ , ⟨l′⟩) to get J·K shares.
4. Runs ΠOpen on [e] = [x− a], [d] = [y − b], [e′] = [rx− a′] and [d′] = [y − b′]).
5. Runs ΠOpen on [l + c], [l′ + c′] and computes the multiplications as:

[∆ · c] = (l + c) ·∆j − [∆ · l], [∆ · c′] = (l′ + c′) ·∆j − [∆ · l]
JzK = e · d+ e · JbK + d · JaK + JcK
JrzK = e′ · d′ + e′ · Jb′K + d′ · Ja′K + Jc′K

Reconstruction: First, run ΠSPDZ-Verify to check the multiplications. Then, to
output JzK, run ΠOpen on [z], then use ΠSPDZ-MAC to check its MAC.

a We actually only use one triple to multiply x and r, skipping the extra
product in the protocol.

Fig. 9: Protocol for the online phase of Dynamic SPDZ

error given by
(
(x− a) + aj

)
· δj,ib . Therefore, the triple will now be:

JaK, JbK, JcK = {[c] + δj,ib · a
i + [(x− a) + aj] · δj,ib , [∆ · c]}

= {[c] + x · δj,ib , [∆ · c]}

19

This results in the adversary mounting a selective failure attack, since the
error now depends on the secret wire value x. It can be avoided by making
the adversary add the additive error prior to learning x − a. A simple way of
achieving this is to authenticate c one round prior to opening x− a. Although
this costs an additional round, the authentication step of a triple for the current
layer can easily be merged with the opening of x − a from the previous layer.
This is still secure because the triples are independent and the adversary does
not gain anything by opening the independently masked c in the previous layer.

The verification phase, described in Fig. 10, is run before outputting any
result of a computation. First, the parties check the MACs on all the values that
were opened over the course of the computation. If the check fails, the parties
abort. Otherwise, they proceed by checking correctness of multiplications, with
the check from [CGH+18], which involves checking a random linear combination
of the inputs and outputs, and randomised versions of them. Parties start by
calling FCoin to receive random challenges α1, . . . , αN and β1, . . . , βM ∈ Fp. They

locally compute JuK =
∑N

i=1 αi · JrziK+
∑M

i=1 βi · JαviK and JwK =
∑N

i=1 αi · JziK+∑M
i=1 βi · JviK. If no cheating had occurred, opening JuK− r · JwK should result in

zero. To check this, parties securely reconstruct JrK using ΠOpen, locally compute
JuK− r · JwK. If the opened value is not zero, they reject.

Protocol ΠSPDZ-Verify

Verification: Let {vi, rvi}i∈[M] be the input wires of the circuit, and
{zi, rzi}i∈[N] be the output wires of multiplication gates of the circuit.

1. Parties start by running ΠSPDZ-MAC to check MACs on all the values opened in
multiplications and inputs previously. If ΠSPDZ-MAC fails, abort, else continue.

2. Parties call FCoin to receive α1, . . . , αN , β1, . . . , βM ∈ Fp

3. Parties locally compute

JuK =
N∑
i=1

αi · JrziK +
M∑
i=1

βi · JrviK

JwK =
N∑
i=1

αi · JziK +
M∑
i=1

βi · JviK

4. Parties open JrK by broadcasting shares of [r] and running ΠSPDZ-MAC on it.
5. Parties locally compute JuK− rJwK, open it and run ΠSPDZ-MAC. If the MAC

check passes and u − rw = 0, parties Accept it and go to reconstruction,
else Reject.

Fig. 10: Protocol for the verification phase in Dynamic SPDZ

20

The analysis of the verification phase proceeds similarly to that of [CGH+18],
except we also need to deal with the additional errors from our preprocessing
functionality. We prove the following in Appendix E.

Lemma 1. Suppose A introduces additive errors of the form δj,ia , δj,ib ̸= 0, for
malicious parties Pj and honest Pi in FPrep, and in ΠSPDZ-Online additive errors
δc, δc′ ̸= 0 when authenticating triples a, b, c and a′, b′, c′ respectively. If any errors
are non-zero, then the Verification phase in ΠSPDZ-Online fails with probability less
than 2/p.

The following theorem, proven in Appendix E, shows that the protocol
securely realizes the standard arithmetic black-box functionality, FABB (recall,
this is identical to FDABB in Fig. 1, except the operations are all carried out in
one committee, Pcurr).

Theorem 3. Protocol ΠSPDZ-Online UC-securely computes FABB in the presence
of a static malicious adversary corrupting up to all-but-one of the parties in Pcurr,
in the (FPrep,FCoin)-hybrid model.

Complexity Analysis. Compared with the standard SPDZ online phase [DKL+13],
our dynamic variant is more expensive, since we need to verify multiplications.
Instead of 2 openings of J·K-shared values per multiplication, as in SPDZ, we
need 4 openings of J·K-shared values, plus 2 openings of [·] sharings. This leads
the overall online communication and the storage complexity to be around 3x
that of SPDZ. However, our preprocessing protocol from Section 3 is vastly more
efficient than any SPDZ preprocessing, since it is the only protocol that is PCG-
friendly, allowing N triples to be preprocessed with communication scaling in
O(logN). Furthermore, this comes with the additional flexibility of dynamically
choosing the set of parties in the online phase.

5 Fluid SPDZ

In this section, we show how to run Fluid SPDZ, which is a SPDZ-like online
phase that supports fluidity. We base ourselves on the universal preprocessing
from Section 3, where the entire set of parties, Pmain, is involved. Later, in the
online phase, we start with a subset of parties Pcurr ⊂ Pmain, and this committee
can later evolve in a dynamic way (in contrast to Dynamic SPDZ, where the
committee is fixed once the online phase begins). As discussed in Section 2,
we assume when the committee changes at the end of an epoch, the current
committee is made aware of the identity of the next committee who they hand-off
their state to. We show how to leverage FPrep to achieve a maximally fluid online
phase, where each epoch may last only one round. In our protocol, we will denote
the current committee in a given epoch by Pcurr. Before going into the main online
protocol, we cover some key building blocks necessary to support fluidity, and
describe how we adapt the SPDZ MAC check protocol to work in this context.

21

Simple Resharing. We use a standard method for resharing an additively
shared value [x]Pcurr from committee Pcurr into committee Pnext, as shown in
Fig. 11. To reduce communication, we assume a setup where every pair of parties
shares a common PRG seed. (If this is not available, note that we can still have
parties in Pcurr sample and send the PRG seeds, which saves communication
when a large batch of values is being reshared).

Protocol ΠReshare

Setup: Each pair of parties Pi, Pj ∈ Pmain has a common PRG seed si,j .
Usage: Pcurr reshares [x]

Pcurr to Pnext. Parties in Pnext are indexed from 1 to m.

1. Each Pi ∈ Pcurr computes xi,j ∈ Fp as a fresh output of a PRG applied to
si,j , for j = 2, . . . ,m. Pi defines x

i,1 = xi −
∑m

j=2 x
i,j .

2. Each Pi sends xi,1 to P1 in Pnext. Each Pj ∈ Pnext defines its share as
xj =

∑
i∈Pcurr

xi,j (where if j ̸= 1, xi,j is computed from the PRG).

Fig. 11: Protocol for resharing values across committees

Resharing with MACs: the Key-Switch Procedure. Since our protocol uses
SPDZ J·K-sharing, simple resharing is not enough to securely transfer the state
from one committee to another. We also need a way to securely reshare a value JxK,
while switching to a different MAC key, which is held by the second committee.

Our solution is to use the key-switch protocol, ΠKey-Switch, shown in Fig. 12.
This securely transfers JxK from Pcurr to Pnext, while switching to the appropriate
MAC key. The protocol proceeds as follows: each party Pi ∈ Pcurr starts with a
random value ri that is pairwise authenticated with every party in Pcurr ∪Pnext —
that is, Pi holds a MAC on ti under Pj ’s MAC key, for each Pj ∈ Pcurr ∪ Pnext.
This can easily be obtained by a call to FPrep using the Rand command. Each
Pi can then obtain [∆Pcurr · t], where t =

∑
i∈Pcurr

ti, by combining the relevant
MAC shares as in ΠConvert, thus forming JtK. The idea now is for Pcurr to open the
masked value x+ t, which Pnext can use to obtain [∆Pnext · x] = [∆Pnext] · (x+ t)−
[∆Pnext · t]. All that remains is for parties in Pnext to get [∆Pnext · t]. Note that
∆Pnext · t =

∑
i∈Pcurr

∑
j∈Pnext

M i
j −Kj

i . Therefore, the parties in Pcurr can reshare

M =
∑

j∈Pnext
M i

j to parties in Pnext, who then locally sum the shares and their

keys to obtain shares of ∆Pnext · t = M −
∑

i∈Pcurr
Kj

i . Security of ΠKey-Switch is
stated in Lemma 2, and analysed in Appendix F.

Lemma 2. If parties in Pcurr follow the protocol, ΠKey-Switch leads to a consistent
sharing of JxKPcurr , and its transcript is simulatable by random values.

Fluid MAC Check: The MAC Check protocol from SPDZ (Fig. 8) is designed
to check a large batch of MACs at the end of the computation. In the fluid

22

Protocol ΠKey-Switch

Input: JxK = ([x], [∆Pcurr · x]) in Pcurr.
Output: JxK = ([x], [∆Pnext · x]) in Pnext.

1. Each Pi ∈ Pcurr calls FPrep with (Rand,Pcurr,Pcurr ∪ Pnext, rcount) to receive
ti, {M i

j}j∈Pcurr∪Pnext , while Pj ∈ Pcurr ∪ Pnext receives K
j
i .

2. Pcurr uses ΠConvert to form JtKPcurr . Each Pi ∈ Pcurr computes M i =∑
j∈Pnext

M i
j to obtain [M].

3. Parties in Pcurr run ΠOpen(Jx+ tK) and ΠReshare([M], [x]), all to Pnext.
4. Each Pj ∈ Pnext computes Kj =

∑
i∈Pcurr

Kj
i to obtain [K], and then defines

[∆Pnext · t] = [M]− [K]
5. Finally, Pj can compute its share of the MAC [∆Pnext ·x] as [∆Pnext] ·(x+ t)−

[∆Pnext · t]. Pnext outputs [x], [∆Pnext · x].

Fig. 12: Protocol to switch MAC keys

setting, however, this means that parties need to keep track of all the opened
values and MACs by resharing them across committees, which blows up the
complexity of the protocol. An alternative would be to check MACs on values
as soon as they are opened over the course of the computation. A maximally
fluid instantiation of this would run over 4 epochs. We propose an incremental
approach with maximal fluidity, which runs over only 2 epochs.

ΠFluid-MAC, detailed in Fig. 13, has two subprotocols. During the online compu-
tation, parties run Compress MACs to incrementally update the MAC check
state, a shared value [σ] (which is initially zero). At the end of the computation,
the final committee runs Check MACs to verify all the MACs. Let (A1, . . . , Am)
be a set of opened values that Pi wants to check the MACs on. We assume that
Pi+1 holds the shared state [σ′], from prior epochs. The protocol begins with Pi,
which opens a random challenge β from FPrep to Pi+1; since β is obtained in ⟨·⟩
form, Pi+1 can locally check the MACs on β to verify this. By taking a linear
combination with powers of β, Pi+1 computes [σ] = [σ′] + γk − [∆Pi] ·A, where
A =

∑m
j=1 β

j ·Aj and γk =
∑m

j=1 β
j · [∆Pi ·Aj].

At the end of the protocol, when a committee wants to complete the MAC
Check, all it has to do is securely open [σ] and check that it is zero.

Fluid Verify: In ΠFluid-Verify, parties in a given committee, say Pi+1, want to
verify the outputs of multiplication gates using the randomised circuit outputs,
similar to the verification method from Section 4. As in the Fluid MAC check,
we carry out the check incrementally throughout the computation, where in the
first phase, the parties open a random value, which is expanded into challenges
αi ∈ Fp, used to update the sharings JuK, JwK, corresponding to the tally of
randomised multiplications and actual multiplications. These are maintained
as state, until the final verification phase where we open JrK and check that

23

Protocol ΠFluid-MAC

Usage: Parties in Pi want to check the MACs values (A1, . . . , Am) opened to
them. We assume Pi+1 gets the MAC state [σ′] from a previous run of ΠFluid-MAC.

Compress MACs: Compute a compressed version of the MACs:

Committee i:
1. Each Pj ∈ Pi calls FPrep with input (Rand,Pi,Pi+1, rcount) to receive

〈
βj

〉
.

2. Hand-off: Send βj ,M j
k to each Pk ∈ Pi+1, along with A1, . . . , Am. Reshare

[σ′], [∆Pi], [∆Pi ·A1], . . . , [∆Pi ·Am].

Committee i+ 1:
3. Pk locally checks M j

k = βj ·∆k +Kk
j for all j ∈ Pi, and aborts if any of

them fail. Let β =
∑

j∈Pi
βj .

4. It updates [σ′] as [σ] = [σ′] + γk − [∆Pi] ·A, where A =
∑m

j=1(β)
j ·Aj and

γk =
∑m

j=1(β)
j · [∆Pi ·Aj] (here, (β)

j is the j-th power of β).

Check MACs: (Committee i+ 2)

5. Set σj =
∑

k∈Pi+1
[σk]. Each Pj ∈ Pi+2 calls FCommit to commit to σj .

6. Open all commitments, and if they are consistent, Accept if
∑

j∈Pi+2
σj = 0.

Else, Reject.

Fig. 13: MAC Check protocol for a fluid committee

JuK−r ·JwK = 0. The underlying technique is similar to the one used in [CGG+21],
and the protocol appears in Appendix F.

Fluid Online: We now describe how the online phase works. ΠFluid-Online begins
the same way as ΠSPDZ-Online with a set of parties Pcurr ⊆ Pmain, running Input
and Initialise phases. These are used to set up the preprocessing functionality, and
create authenticated sharings of the inputs. During these two phases, we assume
that the committee does not change. Addition and multiplication by a public
constant are local operations, so they are naturally maximally fluid operations.

Multiplication needs to be spread out over multiple epochs to do it in a
maximally fluid way. To evaluate one multiplication between x, y, we need to
perform two multiplications: x · y and rx · y. At a high level, we can think of
parties doing two things in ΠFluid-Mult. The first is computing output shares of
the multiplications JzK, JrzK. The second thing is running the MAC check and
the verification protocols in an incremental way, so that we retain a small state
complexity throughout the computation. Both of these parts are run in parallel
between the committees Pcurr−1,Pcurr,Pcurr+1.

The full online phase is given in Fig. 14. Below, we focus on describing the
multiplication protocol, shown in Fig. 15.

24

Protocol ΠFluid-Online

Init: Every Pi ∈ Pcurr ⊆ Pmain sets count = 0, rcount = 0. Pi inputs
(Rand,Pcurr,Pcurr, rcount) to FPrep and receives ⟨r⟩. Pi sends (Init,mT ,mR) to
FPrep and receives ∆i.
Input: To form J·K-sharing of an input x possessed by Pi ∈ Pmain,

1. Pi along with parties in Pcurr runs ΠKey-Switch, where Pi (acting as Pcurr) inputs
JxK under its key and parties in Pcurr (as Pnext) receive JxK under their key.

2. Parties in Pcurr input (Trip,Pcurr,Pcurr, count) to FPrep and receive
(⟨a⟩ , ⟨b⟩ , [c]).

3. Then they engage to perform the multiplication of {JxiK}i∈Pcurr with JrK to
produce {Jr · xiK}i∈Pcurr .

Addition: To perform addition, JzK = JxK + JyK, each Pi ∈ Pcurr locally adds
their shares of JxK, JyK, JrxK, JryK to get Jx+ yK, Jr(x+ y)K.
Addition by Constant: To compute JzK = Jx+cK, a designated party (say Pj ∈
Pcurr) adds c to its share xj , and all the other parties add ∆ic to their MAC share.
Multiplication by Constant: To compute JzK = k ·JxK, each Pi ∈ Pcurr locally
multiply the public constant k to shares of JxK to get JkxK, Jr · (kx)K.
Multiplication: To compute JzK = JxK · JyK and JrzK = JrxK · JyK in Pcurr, run
ΠFluid-Mult among (Pcurr-1,Pcurr,Pcurr+1).

Verify and Reconstruct:

1. Parties in the final committee, say Pfinal, run Check MACs of ΠFluid-MAC.
If ΠFluid-MAC fails, Reject, else continue.

2. Parties execute Final Check phase of ΠFluid-Verify. If the result is Accept, for
each output wire z, they open JzK by broadcasting their shares to the other
parties and running both phases of ΠFluid-MAC. If ΠFluid-MAC fails, Reject.

Fig. 14: Protocol for a maximally fluid online phase

Computing the output shares. In order for the current committee Pcurr to evaluate
the multiplications, we start with the committee of the previous epoch Pcurr-1.
We want to use Pcurr-1 to set up an authenticated triple for Pcurr to use. Towards
this, Pcurr-1 calls FPrep to receive two triples - (⟨a⟩ , ⟨b⟩ , [c]) and (⟨a′⟩ , ⟨b′⟩ , [c′]).
In addition, they also call it using Rand to receive authenticated shares of two
random values ⟨l⟩ and ⟨l′⟩, to be used to authenticate [c], [c′]. Parties use ΠConvert

to locally go from ⟨·⟩ to J·K shares of the triples and the random values. To
transfer the triples to Pcurr such that the MACs are under their key, Pcurr-1 runs
the ΠKey-Switch protocol with Pcurr, on (JaK, JbK), (Ja′K, Jb′K), JlK, Jl′K and opens
[l + c], [l′ + c′] to them. As a result, Pcurr can locally get authenticated shares of
the triples under the MAC key ∆Pcurr . Using shares of the triples, they locally
compute Jx− aK, Jy − bK, Jx− a′K, Jy − b′K and open them to Pcurr+1. Pcurr+1 can
compute JzK, JrzK using the standard Beaver multiplication technique.

25

Security of the Online Protocol. We now briefly discuss security of the
online protocol, ΠFluid-Online. As argued in Appendix F, the values sent in the
key-switch protocol are always indistinguishable from random, and any errors
in the resulting sharing will always be detected by a MAC check. Regarding
ΠFluid-MAC and ΠFluid-Verify, note that these protocols both follow essentially the
same set of steps as the Dynamic SPDZ protocols (ΠSPDZ-MAC and ΠSPDZ-Verify).
The key differences are (1) the random challenges are obtained by opening
random authenticated sharings, instead of FCoin, and (2) the final check values are
computed incrementally, instead of immediately. For (1), because the sharings are
authenticated and MACs immediately checked, they are still uniformly random
until the time of opening. For (2), note that since each challenge is only opened
after the corresponding value being checked has been made public, its randomness
still contributes in the same way as Dynamic SPDZ, to prevent cheating.

During the multiplication protocol, ΠFluid-Mult, the parties run the same com-
putations as in Dynamic SPDZ, with the difference that in each round, the state
is securely transferred using ΠReshare or ΠKey-Switch, and the MAC check and ver-
ification procedures are run in the background. Hence, security can be proven
similarly to the proof of Theorem 3. We obtain the following.

Theorem 4. Let A be an R-adaptive adversary in ΠFluid-Online. Then, the protocol
UC-securely computes FDABB in the presence of A in the FPrep-hybrid model.

6 Cost Analysis

Table 1: Cost estimates for various protocols (comm. in # field elements)

Protocol Online comm. Preproc. comm. Storage

SPDZ [KPR18,KOS16] 2|C| O(n|C|) O(|C|)
SPDZ (with our preproc.) 2 |C| O(|C|) +O(n log(|C|) O(|C|) +O(n log(|C|)
Dynamic SPDZ 6|C| O(n log(|C|) O(n log(|C|)
Fluid SPDZ O(nc|C|) O(n log(|C|) O(n log(|C|)

In Table 1 we give some efficiency estimates for our protocols, in terms of the
per-party communication and storage costs. n is the number of parties, while nc

is the average committee size in the online phase. First, in the preprocessing, our
dynamic and fluid protocols have significantly smaller storage and communication
compared with previous SPDZ protocols (if n is small, relative to the circuit
size). As mentioned in Section 4, we can also use our preprocessing to get a
modified version of SPDZ, with the same online cost as regular SPDZ, by verifying
the multiplication triples in the offline phase. This gives the best preprocessing
complexity for any SPDZ-like protocol with the same online phase.

The online complexities for all protocols apart from Fluid are just O(1) field
elements per multiplication, while with Fluid SPDZ, we get O(nc). This is because
for the other protocols, we assume the players follow the “king” approach to
open values [DN07], where parties send their shares to a designated party, who
sums them up and sends back the result.

26

Protocol ΠFluid-Mult

Usage: Pcurr wants to evaluate multiplications z = x · y, rz = rx · y.

Committee Pcurr-1:
1. Calls FPrep twice with (Trip,Pcurr-1,Pcurr-1, count), incrementing count after

each call. FPrep outputs shares of the triples (⟨a⟩ , ⟨b⟩ , [c]), (⟨a′⟩ , ⟨b′⟩ , [c′]).
2. Calls FPrep with (Rand,Pcurr-1,Pcurr-1, rcount) twice to receive ⟨l⟩ , ⟨l′⟩, incre-

menting rcount after each call.
3. Applies ΠConvert to get on (⟨a⟩ , ⟨b⟩ , ⟨a′⟩ , ⟨b′⟩ , ⟨l⟩ , ⟨l′⟩) to get J·K shares.

Locally computes [l + c], [l′ + c′].
4. Hand-off:

(a) Run ΠKey-Switch on (JaK, JbK), (Ja′K, Jb′K), JlK, Jl′K, and JrK.
(b) Run ΠOpen on [l + c], [l′ + c′].

Committee Pcurr:
5. Locally computes

[c] = (l + c)− [l], [c′] = (l′ + c′)− [l′]

[∆Pcurr · c] = [∆Pcurr] · (l + c)− [∆Pcurr · l]
[∆Pcurr · c

′] = [∆Pcurr] · (l
′ + c′)− [∆Pcurr · l

′]

6. In addition, they also compute Jx− aK, Jy − bK, Jx− a′K, Jy − b′K.
7. Executes Steps 1, 2 in Incremental Verification of ΠFluid-Verify and Com-

press MACs in ΠFluid-MAC.
8. Hand-off : In parallel to the Hand-off in Incremental Verification and

Compress MACs,
(a) Run ΠKey-Switch on (JaK, JbK, JcK), (Ja′K, Jb′K, Jc′K), JrK, and JmK, where

JmK is the set of wires not used in a multiplication in the current layer.
(b) Run ΠOpen on Jx− aK, Jy − bK, Jrx− a′K, Jy − b′K.

Committee Pcurr+1:
9. Locally executes the remaining steps of key-switch, and evaluates the

multiplications as:

e = x− a, d = y − b, e′ = rx− a′, d′ = y − b′

JzK = e · d+ e · JbK + d · JaK + JcK
JrzK = e′ · d′ + e′ · Jb′K + d′ · Ja′K + Jc′K

10. Executes Steps 3 and 4 in Incremental Verification of ΠFluid-Verify on
JzK, JrzK and in the Compress MACs phase in ΠFluid-MAC on (x− a, y −
b, rx− a′, y − b′).

Fig. 15: Protocol for a maximally fluid multiplication

Although this takes an additional round, it reduces the communication com-
plexity of opening a value from O(n2) to O(n). While the king approach is also

27

possible in Fluid MPC, it is harder to estimate the costs of this, since the parties
need to reshare part of their current state to the king.

In Table 1 we present asymptotic estimates of the cost of variants of our
protocols against the current best SPDZ protocols [KPR18,KOS16]. The primary
improvement comes from our preprocessing, which can be used to run a traditional
SPDZ online phase without any fluidity, at the same cost as the other approaches.
It has an additional factor of O(|C|) in the preprocessing compared to Dynamic
and Fluid SPDZ because we also authenticate and check the triples in the
preprocessing. Comparing Dynamic SPDZ with [KPR18,KOS16] shows that we
can support dynamic participants at the cost of a small overhead in the online
phase, and a vastly more cheaper preprocessing phase, making it practically
efficient.

To get an idea of the concrete efficiency of our universal preprocessing, we
give some communication estimates based on existing VOLE and OLE protocols.
For producing N = 220 triples, each pair of the n parties needs a VOLE of length
4N and an OLE of length N field elements. Using state-of-the-art LPN-based
VOLE [WYKW21] and OLE [BCG+20], this can be done with a total of around
4MB of communication per pair of parties. For example, using Dynamic SPDZ
with 10 parties, each party can use under 40MB of bandwidth, to gain the ability
to do MPC with any subset of parties later on.

6.1 Concrete Costs and Optimizations for ΠFluid-Online

In this section, we estimate the concrete communication cost per party running
ΠFluid-Online. Note that running the online phase in a maximally fluid way, as de-
scribed in Fig. 15, allows for multiplications to be interleaved across committees.
This means that parties in a committee, say Pi, may be involved in three multi-
plications in parallel. This can be seen as running three instances of ΠFluid-Online

in parallel, with Pi playing different roles (Pcurr-1,Pcurr,Pcurr+1) across the three
instances in parallel. In addition, we can reduce the number of random challenges
that need to be opened as part of Compress MACs and Incremental Verifi-
cation due to the interleaving.

To calculate the concrete cost, we assume that the circuit has a uniform width
of m, and the committees are of size nc. The number of elements per party per
epoch can then be estimated by the following formula: 14·m·nc+42·m+13·nc+20.
If the circuit is wide, i.e. m≫ nc, the amortised cost per multiplication becomes
14 · nc + 42. The cost of adding an additional party to the computation will
roughly be 14 elements.

Though we presented maximally fluid protocols, in practice one could relax
the model by allowing each epoch to last more than one round. The motivation to
do so is to save in terms of the concrete communication cost. For instance, assume
that the fluidity is four rounds instead of one. As the multiplication in ΠFluid-Online

takes three rounds (including computing Compress MACs and Incremental
Verification), this means the committee that starts the multiplication will be
the one to finish it as well. There will not be a need for state transfer during
the multiplication, essentially getting rid of all the Key-Switch operations in

28

ΠFluid-Online. Transferring the state after the multiplication is also cheaper, as the
committee will only have to Key-Switch output wires of the multiplication, the
MAC key, and the random value JrK. The cost of running the Fluid online with a
fluidity of four is 6 ·m+4 ·nc, where 6 ·m is the cost for authenticating 2m triples
and opening the Beaver triple intermediate values, and the 4 ·nc is for the random
challenges that need to be opened for Compress MACs and Incremental
Verification. With a wide enough circuit, the amortised cost per multiplication
per party comes down to about 6 elements, matching the cost of Dynamic SPDZ.

Acknowledgements

This work has been supported by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (grant
agreements No. 803096 (SPEC)), the Digital Research Centre Denmark (DIREC),
and the Aarhus University Research Foundation (AUFF) and the Independent
Research Fund Denmark under project number 0165-00107B.

References

ADI+17. Benny Applebaum, Ivan Damg̊ard, Yuval Ishai, Michael Nielsen, and Lior
Zichron. Secure arithmetic computation with constant computational
overhead. In CRYPTO 2017, Part I, LNCS. Springer, Heidelberg, August
2017.

BCG+19a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round OT extension and silent non-
interactive secure computation. In ACM CCS 2019. ACM Press, November
2019.

BCG+19b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT
extension and more. In CRYPTO 2019, Part III, LNCS. Springer, Heidel-
berg, August 2019.

BCG+20. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators from ring-LPN.
In CRYPTO 2020, Part II, LNCS. Springer, Heidelberg, August 2020.

BCGI18. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing
vector OLE. In ACM CCS 2018. ACM Press, October 2018.

BDOZ11. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias.
Semi-homomorphic encryption and multiparty computation. In EURO-
CRYPT 2011, LNCS. Springer, Heidelberg, May 2011.

BGG+20. Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo
Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. Can a public
blockchain keep a secret? In TCC 2020, Part I, LNCS. Springer, Heidelberg,
November 2020.

Bra85. Gabriel Bracha. An O(lgn) expected rounds randomized byzantine generals
protocol. In 17th ACM STOC. ACM Press, May 1985.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS. IEEE Computer Society Press, October
2001.

29

CGG+21. Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and
Gabriel Kaptchuk. Fluid MPC: Secure multiparty computation with dy-
namic participants. In CRYPTO 2021, Part II, LNCS. Springer, Heidel-
berg, August 2021.

CGH+18. Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,
Yehuda Lindell, and Ariel Nof. Fast large-scale honest-majority MPC
for malicious adversaries. In CRYPTO 2018, Part III, LNCS. Springer,
Heidelberg, August 2018.

DDN+16. Ivan Damg̊ard, Kasper Damg̊ard, Kurt Nielsen, Peter Sebastian Nordholt,
and Tomas Toft. Confidential benchmarking based on multiparty compu-
tation. In FC 2016, LNCS. Springer, Heidelberg, February 2016.

DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,
and Nigel P. Smart. Practical covertly secure MPC for dishonest majority
- or: Breaking the SPDZ limits. In ESORICS 2013, LNCS. Springer,
Heidelberg, September 2013.

DN07. Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure
multiparty computation. In CRYPTO 2007, LNCS. Springer, Heidelberg,
August 2007.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption. In
CRYPTO 2012, LNCS. Springer, Heidelberg, August 2012.

GHK+21. Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus
Nielsen, Tal Rabin, and Sophia Yakoubov. YOSO: You only speak once
- secure MPC with stateless ephemeral roles. In CRYPTO 2021, Part II,
LNCS. Springer, Heidelberg, August 2021.

GKM+20. Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno, and
Yifan Song. Storing and retrieving secrets on a blockchain. Cryptology
ePrint Archive, Report 2020/504, 2020. https://eprint.iacr.org/2020/
504.

GSY21. S. Dov Gordon, Daniel Starin, and Arkady Yerukhimovich. The more the
merrier: Reducing the cost of large scale MPC. In EUROCRYPT 2021,
Part II, LNCS. Springer, Heidelberg, October 2021.

HJKY95. Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proac-
tive secret sharing or: How to cope with perpetual leakage. In CRYPTO’95,
LNCS. Springer, Heidelberg, August 1995.

HSS17. Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant
round MPC combining BMR and oblivious transfer. In ASIACRYPT 2017,
Part I, LNCS. Springer, Heidelberg, December 2017.

KOS16. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster
malicious arithmetic secure computation with oblivious transfer. In ACM
CCS 2016. ACM Press, October 2016.

KPR18. Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making
SPDZ great again. In EUROCRYPT 2018, Part III, LNCS. Springer,
Heidelberg, April / May 2018.

MZW+19. Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng
Zhang, Ari Juels, and Dawn Song. CHURP: Dynamic-committee proactive
secret sharing. In ACM CCS 2019. ACM Press, November 2019.

SSW17. Peter Scholl, Nigel P. Smart, and Tim Wood. When it’s all just too much:
Outsourcing MPC-preprocessing. In 16th IMA International Conference
on Cryptography and Coding, LNCS. Springer, Heidelberg, December 2017.

30

https://eprint.iacr.org/2020/504
https://eprint.iacr.org/2020/504

WYKW21. Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolver-
ine: Fast, scalable, and communication-efficient zero-knowledge proofs for
boolean and arithmetic circuits. 42nd IEEE Symposium on Security and
Privacy (Oakland 2021), 2021.

31

Supplementary Material

A Additional Functionalities

In our protocols, we use standard functionalities for commitments and oblivious
transfer. We also use a weak equality test, the functionality for which appears
in Fig. 17. Rest of the functionalities are shown in FCommit Fig. 18, and FOT Fig. 19.

Functionality FRand

The functionality runs between a set of parties P and an adversary A.
Upon receiving a description of a domain Fm

pr from every party in P, uniformly
sample (x1, . . . , xm)← Fm

pr and send this to A. If A responds with Deliver, send
x1, . . . , xm to all parties and terminate. Otherwise, if A sends Abort, send Abort
to all parties and terminate.

Fig. 16: Ideal functionality for coin tossing

Functionality FEQ

This functionality receives a value VA from PA and VB from PB , checks if
VA = VB , and reveals PA’s input to PB .
Equality Check: On input (EQ, Vi) from Pi for i ∈ [A,B]:

1. Send VA to PB .

2. If PB is honest, output success or fail depending on VA
?
= VB to PA.

3. If PB is corrupted, output to PA whatever PB sends.

Fig. 17: Functionality to for a weak equality check

B Security of ΠPrep

Theorem 5 (Theorem 1, restated). Suppose that Expand : S → Fm
p is a

secure pseudorandom generator. Then, the protocol ΠPrep securely implements the
functionality FPrep in the (FnVOLE,Fprog

OLE)-hybrid model, when up to n− 1 out of
n parties are corrupted.

Proof. Since the protocol involves no interaction other than with FnVOLE and
Fprog

OLE , simulation is quite straightforward. Let A be the set of corrupt parties. We
construct a simulator, S, as follows. For each i ∈ A, S receives ∆i from A and

32

Functionality FCommit

The functionality runs between a set of parties P and an adversary A.

Commit: On input (commit, Pi, x, τx) from Pi, where τx is a previously unused
identifier, store (Pi, x, τx) and send (Pi, τx) to all parties.

Open: On input (open, Pi, τx) from Pi, retrieve x and send (x, i, τx) to all
parties.

Fig. 18: Ideal functionality for commitments

Functionality FOT

On receiving (m0,m1) from PA (sender), where |m0|= |m1|, and b ∈ {0, 1} from
PB (receiver), output mb to PB .

Fig. 19: Functionality to for oblivious transfer

forwards it to FPrep. We focus on the setup for triple generation; the simulation
for random values is simpler. S receives the corrupt parties’ seeds sia, s

i
b as input

to FnVOLE, as well as the MACs and MAC key outputs which are chosen by the
corrupt parties. S then computes the expanded shares ai = Expand(sia) and bi =
Expand(sib). For each i ∈ A and honest Pj , it receives seeds s

i,j
a , si,jb as input to the

Fprog
OLE instances between Pi and Pj . For any instance where si,ja ̸= sia, S computes

the additive error multipliers δi,jb = Expand(si,ja) − ai, and similarly computes

δi,ja = Expand(si,jb)− bi. For j ∈ [n] \A, let δjb =
∑

i∈A δi,jb , and δja =
∑

i∈A δi,ja .

Finally, S sends the error terms δja, δ
j
b to FPrep, as well as the corrupted

parties’ expanded shares ai, bi (for i ∈ A), MACs, MAC keys and ci shares (all
computed the same way as in the protocol).

We now argue indistinguishability of the ideal and real executions. Since the
corrupt parties receive no information during the protocol, we only need to look at
the distribution of the parties’ outputs. Let Pcurr,Pnext be two committees which
query the Triples command, and suppose each committee has at least one honest
party (for an entirely corrupt committee, indistinguishability of the corresponding

outputs is trivial). Each sharing ⟨a⟩Pcurr,Pnext , ⟨b⟩Pcurr,Pnext is defined from a subset
of the original sharings ⟨a⟩ , ⟨b⟩, where each honest party’s share ai, bi was derived
as an output of Expand on an independent random seed. Hence, by a standard
hybrid argument, these shares are computationally indistinguishable from random
values. The MACs and MAC keys held by the two committees on ⟨a⟩ , ⟨b⟩ are
perfectly indistinguishable, because in both worlds, corrupt parties choose their
own values, while values between a pair of honest parties are sampled at random.
Finally, we need to consider the shares ci, for i ∈ Pcurr. In the real world, we have

33

c =
∑

i∈Pcurr

ci =
∑

i∈Pcurr

(aibi +
∑
j ̸=i

(ui,j + vi,j))

=
∑

i∈Pcurr

(aibi +
∑
j ̸=i

(ui,j + vj,i))

=
∑

i∈Pcurr

(aibi +
∑
j ̸=i

(ai,jbj,i)

where ai,j , bi,j equal ai, bi if Pi is honest, or if Pi is corrupt, derived from the seed
used by Pi with Pj in Fprog

OLE . Plugging in ai,j = δi,jb +ai and bj,i = δj,ia +bj , we have

c =
∑

i∈Pcurr

(aibi +
∑
j ̸=i

(ai + δi,jb) · (bj + δj,ia)

= ab+
∑

i∈Pcurr

∑
j ̸=i

(aiδj,ia + bjδi,jb)

= ab+
∑

i∈Pcurr

(aiδia + biδib)

where δia, δ
i
b are defined as in the error vectors from the simulation, and we have

assumed that, for any i, j where both Pi and Pj are corrupt, δi,ja and δj,ib are
both zero (since here, simulation is trivial).

It follows that the way c is computed in the real world, above, is identical to
that in the ideal world. Furthermore, the randomness of the individual ci shares
is guaranteed, because of the randomly sampled outputs of Fprog

OLE between two
honest parties.

C Security of ΠnVOLE

In this section, we give the complete security proof for the multi-party VOLE
protocol, ΠnVOLE.

C.1 Analysis of the Consistency Check

Since Fprog
VOLE does not guarantee that each party Pi uses the same seed si with every

other party, we need some sort of a consistency check to detect malicious behaviour.
The high level idea is for parties to compute a random linear combination on the
outputs of Fprog

VOLE, securely open the sum and check that it is zero. The check is
similar to the one from [HSS17], wherein it was used to check TinyOT triples.

Recalling the notation for a 2-party MAC between (Pi, Pj), Pi holds the

values (xi,M i
j), where M i

j(x
i) = Kj

i (x
i) + xi ·∆j . Kj

i is the local key that Pj

has with Pi, and ∆j is the global key that is supposed to be kept the same across
interactions with different parties.

We formalise the security of the consistency check used in Fig. 7. There are
two sources of errors a corrupt PB can use, which are:

34

1. Providing inconsistent inputs (∆) when acting as the sender in the Initialise
command of Fprog

VOLE with 2 different honest parties.
2. Providing inconsistent values (s) when acting as the receiver in the Extend

command of Fprog
VOLE with 2 different honest parties.

In both instances, we are only concerned with the cases in which a dishonest
party interacts with an honest one. If both parties are corrupt, Fprog

VOLE need not
be simulated in the proof.

Difference between [HSS17] and this: In [HSS17], the adversary can use
different values as inputs when acting as the receiver with different honest parties.
This translates to a chosen additive error by the adversary. However, in our case
the adversary inputs a seed s, from which the value u is computed as Expand(s).
Therefore, this will not be an arbitrarily chosen additive error but limited to a
subset of values over the field.

For the analysis, we continue to treat this error as an arbitrarily chosen
additive error.

These attacks are modelled by defining the inputs used by a corrupt Pj , with
every honest party. Let Pi0 be the party for which Pj uses the inputs sj,i0 , and
∆j,i0 , which we consider to be the actual inputs. As a result of using a different s
with different parties, the values r, t will be different. Let the values used by Pj

with Pi0 be rj,i0l , tj,i0 ∀l ∈ [m]. For simplicity, we omit the i0 in the superscript
for these values. Ideally Pj should use the same inputs with every other honest
party. We can model the errors as:

εj,i0 = 0, εj,i = ∆j,i −∆j , i /∈ (A ∪ i0)

δj,i0 = 0, δj,il = rj,il − rjl , l ∈ [m], i /∈ (A ∪ i0)

δ̂j,i0 = 0, δ̂j,il = tj,i − tj , i /∈ (A ∪ i0)

Where εj,i is the error in the global key used by Pj with Pi. This error is
fixed in the Initialise command, whereas the error δ can be different in every
instance of Extend. If Pi, Pj are both corrupt, or both honest, the errors are set
to 0. Therefore, the outputs of Fprog

VOLE between (Pj , Pi) satisfy:

MJ
i (r

j,i
l) = Ki

j(r
j,i
l) + rj,il ·∆

i,j

or equivalently,

M j
i (r

j
l + εj,il) = Ki

j(r
j
l + εj,il) + (rjl + δj,il) · (∆j + εi,j)

δj,i ̸= 0 if Pj (the receiver) cheated, and εi,j ̸= 0 if Pi (the sender) cheated.
The first case is of a corrupt sender Pj , which uses inconsistent global keys

∆j,i when acting as a sender with different honest parties Pi, i /∈ (A ∪ i0). The
inconsistency is proved impossible via:

Lemma 3. If ΠnVOLE succeeds, then all the global keys ∆j,i are consistent and
well defined, i.e εj,i = 0 for every i, j ∈ [1, n].

35

Proof. We start by analysing possible deviations by Pj ∈ A in Step 4g in Fig. 7,
where we want to catch inconsistent ∆j,i used with different honest parties.

In Step 4e, parties broadcast their shares of C, and the corrupted parties can
send the wrong shares so that

∑n
j=1 Ĉ

j = C + e, where e is the additive error
from Pj . Another thing the corrupted parties can do is cheat in the commitments,

by committing to Ẑl
j values such that

∑
l∈A Ẑl

j =
∑

l∈A Zl
j + Ej .

Therefore, the check now becomes:

0 =

n∑
i=1

Ẑi
j

= Ej + Zj
j +

∑
i̸=j

Zi
j

= Ej +

(Cj − C − e) ·∆j −
∑
i ̸=j

Kj(Ci)

+
∑
i̸=j

M i
j(C

i)

= Ej + (Cj − C − e) ·∆j +
∑
i ̸=j

(M i
j(C

i)−Kj
i (C

i))

= Ej + (Cj − C − e) ·∆j +
∑
i ̸=j

Ci ·∆j,i

= Ej + (Cj +
∑
i ̸=j

Ci − C − e) ·∆j +
∑
i̸=j

Ci · εj,i

= Ej − e ·∆j +
∑
i̸=j

Ci · εj,i

where εj,i indicates the error as compared to the ∆j used in computing Zj
j .

Using inconsistent global keys means that ∃i′ /∈ (A ∪ i0), ε
j,i′ ̸= 0. Therefore the

attack would require e ·∆j − Ej = Ci′ · εj,i′ . Pj does not know anything about

the shares of C at the time of committing to Ẑl
j due to using the re-randomised

shares of C for reconstruction in step 4e. Therefore, the probability that the check
passes with the errors is 1/F as the adversary will have to guess the share of C.

The second case is proving that Pj as a corrupted receiver cannot input
inconsistent values ej,i to different honest parties.

Lemma 4. If ΠnVOLE succeeds, every ordered pair (Pi, Pj) holds a secret sharing

of rjl ·∆i for every l ∈ [1,m]. In other words, δj,il = 0 for every i, j, l.

Proof. We can define the MAC on Cj held by Pj with party Pi as,

M j
i (C

j) =

m∑
l=1

χl ·M j
i (r

j,i
l) +M j

i (t
j,i)

and the key held by Pi as,

Ki
j(C

j) =

m∑
l=1

χl ·Ki
j(r

j,i
l) +Ki

j(t
j,i)

36

In step 4f of ΠnVOLE, a corrupted Pj can commit to incorrect MACs Ẑj
i (C

j) =

M j
i (C

j) +Ej
i and Ĉj = Cj + ej . In order to succeed, the check Ẑj

i = Ki
j(C

j) +

Ĉj ·∆i from step 4g must hold. This implies,

M j
i (C

j) + Ej
i = Ki

j(C
j) + (Cj + ej) ·∆i

=⇒ Ej
i − (Cj + ej) ·∆i = Ki

j(C
j)−M j

i (C
j) = −

(
m∑
l=1

χl · rj,il + tj,i

)
·∆i

=⇒ Ej
i =

(
Cj + ej −

m∑
l=1

χl · (rjl + δj,il) + (tj,i + δ̂j,i)

)
·∆i = (ej −

m∑
l=1

χl · δj,il + δ̂j,i) ·∆i

A malicious Pj has two options to cheat, both with probability of 1/F to
succeed:

1. Setting Ej
i = (ej −

∑m
l=1 χl · δj,il + δ̂j,i) ·∆i ̸= 0, which requires guessing ∆i,

known only to Pi.
2. Set Ej

i = 0 and ej =
∑m

l=1 χl ·δj,il + δ̂j,i for every i /∈ A. Since δj,i0l = δ̂j,i0 = 0,
ej should also be 0. Therefore, for i /∈ (A ∪ i0) it should hold that,

0 =

m∑
l=1

χl · δj,il + δ̂j,i = δ̂j,i = −
m∑
l=1

δj,il · χl ∈ Fpr

Since χ are uniformly random values from a field, the probability that this
holds is 1/F.

C.2 Security Proof

Theorem 6 (Theorem 2, restated). Protocol ΠnVOLE UC-securely computes
FnVOLE in the presence of a static malicious party corruption up to n− 1 in the
(Fprog

VOLE,FCoin,FCommit)-hybrid model.

Proof. We construct a PPT Simulator (S) that run the adversary (A) as a
subroutine, and is given access to FnVOLE. It internally emulates the functionalities
Fprog

VOLE,FRand,FCommit and we implicitly assume that it passes all communication
between A and the environment (Z).

The parties controlled by the A are indicated by PA and the honest parties
by PH. The simulator uses a flag which is set to 1 in case A is caught cheating
before the consistency check happens, and the simulation is carried on. The
simulation proceeds as follows:

Malicious PA:
Init: S receives a vector ∆i for every i ∈ A, which are its inputs to Fprog

VOLE. S
chooses the first one in each of these vectors and forwards them to FnVOLE with
the Init command. If any of these vectors are not of the form (∆i, . . . ,∆i), set
the flag = 1.

Random Values:

37

1. When A acts as receiver in step 2, S receives a vector eij from every Pi ∈ PA
and j ∈ [1, n]. It picks the first vector and forwards it to FnVOLE with the
Extend command. If any of the vectors received from a Pi are inconsistent,
set flag = 1.

2. For Pi ∈ PA and j ∈ [1, n], S records wi
j when A acts as the receiver in step

2, and vi
j when it acts as the sender.

3. Emulate the call to FRand by sampling χ1, . . . , χm and sending them to A.
4. Receive zero-shares from A and record them. Sample a zero-share for Pj ∈ PH

and send them to A.
5. Sample a random share of C for each honest party and send them to A.

Receive Ĉi for Pi ∈ PA, reconstruct C =
∑n

i=1 Ĉ
i.

6. Emulate FCommit by recording C̃i, (Zi′

j)j ̸=i, Z
i′

i from Pi ∈ PA. S computes

Ci as it knows χ, and shares of A for Fprog
VOLE. Using those, it sets ⟨C⟩ =∑m

i=1 χi · ⟨ri⟩+ ⟨t⟩ for all parties in PA.

7. If C̃i = Ci and flag = 0: for each sum,
∑n

i=1 Z
i
j , where j ∈ [1, n], sample

shares for the honest parties as follows: sample uniformly random values for
all but one honest party, and pick the last share such that the sum is zero.

8. If C̃i = Ci and flag = 1: sample random values for PH for shares of Z and
send them to A, send abort to FnVOLE and abort.

9. If C̃i ̸= Ci, compute Z̃i
j − Zi

j , where Zi
j is the value computed by S using

Ci, for all j ∈ PH . For A to pass the check, it must have guessed the correct
∆j for every honest Pj .

(a) Therefore, S can extract A’s guess as ∆̃j = (Z̃i
j − Zi

j)/(C̃
i − Ci). Set

∆̃ = (∆̃j , . . .).
(b) Forward (guess, ∆̃) to FnVOLE. If FnVOLE returns success, send true to A,

forward w to FnVOLE. Compute shares of PH such that
∑n

i=1 Z
i
j = 0 for

j ∈ [1, n] and send them to A. Output whatever A outputs.
(c) Else, receive (abort,∆), where ∆ is the vector of ∆ values used by PH .

Compute shares of PH using ∆, send them to A, and abort.

10. Whenever A queries Fprog
VOLE with a set I, forward it to FnVOLE.

D Realizing Fprog
VOLE

D.1 Chosen-input single point VOLE

We start with a standard random VOLE functionality called Base VOLE, as
shown in Fig. 20. This can be realised by any of the existing protocols for
VOLE [ADI+17,BCGI18,BCG+19a,WYKW21]. Using this, we build a single-
point subfield VOLE (spsVOLE), where the input of the receiver is a u such that
u[α] = β and is 0 everywhere else. Wolverine [WYKW21] has a construction for
random spsVOLE, where the sender’s global key ∆ and the receiver’s input u are
randomly picked. Since, in our setting, we want parties to be able to influence
the randomness used to derive their inputs, we give a modified version of this
protocol that supports chosen-inputs, in Fig. 22.

38

Functionality FsVOLE

Parameters: An extension field Fpr , length m, and party identifiers PA, PB .
Initialise: On receiving Init from PA, and (Init,∆) from PB , store the global
key ∆, and ignore all subsequent Init commands.
Extend: This procedure can be run multiple times. On receiving (Extend, l)
from PA, PB , do:

1. If PB is honest, sample K[x]← Fl
pr . Else, receive K[x] ∈ Fl

pr from A.
2. If PA is honest, sample x← Fl

p and compute M[x] = K[x]+∆ ·x ∈ Fl
pr . Else,

receive x ∈ Fl
p and M[x] ∈ Fl

pr from A and recompute K[x] = M[x]−∆ ·x ∈
Fl
pr .

3. Send (x,M[x]) to PA and K[x] to PB .

Global key query: If PA is corrupted, receive (guess,∆′) from A with ∆′ ∈ Fpr .
If ∆′ = ∆, send success to PA and ignore any subsequent global key query. Else,
send abort to both parties and abort.

Fig. 20: Functionality for a subfield VOLE (Base VOLE)

To reflect the chosen-input protocol, we need to slightly modify the spsVOLE
functionality, F ci

spsVOLE, in Fig. 21. First, we let the party PA choose α and β,
which determine the special point in the vector u, which is nonzero only at
u[α] = β. The second tweak is to make F ci

spsVOLE reveal the secret index α used
by an honest PA, in case of an abort. Previously, this was not needed, since α
was always sampled at random and not a private input.

The protocol Πci
spsVOLE uses FOT, a standard OT functionality, and FEQ, a

functionality to check equality, which reveals an honest PA’s input to PB. The
protocol can be split into two parts, with the first part being a semi-honest VOLE
protocol, and the second part involving a consistency check.

Parties PA, PB start by generating ⟨β⟩ ∈ Fp, where β is an input of PA. Doing
so is straightforward and involves one call to FsVOLE. PA then defines the single-
point vector u ∈ Fm

p such that u[α] = β, where α ∈ [0, n) is also its input. Next
we need PB to generate v ∈ Fm

p in such a way that PA learns all v[i] values except
v[α]. Towards this, parties run the GGM subroutine, starting with PB sampling
s← {0, 1}κ and computing all the nodes in the GGM tree of depth h with s as
the root node. The j-th node in the tree at the i-th level is denoted by sij . PB

defines s00 = s as the root, and computes
(
si2j , s

i
2j+1

)
= G(si−1

j), for i ∈ [1, h),

j ∈ [0, 2j−1), where G : {0, 1}κ → {0, 1}2k is a PRG. The leaf nodes are computed
as (v[2j],v[2j + 1]) = G′(sh−1

j) for j ∈ [0, 2h−1), where G′ : {0, 1}κ → F2
pr is a

PRG. The GGM(1n, s) output can be written as,
(
{vj}j∈[0,n), {(Ki

0,K
i
1)}i∈[h]

)
,

where (Ki
0,K

i
1) are the XOR of the values at the even and odd nodes at level i

respectively. For the leaf nodes, instead of XOR, addition over Fpr is computed.
Then, parties run h instances of FOT with PA sending ᾱi for i ∈ [1, h] and
PB sending (Ki

0,K
i
1) as the input. The outputs from FOT give PA (w[i])i ̸=α as

39

w[i] = v[i] for i ̸= α. The only thing that remains is to obtain w[α] = v[α]+∆ ·β.
Recall that parties already have ⟨α⟩. Therefore, PB can send K[β]−

∑m
i=1 v[i] to

PA, which can compute w[α] as:

w[α] = M[β]− (K[β]−
m∑
i=1

v[i])−
∑
i ̸=α

v[i] = M[β]− K[β] + v[α] = v[α] + ∆ · β

To check for malicious behaviour, we run the consistency check fromWolverine,
which is described here for completeness. The idea is for parties to samples
uniformly random values χ0, . . . , χn−1 ∈ Fpr and checking the randomised version
of the VOLE as:

n−1∑
i=0

χi ·w[i] =

n−1∑
i=0

χi · v[i] + ∆ · β · χα

PB cannot compute this however, as it does not know α, β. Therefore, parties
can use FsVOLE to generate Z, Y ∈ Fpr such that Z = Y +∆ · β · χα. Since β · χα

lies in Fpr as opposed to Fp, we cannot directly use FsVOLE. Instead, χα can be
viewed as (χα,0, . . . , χα,r−1 ∈ Fr

p. They can then use r calls to FsVOLE to which

gives PA z and PB y such that z = y +∆ · β · χα. Let Z =
∑r−1

i=0 z[i] · Xi and

Y =
∑r−1

i=0 y[i] · Xi. This means PA can compute VA =
∑n−1

i=0 χiw[i]−Z and PB

can compute VB =
∑n−1

i=0 χi · v[i]− Y . The final step is to call FEQ with VA, VB ,
which returns either success or abort.

Functionality F ci
spsVOLE

Parameters: An extension field Fpr , length m, and party identifiers PA, PB .
Initialise: On receiving Init from PA, and (Init,∆) from PB , store the global
key ∆ ∈ Fpr , and ignore all subsequent Init commands.
Extend: On receiving (Extend,m, α, β) from PA and Extend from PB , where
m = 2h, do:

1. If PB is honest, sample v ← Fm
pr . Else, receive v from A.

2. Set u ∈ Fm
p such that {u[i]}i ̸=α = 0 and u[α] = β. Compute w = v+∆·u ∈

Fm
p .

3. If PB is corrupt, receive a set I ⊆ [0,m) from A. If α ∈ I, send success to PB

and continue. Else, send abort to both parties, output α to PB and abort.
4. Output (u,w) to PA and v to PB .

Global-key query: If PA is corrupted, receive (guess,∆′) from A with ∆′ ∈ Fpr .
If ∆′ = ∆, send success to PA and ignore any subsequent global-key query. Else,
send abort to both parties and abort.

Fig. 21: Functionality for a chosen-input sVOLE

40

Protocol Πci
spsVOLE

Parameters: An extension field Fpr , party identifiers PA, PB .
Initialise: Executed only once between a pair of parties. PA sends Init and PB

sends (Init,∆) to FsVOLE.
Extend: Can be executed multiple times. PA has input (α, β), where α ∈ [0, n),
β ∈ F∗

p.

1. PA and PB send Extend to FsVOLE, which returns (a, c) ∈ Fp × Fpr to PA

and b ∈ Fpr to PB such that c = ∆ · a+ b.
2. PA sets δ = c and sends a′ = β − a ∈ Fp to PB which computes γ =

b−∆ · a′, forming ⟨β⟩. PA defines u ∈ Fm
p as the single-point vector such

that u[α] = β.
3. PB samples s ← {0, 1}k, runs GGM(1m, s) to get

({vj}j∈[0,m), {(Ki
0,K

i
1)}i∈[1,h]) and sets v[j] = vj for j ∈ [0,m). PA lets ᾱi

be the compliment of the ith bit of the binary representation of α. For
i ∈ [1, h], PA sends ᾱi ∈ {0, 1} to FOT and PB sends (Ki

0,K
i
1) to FOT. PA

receives Ki
ᾱi
, which then runs {vj}j ̸=α = GGM′(α, {Ki

ᾱi
}i∈[1,h]).

4. PB sends d = γ −
∑

i∈[0,m) v[i] ∈ Fr
p to PA. Then, PA defines w ∈ Fm

pr as

the vector with w[i] = vi for i ̸= α and w[α] = δ −
(
d+

∑
i ̸=α w[i]

)
. Note

that w = ∆ · u+ v.

Consistency check:

1. Both parties send (Extend, r) to FsVOLE, which returns (x,z) ∈ Fr
p × Fr

pr to
PA and y∗ ∈ Fr

pr to PB such that z = ∆ · x+ y∗.
2. PA samples χi ← Fpr for i ∈ [0,m) and writes χα =

∑r−1
i=0 χα,i · Xi. Let

χα = (χα,0, . . . , χα,r−1) ∈ Fr
p. PA then computes x∗ = β ·χα −x ∈ Fr

p and
sends ({χi}i∈[0,m),x

∗) to PB , which computes y = y∗ −∆ · x∗ ∈ Fr
pr .

3. PA computes Z =
∑r−1

i=0 z[i] ·Xi ∈ Fpr and VA =
∑m−1

i=0 χi ·w[i]−Z ∈ Fpr ,
while PB computes Y =

∑r−1
i=1 y[i] ·Xi ∈ Fpr and VB =

∑m−1
i=0 χi ·v[i]−Y ∈

Fpr . Then PA sends VA to FEQ, and PB sends VB to FEQ. If either party
receives false or abort from FEQ, it aborts.

4. PA outputs (u,w) and PB outputs v.

Fig. 22: Protocol for single-point sVOLE

Theorem 7. If G and G′ are pseudorandom generators, then Πci
spsVOLE UC-

realises F ci
spsVOLE in the (FsVOLE,FEQ,FOT)-hybrid model. In particular, no PPT

environment Z can distinguish the real-world execution from the ideal-world one
except with probability at most 1/pr + negl(k).

Proof. The first part deals with the case of a malicious PA and the second
one with a malicious PB. In each case we construct a PPT simulator S which
is given access to F ci

spsVOLE that runs the A as a subroutine and emulates the
functionalities FsVOLE,FEQ,FOT. We implicitly assume that the simulator S
passes all the communication between the A and the environment Z.

41

The S for a malicious PA behaves exactly the same as it does in Wolver-
ine [WYKW21]. The interesting case is when PB is malicious.

Malicious PA: Every time the extend procedure is run with inputs (m,α, β),
S interacts with A as follows:

1. S emulates FsVOLE and records the values (a, c) that A sends to FsVOLE. When
A sends the message a′ ∈ Fp, then S sets β = a′ + a ∈ Fp and δ = c.

2. For i ∈ [1, h), S samples Ki ← {0, 1}κ; it also samples Kh ← Fpr . Then for
i ∈ [1, h], S emulates FOT by receiving ᾱi ∈ {0, 1} from A, and returning
Ki

ᾱi
= Ki to A. It sets α = α1 . . . αh and defines u ∈ Fm

p as the vector
that is 0 everywhere except that u[α] = β. Next, S computes {vj}j ̸=α =
GGM′(α, {Ki

ᾱi
}i∈[1,h]).

3. S picks d← Fpr and sends it to A. Then S defines w as the vector of length
m with w[i] = vi for i ̸= α and w[α] = δ − (d+

∑
i ̸=α w[i]).

4. S emulates FsVOLE by recording (x, z) from A.
5. S receives {χi}i∈[0,n) and x∗ ∈ Fr

p from A, and sets x′ = x∗ + x ∈ Fr
p and

x′ =
∑r−1

i=0 x′[i] · Xi.

6. S records VA ∈ Fr
p that A sends to FEQ. It then computes V ′

A =
∑m−1

i=0 χi ·
w[i]−

∑r−1
i=0 z[i] · Xi ∈ Fr

p and does:
(a) If x′ = β · χα, then S checks whether VA = V ′

A. If so, S sends true to A,
and sends u,w to F ci

spsVOLE. Else, S sends abort to A and aborts.
(b) Else, S computes ∆′ = (V ′

A − VA)/(β · χα − x′) ∈ Fr
p and sends a global-

key query (guess,∆′) to F ci
spsVOLE. If F ci

spsVOLE returns success, S sends true

to A, and sends u,w to F ci
spsVOLE. Else, S sends abort to A and aborts.

7. Whenever A sends a global-key query to (guess,∆′) to the functionality
FsVOLE, S forwards the query to F ci

spsVOLE and returns the answer to A. If the
answer is abort, S aborts.

Malicious PB: The simulator S interacts with A as follows. First, it simulates
the initialisation step by recording the global-key ∆ ∈ Fpr that A sends to FsVOLE.
Then, every time (Extend,m) is called, S does:

1. S records b ∈ Fpr that A sends to FsVOLE. Then S samples a′ ← Fp and
sends it to A. Next, S computes γ = b−∆ · a′, and samples β ∈ F∗

p and sets
δ = γ +∆ · β.

2. S records the values {(Ki
0,K

i
1)}i∈[1,h] sent to FOT by A.

3. S receives d ∈ Fpr from A. Then, for each α ∈ [0, n), it computes a vector
wα as follows:
(a) Execute {vαj }j ̸=α = GGM′(α, {Ki

ᾱi
}i∈[1,h]) and set wα[i] = vαi for i ̸= α.

(b) Compute wα[α] = δ − (d+
∑

i ̸=α wα[i]).
4. S records the vector y∗ sent to FsVOLE by A.
5. S samples χi ← Fpr for i ∈ [0, n) and x∗ ← Fpr , and sends them to A. Then
S computes y = y∗ −∆ · x∗.

6. S computes Y =
∑r−1

i=0 y[i] · Xi. It then records VB sent to FEQ by A. Then,
S computes a set I ⊆ [0, n) as follows:

(a) For α ∈ [0, n), compute V α
A =

∑n−1
i=0 χi ·wα[i]−∆ · β · χα − Y .

42

(b) Define I = {α ∈ [0, n)|V α
A = VB}.

S sends I to F ci
spsVOLE. If it returns (abort, α

∗), where α∗ was the value used

by an honest PA, S uses α∗ to compute the correct V α∗

A and sends (false, V α∗

A)
to A on behalf of FEQ, and then aborts. Else, S sends (true, VB) to A.

7. S chooses an arbitrary α ∈ I and computes a vector v as follows:

(a) Set v[i] = wα[i] for i ∈ [0, n)i ̸=α.
(b) Set v[α] = γ − d−

∑
i ̸=α v[i].

S sends v to F ci
spsVOLE and outputs whatever A outputs.

We first consider the view of the adversary A in the ideal-world execution
and the real-world execution. The values a′ and x∗ simulated by S have the
same distribution as the real values, which are masked by a uniformly random
element/vector output by FsVOLE. The set I extracted by S corresponds to a
selective failure attack on the output index α∗ of PA. If S receives an abort
from F ci

spsVOLE, it means α∗ /∈ I. In the real protocol, PA aborts if V α∗

A ̸= VB.

Therefore, F ci
spsVOLE only aborts if the real-world protocol aborts.

Since α is given as input by PA instead of being chosen at random, S cannot
pick a random α ∈ [0, n)\I, as it does in [WYKW21]. It needs to send the VA that
corresponds to the VA that an honest PA would have sent in the real-world. In
order to facilitate this, the F ci

spsVOLE functionality is designed to return the α∗ that
was used in the real protocol, in the case of an abort. This means the distribution
of VA sent by the S is indistinguishable from the real world distribution.

D.2 From Πci
spsVOLE to Πprog

VOLE

The final step is to go from single-point VOLE to standard (programmable)
VOLE. Here, we will realize Fprog

VOLE instantiated with a particular expansion
function Expand : S → Fm

p , based on a variant of the LPN assumption.

t-regular vector: A t-regular vector e is defined as a set of t vectors e1, . . . , et
concatenated, wherein each ei is a sparse vector with Hamming weight one.

We use the dual form of LPN over Fp, with a regular error distribution. This
has also been considered in previous works [BCG+19a,WYKW21].

Definition 1 (Regular Dual-LPN assumption). Let H ∈ Fk×m
p , and con-

sider the following game Gb(κ) with a PPT adversary A, parameterised by a bit
b and the security parameter κ:

1. Sample a random, t-regular vector e ∈ Fk
p.

2. If b = 1, let y = H · e, else sample y ← Fm
p .

3. Send y to A, which then outputs a bit b′ (in case of abort, define the output
of A to be ⊥).

The assumption states that A has negligible advantage in distinguishing G0(κ)
and G1(κ).

43

Expansion function: Fix a dual-LPN matrix H ∈ Fm×k
p . We consider a seed space

S ⊂ Fk
p consisting of t-regular vectors in Fk

p. We define the LPN-based expand
function

ExpandLPN : S → Fm
p , ExpandLPN(e) = H · e

Functionality Fprog
VOLE

Parameters: Finite field Fpr , and expansion function Expand : S → Fm
p with

seed space S and output length m.
The functionality runs between parties PA and PB .
Initialise: On receiving Init from PA, and (Init,∆) from PB , store ∆, and ignore
all subsequent Init commands.
Extend: On receiving Extend from PB and (Extend, seed) from PA, where
seed ∈ S:

1. Compute u = Expand(seed).
2. Sample v ← Fm

pr and compute w = u ·∆+ v.
3. If PB is corrupt, receive a set I from A. If seed ∈ I, send success to PB and

continue. Else, send abort to both parties, output seed to PB and abort.
4. Output (u,w) to PA and v to PB .

Corrupt parties: If PB is corrupt, v may be chosen by A. For a corrupt PA,
A can choose w (and then v is recomputed accordingly).
Global key query: If PA is corrupted, receive (guess,∆′) from A with ∆′ ∈ Fpr .
If ∆′ = ∆, send success to PA and ignore any subsequent global key query. Else,
send abort to both parties and abort.

Fig. 23: Functionality for programmable VOLE

Overview of Πprog
VOLE: The first step is to execute FsVOLE, which gives ∆ to

PB on Init and gives ⟨u⟩ ∈ Fk
p. In addition, they run F ci

spsVOLE t times, to get
vectors of authenticated values. Vectors are denoted by ei, each of them is of
length m/t and has exactly one nonzero entry. Parties use the public matrix H
to convert these to a vector of authenticated values of length m.

Under the regular dual-LPN assumption, the values appear pseudorandom
to PB, if the seed S was sampled at random. Note, however, that the protocol
perfectly realizes Fprog

VOLE without relying on dual-LPN, because Fprog
VOLE itself is

defined in terms of the expansion function. Therefore, it is only when using Fprog
VOLE

to instantiate our preprocessing protocol, where LPN comes into play.

E Details for Dynamic SPDZ

Protocol Variants. If supporting a dynamic committee for the online phase is
not a requirement, we could modify our scheme by shifting the verification of

44

Protocol Πprog
VOLE

Parameters: Extension field Fpr , length m, noise weight t, LPN dimension n
and matrix H ∈ Fm×k, and party identifiers PA, PB . q = k/t.
Intialise: Executed only once between two parties. PA, PB send Init, (Init,∆)
respectively to F ci

spsVOLE.

Extend: On input seed from PA, where seed describes a t-regular vector e ∈ Fk
p:

1. For i ∈ [1, t], PA and PB send (Extend, q) to F ci
spsVOLE, which returns (ei, ci)

to PA and bi to PB such that ci = ∆ ·ei+bi ∈ Fq
pr and ei ∈ Fq

p has exactly

one nonzero entry. If either party receives abort from F ci
spsVOLE in any of

these executions, it aborts.
2. PA defines e = (e1, . . . , et) ∈ Fk

p and c = (c1, . . . , ct) ∈ Fk
pr . Then PA

computes x = H · e and z = H · c. PB defines b = (b1, . . . , bt) ∈ Fk
pr and

computes y = H · b ∈ Fm
pr .

3. PA outputs (s,M[s]) = (x,z) ∈ Fm
p × Fm

pr . PB updates v by setting v =
y ∈ Fm

pr , and outputs K[s] = y ∈ Fm
pr .

Fig. 24: Protocol to extend spsVOLE

multiplication triples to the preprocessing. This reduces the overhead of the online
phase, and is essentially a regular SPDZ protocol run with our preprocessing. We
simply authenticate all the c, c′ components of the triples during the preprocessing
phase, and then run a standard pairwise verification procedure [DPSZ12] to check
one triple using another. This effectively moves the 4 extra openings in our online
phase to the preprocessing, leading to an online phase with the same cost as
SPDZ, although now the preprocessing has O(N) complexity.

Of course, if the entire preprocessing committee Pmain does this, this introduces
a lot more interaction from parties who may not have been involved in the online
phase. Another option is to run this verification in the online committee Pcurr at
the start of the online phase, after Pcurr has been elected, but possibly before the
desired computation has been determined.

E.1 Security Analysis

Lemma 5 (Lemma 1, restated). Suppose A introduces additive errors of
the form δj,ia , δj,ib ̸= 0, for malicious parties Pj and honest Pi in FPrep, and
in ΠSPDZ-Online additive errors δc, δc′ ̸= 0 when authenticating triples a, b, c and
a′, b′, c′ respectively. If any errors are non-zero, then the Verification phase in
ΠSPDZ-Online fails with probability less than 2/p.

Proof. Consider a multiplication gate at layer k, wherein the multiplications
carried out are zk = xk · yk, and rzk = rxk · yk. Note that rx, ry will have errors
from the layer k − 1. A can insert an additive error when c, c′ are authenticated
and these are denoted by δc, δc′ respectively. The errors δc, δc′ are going to be
consistent with the MACs as well, due to the way c and c′ are authenticated.

45

They will not get caught during the MAC Check, which is why we compute the
randomised circuit in addition to using MACs.

A can insert an additive error in the output of a multiplication, and the
error is indexed by εk for layer k. Let the error introduced by A in computing
JrK · JxK be denoted by ε1, ignoring the superscript for simplicity. The errors in
computing JxK · JyK and JrK · JvK, where JvK is the input, are indicated by ε2, and
ε4 respectively. Finally, computing JrzK is done by computing JrxK · JyK, and the
error introduced is ε3.

In addition, we need to account for the errors in the triples used to carry
out these multiplications. Parties receive a triple of the form JaK, JbK, [c] from
FPrep in the online phase. The [c] part of the triple has additive errors due to
using an inconsistent Fprog

OLE , as explained in Section 3.2. These errors can be

viewed as [ĉ] = [c] + {δj,ia · bi + δj,ib · ai}, for j ∈ PA, i ∈ PH . On top of this,
parties authenticate [c] in the online phase before processing the multiplication
gates, wherein A can introduce another additive error, denoted by δc. We let
ε̂ = ε + {δj,ia · bi + δj,ib · ai} + δc, for j ∈ PA, i ∈ PH and a multiplication that
used a triple JaK, JbK, JcK. Therefore, the values computed will be:

1. JrxK = JrK · JxK→ Jrx+ ε̂1K (layer k − 1)

2. JzK = JxK · JyK→ Jxy + ε̂2K
3. JrzK = JrxK · JyK→ (Jrx+ ε̂1K · JyK) + ε̂3

4. JrvK = JrK · JvK→ Jrv + ε̂4K

Note: The MACs on these values have been checked for consistency by this
point (and we ignore here the case that an invalid MAC was successfully forged).

Parties sample random values α1, . . . , αN and β1, . . . , βM to compute a ran-
dom linear combination on the actual values and their randomised variants. This
is computed for all the inputs to the circuit, and the outputs of every multipli-
cation gate. The random linear combination of the actual values is denoted by
JwK and the randomised one is denoted by JuK. The idea is that parties will then
open JrK, and compute JuK− r · JwK. Ideally, this value would be equal to 0. We
calculate and show that the probability that A injects errors as detailed earlier,
and does not get caught in the check is upper bounded by 2/p.

Parties start by computing JuK, JwK as,

JuK =
N∑
i=1

αi ·
(
(rx+ ε̂i1) · y + ε̂i3

)
+

M∑
i=1

βi · (rv + ε̂i4)

JwK =
N∑
i=1

αi · (x · y + ε̂i2) +

M∑
i=1

βi · v

46

JuK− r · JwK =
N∑
i=1

αi ·
(
(rx+ ε̂i1) · y + ε̂i3

)
+

M∑
i=1

βi · (rv + ε̂i4)

− r ·

(
N∑
i=1

αi · (x · y + ε̂i2) +

M∑
i=1

βi · v

)

=

N∑
i=1

αi(ε̂
i
1 · y + ε̂i3 − r · ε̂i2) +

M∑
i=1

βi · ε̂i4

The analysis, below, is similar to [CGH+18]. The intuition about why the
additional errors introduced in the triples do not give the adversary any additional
advantage is as follows. Errors in [c] received from FPrep are of the form δj,ia · bi,
for when a corrupt Pj interacts with an honest Pi. Since the adversary does not
know the honest Pi’s share bi, this is going to be a random additive error that
is not known to A. At this point, if the triple was authenticated in the same
round as the computing the multiplication, in other words opening x− a, y − b
along with opening l + c, A can wait until it receives x − a, y − b in the clear.
Using these values, it can choose a δc such that this results in an error of the
form x · δj,ib , a selective failure attack.

When we later authenticate the triple, A has still learnt no information about
a or b (since we haven’t yet opened x− a, y − b), so any error δc that A injects
will also be an independent, additive error.

The analysis can be split into two cases:

Case 1: There exists some index i such that ε̂i4 ̸= 0. Let m be the smallest one
for which it holds. JuK− r · JwK = 0 if and only if:

βm =

− N∑
i=1

αi

(
ε̂i1 · y + ε̂i3 − r · ε̂i2

)
+

M∑
i̸=m

βi · ε̂i4

 · (ε̂m4)−1 (1)

Since βm is chosen independently and is uniformly distributed over F, this
holds with probability at most 1/p.

Case 2: All ε̂i4 = 0, meaning there was no cheating in the triple used to compute
JrvK or in the output of the multiplication. Assuming the multiplication wires in
the succeeding layers were tampered, ε̂i2 ̸= 0 and/or ε̂i3 ̸= 0. Let k be the wire for
this, and it holds that ε̂k1 = 0 for the wire as no input was tampered with before
this point. Therefore, JuK− r · JwK = 0 if and only if,

αk · (ε̂k3 − r · ε̂k2) = −
N∑
i=1

αi

(
ε̂i1 · y + ε̂i3 − r · ε̂i2

)
(2)

There are two scenarios, one in which (ε̂i3− r · ε̂i2) = 0. The probability of this
happening is 1/p as r is sampled independently and A does not know r at the time

47

of injecting errors into the triple or even to the output of the multiplication gate.
The other scenario is when (ε̂i3− r · ε̂i2) ̸= 0. Since αk is chosen independently and
not known to A, the probability of this holding is (1− 1/p) · 1/p. Therefore the
total probability of the adversary passing the check in Case 2 is bounded by 2/p.

Theorem 8. Protocol ΠSPDZ-Online UC-securely computes FABB in the presence
of a static malicious adversary corrupting up to all-but-one of the parties in Pcurr,
in the (FPrep,FCoin)-hybrid model.

Proof. We construct a PPT Simulator (S) that run the adversary (A) as a
subroutine, and is given access to FDABB. It internally emulates the functionalities
Fprog

VOLE,FRand,FCommit and we implicitly assume that it passes all communication
between A and the environment (Z).

The parties controlled by the A are indicated by PA and the honest parties
by PH. The simulator uses a flag which is set to 1 in case A is caught cheating
before the consistency check happens, and the simulation is carried on. The
simulation proceeds as follows:

Malicious PA:
Init: Receive (Init,mT ,mR) from Pi ∈ PA sent to FPrep, sample a random

∆i and send it back. Receive (Rand, Pi,Pcurr, rcount) from each Pi ∈ PA, abort
if Pcurr is not consistent across calls. Receive A’s shares for JrK and store them.
Sample random shares for inputs of PH and send them to A.

Input:

1. Receive (Rand, Pi,Pcurr, rcount) from each Pi ∈ PA, abort if Pcurr is not
consistent across calls. Receive A’s shares for ⟨t⟩ and store them. For the
honest parties’ calls to FPrep, let A choose its shares and sample the honest
parties’ shares at random.

2. Simulate the multiplication step as described below.

Addition, Multiplication by constant: Need not be simulated as they
are local operations.

Multiplication:

3. Receive the Trip calls to FPrep, sample random values for A’s shares of the
triples and send them. Receive {δja}j∈PA , {δ

j
b}j∈PA from A and if either∑

j∈PA
δja ̸= 0 or

∑
j∈PA

δjb ̸= 0, set flag = 1.
4. On receiving the Rand call to FPrep, sample random values for the shares

JlK, Jl′K and send them to A.
5. Receive shares of Jx−aK, Jy−bK, Jrx−a′K, Jy−b′K and [l+c], [l′+c′]. S computes

the correct shares A was supposed to send, and if they are inconsistent, sets
flag = 1. Send random values for shares of PH .

6. At this point, one of the following things can happen:

(a) Case 1: The flag = 1 because A cheated in one of the openings by sending
inconsistent values. In this case, S sends random values on behalf of the
honest parties in ΠSPDZ-MAC and aborts at the end of it.

48

(b) Case 2: The flag = 1 because A cheated in one of the calls to Trip during
a multiplication but not in the openings. S proceeds with ΠSPDZ-MAC

by simulating the Rand call to FPrep. It then records {σi}PA sent to
FCommit during ΠSPDZ-MAC. If A sent the correct value, it samples shares
for the honest parties such that

∑n
i=1 σ

i = 0 and sends them to A. It
then simulates ΠSPDZ-Verify by sending random values for the honest party
shares and aborts at the end of it.

(c) Case 3: The flag = 0, but A cheats in ΠSPDZ-MAC. S aborts at the end of
ΠSPDZ-MAC.

(d) Case 4: The flag = 0 and there was no cheating in the MACs, so ΠSPDZ-MAC

does not abort, but the A causes an inconsistency in the randomised
circuit computation. This could be in one of four places:

i. Opening of JrK.
ii. ΠSPDZ-MAC on r.
iii. Opening of JuK− r · JwK.
iv. ΠSPDZ-MAC on u− rw.

In this case, S records {σi}PA sent to FCommit during ΠSPDZ-MAC, and
samples shares for the honest parties such that

∑n
i=1 σ

i = 0 and sends
them to A. In ΠSPDZ-Verify, send random values for JrK, and JuK− r · JwK.
Abort at the end of the protocol.

(e) Case 5: There was no cheating. S simulates ΠSPDZ-MAC as in the previous
cases when there was no cheating. In ΠSPDZ-Verify, it opens a random JrK
to A by sending random shares on behalf of PH . It receives shares of
JuK − r · JwK from A, and samples shares such that u − r · w = 0. To
compute the outputs, S sends A’s inputs to FABB using the relevant
commands and forwards the output it receives from FABB to A. If A
outputs abort, forward it to FABB and abort.

We now briefly argue that A cannot distinguish between interacting with the
S and FPrep, and FABB. In the input phase the adversary in both the simulation
and the real world, only sees uniformly random values sent by the honest parties
since they are masked by a random value not known to A. Addition, addition
by a constant, and multiplication by a constant are local operations. In all the
calls to FPrep using Trip,Rand, A is allowed to choose its own share therefore the
distribution of the MAC shares on these values between the real world and the
simulation is perfectly indistinguishable. Furthermore, the values opened during
the multiplication are uniformly random values in the real world, as is the case
with the simulation. At the end of the computation, parties run ΠSPDZ-MAC on all
the values that were opened. In the real world A is able to cheat with probability
at most 2/p. The check is the one as the one proved in [DKL+13], so we refer
the reader to it for a detailed analysis of ΠSPDZ-MAC. As shown in Lemma 1,
the probability that A cheats in the calls to FPrep and passes the check is 2/p.
Therefore, the overall probability of A cheating is negligible in p.

49

F Details for Fluid SPDZ

Protocol Variants: Similar to the variants considered for the Dynamic SPDZ
protocol, we can shift some of the costs involved in ΠFluid-Online to a post-
preprocessing phase. We can make the model slightly more restrictive by having
the parties communicate the epochs of the online phase in which they would be
active, at the end of the preprocessing phase. The committees are now known,
which means parties can communicate within their committees to authenticate
triples before the function to be computed is determined. Since the triples are
authenticated by the time the online computation starts, we do not need Pcurr−1

to send the triple to Pcurr, saving in terms of communication.

F.1 Security Analysis

We argue security of ΠKey-Switch using the following lemma,

Lemma 6 (Lemma 2 restated). . If parties in Pcurr follow the protocol,
ΠKey-Switch leads to a consistent sharing of JxKPcurr , and its transcript is simulat-
able by random values.

Proof. Consider a committee Pcurr running ΠKey-Switch on a J·K-shared value x.
They begin by calling FPrep to receive a ⟨·⟩-shared random t. Pcurr then locally
applies ΠConvert to get JtK. Note that,

M i
j = ∆j · t+Kj

i ,∀j ∈ Pnext,

∆Pnext · t =
∑

i∈Pcurr

∑
j∈Pnext

M i
j −Kj

i

(∆Pnext · t)
j
= [M]− [K], where M =

∑
j∈Pnext

M i
j ,K =

∑
i∈Pcurr

Kj
i

Each Pi ∈ Pcurr can compute a share of M by adding all the MACs it has
with parties in Pnext. Therefore, by resharing [M], Pnext can compute [∆Pnext · t].
In parallel, Pcurr opens Jx+ tK to Pnext, which Pnext uses to compute MAC shares
on x under the key ∆Pnext . This is still secure as the adversary does not know t
in the clear so x+ t is uniformly random. Finally, Pcurr reshares [x] to Pnext.

An adversary could cheat in the opening of Jx+ tK or during the resharing of
[M] and [x]. In the first scenario, since we are opening an authenticated sharing,
if the adversary cheats by injecting an additive error, it will get caught in the
ΠFluid-MAC that is run as part of ΠOpen except with probability 2/p.

Let the additive error by the adversary during the resharing of [M] be ϵM and
resharing of [x] be ϵx. We show that if ϵM , ϵx ̸= 0, it will result in an inconsistent
MAC on x except with negligible probability. Observe that Pnext will compute,

[∆Pnext · t] = [M]− [K] + ϵM ,

[∆Pnext · x] = [∆Pnext] · (x+ t)− [∆Pnext · t] + ϵM

[x] = [x] + ϵx

50

At this point, one of two things can happen with JxK. The first is, Pnext uses
JxK to evaluate a multiplication gate. In this case, Jx− aK will be opened using
a triple (a, b, c) by running ΠOpen, which runs a MAC Check so the adversary
will get caught. The other thing that could happen is JxK is reconstructed as
an output, where before accepting x, a MAC Check on the opened value is run.
Therefore, the probability of the adversary cheating in ΠKey-Switch depends on
guessing ∆Pnext to make ϵM = ∆Pnext · ϵx to cheat in the MAC Check. Since the
MAC Check has a probability of 2/p of failing, we conclude that the adversary
gets caught in ΠKey-Switch except with negligible probability.

F.2 Online Phase Protocol

In Fig. 25, we present the verification protocol, which was described in Section 5.

Protocol ΠFluid-Verify

Usage: Parties in Pi+1 want to verify the output wires of multiplication gates
of layer l, denoted by {zj , rzj}Nj=1. We assume that Pi+1 gets the state Ju′K, Jw′K
from a previous run of ΠFluid-Verify.
Incremental Verification:

Committee i:
1. Each Pj ∈ Pi calls FPrep with (Rand,Pi,Pi+1, rcount) to receive ⟨s⟩.
2. Hand-off: Pj sends the share sj and MAC M j

k to each Pk ∈ Pi+1, and runs
ΠKey-Switch on Ju′K, Jw′K.

Committee i+ 1:
3. Pk locally checks M j

k = sj · ∆k + Kk
j for all j ∈ Pi, and aborts if any

fail. Let s =
∑

j∈Pi
sj . Using s as a seed for PRG, generate pseudorandom

α1, . . . , αN ∈ Fp.
4. Each Pk locally computes JuK = Ju′K +

∑N
i=1 αi · JrziK and JwK = Jw′K +∑N

i=1 αi · JziK.

Final Check:

Committee i+ 2:
5. Parties in Pi+2 start by running ΠKey-Switch with Pi+1 to receive JuK, JwK

under ∆Pi+2 .
6. Then they run the Check MACs phase of ΠFluid-MAC. If ΠFluid-MAC fails,

Reject, else continue.
7. They execute ΠOpen on JrK to receive r, and check its MAC with ΠFluid-MAC.
8. Parties compute ΠOpen(JuK − rJwK), then check the MAC. If the opened

value is 0, parties Accept and go to reconstruction, else Reject.

Fig. 25: Verification phase for a fluid computation

51

	Le Mans: Dynamic and Fluid MPC for Dishonest Majority
	Introduction
	Our Contributions
	Related Work

	Preliminaries and Security Model
	Preliminaries
	Modelling Fluid MPC in Dishonest Majority
	Security Model

	Universal Preprocessing for Dynamic Committees
	Preprocessing Functionality
	Preprocessing Protocol
	Instantiating Multi-Party VOLE

	Dynamic SPDZ
	Fluid SPDZ
	Cost Analysis
	Concrete Costs and Optimizations for Fluid Online

	Additional Functionalities
	Security of Prep
	Security of nVOLE
	Analysis of the Consistency Check
	Security Proof

	Realizing FVOLEprog
	Chosen-input single point VOLE
	From spsVOLEci to VOLEprog

	Details for Dynamic SPDZ
	Security Analysis

	Details for Fluid SPDZ
	Security Analysis
	Online Phase Protocol

