
High Order Countermeasures for Elliptic-Curve
Implementations with Noisy Leakage Security

Abstract. Elliptic-curve implementations protected with state-of-the-
art countermeasures against side-channel attacks might still be vulner-
able to advanced attacks that recover secret information from a sin-
gle leakage trace. The effectiveness of these attacks is boosted by the
emergence of deep learning techniques for side-channel analysis which
relax the control or knowledge an adversary must have on the target
implementation. In this paper, we provide generic countermeasures to
withstand these attacks for a wide range of regular elliptic-curve imple-
mentations. We first introduce a framework to formally model a regular
algebraic program which consists in a sequence of algebraic operations
indexed by key-dependent values. We then introduce a generic counter-
measure to protect these types of programs against advanced single-trace
side-channel attacks. Our scheme achieves provable security in the noisy
leakage model under a formal assumption on the leakage of randomized
variables. To demonstrate the applicability of our solution, we provide
concrete examples on several widely deployed scalar multiplication algo-
rithms and report some benchmarks for a protected implementation on
a smart card.

Keywords: Side-channel countermeasures, elliptic-curve cryptography,
masking, noisy leakage model, collision attacks, deep learning-based SCA.

1 Introduction

Elliptic Curve Cryptography (ECC) implementations protected with state-of-
the-art countermeasures against side-channel attacks might still be vulnerable to
advanced attacks that recover significant information on the secret (randomized)
scalar with a single leakage trace. Among these attacks, the so-called (collision-
based) horizontal attacks are particularly effective [4,51,50,20,46,2,57]. The prin-
ciple of these attacks is to defeat the standard randomization techniques without
recovering information in the non-randomized variables but by exploiting their
collision behavior. This threat is amplified by the recent development of deep
learning-based side-channel attacks, which have shown to be especially power-
ful to generalize and improve advanced side-channel attacks such as template
and/or horizontal attacks [11].

In such a context, it is of paramount importance to rely on effective counter-
measures achieving quantifiable security. During the last two decades, the cryp-
tographic community has introduced leakage models to build concrete security
proofs mainly dedicated to symmetric implementations. Contrary to asymmetric
implementations for which first-order countermeasures were enough to resist tra-
ditional side-channel attacks, symmetric implementations have long been proven
to be vulnerable to more complex higher-order attacks [48,17].

Among the leakage models introduced as basis to reason on the security of
these symmetric implementations, the most deployed one is undoubtedly the

probing leakage model introduced by Ishai, Sahai, and Wagner in 2003 [32]. In
the d-probing model, a program is secure if any set of d intermediate variables is
independent from the secrets. While it easily models the exponential complexity
of combining an increasing number of noisy variables, the probing model is often
criticized by practitioners for being too far from the reality of embedded de-
vices. A more realistic model, referred to as noisy leakage model was formalized
by Prouff and Rivain in 2013 [53]. In this model, every atomic operation in a
program is assumed to leak a noisy function f(x) of its input x, where the noisy
feature is modeled by bounding the statistical distance between the prior and
posterior distributions of x (given the observation f(x)). A program is secure in
this model if the joint distribution of all the noisy intermediate variables does
not reveal more than a negligible information of the secrets.

Now that asymmetric implementations have shown to be also vulnerable
to higher-order attacks in the shape of the emerging single-trace attacks (e.g.,
collision and deep learning based side-channel attacks), a similar reasoning can
be applied. The same generic leakage models are expected to be used to reason
on the concrete security of these implementations which expect the construction
of dedicated advanced formal countermeasures achieving quantifiable security.

Our Contributions. This paper presents the first formal model of compu-
tation to capture regular implementations of ECC and other exponentiation-
based cryptosystems (e.g., RSA, discrete logarithm-based schemes, pairings) in
the presence of noisy leakage. In a nutshell, our model of regular algebraic pro-
gram fits any cryptographic algorithm which consists in a sequence of algebraic
operations indexed by key-dependent values. We then formally define the noisy
leakage model for such programs and introduce an additional assumption on the
leakage, the hideness property, which aims to capture the effect of randomization
operations on the leakage of an algebraic variable. Namely, we assume that the
leakage of a randomized variable is hard to distinguish from that of a uniform
random value. From this ground, we design a generic countermeasure that can be
applied to a wide range of regular ECC implementations (and exponentiation-
based cryptosystems)and we provide a formal security proof in the noisy leakage
model under the hideness assumption. Finally, we demonstrate its applicabil-
ity on several widely used scalar multiplication algorithms and provide concrete
benchmarks for a protected implementation on a smart card.

Organization. Section 2 gives an overview of the state of affairs regarding side-
channel attacks against ECC implementations and the existing countermeasures.
Our formal model of computation and leakage is presented in Section 3. We then
introduce our generic countermeasure for regular algebraic programs in Section 4
as well as its formal security proof. Applications and implementation results are
finally given in Section 5.

2 ECC Implementations and Side-Channel Attacks

Elliptic-curve cryptosystems are a key ingredient of everyday-life applications to
provide confidentiality and authentication. They still benefit from an exponential

2

security compared to the subexponential security of other systems like RSA. A
common feature between the deployed elliptic-curve cryptosystems remain their
core operation referred to as scalar multiplication. It consists in the multiplication
of some point P on an elliptic curve by some (usually secret) scalar k:

kP = P + · · ·+ P︸ ︷︷ ︸
k times

.

Standard scalar multiplication algorithms are similar to efficient (modular) expo-
nentiation algorithms which scan sequentially the bits of the scalar (or exponent)
and apply some operation pattern accordingly. It is well known that concrete
implementations of these algorithms are prone to side-channel attacks. We sum-
marize the state of affairs regarding these attacks and the existing protections
hereafter.

2.1 Regular Scalar Multiplication Algorithms

In a naive binary scalar multiplication algorithm, such as the double-and-add
algorithm, a loop is processed which scans the bits of the scalar and performs a
point doubling followed by a conditional point addition. Whenever the current
scalar bit equals 1 the addition is performed, while when it equals 0 the addi-
tion is skipped. In the same way, a naive binary exponentiation algorithm (the
square-and-multiply) performs a square and a conditional multiplication at each
iteration depending on the current exponent bit. The conditional operations per-
formed in these algorithms make possible simple power analysis (SPA) attacks
exploiting a single leakage trace to recover the secret scalar [41]. The reason of
such a flaw is that point additions and point doublings (or equivalently square
and multiplications) have different operation flows and hence induce different
patterns in a leakage trace. A straight observation of these patterns on a single
leakage trace might directly reveal the whole secret scalar.

In order to withstand SPA, scalar multiplication algorithms (or exponentia-
tion algorithms) must be rendered regular, namely they should have a constant
control flow, independent of the scalar value. A first solution is to make ad-
dition and doubling patterns indistinguishable. This can be achieved by using
unified formulae for point addition and point doubling [9] or by the mean of
side-channel atomicity [13]. In the latter case, the principle is to build point
addition and doubling from the same atomic pattern of field operations (so that
a leakage trace is made of a sequence of this single atomic pattern). Another
possibility is to render the scalar multiplication algorithm regular by nature, in-
dependently of the pattern of field operations in each point operation. Namely,
the control flow is identical in each iteration of the scalar multiplication whatever
the scalar value. This approach was first followed by Coron in [16] who proposed
to perform a dummy addition in the binary algorithm loop whenever the scalar
bit equals 0. The obtained double-and-add-always algorithm performs a point
doubling and a point addition at every loop iteration and the scalar bits are no
more distinguishable from a leakage trace.

Extensive literature exists on regular scalar multiplication algorithms, see for
instance [37,38,56,22,55]. Examples of well deployed regular algorithms which en-

3

joy attractive features are the Montgomery ladder [44]1 and the fixed-window
left-to-right scalar multiplication algorithm, respectively displayed in Alg. 1
and 2. For the latter algorithm, we assume that the scalar in encoded in such a
way that its digits belong to a basis B ⊂ Z. We note that in order to avoid timing
leakage, one should either use a basis such that 0 /∈ B (see for instance [39]) or
a complete elliptic-curve addition formula (see for instance [6,55]). The former
is one of the most popular regular binary algorithm for scalar multiplication on
elliptic curves. It relies on two point registers R0 and R1 whose difference is
constantly equal to the initial point P at the end of each iteration. The latter
window technique may be preferred when more memory is available. In this con-
text, the scalar is divided into w-bit elements and each iteration depends on a
regular window of w scalar bits rather than on a single one.

Algorithm 1 Montgomery ladder

Input: P , k = (k0, k1, . . . , kn−1)2
Output: Q = [k]P
1. R0 ← O
2. R1 ← P
3. for i = n− 1 downto 0 do
4. b← ki
5. R1−b ← R1−b +Rb

6. Rb ← 2 ·Rb

7. end for
8. return R0

Algorithm 2 Fixed-window left-to-
right scalar multiplication

Input: P , k = (k0, k1, . . . , km−1)2w

Output: Q = [k]P
1. forall d ∈ B do T [d] = [d]P
2. R← T [km−1]
3. for i = m− 1 downto 0 do
4. R← 2wR // w doublings
5. R← R+ T [ki]
6. end for
7. return R

We note that whereas such regular algorithms withstand SPA at a first glance,
one should also be careful with operations performing data dependent memory
accesses. Indeed such algorithms might be vulnerable to cache attacks and other
advanced micro-architectural attacks [49,5]. A good practice while implementing
such algorithms is to perform operations of the form R1−b ← R1−b+Rb in a way
that avoids data-dependent memory access. Although (correctly implemented)
regular algorithms are secure against SPA (and cache attacks), they might still
be vulnerable to side-channel attacks, and in particular to so-called differential
power analysis (DPA).

2.2 Randomization Techniques against DPA

Differential Power Analysis (DPA) are among the most powerful side-channel at-
tacks [41]. The principle of these attacks is to target the leakage on intermediate
variables of the computation that mix some known but varying data (typically
an input plaintext) together with fixed secret data (typically the target secret
key). For some early variables in the computation the number of secret bits in-
volved in the expression is limited and can be exhaustively guessed. The different
key guesses can then be (in)validated by correlating the predicted variables with

1 The double-and-add algorithm proposed by Joye [37] is very close to the Mont-
gomery ladder displayed in Algorithm 1. Namely, Steps 5 and 6 are replaced by the
instruction R1−b ← 2 ·R1−b +Rb and the loop is reverted.

4

the leakage on the actual variables. Different statistical tools can be used to
extract such a dependency, see for instance [41,8,43,3], and scalar multiplication
algorithms (in which the secret bits are introduced little by little) are typical
targets for these attacks.

Scalar multiplication algorithms might also be vulnerable to so-called address-
bit DPA [33] which consists in targeting the direct manipulation of the sensitive
scalar bits (or digits) or any address that depends on those bits (typically the
memory addresses of the registers Rb or R1−b in Algorithm 1).

A sound countermeasure to defeat (address-bit) DPA consists in randomiz-
ing the intermediate variables, in order to break the dependency between the
key-dependent variables and the leakage. This principle, often referred to as
masking, has been widely applied to different cryptographic algorithms. Dedi-
cated countermeasures have been exhibited by the cryptographic community to
secure scalar multiplication algorithms against both kinds of DPA. We briefly
recall hereafter some of the most widely used randomization techniques for ECC
implementations, which apply to the scalar, the points (projective) coordinates,
and the field elements involved in point operations.

Randomization of the scalar. In the context of scalar multiplications on elliptic
curves, randomizing the private exponent is the first countermeasure provided
by Coron [16] to thwart DPA. In a nutshell, such a scalar multiplication involves
a private scalar k and a public elliptic point P and is performed over a curve of
order q. Randomizing the private scalar k consists in adding a random multiple
of q to k, namely choosing a random number r and defining:

k′ ← k + r · q .

Because qP equals the point at infinity O, the initial multiplication can be
performed directly with scalar k′ and yield k′P = (k+ r · q)P = kP + rO = kP
as output. Variants of this countermeasure consist in dividing the scalar into
random shares k = k1 + · · · + kn (mod q), or through an euclidean division
k = ⌊k/r⌋ · r + (k mod r).

Randomization of projective coordinates. A second countermeasure suggested by
Coron to thwart DPA [16] consists in randomizing the projective coordinates of
the points. Such coordinates are often used for computation on elliptic curves
to save costly inversions. In a nutshell, an elliptic point P = (x, y) can be
represented through three projective coordinates (X : Y : Z) such that x = X/Z
and y = Y/Z. The idea of the randomization here is to multiply each of the three
coordinates by a random r ̸= 0, that is defining

X ′ ← X · r ; Y ′ ← Y · r ; Z ′ ← Z · r ;

(where the above multiplication are performed on the base field). By definition
of the projective coordinates, the obtained projective point (X ′ : Y ′ : Z ′) is
still a representative of P . This principle further generalizes to the widely used
Jacobian coordinates, for which (X : Y : Z) represents the point (x, y) with
x = X/Z2 and y = Y/Z3, as well as to other inversion-free coordinate systems,
e.g., for Edwards curves [30,7].

5

Randomization of field elements. Finally, randomization techniques might also
directly apply to the field elements which compose the coordinates of the points
and which are processed in the point operations. In particular, on a prime field
elliptic curve, all the intermediate variables of the computation are represented
as integer modulo p, where p is the prime characteristic of the base field. A
standard randomization technique for such modular integers is to lift them on
the ring Zhp, for some factor h, and to randomize them as

x′ ← x+ r · p (mod hp)

where r is some random integer. The modular arithmetic is then performed
modulo hp, thus enabling possible re-randomization from time to time with
the addition of a fresh random multiple of p. At the end of the computation,
a reduction modulo p enables to retrieve the correct result, since the relation
x′ mod p = (x+ r · p) mod p = x is maintained throughout the computation.

Randomization of memory addresses. Another randomization technique usually
applied to protect an implementation against address-bit DPA consists in ran-
domizing the memory addresses (as suggested e.g. in [29]) whenever they depend
on secret data. Such memory address randomization is especially amenable to a
Boolean masking of the scalar, as developed in [34] and later extended in [36]2.

2.3 Advanced Single-Trace Side-Channel Attacks

Standard DPA and address-bit DPA cannot be directly applied in the presence
of a good combination of randomization techniques. However, more advanced
side-channel attacks might still be possible. When the scalar is randomized,
one cannot use correlation techniques (as in standard DPA) or averaging (as in
address-bit DPA) over several executions. In such a context, the adversary has
no choice but to rely on single-trace attacks which exploit a single leakage trace
to infer significant information on the (randomized) scalar. Note that partial
information on randomized scalars might still be exploitable, either in the fixed
scalar case [58,57] or in the nonce scalar case [25], but this partial information
must still be significant to retrieve the original scalar (or to break the underlying
scheme in the nonce scenario).

Several attack techniques exist which aim at making the most of a single
leakage trace to fully recover the (randomized) scalar, or at least a significant
part of it. Among these attack techniques, template attacks, (collision-based)
horizontal attacks, and deep learning-based attacks are today the main threats
of current protected ECC implementations.

The very powerful template attacks were first introduced by Chari, Rao and
Rohatgi in 2002 [12]. The main idea of such attacks is to estimate the likelihood of
a key guess based on a profiling phase where the manipulation of all key guesses
were recorded. As all the so-called profiling attacks, the adversarial model is

2 Izumi et al. [36] consider a slightly different leakage model in which the attacker can
distinguish whether a register is overwritten by the same data.

6

quite strong as a copy device is expected to be accessible for the attacker with
the ability to choose or at least modify the secret material.

In parallel, horizontal attacks [14] exploit algebraic dependencies between
several data manipulated at different points in time during a single execution3.
The detection of such dependencies may strongly reduce the number of key
hypotheses. A particular sub-cases of horizontal attacks is known as collision
attacks [59] which directly exploit the presence of colliding values during a com-
putation whose number of occurrences is correlated to the secret. In particular, it
has been shown that collision-based horizontal attacks could defeat ECC imple-
mentations [31], even when protected by a combination of scalar randomization
and point coordinate randomization [4]. In a nutshell, such attacks consists in
detecting collisions within intermediate variables of the algorithms in order to
infer information on the scalar bits. For example, on Algorithm 2, one may ob-
serve a collision between the point T [ki] added to R in Step 5 and the point
T [d] = [d]P computed at Step 1, for a given d ∈ [0, 2w), and hence deduce
ki = d. As extensively discussed in [4], this simple principle can be applied to a
wide range of ECC implementations and it allows the attacker to defeat stan-
dard randomization techniques which does not affect the collision behavior of
the algorithm intermediate variables.

A very recent but already large sequence of works suggest to apply deep
learning techniques, used so far in numerous fields (e.g., document recognition),
to side-channel analysis [10,54,40]. Deep learning-based side-channel attacks are
often categorized as profiling attacks as they generally are organized in two
steps: a profiling phase in which training side-channel traces are learned and an
attacking phase in which real side-traces are processed to recover a secret. These
attacks happen to be very powerful. Indeed, they can capture (collision-based)
horizontal attacks with the advantages of the template attacks but without man-
ually isolating interesting points in time. By detecting horizontal and vertical
dependencies in power traces, deep learning-based side-channel attacks appear
as one of the main current threat against cryptographic implementations. In par-
ticular, it has been demonstrated in [11] that deep learning-based attacks could
defeat implementation of RSA protected by classical (first-order) randomiza-
tion countermeasures. Weissbart, Picek, and Batina further demonstrated that
convolutional neural networks could be used to perform profiling attacks on
EdDSA using Curve25519 [62]. Together with Chmielewski, the authors then
extended their work to target protected even implementations (e.g., with pro-
jective coordinate re-randomization and scalar randomization) [61]. In the same
vein, Mukhtar et al. [45] get use of convolutional neural networks to successfully
attack elliptic-curve scalar multiplications (based on Montgomery Power Ladder
algorithm) protected with Coron’s countermeasures.

2.4 Related Works

Boolean masking of the scalar was first proposed by Itoh et al. [34] as a memory
address randomization in order to thwart address-bit DPA. Unlike previous coun-

3 Doubling attacks, introduced by Fouque and Valette in 2003 [23] are close variants
but detect dependencies on carefully chosen iterations of two related executions.

7

termeasures in the same vein, i.e., the exponent splitting countermeasure [15]
and the randomized window method [35], which required at least twice the ini-
tial execution time, Itoh et al’s proposal only suffers a small overhead. In a
nutshell, since the security threat comes from the dependency between the ad-
dresses of the registers and the secret bit values, the authors followed the idea of
first-order Boolean masking to randomize the latter. Namely, they proposed to
xor a one-time random value to the secret key to perfectly randomize the regis-
ter addresses. Other countermeasures are then still necessary to further provide
resistance against classical (i.e. data-bit) DPA.

This first proposal was later extended by Izumi et al. [36] to additionally cir-
cumvent DPA with overwrites. While Itoh et al. focused on side-channel attackers
observing intermediate variables or addresses separately, embedded devices may
actually leak information on two variables that are consecutively stored in the
same register at the same time. In order to ensure protection against the latter
attacks, Izumi et al. modified Itoh et al.’s countermeasure to make sure that the
address of the source register was always different from the address of the desti-
nation register. Despite this additional constraint, the authors also managed to
achieve better performances in terms of data and time complexity.

In 2018, Tunstall, Papachristodoulou, and Papagiannopoulos [60] went a step
further with a countermeasure which was not limited to thwart address-bit DPA.
They reuse the idea of Boolean masking but also protect the exponent shares
against classical (data-bit) DPA. Concretely, the authors are able to achieve se-
curity against a broader range of first-order side-channel attacks (exploiting the
length of the exponent and other intermediate values) as long as the interme-
diate states of some registers do not leak. From this assumption, the authors
demonstrate that an attacker would need a combination of leakage (in the sense
of higher-order side-channel attacks) to recover the exponent.

2.5 Our Approach

Our work aims to go one step further by designing and proving a generic coun-
termeasure achieving quantifiable security levels for any masking order while
considering the leakage of all the intermediate states. Still relying on Boolean
masking to protect asymmetric implementations, it goes beyond the previous
sequence of works on several aspects:

– Masking order: Our countermeasure is designed and is proven secure for
any masking order while the countermeasures from [34], [36], and [60] are
limited to thwart first-order side-channel attacks. Hence the security level
can be adapted depending on the actual leakage through the masking order
which acts as a security parameter. In particular, attacks exploiting several
collisions are covered by our security model.

– Leakage on algebraic variables: Several countermeasures are limited to mask-
ing the exponent and do not consider any leakage on the algebraic variables
(e.g., [34,36,60]). However, these variables arguably generate most of the
leakage in an exponentiation or a scalar multiplication through group oper-
ations (in particular multiplications).

8

– Formal proof: While many countermeasures only come with light/informal
statements (e.g., [60]) or experiments on some specific devices, such methods
are not enough for proving higher-order security. In this paper, we provide
the first formal security proof under a up-to-date formal leakage model with
well defined assumptions.

Finally, our work puts forward a novel approach to prove the security of elliptic-
curve / public-key implementations in the presence of leakage, which is currently
missing. We believe our formal framework (with the proper definition of regular
algebraic program and the introduction of the hideness assumption) offers a
fertile ground for further research and formal results on leakage-resistant elliptic-
curve / public-key implementations.

3 Computation and Leakage Models

3.1 Mathematical Background and Notations

All along the paper, the interval [i, j] or [i, j) with i, j ∈ Z are understood as
integer interval, i.e. Z ∩ [i, j] and Z ∩ [i, j).

Let pX : x 7→ Pr(X = x) denote the probability mass function (pmf) of a dis-
crete random variable X. Let us further denote by −→pX the |X |-dimensional vector
made of the pmf outputs: −→pX = (pX(x))x∈X . The statistical distance between
two random variables X and Y of domain X is defined as ∆(X;Y) := ∥−→pX−−→pY ∥
with respect to some norm ∥·∥. Unless otherwise specified, we will consider the
statistical distance based on the L1 norm weighted by 1

2 , as traditionally used
in cryptography, which is

∆1(X;Y) :=
1

2

∑
x∈X
| pX(x)− pY (x) | . (1)

We shall further make use of the notion of statistical closeness inherited from
the above distance. Namely, two random variables X and Y will be said to be
ε-close for some ε ≥ 0, denoted X ≈ε Y , if they verify ∆1(X;Y) ≤ ε. We shall
denote by X ← A(in) the action of evaluating a (probabilistic) algorithm on
input in and defining the variable X as the output. We shall further denote
X ← X to define X as a uniform random element from a finite set X .

3.2 Computation Model

We introduce hereafter a formal model for what we call a regular algebraic
program (RAP). Such a program is composed of algebraic operations whose
operands and results are read from and written to an algebraic memory (i.e.
a memory storing algebraic variables) where the latter memory is addressed
through a second type of variables (with their own memory): the indexes. This
way, we can capture any cryptographic algorithm which consists in a sequence
of algebraic operations indexed by key-dependent values, such as classical reg-
ular algorithms for elliptic curve cryptography (or other exponentiation-based
cryptosystems).

9

We consider an algebraic structure A equipped with a set of 2-ary operators.
For instance, A could be a finite field Fp or a ring Zq, in both cases equipped with
addition and multiplication operators, or A could be an additive group, such as
the set of points of an elliptic curve, equipped with an addition operator.

A regular algebraic program on A is a program that takes as input a tuple
X ∈ AℓX and a tuple k ∈ Zℓk , and computes as output a tuple Y ∈ AℓY

satisfying Y = fk(X) for an algebraic function fk that belongs to some class
{fk;k ∈ Zℓk}. For this purpose a regular algebraic program operates with two
memories, an algebraic memory and an index memory. The algebraic memory,
denoted (X1, X2, . . . , Xm), is composed of m cells (aka algebraic variables), each
one taking a value in A. The index memory, denoted (ind1, ind2, . . . , indn), is
composed of n cells (aka index variables), each one taking a value in Z. At the
beginning of the computation, the input tuples X and k are written at the
beginning of the algebraic and index memories respectively; at the end of the
computation, the output tuple Y is read from the beginning of the algebraic
memory. The program consists of a sequence of instructions which can be of
two natures: index instructions and algebraic instructions. An index instruction
performs an operation (integer or Boolean operation) on the index variables.
Specifically, an index instruction is of the form

indi1 ← op(indi2 , indi3) for i1, i2, i3 ∈ [n] ,

or indi1 ← indi2 or indi1 ← cstZ for i1, i2 ∈ [n] ,

where op denotes some operation which is either the addition (or subtraction)
on Z, the multiplication on Z, the bitwise addition, the bitwise multiplication,
and where cstZ denotes some constant value in Z. An algebraic instruction per-
forms an algebraic operation on algebraic variables, possibly indexed by index
variables. Specifically, an algebraic instruction is of the form

Xi1 ← Op(Xi2 , Xi3) for i1, i2, i3 ∈ [m] ∪ {ind1, ind2, . . . , indn}

where Op denotes an operation of A, or of the form

Xi1 ← Xi2 or Xi1 ← cstA for i1, i2 ∈ [m] ∪ {ind1, ind2, . . . , indn}

where cstA denotes some constant from A.
In order to capture randomization techniques in this computation model, we

will further consider regular algebraic programs augmented with an additional
randomization operation:

Xi1 ← R(Xi2) for i1, i2 ∈ [m] ∪ {ind1, ind2, . . . , indn} .

From an abstract computation level, this instruction has no effect: it simply
copies the algebraic variable Xi2 into Xi1 . On the other hand, for a given im-
plementation, the representation of elements of A might be randomizable. This
is a case for instance when elements of Fp are represented by elements of the
ring Zhp (for some h) which can be (re-)randomized as x ← x + R · p mod hp
for some random R. A reduction modulo p finally enables to retrieve the good

10

representative. Another example is the group of points of an elliptic curve in
Jacobian (or other projective) coordinates. Such a point (X : Y : Z) can be
randomized as (X : Y : Z) ← (XR2 : Y R3 : ZR) for some random R. These
are two classical examples but one could consider many other randomization
techniques for different algebraic structures.

A regular algebraic program augmented with such a randomization operation
is called a randomized regular algebraic program hereafter.

Remark 1. We note that index variables could equally be defined over some
other (finite) ring, like Z2w to capture a w-bit architectures, but this difference
has no impact on our result.

3.3 Noisy Leakage of Regular Algebraic Programs

Informally, the δ-noisy leakage model states that during the evaluation of a
program P , each atomic operation leaks a noisy function f(x) of its input x.
The noisiness of the leakage is captured by assuming that the statistical distance
between the distribution of x and the distribution of x given an observation f(x)
is bounded by δ. In other words, an observation f(x) only implies a bounded
bias on the distribution of x.

In order to get a formal definition of such a noisy function, one must consider
an a priori distribution for x. In the original definition [53] and subsequent
generalizations [19,52], this distribution is naturally taken to be the uniform
distribution over the definition set of x. The statistical distance between X and
(X | f(X) = y) is further averaged over the observation f(X) = y. This gives
the following definition:

Definition 1 (Noisy function [53]). Let X be a finite set and let δ ∈ R. A
δ-noisy function f on X is a function of domain X × {0, 1}ℓR for some ℓR ∈ N
such that ∑

y∈Im(f)

Pr(Y = y) ·∆(X; (X | Y = y)) ≤ δ , (2)

where X is a uniform random variable over X and where Y = f(X,R) for a
uniform random variable R over {0, 1}ℓR .

Note that the above definition depends on the notion of statistical distance
∆. In the original definition [53], the authors suggest to use a statistical distance
based on the Euclidean norm (or L2 norm), while [19] argues that taking the L1

norm is a more natural choice. It was further recently suggested in [52] to use a
statistical distance notion based on the relative error, specifically:

∆RE((X | Y = y);X) = max
x∈X

∣∣∣∣Pr(X = x | Y = y)

Pr(X = x)
− 1

∣∣∣∣ . (3)

We note that the above notion of distance is not symmetric and the order of the
argument matters: ∆RE((X | Y = y);X) ̸= ∆RE(X; (X | Y = y)). Noisy func-
tions based on this distance are referred to as average relative error (ARE) noisy
functions in [52] since the relative error in (3) is averaged over the distribution of

11

the leakage Y according to Definition 1. The authors of [52] argue that using the
above notion does not imply a stronger assumption on the leakage in practice,
compared to the definitions based on L1 and L2 norms, whereas it has some
advantages for security proofs based on reductions to the random probing model.
For this reason, we shall use this notion in our security proof (see Section 4.2)
although our result simply generalizes to the other notions.

Remark 2. Formally, a noisy leakage function has two arguments: an input X
which corresponds to the variable (or tuple of variables) that leaks, and an input
R which corresponds to the random tape of the function, i.e., the randomness
from which the noise is generated. This random tape input is freshly sampled
from {0, 1}ℓR for each realization of a leaking variable. For the sake of simplicity,
we shall skip the random tape argument from the exposition in the rest of the
paper. The noisy leakage of a value x ∈ X (or variable) will hence be denoted
f(x), to mean “f(x,R) for a fresh random tape R← {0, 1}ℓR”, and the resulting
f(x) will be considered as a random variable.

Application to regular algebraic programs. We formally define the noisy
leakage model hereafter in the context of our computation model. Namely, we
consider a (randomized) regular algebraic program P taking as input a pair of
tuples (X,k) ∈ AℓX×Zℓk . We shall assume that every index instruction indi1 ←
op(indi2 , indi3) leaks a noisy function of the input pair of indexes (indi2 , indi3).
On the other hand, an algebraic instruction Xi1 ← Op(Xi2 , Xi3) shall leak a
noisy function of the input pair of algebraic values (Xi2 , Xi3) together with the
triplet of indexes (i1, i2, i3). Finally, a randomization operation Xi1 ← R(Xi2) is
assumed to leak a noisy function of (Xi1 , Xi2 , i1, i2)

4.

Remark 3. We could alternatively assume that the algebraic values and the in-
dexes leak independently (through two noisy leakage functions) but our assump-
tion is more general. Indeed a noisy function of the form f(Xi2 , Xi3 , i1, i2, i3) =
(f1(Xi2 , Xi3), f2(i1, i2, i3)) would be a particular case of our leakage model.

Remark 4. Note that the aforementioned leakage model does not directly cap-
ture physical defaults (e.g. glitches or transitions between variables successively
stored in the same register) which are strongly dependent on both the imple-
mentation (e.g. choice of registers and operations) and the underlying devices.
Nevertheless, this model and our subsequent proofs can be easily adapted to
such specific scenarios by extending the leakage functions to a group of opera-
tions that are jointly leaking.

In order to ease the exposition, we introduce a deterministic algorithm which
from a (randomized) regular algebraic program P and an input pair (X,k),
produces a computation trace of P on input (X,k):

T ← ComputTrace(P,X,k) .

4 Not that we do not need to give the attacker the (independent) internal random
values that are generated for the randomization operation as the knowledge of a
noisy leakage function of both the input and the ouput is actually stronger.

12

This computation trace contains the leaking tuples of all the instructions exe-
cuted by P on input (X,k). Concretely, ComputTrace initializes T to the empty
list. Then, it sequentially evaluates each instruction in P and adds its leaking
tuple to T . Specifically,

– for an index instruction indi1 ← op(indi2 , indi3), ComputTrace adds the pair
(indi2 , indi3) to T ;

– for an algebraic instructionXi1 ← Op(Xi2 , Xi3), ComputTrace adds the tuple
(Xi2 , Xi3 , i1, i2, i3) to T ;

– for a randomization operation Xi1 ← R(Xi2) ComputTrace adds the tuple
(Xi1 , Xi2 , i1, i2) to T .

Then, we consider a probabilistic algorithm LeakageSampler which on input
a computation trace T and a δ-noisy function family F = {fi}i outputs a list of
leakage values:

L ← LeakageSampler(T ,F) ,

such that L = {fi(di)} for T = {di}i. Specifically, for every element di in the
computation trace T , the LeakageSampler algorithm samples a random tape ri
uniformly at random from {0, 1}ℓR and adds the evaluation fi(di, ri) to the
leakage trace L.

We can now formally define the noisy leakage of a program.

Definition 2 (Noisy leakage). Let F be a family of δ-noisy functions and let
P be a (randomized) regular algebraic program. The noisy leakage of P on input
(X,k) is the distribution L(P, (X,k)) obtained by composing the computation-
traces and assign-leakage samplers as

LF (P, (X,k)) = LeakageSampler(ComputTrace(P,X,k),F) .

Remark 5. A classical noisy function which fairly well fits the reality of embed-
ded devices could be defined as the sum of the input variable’s Hamming weight
and a random Gaussian noise. But note that as it is defined, the noisy leakage
also captures the well known random probing leakage [32,19] which states that
during the evaluation of a program P , each intermediate variable leaks its value
with some probability (and leaks nothing otherwise). This specific model would
require the noisy function to be defined as the identity of its input variable with
some probability (computed from its second input) and to an empty leakage
otherwise.

Remark 6. We stress that for the considered randomization operations, the ran-
dom bits sampled in an execution Xi1 ← R(Xi2) can be expressed as a deter-
ministic function of the input-output pair (Xi1 , Xi2). Therefore, modelling the
leakage as a noisy function of (Xi1 , Xi2) is without loss of generality compared
to modeling the leakage as a noisy function of the input and the randomness.
Our convention is simply more convenient since we do not need to make the
randomness explicit.

We can now define the notion of leakage resilience for a randomized regular
arithmetic program. Let Enc be a probabilistic encoding algorithm that maps an

13

index variable k ∈ Zℓk to an encoded input k̂← Enc(k) ∈ Zℓ′k , with ℓ′k ≥ ℓk. The
notion of leakage resilience is defined with respect to a class of leakage functions
F (noisy leakage functions in our context) and an encoding Enc as follows.

Definition 3 (Leakage resilience). A randomized regular arithmetic program
Π is said ε-leakage resilient against a class of leakage functions F with respect
to encoding Enc if there exists a simulator Sim such that for every (X,k):

Sim(P,X) ≈ε LF (Π, (X,Enc(k))).

3.4 Leakage of Randomized Variables

Following this conclusion, we introduce an additional assumption to capture the
effect of the randomization operation R on the leakage of an algebraic variable.
In a nutshell, we require that the leakage of a randomized variable R(X) is hard
to distinguish from the leakage of a random value R uniformly sampled from A.
This is formalized hereafter by the notion of ε-hideness.

Simple definition and examples. In order to simplify the exposition, we
first consider a single noisy function f with a single input variable from A, and
generalize the notion later.

Definition 4 (Hideness, simple version). Let f be a noisy function of do-
main A and let R be a randomization operation. The pair (f,R) is said to be
ε-hiding if for every x ∈ A, the distribution of f(R(x)) is ε-close to the distribu-
tion of f(U) where U is a uniform random variable over A.

In the above definition, the notion of randomization operation should be
formally understood as a probabilistic algorithm and R(x) as a random variable.
We illustrate the hideness notion with the two following:

Example 1. Let us further consider the randomization operation which maps an
element of Zp to a randomized representation in Zhp, namely

R(x) = x+R · p with R← [0, h) .

We can say that the pair (f,R) is ε-hiding if the statistical distance between the
two distributions

f(R(x)) = f(x+R1 · p) and f(R2) with

{
R1 ← [0, h)

R2 ← [0, hp)

is upper bounded by ε. Or equivalently, the best distinguishing algorithm of
the two above distributions (without limit of time and memory) has a maximal
success probability of 1

2 + ε.

14

Example 2. A second example is the randomization operation with maps a point
defined by its Jacobian coordinates on an elliptic curve of base field Fp to a
randomized representation, namely

R(P) = R((X : Y : Z)) = (Xλ2 : Y λ3 : Zλ) with λ← F∗
p .

We consider a leakage function f applied on points of this elliptic curve. Similarly,
we can say that the pair (f,R) is ε-hiding if the statistical distance between the
two distributions

f(R(P)) = f((Xλ2 : Y λ3 : Zλ)) and f(U)

with λ← F∗
p and U ← (Fp)

3, is upper bounded by ε.

In Appendix A, we provide experimental results giving some practical evi-
dence regarding the hideness assumption in the Hamming weight with Gaussian
noise leakage model. We notably show that the statistical distance between the
two distributions exponentially decreases with the randomness length |h| or |λ|.
More generally, it would be interesting to investigate the hideness assumption
in practice for different class of leakage functions. These questions are related to
the general open issue of defeating this type of randomization techniques from
typical side-channel leakage beyond the fact of observing the presence or absence
of collisions.

This issue has not been widely investigated which is presumably due to the
hardness of exploiting such leakage. To the best of our knowledge, only one re-
cent work studies how to defeat the randomization of projective (and Jacobian)
coordinates [1]. The authors investigate strategies to recover the random value
λ by exploiting the leakage of the randomization operation R(P) assuming a
known point P (typically the initial point randomization). Among many contri-
butions, this work illustrates the difficulty to efficiently exploit the leakage on
point randomization even in the favorable context of 8-bit devices.

Complete definition. We now introduce the complete definition of ε-hideness
for a randomized regular algebraic program. In such a program, after random-
ization, an algebraic variable may be input of several subsequent operations and
hence leak several time. Moreover, we should also capture the leakage of vari-
ables defined as functions of one or several randomized variables. In a nutshell,
we generalize the ε-hideness definition to the following cases:

– A leakage function f associated to a multi-input operation, i.e. applying to
several algebraic variables and index variables. For such a function f , the
ε-hideness means

f(R(X),W , i) ≈ε f(R,W , i) with R← A

where W denotes a tuple of algebraic variables and i denotes a tuple of
index variables.

15

– An algebraic variable which expression involves a previously randomized
variable. In such a case, the ε-hideness of f generalizes to

f(g(R(X),Z),W , i) ≈ε f(g(R,Z),W , i) with R← A

where Y and Z denote tuples of algebraic variables, i denotes a tuple of
index variables, and g denotes an algebraic function Aℓg → A.

– Several leakage functions f1, . . . , ft associated to several (multi-input) op-
erations involving the same randomized variable (either as direct input or
involved in the expression of an input variable). In such a case, the ε-hideness
f1, . . . , ft is defined as:(

f1(g1(Y, . . .), . . .), . . . , ft(gt(Y, . . .), . . .)
)

with Y ← R(X)

≈tε

(
f1(g1(R, . . .), . . .), . . . , ft(gt(R, . . .), . . .)

)
with R← A .

Formally, we have the following definition:

Definition 5 (Hideness). Let F be a family of noisy functions and let R be
a randomization operation. Let W1, . . . , Wt, Z1, . . . , Zt be tuples of algebraic
variables, let i1, . . . , it be tuples of index variables, and let g1, . . . , gt be algebraic
functions. Let D(Y) be the distribution defined w.r.t. f1, . . . , ft ∈ F and Y ∈ A
as:

D(Y) =
(
f1(g1(Y,Z1),W1, i1)

f2(g2(Y,Z2),W2, i2)

...

ft(gt(Y,Zt),Wt, it)
)

The pair (F ,R) is said to be ε-hiding if for every f1, . . . , ft ∈ F and every
x ∈ A, the distribution D(R(x)) is (tε)-close to the distribution D(R) where R
is a uniform random variable over A.

Although the above assumption might seem strong, it soundly captures the
class of collision-based horizontal attacks whenever setting ε = 0. Indeed, the
attacks do not defeat the randomization and do not recover nor exploit any infor-
mation on the unrandomized variables. They only observe whether two variables
in the control flow of the algorithm collide or not. This collision behavior is not
affected by assuming that the target program achieves ε-hideness even while
setting ε to 0.

Moreover, we would like to stress that our assumption is not ideal in the sense
that there always exists an ε for which a set of leakage functions (together with a
randomization method) satisfies the hideness definition. We leave the assessment
of such an ε in various contexts (depending on the leakage model and on the
randomization technique) as an open research question. Such a question is related
to the design of side-channel attacks that exploit the leakage of randomized
variables to recover information on the unrandomized variables (beyond the

16

Algorithm 3 Generic scalar multiplication (or exponentiation) algorithm

Input: X, k = (k0, k1, . . . , kn−1)
Output: Y = fk(X)
1. (X0

1 , X
0
2 , . . . , X

0
m)← preprocess(X)

2. for i = 0 to n− 1 do
3. ((X0

1 , X
1
1), (X

0
2 , X

1
2), . . . , (X

0
m, X1

m))← sequence(X1, X2, . . . , Xm)
4. (b1, b2, . . . , bm)← indexes(ki)
5. (X0

1 , X
0
2 , . . . , X

0
m)← (Xb1

1 , Xb2
2 , . . . , Xbm

m)
6. end for
7. Y ← postprocess(X0

1 , X
0
2 , . . . , X

0
m)

8. return Y

collision behavior) which to the best of our knowledge has not been addressed
so far.

4 A Generic and Provably-Secure Countermeasure

4.1 The Generic Countermeasure

We consider a particular form of regular algebraic program which encompasses
a large class of algorithms including elliptic-curve scalar multiplications, ring or
field exponentiations, or pairing evaluations (Miller’s algorithm). This generic
algorithm (see Alg. 3) takes as input a tuple of algebraic variables X and a
secret index variable k = (k0, . . . , kn−1) for some n ∈ N. We assume that each
coordinate of the input secret variable k is a w-bit integer, that is ki ∈ [0, 2w)
for every i ∈ [0, n). The algorithm is composed of an initialization procedure
preprocess that initializes the algebraic variables X0

1 , X
0
2 , . . . , X

0
m from the input

X, a main loop that applies a sequence of operations on the algebraic variables,
and a final procedure postprocess to generate the output. In the main loop,
the procedure sequence implements a sequence of operations between algebraic
variables of constant indexes, and the procedure indexes derives a set of indexes
from the current index variable ki from which the algebraic variables entering the
next iteration are selected. In the following, we shall assume that this function
is linear with respect to the bitwise addition. Specifically, in Step 4, each bj is
defined as a linear combination of the w bits of ki.

For the sake of clarity, we do not strictly stick to the notations introduced
in Section 3 for the algebraic and index memories. However, it should be clear
from the algorithm description that

– theX notations are used for algebraic variables whereas the k and b notations
are used for index variables,

– the procedures preprocess, sequence and postprocess only perform algebraic
operations with constant indexes,

– the procedure indexes only perform index operations,
– Step 5 performs a sequence of m copies of algebraic variables indexed by

index variables.

17

In the following, we shall denote Npre, Npost, Nseq the number of algebraic
operations performed by the preprocess, postprocess and sequence procedures
respectively. We will further consider that the indexes procedure is composed of
m index operations. The total number NP of operations in Alg. 3 is hence given
by:

NP = Npre +Npost + n · (Nseq + 2m) . (4)

Remark 7. In the description of Alg. 3, we implicitly assume the same sequence
procedure for all the iterations but we could generalize to different sequencei
procedures without effect on our result. Couples of variables are used in Step 3
to record both scenarios for each input, but notice that in practice a single extra
register can be enough to treat both cases for each of the m input variables.

We show in Section 5 that this general algorithm can be applied to the most
widely used elliptic-curve scalar multiplication algorithms, such as the Mont-
gomery ladder [44], the Joye ladder [37], the full signed binary algorithm [56],
the fixed window double-and-add algorithm [28].

Encoding of the key. Our generic countermeasure is based on a Boolean
sharing of k of masking order d ∈ N (which acts as security parameter of the
countermeasure). Specifically, k is encoded as

k̂ =← Enc(k) := ((kj0)0≤j≤d, (k
j
1)0≤j≤d, . . . , (k

j
n−1)0≤j≤d) (5)

where the encoding algorithm Enc randomly samples

kji ← [0, 2w) for every 0 ≤ i ≤ n− 1 and 1 ≤ j ≤ d

and define
k0i ← ki ⊕ k1i ⊕ · · · kdi for every 0 ≤ i ≤ n− 1 .

Protected algorithm. Our generic countermeasure against horizontal side-
channel attacks is described in Alg. 4. The function R applies the randomization
operation formalized in our randomized regular algebraic program model. The
function swap performs a conditional swapping of the two input variables X0 and
X1 depending on the third input b, so that it returns (Xb, Xb⊕1) (the variables
are swapped iff b = 1). In the RAP model, this function can be implemented
by the following sequence of instructions with the use of two extra algebraic
variable R0 and R1:

1. (R0, R1)← (X0, X1)
2. X0 ← Rb

3. X1 ← Rb⊕1

In a nutshell, Alg. 4 performs the same computation as Alg. 3 but the selec-
tion of the variables in Step 5 is protected by a Boolean masking of order d. By
linearity of the indexes procedure, we have

bℓ = b0ℓ ⊕ b1ℓ ⊕ · · · bdℓ , (6)

18

which implies that

swap(X0
ℓ , X

1
ℓ , bℓ) = swap(. . . swap(swap(X0

ℓ , X
1
ℓ , b

0
ℓ), b

1
ℓ), . . . , b

d
ℓ) . (7)

for every ℓ ∈ [1,m]. At the end of the inner loop, we hence correctly get (a

randomized version of) the variable Xbℓ
ℓ copied in X0

ℓ for every ℓ.

Algorithm 4 Generic countermeasure

Input: X, k̂ = ((kj
0)0≤j≤d, (k

j
1)0≤j≤d, . . . , (k

j
n−1)0≤j≤d)

Output: Y = fk(X)
1. (X0

1 , X
0
2 , . . . , X

0
m)← preprocess(X)

2. for i = 0 to n− 1 do
3. ((X0

1 , X
1
1), (X

0
2 , X

1
2), . . . , (X

0
m, X1

m))← sequence(X0
1 , X

0
2 , . . . , X

0
m)

4. for j = 0 to d do
5. (bj1, b

j
2, . . . , b

j
m)← indexes(kj

i)
6. for ℓ = 1 to m do
7. X0

ℓ ← R(X0
ℓ)

8. X1
ℓ ← R(X1

ℓ)
9. ((X0

ℓ , X
1
ℓ))← swap(X0

ℓ , X
1
ℓ , b

j
ℓ)

10. end for
11. end for
12. end for
13. Y ← postprocess(X0

1 , X
0
2 , . . . , X

0
m)

14. return Y

We shall consider that the swap procedure is composed of 2 algebraic op-
erations (copies of algebraic variables) although the above description makes
appear 4 copies. Indeed, in practice one could avoid having the same variables
in input and output of the function and simply implements it as (Y 0, Y 1) ←
(X0⊕b, X1⊕b). The total number NΠ of operations in the protected algorithm is
hence given by:

NΠ = Npre +Npost + n · (Nseq + 5m(d+ 1)) . (8)

Practical security. Our algorithm defeats advanced (higher-order) side-channel
attacks. In particular, it is secure against template attacks of order d which tar-
get (masked) scalar manipulations (and related addresses), as well as against
collision-based horizontal attacks of order d. The former attacks consist in tar-
geting the direct manipulation of the sensitive bits (or digits) ki or any address
(or index in our formalism) that depends on ki. In our countermeasure, all these
sensitive bits and associated addresses are masked at order d and one must at
least target a (d+1)-tuple of such index variables to recover sensitive information
(this is formally proved hereafter). The latter attacks consists in finding colli-
sion between processed algebraic variables in order to infer information of the
sensitive indexes. By our re-randomization and swap strategy, it can be checked

19

that one must at least target d+ 1 algebraic variables to recover sensitive infor-
mation. For instance, observing a collision between the variable X0

ℓ output of
the randomization at step 7 and the variable X0

ℓ output from the swap at Step

9 would allow one to learn that bjℓ = 0, while a non-collision would mean bjℓ = 1.
A collision-based horizontal attacker should observe d + 1 such (non-)collision
in order to learn the sensitive bit bℓ. Illustration of such higher-order collision
attack on Alg. 4 is given in Fig. 1 where the attacker observes successive execu-
tions of step 7 to recover indexes bj1. Security against this kind of attacks is also
captured by our formal proof.

Step 7
(j = 0)

X0
1 and R(X0

1)

Step 7
(j = 1)

X1
1 and R(X1

1)

Step 7
(j = 2)

X2
1 and R(X2

1)

Step 7
(j = 3)

X3
1 and R(X3

1)

collision? collision? collision?

Fig. 1: Illustration of fourth-order collision attack on Alg. 4.

Practical efficiency. From a high level viewpoint, our countermeasure to Alg. 3
switches the complexity from O(nm) to O(nmd), which means a linear slow-
down with respect to the masking order d. However, we stress the practical
efficiency of our generic countermeasure can be boosted in the case lighweight
re-randomization technique can be applied. Indeed, our countermeasure does
not add any algebraic operation to the original program besides copies and re-
randomizations. In practice, the performances of ECC and other exponentiation-
based cryptosystems is mainly impacted by (field or ring) multiplications (or
point doublings/additions at the group level), namely the operations that ap-
pear in the sequence procedure in Alg. 3. If copy and re-randomizations can
be made negligible compared to costly multiplications then our countermeasure
would be virtually free. Such a paradigm would be unrealistic for large values
of the masking order d but the trade-off between costly algebraic operations
and light copies and re-randomizations could lead to a reasonable impact on the
performances.

We also note that our countermeasure is greedy in terms of randomness gen-
eration with the frequent use of re-randomization. But this is also true for other
classical countermeasures achieving high level of provable security in the noisy
leakage model [19,24,21]. Moreover, this might be mitigated in practice by reduc-
ing the number of random bits used in a re-randomization. One could for instance
argue that for the randomization in Example 1 the fresh random value R could
be sampled on a smaller space than [0, h) (i.e. with less than log2(h) bits), which
would constitute a trade-off between the hideness property and the efficiency.
Let us stress once again that to the best of our knowledge and besides [1] (which
shows the difficulty of defeating elliptic-curve point randomization), no attack
has been published that defeats these types of randomization besides looking at
the collision behavior of randomized variables (which is fully captured by our
hideness notion with ε = 0).

20

4.2 Security Proof

We state our formal security result in the following theorem.

Theorem 1. The program Π defined in Alg. 4 is γ-leakage resilient against
ε-hiding δ-noisy leakage functions with

γ ≤ n(5mδ)d+1 +NΠ · ε . (9)

Theorem 1 shows that if ε is negligible and if δ < 1
5m , then our countermea-

sure achieves exponential security in the masking order d, at the cost of a linear
slowdown for the protected algorithm.

Remark 8. In the above theorem, we implicitly assume that δ-noisy leakage func-
tions are defined with respect to the relative error distance (see (3)), as suggested
in [52]. We stress that a different choice would not affect our proof except for
the tightness of the bound (9). For instance, taking the L1-norm statistical dis-
tance considered in [19] would imply a factor |X | to δ in (9) (where X is the
domain of the leakage function). But as discussed in [52], this factor seems to
be a proof artifact which does not apply while considering practically relevant
leakage models.

We demonstrate Theorem 1 through a sequence of three games. Each game
is composed of two experiments: a real experiment that outputs the real leakage
distribution following the considered family of δ-noisy leakage functions F , and
a simulation experiment that output the simulated leakage distribution. The
γ-leakage resilience is achieved if and only if the output distributions of the two
experiments are γ-close.

Game 0 (illustrated in Figure 4, Appendix B) exactly fits the definition of
leakage resilience (Definition 3) where F is a family of ε-hiding δ-noisy leak-
age functions. We first show that this game reduces to Game 1 in which the
ComputTrace algorithm is replaced by a different ComputTrace′ algorithm. Then
we show that Game 1 reduces to Game 2 in which the functions from F are
replaced by corresponding δ-random probing functions. We finally exhibit a sim-
ulator which achieves γ2-closeness of the experiment outputs in Game 2 for some
γ2. According to the two previous game transitions, we obtain γ1-closeness and
γ0-closeness for the experiment outputs in Game 1 and Game 0 for some γ1 and
γ0 that we shall exhibit throughout the proof.

Our first technical lemma (transition from Game 0 to Game 1) is given
hereafter (the proof is in Appendix B):

Lemma 1. Assume that there exists a simulator Sim such that ExpReal1(A, Π,F)
and ExpSim1(A, Π,F ,Sim) outputs γ1-close distributions. Then, for the same
simulator, ExpReal0(A, Π,F) and ExpSim0(A, Π,F ,Sim) outputs γ0-close dis-
tributions with

γ0 ≤ γ1 +NΠ · ε (10)

Before introducing our second technical lemma, we shall recall the definition
of random probing function.

21

Definition 6 (Random probing function). A δ-random probing function φ
on a set X is a noisy function which satisfies

φ(x) =

{
x with probability δ

⊥ with probability 1− δ

for every x ∈ X , where ⊥ denotes a void output and Im(φ) = X ∪ {⊥}.

In the above definition, we skip the randomness argument from the definition
of the function φ as discussed in Remark 2. In the context of a random probing
function, this randomness determines whether the event φ(·) = ⊥ occurs (with
probability δ) or not. We can now formally state our second technical lemma
(transition from Game 1 to Game 2) whose proof in given in Appendix B:

Lemma 2. For every family F of δ-noisy functions, there exists a family F ′ of
δ-random probing functions, for which the following holds.

– if there exists a simulator Sim′ such that the experiments ExpReal2(A, Π,F ′)
and ExpSim2(A, Π,F ′,Sim′) outputs γ2-close distributions,

– then there exists a simulator Sim such that the experiments ExpReal1(A, Π,F)
and ExpSim1(A, Π,F ,Sim) outputs γ1-close distributions with γ1 ≤ γ2.

We finally give our last technical lemma on the security of Game 2 (the proof
is in Appendix B)):

Lemma 3. Let Π be the randomized RAP described in Alg. 4 for masking order
d and let F ′ be a family of δ-random probing functions. There exists a simula-
tor Sim such that ExpReal2(A, P,F ′) and ExpSim2(A, P,F ′,Sim) output γ2-close
distributions, with

γ2 ≤ n(5mδ)d+1 . (11)

5 Applications

We now provide concrete examples of regular algorithms – including examples
from Section 2 – and show that they perfectly fit the generic shape of Algo-
rithm 3. We first show how to apply our generic countermeasure to various bi-
nary scalar multiplication algorithms, and then to the classic left-to-right fixed-
window algorithm (see Algorithm 2).

5.1 Application to Binary Ladders

Montgomery ladder. To rewrite the Montgomery ladder (see Alg. 1) in our frame-
work, observe that a loop iteration can be rewritten as:

b← ki
(R1, R0)← (R1−b, Rb)

R1 ← R1 +R0

R0 ← 2 ·R0

(R1, R0)← (R1−b, Rb)

⇐⇒

b← ki+1 ⊕ ki
(R1, R0)← (R1−b, Rb)

R1 ← R1 +R0

R0 ← 2 ·R0

22

where the above equivalence holds by defining kn := 0 and returning Rk0 instead
of R0 in the latter case. We thus obtain Alg. 5 which rewrites the Montgomery
ladder in the framework of Alg. 3, where at the end of each iteration (X0

1 , X
0
2)

matches (R1, R0), while (X1
1 , X

1
2) matches (R0, R1).

Algorithm 5 Montgomery ladder at the point level

Input: P , k = (kn, kn−1, . . . , k1, k0) with kn := 0
Output: [k]P
1. (X0

1 , X
0
2)← (O,P) // preprocess(P)

2. for i = 0 to n− 1 do
3. b← ki+1 ⊕ ki // indexes(ki)
4. (X0

1 , X
0
2)← (Xb

1 , X
b
2)

5. (X0
1 , X

0
2)← (X0

1 +X0
2 , 2X

0
2) // sequence(X0

1 , X
0
2)

6. (X1
1 , X

1
2)← (X0

2 , X
0
1)

7. end for
8. b← k0 // indexes(ki)
9. (X0

1 , X
0
2)← (Xb

1 , X
b
2)

10. return X0
2

Montgomery ladder at coordinate level. Our approach can also be applied at the
coordinate level i.e. when internal registers store field element rather than points.
We illustrate this on the Montgomery ladder recently exhibited by Hamburg [27]
and which is today the most efficient binary ladder for standard Weierstrass
curves. Alg. 7 (Appendix C) rewrites this algorithm in our framework.

We note that the Montgomery ladder for Curve25519 and Curve448 described
in RFC 7748 [42] at the coordinate level is already expressed in a similar paradigm
as ours (in particular making use of conditional swap instructions). Our generic
countermeasure therefore directly applies to this algorithm.

Joye ladder. Similarly, Alg. 8 (Appendix C) rewrites the double-and-add al-
gorithm of Joye [37] so that it perfectly matches our generic regular program
displayed in Alg. 3.

Signed binary ladder. Another example is the signed binary algorithm from [56].
It is particularly efficient when the points are represented using (X,Y)-only co-
Z coordinates [26,56]. In this algorithm, the input scalar is assumed to satisfy
k0 = kn−1 = 1 and it is encoded under its (unique) full signed binary expansion
in which each digit belongs to {−1, 1}. Applying the standard left-to-right algo-
rithm to this signed expansion yields a regular signed binary ladder which can
also be rewritten in our framework as shown in Alg. 9 (Appendix C).

From the rewrites of the binary ladders, we can directly apply our generic
countermeasure and obtain a leakage resilient program. In a nutshell, for some
masking order d, the steps in Alg. 5, 8, and 9 that correspond to the sequence
procedure will remain unchanged, while registers (X0

1 , X
1
1) and (X0

2 , X
1
2) will be

23

refreshed d + 1 times and pairwisely swapped in place the scalar-dependent se-
lection step. The obtain leakage resilient program achieves the provable security
result of Theorem 1 with m = 2.

5.2 Application to Fixed-Window Scalar Multiplication

The fixed-window scalar multiplication described in Alg. 2 can also be rewritten
in the generic shape of Alg. 3, at the cost of a few differences (see Alg. 6). As
explained in Section 2, this algorithm requires the pre-computation of a table T
to store the multiples dP for digits d belonging to some basis B ⊂ Z. Different
choices are possible for such a basis depending on the context. Our description of
Alg. 6 implicitly assumes |B| = 2w. For any digit d ∈ B, we denote d̃ ∈ [0, 2w−1]
its index in the basis B, and assume that each digit ki of the scalar is represented
by its w-bit index k̃i (the sharing being applied to those index values).

Contrary to binary algorithms, Alg. 6 loops on w-bit windows and it requires
2w temporary registers (Xi)0≤i≤2w−1 instead of the two registers per input in-
troduced in Alg. 3. Finally, to ease the exposition we consider two sequence
procedures, at the begining and at the end of the loop iterations. Note that the
sequence procedure at the end of an iteration could be considered to be part of
the next iteration to fit to the original model (and for the last iteration, it can
be seen as a sub-step of the post processing). In both cases, this step only counts
in the number of operations of each of these generic functions, but does not alter
the security proof.

Algorithm 6 Fixed window

Input: P , k = (kn−1, . . . , k1, k0)2w

Output: [k]P
1. forall d ∈ B do T [d̃] = [d]P // preprocess(P)
2. for i = 0 to n− 1 do
3. (X0, X1, . . . , X2w−1)← T // sequence1(X)
4. c← k̃i // indexes(ki)
5. X0 ← Xc

6. X ← X0 + [2w]X // sequence2(X)
7. end for
8. Y ← X // postprocess(X0)
9. return Y

The main difference while applying our countermeasure is in the type of
the index c at Step 6 which is not a bit anymore but a w-bit coordinate of k.
The swapping procedure must hence be generalized to work with w-bit Boolean
shares, which can be done by defining it as:

swap(X0, X1, . . . , X2w−1, c) = (Xc⊕0, Xc⊕1, . . . , Xc⊕(2w−1)) . (12)

Under such a definition, we still have the desired property

swap(X0, . . . , X2w−1, c) = swap(. . . swap(swap(X0, . . . , X2w−1, c0), c1), . . . , cd)

24

which is satisfied for every Boolean sharing c0⊕c1⊕· · ·⊕cd = c. While applying
our countermeasure, Step 6 can thus be replaced by:

for j = 0 to d do
cj ← k̃ji
(X0, X1, . . . , X2w−1)← (R(X0),R(X1), . . . ,R(X2w−1))
(X0, X1, . . . , X2w−1)← swap(X0, X1, . . . , X2w−1, c)

end for

Our security proof works the same way on the obtained program which hence
satisfy the leakage-resilience result of Theorem 1.

6 Performances

6.1 Performance Analysis

A high-level complexity analysis of our countermeasure was provided in Sec-
tion 4. Namely, we reach a complexity in O(nmd) with n the scalar bit length,
m the number of cells of the algebraic memory (i.e., the number of algebraic
variables), and d the masking order. Going a little deeper into the details, de-
noting Cop the complexity of operation op, the overall complexity of Alg. 4 is
exactly equal to

Cpreprocess+Cpostprocess+n ·
(
Csequence+(d+1) · (Cindexes+m · (2 ·CR+Cswap))

)
.

The complexity of the indexes operation Cindexes being reduced to m index
operations and the complexity of the swap operation to two algebraic copies, the
prominent operations remain the multiplications in sequence and the random-
ization of algebraic variables R. We estimate the randomization complexity CR

when implemented with one of the two examples displayed in Section 3, and also
with both. We shall further denote Cmultα the complexity of a multiplication in
Zq between operands of bit sizes α and approximate its cost with cm ·α2 for some
constant cm.

In Example 1, we consider the randomization operation which maps an ele-
ment of Zp to a randomized representation in Zhp, namely R(x) = x+R · p with
R← [0, h). It requires a multiplication in Zhp of complexity

CR1 = cm · |p| · |h|

and an addition in Zhp that we shall consider to be negligible compared to the
multiplication. Using this randomization in Alg. 4 would require the sequence
operation and all the subsequent randomizations to be performed in Zhp. De-
noting by γ the number of multiplications in sequence, the overall complexity
would remain equivalent to

n ·
(
γ · Cmult|p|+|h| + 2 · (d+ 1) ·m · CR1

)
In Example 2, the randomization operation maps a point defined by its Ja-

cobian coordinates on an elliptic curve of base field Fp to a randomized repre-
sentation, namely R(P) = R((X : Y : Z)) = (Xλ2 : Y λ3 : Zλ) with λ ← F∗

p.

25

This randomization mainly requires 5 multiplications between elements in Fp or
F∗
p (assuming that the squaring operation λ2 is performed by a multiplication).

We thus express its complexity as follows:

CR2
= 5 · Cmult|p| = 5 · cm · |p|2.

This complexity could be reduced in our countermeasure when considering the
manipulation of two points in co-Z coordinates in the main loop. The double
randomization of complexity 2 · CR2

could then be performed with only 6 mul-
tiplications. This would result in an overall complexity equivalent to

n ·
(
γ · Cmult|p| + 6 · (d+ 1) ·m · Cmult|p|

)
One step further, we could gather both randomization techniques to improve

the security level (i.e., lower parameter ε) of our countermeasure. We would
randomize the Jacobian coordinates, previously augmented with multiples of
the modulus p. With co-Z coordinates, the overall complexity would thus be
equivalent to

n ·
(
γ · Cmult|p|+|h| + 10 · (d+ 1) ·m · Cmult|p|+|h|

)
.

Table 2 in Appendix D illustrates the overhead (the multiplicative factor) be-
tween protected implementations and the regular program with different levels
of countermeasures.

6.2 Implementation Benchmarks

We provide performance benchmarks for a concrete protected scalar multipli-
cation implementation on a 0.13um 32-bit Contact Smartcard IC. The IC was
EAL4+ certified in Asia and features an ARM SecureCore SC100 processor with
18KB of RAM, 8KB of ROM, and 548KB of FLASH5.

Our implementation is based on the signed binary ladder using (X,Y)-only
co-Z coordinates [56, Algorithm 8]. In the basic setting (without applying our
countermeasure), the scalar is randomized by the addition of a 288-bit multiple
of the curve order and the Jacobian coordinates of the points are randomized
before starting the main loop. Benchmarks for this implementation with the
NIST elliptic curve P-256 [47] are provided in the column Regular program of
Figure 7 (in Appendix D, averaged over 100 executions).

Then, we modified our implementation to follow the description of Alg. 9 and
applied the generic countermeasure introduced in Section 4 for a customizable
masking order. The randomization step follows the described randomization of
Jacobian coordinates simultaneously applied on two points in (X,Y)-only coor-
dinates as well as on additional inverted Y -coordinate. This makes a total of 2
multiplications to derive λ2 and λ3 from λ plus 5 multiplications with the point
coordinates. The additional cost of this step is mainly due to these seven extra
multiplications. We provide the corresponding benchmarks at orders 1, 2, 4, and
8. From these results, we can interpolate a running time of 400 + 266(d + 1)

5 We refer the interested reader to [11] for further details on this device.

26

ms for a masking order d, as displayed in Table 1 and in Figure 7. The perfor-
mances of the first row are computed when the randomness is generated on the
smart card. Using a constant instead (to simulate the cost of the randomness
generation), we obtain the results displayed on the second row. The randomness
cost in the regular program is very light (i.e., the difference is low between the
complexity when using card and free randomness) since, without our counter-
measure, only a little randomness is actually used. Note that the gap between
the regular program and the first-order masked implementation comes from the
randomization which is applied directly on both shares in the latter case. As for
the memory complexity, our regular program requires 1220 bytes of RAM while
the countermeasure add 33 bytes per masking order.

Table 1: Benchmarks of Alg. 9 and its countermeasure at several orders
Regular Our countermeasure
program order 1 order 2 order 4 order 8

card randomness 416,5 ms 933,1 ms 1200,8 ms 1734,0 ms 2804,9 ms

free randomness 415,2 ms 612,4 ms 718,5 ms 930,4 ms 1355,9 ms

RAM complexity 1,220 kB 1,253 kB 1,286 kB 1,352 kB 1,484 kB

References

1. M. Azouaoui, F. Durvaux, R. Poussier, F.-X. Standaert, K. Papagiannopoulos, and
V. Verneuil. On the worst-case side-channel security of ECC point randomization
in embedded devices. In K. Bhargavan, E. Oswald, and M. Prabhakaran, editors,
INDOCRYPT 2020, volume 12578 of LNCS, 2020. Springer, Heidelberg.

2. L. Batina, L. Chmielewski, L. Papachristodoulou, P. Schwabe, and M. Tunstall.
Online template attacks. Journal of Cryptographic Engineering, 2019.

3. L. Batina, B. Gierlichs, E. Prouff, M. Rivain, F.-X. Standaert, and N. Veyrat-
Charvillon. Mutual information analysis: a comprehensive study. Journal of Cryp-
tology, 2011.

4. A. Bauer, É. Jaulmes, E. Prouff, and J. Wild. Horizontal collision correlation
attack on elliptic curves. In T. Lange, K. Lauter, and P. Lisonek, editors, SAC
2013, volume 8282 of LNCS, 2014. Springer, Heidelberg.

5. N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom. “ooh aah... just a little bit”:
A small amount of side channel can go a long way. In L. Batina and M. Robshaw,
editors, CHES 2014, volume 8731 of LNCS, 2014. Springer, Heidelberg.

6. D. J. Bernstein and T. Lange. Faster addition and doubling on elliptic curves. In
K. Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, 2007. Springer,
Heidelberg.

7. D. J. Bernstein and T. Lange. Inverted edwards coordinates. In S. Boztas and
H. Lu, editors, AAECC-17, volume 4851 of LNCS, 2007. Springer.

8. E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage
model. In M. Joye and J.-J. Quisquater, editors, CHES 2004, volume 3156 of
LNCS, 2004. Springer, Heidelberg.

9. E. Brier and M. Joye. Weierstraß elliptic curves and side-channel attacks. In
D. Naccache and P. Paillier, editors, PKC 2002, volume 2274 of LNCS, 2002.
Springer, Heidelberg.

27

10. E. Cagli, C. Dumas, and E. Prouff. Convolutional neural networks with data
augmentation against jitter-based countermeasures - profiling attacks without pre-
processing. In W. Fischer and N. Homma, editors, CHES 2017, volume 10529 of
LNCS, 2017. Springer, Heidelberg.

11. M. Carbone, V. Conin, M.-A. Cornélie, F. Dassance, G. Dufresne, C. Dumas,
E. Prouff, and A. Venelli. Deep learning to evaluate secure RSA implemen-
tations. IACR TCHES, 2019. https://tches.iacr.org/index.php/TCHES/

article/view/7388.

12. S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In B. S. Kaliski Jr.,
Çetin Kaya. Koç, and C. Paar, editors, CHES 2002, volume 2523 of LNCS, 2003.
Springer, Heidelberg.

13. B. Chevallier-Mames, M. Ciet, and M. Joye. Low-cost solutions for preventing
simple side-channel analysis: Side-channel atomicity. IEEE Trans. Computers,
2004.

14. C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil. Horizontal
correlation analysis on exponentiation. In M. Soriano, S. Qing, and J. López,
editors, ICICS 10, volume 6476 of LNCS, 2010. Springer, Heidelberg.

15. C. Clavier and M. Joye. Universal exponentiation algorithm. In Çetin Kaya. Koç,
D. Naccache, and C. Paar, editors, CHES 2001, volume 2162 of LNCS, 2001.
Springer, Heidelberg.

16. J.-S. Coron. Resistance against differential power analysis for elliptic curve cryp-
tosystems. In Çetin Kaya. Koç and C. Paar, editors, CHES’99, volume 1717 of
LNCS, 1999. Springer, Heidelberg.

17. J.-S. Coron, E. Prouff, M. Rivain, and T. Roche. Higher-order side channel security
and mask refreshing. In S. Moriai, editor, FSE 2013, volume 8424 of LNCS, 2014.
Springer, Heidelberg.

18. T. M. Cover and J. A. Thomas. Elements of information theory, Second Edition.
2006.

19. A. Duc, S. Dziembowski, and S. Faust. Unifying leakage models: From prob-
ing attacks to noisy leakage. In P. Q. Nguyen and E. Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, 2014. Springer, Heidelberg.

20. M. Dugardin, L. Papachristodoulou, Z. Najm, L. Batina, J.-L. Danger, and S. Guil-
ley. Dismantling real-world ECC with horizontal and vertical template attacks. In
F.-X. Standaert and E. Oswald, editors, COSADE 2016, volume 9689 of LNCS,
2016. Springer, Heidelberg.

21. S. Dziembowski, S. Faust, and K. Zebrowski. Simple refreshing in the noisy leakage
model. In S. D. Galbraith and S. Moriai, editors, ASIACRYPT 2019, Part III,
volume 11923 of LNCS, 2019. Springer, Heidelberg.

22. A. Faz-Hernández, P. Longa, and A. H. Sanchez. Efficient and secure algorithms
for GLV-based scalar multiplication and their implementation on GLV-GLS curves.
In J. Benaloh, editor, CT-RSA 2014, volume 8366 of LNCS, 2014. Springer, Hei-
delberg.

23. P.-A. Fouque and F. Valette. The doubling attack - why upwards is better than
downwards. In C. D. Walter, Çetin Kaya. Koç, and C. Paar, editors, CHES 2003,
volume 2779 of LNCS, 2003. Springer, Heidelberg.

24. D. Goudarzi, A. Joux, and M. Rivain. How to securely compute with noisy
leakage in quasilinear complexity. In T. Peyrin and S. Galbraith, editors, ASI-
ACRYPT 2018, Part II, volume 11273 of LNCS, 2018. Springer, Heidelberg.

25. D. Goudarzi, M. Rivain, and D. Vergnaud. Lattice attacks against elliptic-curve
signatures with blinded scalar multiplication. In R. Avanzi and H. M. Heys, editors,
SAC 2016, volume 10532 of LNCS, 2016. Springer, Heidelberg.

28

https://tches.iacr.org/index.php/TCHES/article/view/7388
https://tches.iacr.org/index.php/TCHES/article/view/7388

26. R. R. Goundar, M. Joye, A. Miyaji, M. Rivain, and A. Venelli. Scalar multiplica-
tion on Weierstraß elliptic curves from co-Z arithmetic. Journal of Cryptographic
Engineering, 2011.

27. M. Hamburg. Faster montgomery and double-add ladders for short Weier-
strass curves. IACR TCHES, 2020. https://tches.iacr.org/index.php/TCHES/
article/view/8681.

28. D. Hankerson, A. Menezes, and S. Vanstone. 2004.
29. J. Heyszl, A. Ibing, S. Mangard, F. D. Santis, and G. Sigl. Clustering algorithms

for non-profiled single-execution attacks on exponentiations. In A. Francillon and
P. Rohatgi, editors, CARDIS 2013, volume 8419 of LNCS, 2013. Springer.

30. H. Hisil, K. K.-H. Wong, G. Carter, and E. Dawson. Twisted Edwards curves
revisited. In J. Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, 2008.
Springer, Heidelberg.

31. N. Homma, A. Miyamoto, T. Aoki, A. Satoh, and A. Shamir. Collision-based power
analysis of modular exponentiation using chosen-message pairs. In E. Oswald and
P. Rohatgi, editors, CHES 2008, volume 5154 of LNCS, 2008. Springer, Heidelberg.

32. Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against
probing attacks. In D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, 2003.
Springer, Heidelberg.

33. K. Itoh, T. Izu, and M. Takenaka. Address-bit differential power analysis of crypto-
graphic schemes OK-ECDH and OK-ECDSA. In B. S. Kaliski Jr., Çetin Kaya. Koç,
and C. Paar, editors, CHES 2002, volume 2523 of LNCS, 2003. Springer, Heidel-
berg.

34. K. Itoh, T. Izu, and M. Takenaka. A practical countermeasure against address-bit
differential power analysis. In C. D. Walter, Çetin Kaya. Koç, and C. Paar, editors,
CHES 2003, volume 2779 of LNCS, 2003. Springer, Heidelberg.

35. K. Itoh, J. Yajima, M. Takenaka, and N. Torii. DPA countermeasures by improving
the window method. In B. S. Kaliski Jr., Çetin Kaya. Koç, and C. Paar, editors,
CHES 2002, volume 2523 of LNCS, 2003. Springer, Heidelberg.

36. M. Izumi, J. Ikegami, K. Sakiyama, and K. Ohta. Improved countermeasure against
address-bit DPA for ECC scalar multiplication. In G. D. Micheli, B. M. Al-Hashimi,
W. Müller, and E. Macii, editors, Design, Automation and Test in Europe, DATE
2010, Dresden, Germany, March 8-12, 2010, 2010. IEEE Computer Society.

37. M. Joye. Highly regular right-to-left algorithms for scalar multiplication. In
P. Paillier and I. Verbauwhede, editors, CHES 2007, volume 4727 of LNCS, 2007.
Springer, Heidelberg.

38. M. Joye. Highly regular m-ary powering ladders. In M. J. Jacobson Jr., V. Rijmen,
and R. Safavi-Naini, editors, SAC 2009, volume 5867 of LNCS, 2009. Springer,
Heidelberg.

39. M. Joye and M. Tunstall. Exponent recoding and regular exponentiation algo-
rithms. In B. Preneel, editor, AFRICACRYPT 09, volume 5580 of LNCS, 2009.
Springer, Heidelberg.

40. J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic. Make some noise: Un-
leashing the power of convolutional neural networks for profiled side-channel anal-
ysis. IACR TCHES, 2019. https://tches.iacr.org/index.php/TCHES/article/
view/8292.

41. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener,
editor, CRYPTO’99, volume 1666 of LNCS, 1999. Springer, Heidelberg.

42. A. Langley, M. Hamburg, and S. Turner. Elliptic Curves for Security. 2016.
43. S. Mangard, E. Oswald, and T. Popp. Power analysis attacks - revealing the secrets

of smart cards. 2007.
44. P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.

Mathematics of Computation, 1987.

29

https://tches.iacr.org/index.php/TCHES/article/view/8681
https://tches.iacr.org/index.php/TCHES/article/view/8681
https://tches.iacr.org/index.php/TCHES/article/view/8292
https://tches.iacr.org/index.php/TCHES/article/view/8292

45. N. Mukhtar, A. P. Fournaris, T. M. Khan, C. Dimopoulos, and Y. Kong. Improved
hybrid approach for side-channel analysis using efficient convolutional neural net-
work and dimensionality reduction. IEEE Access, 2020.

46. E. Nascimento, L. Chmielewski, D. Oswald, and P. Schwabe. Attacking embedded
ECC implementations through cmov side channels. In R. Avanzi and H. M. Heys,
editors, SAC 2016, volume 10532 of LNCS, 2016. Springer, Heidelberg.

47. NIST. 2013.
48. E. Oswald, S. Mangard, C. Herbst, and S. Tillich. Practical second-order DPA

attacks for masked smart card implementations of block ciphers. In D. Pointcheval,
editor, CT-RSA 2006, volume 3860 of LNCS, 2006. Springer, Heidelberg.

49. D. Page. Theoretical use of cache memory as a cryptanalytic side-channel. 2002.
https://eprint.iacr.org/2002/169.

50. G. Perin and L. Chmielewski. A semi-parametric approach for side-channel at-
tacks on protected RSA implementations. In N. Homma and M. Medwed, editors,
CARDIS 2015, volume 9514 of LNCS, 2015. Springer.

51. G. Perin, L. Imbert, L. Torres, and P. Maurine. Attacking randomized exponen-
tiations using unsupervised learning. In E. Prouff, editor, COSADE 2014, volume
8622 of LNCS, 2014. Springer, Heidelberg.

52. T. Prest, D. Goudarzi, A. Martinelli, and A. Passelègue. Unifying leakage models
on a Rényi day. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, 2019. Springer, Heidelberg.

53. E. Prouff and M. Rivain. Masking against side-channel attacks: A formal security
proof. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, 2013. Springer, Heidelberg.

54. E. Prouff, R. Strullu, R. Benadjila, E. Cagli, and C. Dumas. Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. 2018.
https://eprint.iacr.org/2018/053.

55. J. Renes, C. Costello, and L. Batina. Complete addition formulas for prime order
elliptic curves. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part I,
volume 9665 of LNCS, 2016. Springer, Heidelberg.

56. M. Rivain. Fast and regular algorithms for scalar multiplication over elliptic curves.
2011. https://eprint.iacr.org/2011/338.

57. T. Roche, L. Imbert, and V. Lomné. Side-channel attacks on blinded scalar multi-
plications revisited. In S. Beläıd and T. Güneysu, editors, CARDIS 2019, volume
11833 of LNCS, 2019. Springer.

58. W. Schindler and K. Itoh. Exponent blinding does not always lift (partial) spa
resistance to higher-level security. In J. Lopez and G. Tsudik, editors, ACNS 11,
volume 6715 of LNCS, 2011. Springer, Heidelberg.

59. K. Schramm, T. J. Wollinger, and C. Paar. A new class of collision attacks and
its application to DES. In T. Johansson, editor, FSE 2003, volume 2887 of LNCS,
2003. Springer, Heidelberg.

60. M. Tunstall, L. Papachristodoulou, and K. Papagiannopoulos. Boolean exponent
splitting. 2018. https://eprint.iacr.org/2018/1226.

61. L. Weissbart, L. Chmielewski, S. Picek, and L. Batina. Systematic side-channel
analysis of curve25519 with machine learning. J. Hardw. Syst. Secur., 2020.

62. L. Weissbart, S. Picek, and L. Batina. One trace is all it takes: Machine learning-
based side-channel attack on eddsa. In S. Bhasin, A. Mendelson, and M. Nandi, ed-
itors, Security, Privacy, and Applied Cryptography Engineering - 9th International
Conference, SPACE 2019, Gandhinagar, India, December 3-7, 2019, Proceedings,
volume 11947 of Lecture Notes in Computer Science, 2019. Springer.

30

https://eprint.iacr.org/2002/169
https://eprint.iacr.org/2018/053
https://eprint.iacr.org/2011/338
https://eprint.iacr.org/2018/1226

Supplementary Material

31

A Experimental Results for the Hideness Assumption

We present hereafter some experimental results to motivate the hideness as-
sumption for classic randomization techniques and leakage models. Specifically,
we consider the naive, yet practically relevant, leakage model of Hamming weight
with additive Gaussian noise:

f(x) = Hw(x) +N with N ← N (0, σN) , (13)

for some standard deviation parameter σN .

On the other hand, we consider two classic randomization operations:

– Modulus randomization: The randomization operation which maps an ele-
ment of Zp to a randomized representation in Zhp, namely

R(x) = x+R · p with R← [0, h) .

– Point randomization: The randomization operation which maps a point de-
fined by its Jacobian coordinates on an elliptic curve of base field Fp to a
randomized representation, namely

R(P) = R((X : Y : Z)) = (Xλ2 : Y λ3 : Zλ) with λ← F∗
p .

Hideness for modulus randomization . For the modulus randomization, we
can say that the pair (f,R) is ε-hiding if the statistical distance between the two
distributions

D1 := f(R(x)) = f(x+R1 · p) and D2 := f(R2) with

{
R1 ← [0, h)

R2 ← [0, hp)

is upper bounded by ε.

Hideness for point randomization . For the point randomization, we con-
sider that the leakage function f is applied to each coordinate of the point.
Similarly, we can say that the pair (f,R) is ε-hiding if the statistical distance
between the two distributions

D1 := f(R(P)) = f((Xλ2 : Y λ3 : Zλ)) and D2 := f(U)

with λ← F∗
p and U ← (Fp)

3, is upper bounded by ε.

Gaussian approximation and Kullback-Leibler divergence. In order to
illustrate the hideness assumption on those two specific cases, we estimate the
distance between the distributions D1 and D2. Since the Hamming weight of
a random variable can be fairly approximated by a Gaussian distribution (in
particular in the presence of an additive Gaussian noise), we estimate the means
µ1, µ2 and standard deviations σ1, σ2 of the two distributions and approximate

32

Di ∼ N (µi, σi) for i ∈ {1, 2}. For the point randomization, the distributions
are three-dimensional; we hence get multivariate Gaussian distributions Di ∼
N (µi, Σi) with mean vectors µi ∈ R3 and covariance matrices Σi ∈ R3×3.

For each estimated set of parameters forD1 andD2, we compute the Kullback-
Leibler divergence DKL(D1 ∥ D2) between D1 and D2. The KL divergence (a.k.a.
relative entropy) is a classic measure of distance between two distributions. For
continuous distributions, it is defined as

DKL(D1 ∥ D2) :=

∫ ∞

−∞
p1(x) log

(
p1(x)

q2(x)

)
dx

where p1 and p2 respectively denote the pdfs of D1 and D2. We made the choice
of the KL divergence for convenience. Indeed, the KL divergence between two
Gaussian distributions Di ∼ N (µi, Σi) can be simply evaluated as:

DKL(D1 ∥ D2) =
1
2

(
log |Σ2|

|Σ1| − d+ tr(Σ−1
2 Σ1) + (µ2 − µ1)

TΣ−1
2 (µ2 − µ1)

)
(14)

where d denotes the dimension (d ∈ {1, 3} in our context) and tr(·) the trace
function. Moreover, DKL(D1 ∥ D2) gives an upper bound of the statistical dis-
tance between D1 and D2 [18]:

∆1(D1;D2) ≤
(
(ln 2/2) ·DKL(D1 ∥ D2)

) 1
2 . (15)

Experimental setup. For both studied randomization techniques, we have
estimated the distribution parameters to derive an approximation of the KL
divergence with respect to

– an increasing randomness bit-length, |h| ∈ [4, 64) for modulus randomiza-
tion, |λ| ∈ [4, 32) for point randomization, without noise (i.e. σN = 0),

– an increasing noise σN ∈ [0, 100] for a fixed (small) randomness bit-length
|h| = |λ| = 8.

Our results are depicted in Figure 2 for the modulus randomization and in Fig-
ure 3 for the point randomization. The Gaussian means and standard deviations
(resp. covariance matrices) and corresponding KL divergences were estimated
based on 107 random samples for each tested set of parameters.

Observations. From the left figures, we observe an exponential decrease of
the KL divergence –and hence of the statistical distance– with respect to the
randomness bit-length. In both cases, the decrease stops beyond the threshold
DKL(D1 ∥ D2) ≤ 10−6, which is due to the estimation error. We validated this
intuition by observing higher thresholds while experiencing with less samples
for our estimations. We stress that our experiments using 107 samples in the
different configurations took several days using SageMath on a 3,7 GHz Intel i5
CPU. This exponential decrease with respect to the randomness length suggests
that for sufficiently large randomness, and for the considered leakage function

33

0 10 20 30 40 50 60
10−8

10−6

10−4

10−2

100

Randomness bit-length

0 20 40 60 80 100

10−4

10−3

10−2

10−1

Noise standard deviation

Fig. 2: Modulus randomization. Left: KL divergence wrt randomness bit-length
(no noise). Right: KL divergence wrt noise standard deviation (8-bit random-
ness).

5 10 15 20 25 30

10−6

10−4

10−2

100

102

Randomness bit-length

0 20 40 60 80 100

10−3

10−2

10−1

100

Noise standard deviation

Fig. 3: Point randomization. Left: KL divergence wrt randomness bit-length (no
noise). Right: KL divergence wrt noise standard deviation (8-bit randomness).

f (Hamming weight model), the two distributions are indistinguishable, i.e. the
hideness assumption holds for a negligible ε.

From the right figures, we further observe that the noise standard deviation
seems to have a sub-exponential impact on the KL divergence. This is the ex-
pected behavior since it can be checked that the contribution of the additive
Gaussian noise N has a Θ

(
1/σ2

N

)
impact to the formula (14) –and hence a

Θ(1/σN) impact to the statistical distance.

Potential bias vs. modulus and point coordinates. For the modulus ran-
domization, we used the ANSSI elliptic curve prime modulus

panssi = 0xF1FD178C0B3AD58F10126DE8CE42435B3961ADBCABC8CA6DE8FCF353D86E9C03

34

We deliberately avoided to use a sparse prime such as the NIST P-256 prime

pnist = 2256 − 2224 + 2192 + 296 − 1 .

Indeed, for such a prime, the effect of the randomness does not propagate to
all the bits whenever |h| < 96 which implies a direct bias in the distribution
D1 = f(x + R1 · p) compared to D2 = f(R2). To avoid this bias, we have to
use a non-sparse prime p or a randomness bit-length which is greater than the
longest chain of 0’s or 1’s in the prime binary expansion (i.e. greater than 96 for
pnist). For the distribution D1 = f(x + R1 · p) we arbitrarily chose x = 0, but
we observed similar results for other values of x.

For the point randomization, we used the NIST elliptic curve base point,
defined by the coordinates:

xP = 0x6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296

yP = 0x4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5

Since the randomization works on Jacobian coordinates (X : Y : Z) we fur-
ther had to define a Z-coordinate. To avoid a direct bias in the distribution
D1 = f((Xλ2 : Y λ3 : Zλ)) compared to D2 = f(U), the Jacobian coordinates
should not be sparse or particularly small compared to p. The obvious choice of
(X,Y, Z) = (xP , yP , 1) implies such a direct (and strong) bias. For this reason,
we picked a random Z in our experiments. Specifically Z is randomly drawn
from Fp at the beginning of the experiment and we then fix the coordinates
(X,Y, Z) = (xP · Z2, yP · Z3, Z) for all the generated samples.

We stress that for each randomization technique, the direct bias exhibited
above can be avoided by taking a large enough randomness –typically |h| = |p|
for the modulus randomization and |λ| = |p| for point randomization– but as
illustrated in our experiments, shorter randomness seems to be sufficient in the
absence of such pathological cases.

35

B Games and Lemmas’ Proofs

B.1 Games

Our three games are presented in Figures 4, 5, and 6.

ExpReal0(A, Π,F):

1. (X,k)← A()
2. k̂← Enc(k)

3. T ← ComputTrace(Π,X, k̂)
4. (ℓ1, . . . , ℓz)← LeakageSampler(T ,F)
5. Return (ℓ1, . . . , ℓz)

ExpSim0(A, Π,F ,Sim):

1. (X,k)← A()
2. (ℓ1, . . . , ℓz)← Sim(Π,X,F)
3. Return (ℓ1, . . . , ℓz)

Fig. 4: Game 0 (initial security game). The choice of the input (X,k) is modeled
by a probabilistic algorithm A() (the adversary). The secret index variable k is

then encoded into k̂ using the Boolean sharing described in (5). Then the real ex-

periment generates the computation trace T for the program Π on input (X, k̂)
from which the leakage sampler produces the output (ℓ1, . . . , ℓz) by applying the
leakage functions from F . On the other hand, the simulation experiment calls
the simulator Sim on input Π, X and F which produces a simulated leakage
output (ℓ1, . . . , ℓz).

ExpReal1(A, Π,F):

1. (X,k)← A()
2. k̂← Enc(k)

3. T ← ComputTrace′(Π,X, k̂)
4. (ℓ1, . . . , ℓz)← LeakageSampler(T ,F)
5. Return (ℓ1, . . . , ℓz)

ExpSim1(A, Π,F ,Sim):

1. (X,k)← A()
2. (ℓ1, . . . , ℓz)← Sim(Π,X,F)
3. Return (ℓ1, . . . , ℓz)

Fig. 5: Game 1. This game is similar to Game 0 but the (deterministic)
ComputTrace algorithm is raplaced by a (probabilistic) ComputTrace′ algorithm.
In the latter, the computation trace is produced T is produced in a similar way
as with the former algorithm, that is by evaluating the program on the inputs X
and k̂. But this time, the output of each randomization operation R is randomly
sampled from A (according to the hideness property of the leakage).

36

ExpReal2(A, Π,F ′):

1. (X,k)← A()
2. k̂← Enc(k)

3. T ← ComputTrace′(Π,X, k̂)
4. (ℓ1, . . . , ℓz)← LeakageSampler(T ,F ′)
5. Return (ℓ1, . . . , ℓz)

ExpSim2(A, Π,F ′,Sim):

1. (X,k)← A()
2. (ℓ1, . . . , ℓz′)← Sim(Π,X,F ′)
3. Return (ℓ1, . . . , ℓz)

Fig. 6: Game 2. This game is similar to Game 1 but the leakage function family
F is replaced by a family F ′ of δ-random probing functions (formally defined
hereafter in Definition 6). Specifically, for each δ-noisy function fi ∈ F , there
exists a δ-random probing function f ′

i such that fi(·) = gi ◦ f ′
i(·) for some noisy

function gi (see details in the proof of Lemma 2). The functions fi in F are
replaced by those f ′

i functions to build F ′.

B.2 Proof of Lemma 1

Proof. By definition of the ε-hideness property and sinceΠ has a total number of
NΠ operations, the leakage distribution output by ExpReal1 experiment is (NΠ ·
ε)-close to the distribution output by the ExpReal0 experiment. The distribution
output by the ExpSim0 is identical as the distribution output by the ExpSim1

experiment, which is γ1-close to that of ExpReal1 and (γ1 +NΠ · ε)-close to that
of ExpReal0. We hence get (10).

B.3 Proof of Lemma 2

Proof. Lemma 2 holds from the standard reduction from noisy-leakage security
to random-probing security put forward in [19]. We specifically use the tighter
variant of this result based on the relative error distance in the definition of noisy
functions [52, Lemma 3]. According to this lemma, for any δ-noisy function f ,
there exists a δ-random probing function f ′ such that f(x) = g ◦ f ′(x) for every
x and for some noisy function g. The noisy leakage functions fi ∈ F applied in
ExpReal1(A, Π,F) are replaced by the corresponding random probing functions
f ′
i ∈ F ′ in ExpReal2(A, Π,F ′). In order to construct the simulator Sim, we
simply run Sim′(Π,X,F ′) which outputs a distribution which is γ2-close to the
random probing leakage output of ExpReal2. Then Sim applies the gi functions to
this simulated leakage. Let us denote by (ℓR1 , . . . , ℓ

R
z) the output distribution of

ExpReal2 and by (ℓS1 , . . . , ℓ
S
z) the output distribution of ExpSim2, which satisfies

(ℓR1 , . . . , ℓ
R
z) ≈γ2

(ℓS1 , . . . , ℓ
S
z) . (16)

According to the aforementioned lemma [52, Lemma 3], the output distribution
of ExpReal1 is identically distributed to (g1(ℓ

R
1), . . . , gz(ℓ

R
z)). On the other hand,

by construction of Sim the output of ExpSim1 is defined as (g1(ℓ
S
1), . . . , gz(ℓ

S
z)).

Finally, (16) clearly implies

(g1(ℓ
R
1), . . . , gz(ℓ

R
z)) ≈γ1 (g1(ℓ

S
1), . . . , gz(ℓ

S
z)) .

37

for some γ1 ≤ γ2 which concludes the proof.

B.4 Proof of Lemma 3

Proof. We demonstrate hereafter that there exists a simulator Sim such that for
every input X, k = (k0, k1, . . . , kn), and with γ2 satisfying (11), we have

Sim(Π,X) ≈γ2 LeakageSampler(ComputTrace′(Π,X,k),F ′).

Our demonstration proceeds in two steps: we first describe a simulator Sim∗

that achieves a perfect simulation assuming that the leakage sampler reveals the
entire computation trace of the program (i.e. the full inputs of all the operations)
except for one iteration in the inner loop (from Step 4 to Step 10), i.e. for one
value of the loop index j, where this non-leaking iteration might be different in
each iteration of the outer loop, i.e. for each i. We then show that we can use
Sim∗ to construct our simulator Sim which outputs a perfect simulation of

LeakageSampler(ComputTrace′(Π,X,k),F ′)

with probability γ2 and fails otherwise (which implies the lemma statement).
For each i between 0 and n − 1, let us denote by j∗i the loop index value

corresponding to the non-leaking inner loop iteration. Namely, for the ith iter-
ation of the main loop, we assume that the operations in Steps 5, 7, 8 and 9
do not leak when j = j∗i . All the other operations, either inside the inner loop
for j ̸= j∗i , or outside the inner loop, completely leak their input values. We
explain hereafter how to complete a perfect simulation of such a leakage from
Π (the program description) and X the input tuple of algebraic variables. The
corresponding simulator is denoted Sim∗(Π,X,J) where J = {j∗0 , . . . , j∗n−1} is
the set of non-leaking indexes.

All the operations in Step 1 (the preprocess procedure) have inputs and out-
puts derived from X which makes all the leakage in this step perfectly simu-
lable from X (by simply evaluating preprocess on X). Then, for the first it-
eration i = 0 of the main loop, the leakage of Step 3 can also be perfectly
simulated from X. The simulation Sim∗ then generates kj0 uniformly at random
from [0, 2w) for j ∈ [0, d]\{j∗0}. Steps 5, 7, 8 and 9 can thus be perfectly simu-
lated for j ∈ [0, j∗0 − 1]. Note that for the randomization operations of the form
Xout ← R(Xin), the computation trace output of the ComputTrace′ sampler con-
tains the pair of input output (Xin, Xout) of the instruction, where the variable
Xout is substituted for a fresh random value. This can be perfectly simulated
by Sim∗ by sampling fresh random values for all the outputs Xout (and keep-
ing track of these sampled values for the forthcoming operations). For iteration
j = j∗0 , no leakage must be simulated. For j = j∗0 + 1, all the input variables
in this iteration are also output variables of a randomization operation R. They
can therefore be perfectly simulated with uniform values. Following iterations
j > j∗0 + 1 can be perfectly simulated from these randomly sampled values and

by picking kj0 uniformly at random from [0, 2w).

Remark 9. We stress that one would not be able to additionally simulate the
leakage in iteration j∗0 without knowledge of k0. Indeed, by definition the share

38

k
j∗0
0 satisfies

k
j∗0
0 = k0 ⊕

⊕
j ̸=j∗0

kj0 .

Any leakage in the indexes procedure for j = j∗0 would (partially) depend on

k
j∗0
0 and hence (together with the other kj0) of k0. In the same way, a leakage

in the swap procedure would depend on the bit b
j∗0
ℓ which is derived from k

j∗0
0 .

Furthermore, the leakage of any randomization operation in the loop iteration j∗0
would also depend on the bit b

j∗0
ℓ together with the leakage of other iterations. For

instance, if the randomization of X1
ℓ would leak, then one would observe which

random value is sampled as output of R(X1
ℓ) and consequently deduce whether

a swap has occurred or not from the input variables of the next iteration (hence

recovering b
j∗0
ℓ).

For any following iteration i ≥ 1, we consider two cases depending on whether
j∗i−1 = d or not. Whenever j∗i−1 = d, the algebraic variables in input of iteration i
are the output of randomization operations that do not leak. They can therefore
be perfectly simulated with fresh random values independently of the previous
leakage. Whenever j∗i−1 < d, the input algebraic variables of iteration i are taken
from the simulation of randomization operation in the inner loop iteration j = d
of the last main loop iteration i−1. Now that we have explained how to perfectly
simulate the input variables of iteration i we can proceed with a simulation of
this iteration in the exact same way as for the first iteration i = 0. In particular,
Sim∗ generates kji uniformly at random from [0, 2w) for j ∈ [0, d]\{j∗i } and fresh
random values for all the output of the randomization operations from which a
perfect simulation is achieved as described above.

Our simulator Sim(Π,X) works as follows: it first draws some coin with
probability δ′ for each operation in order to determine whether the operation
leaks or not (i.e. whether the random probing function reveals its input or ⊥).
For each iteration i of the main loop, we denote by Faili the event that at least
one operation leaks in each iteration j of the inner loop. We further denote by
Fail the union of the failure events for all the iterations, that is

Fail = Fail0 ∪ Fail1 ∪ . . . ∪ Failn−1 .

Whenever Fail occurs, the simulator Sim stops and the simulation fails. Whenever
Fail does not occur, there exists at least one index j∗i per iteration i for which
the iteration j = j∗i in the inner loop does not leak. The simulator Sim then
runs Sim∗(Π,X,J) with J = {j∗0 , . . . , j∗n−1} from which a perfect simulation
is obtained for all the operations except the non-leaking iterations. From this
perfect simulation Sim can then extract the values to be simulated according to
the drawn random probing coins.

We thus get a simulator Sim(Π,X) which outputs a perfect distribution or
fails with probability

γ2 = Pr(Fail) = 1−
n−1∏
i=0

(1− Pr(Faili)) .

39

Let us denote by Failji the failure event that at least one operation leaks in
the inner iteration j of the iteration i of the main loop. The failure event Faili
occurs at iteration i if all the iterations of the inner loop leak at least for one
operation (in Step among 5, 7, 8, and 9), that is

Pr(Faili) = Pr(Fail0i ∩ Fail1i ∩ . . . ∩ Faildi) =
d∏

j=0

Pr(Failji) ,

where the product of probabilities holds from the mutual independence of the
Failji ’s. Each inner loop iteration is composed of m index operations in the pro-
cedure indexes, 2m randomization operations, and 2m copies in the swap proce-
dure which makes a total of 5m operations per iteration. For every pair (i, j),
the probability that none of these operations leak hence equals

1− Pr(Failji) = (1− δ)5m .

From this we, get Pr(Faili) =
(
1 − (1 − δ)5m

)d+1 ≤ (5mδ)d+1 , which finally
yields

Pr(Fail) = 1−
n−1∏
i=0

(1−Pr(Faili)) = 1−
(
1−

(
1− (1− δ)5m

)d+1
)n

≤ n(5mδ)d+1 .

40

C Binary Ladder in our Framework

C.1 Montgomery Ladder at the coordinate level

The interested reader is referred to the original paper [27] for the descriptions of
setup-ladder and finalize-ladder functions). For more efficiency, the compu-
tations from lines 7 to 11 have been deported after the selection of the algebraic
variables (line 6). As for our countermeasure, they can be seen as belonging
to the sequence operation of the next iteration. Also, we consider here that
the scalar has been rewritten so that the indexes can be selected from each bit
directly.

Algorithm 7 Montgomery ladder at the coordinate level from [27]

Input: P , k = (kn−1, . . . , k1, k0)
Output: [k]P
1. (XQP , XRP ,M, YP)← setup− ladder(P)
2. (X0

1 , X
0
2 , X

0
3 , X

0
4)← (XQP , XRP ,M, YP) // preprocess(P)

3. for i = 0 to n− 1 do
4. (X0

1 , X
1
1), (X

0
2 , X

1
2)← (X0

2 , X
0
1), (X

0
1 −X0

2 , X
0
2 −X0

1) // sequence(X0
1 , X

0
2)

5. (b1, b2)← (ki, ki) // indexes(ki)
6. (X0

1 , X
0
2)← (Xb1

1 , Xb2
2)

7. T ← YP + 2 ·M ·X0
1

8. X0
1 ← T 2 · (T 2 + 2 ·M · T ·X0

2)
9. X0

2 ← (X0
1 · (X0

2)
2)2 + YP · T · (X0

2)
3

10. X0
3 ← X0

1 (X
0
2)

2 − T 2 −M · T ·X0
2

11. X0
4 ← YP · T 3 · (X0

2)
3

12. end for
13. Y ← finalize-ladder(X0

1 , X
0
2 , X

0
3 , X

0
4) // postprocess(X0

1 , X
0
2 , X

0
3 , X

0
4)

14. return Y

C.2 Joye Ladder

Algorithm 8 Joye ladder

Input: P , k = (k0, k1, . . . , kn−1)
Output: Y = fk(P)
1. (X0

1 , X
0
2)← (O,P) // preprocess(P)

2. for i = 0 to n− 1 do
3. T ← 2X0

1 +X0
2 // sequence(X0

1 , X
0
2)

4. (X0
1 , X

1
1), (X

0
2 , X

1
2)← (T,X0

1), (T,X
0
2)

5. (b1, b2)← (1− ki, ki) // indexes(ki)
6. (X0

1 , X
0
2)← (Xb1

1 , Xb2
2)

7. end for
8. return X0

1

41

C.3 Signed binary ladder

Algorithm 9 Signed binary ladder [56, Alg. 8]

Input: P , k′ = (kn−1 ⊕ kn−2, . . . , k2 ⊕ k1, k1 ⊕ 1)2
Output: [k]P
1. (X0

1 , X
0
2)← (P , 3P) // preprocess(P)

2. for i = 0 to n− 2 do
3. T ← 2X0

1 +X0
2 // sequence(X0

1 , X
0
2)

4. (X0
1 , X

1
1), (X

0
2 , X

1
2)← (T, T), (−X0

2 , X
0
2)

5. b← 1− k′
i // indexes(ki)

6. (X0
1 , X

0
2)← (Xb

1 , X
b
2)

7. end for
8. Y ← X0

1 // postprocess(X0
1 , X

0
2)

9. return Y

42

D Complexity Overheads

D.1 Performance Analysis

Table 2 illustrates our countermeasure’s complexity by giving the multiplicative
factor between a regular program and a program with one randomization or the
other at different masking orders. Neglecting the linear operations, we evaluate
the overall complexity as an equivalent of

n ·
(
Csequence + (d+ 1) · (Cindexes +m · (2 · CR))

)
for protected operations and

n · Csequence

for regular programs. Following the example of the Montgomery ladder in Algo-
rithm 5, we assume one point addition and one point doubling in the sequence
step, i.e. around 12 multiplications. We also assume that we have 2 algebraic
variables and h can vary in {32, 64, 128}. λ for the second randomization is
generated in the field (Zp or Zhp). We also take p of size 256 bits.

The last row of the table estimates the complexity of a very naive countermea-
sure in the probing model using ISW (for its inventor Ishai, Sahai, and Wagner)
multiplications [32]. The latter would require (d+1)2 multiplications, hence the
resulting overheads. Note that they are not enough to protect the scheme in
the probing model but we obtain a lower bound of the expected overhead in
complexity.

Table 2: Complexity Approximation
Our countermeasure (overhead)

order 1 order 2 order 4 order 8

R1 - h = 32 1,35 1,39 1,47 1,64
R1 - h = 64 1,73 1,81 1,98 2,31
R1 - h = 128 2,58 2,75 3,08 3,75

R2 3 4 6 10

R1 & R2 - h = 32 5,48 7,59 11,81 20,25
R1 & R2 - h = 64 6,77 9,38 14,58 25
R1 & R2 - h = 128 9,75 13,5 21 36

naive ISW 4 9 25 81

D.2 Implementation Benchmarks

43

0 1 2 3 4 5 6 7 8 9
0

1,000

2,000

3,000

masking order

ti
m
e
in

m
s

Fig. 7: Benchmarks from Table 1 where masking order 0 corresponds to a regular
algorithm. The orange line represents the function x 7→ 400 + 266(x+ 1).

44

	High Order Countermeasures for Elliptic-Curve Implementations with Noisy Leakage Security

