
Low-Bandwidth Threshold ECDSA
via Pseudorandom Correlation Generators

Damiano Abram1, Ariel Nof2, Claudio Orlandi1, Peter Scholl1, and Omer Shlomovits3

1 Aarhus University, Aarhus, Denmark
{damiano.abram, orlandi, peter.scholl}@cs.au.dk

2 Technion, Haifa, Israel
ariel.nof@cs.technion.ac.il

3 ZenGo X, Tel Aviv, Israel
omer.shlomovits@gmail.com

Abstract. Digital signature schemes are a fundamental component of secure distributed systems,
and the theft of a signing-key might have huge real-world repercussions e.g., in applications such as
cryptocurrencies. Threshold signature schemes mitigate this problem by distributing shares of the
secret key on several servers and requiring that enough of them interact to be able to compute a
signature. In this paper, we provide a novel threshold protocol for ECDSA, arguably the most relevant
signature scheme in practice. Our protocol is the first one where the communication complexity of the
preprocessing phase is only logarithmic in the number of ECDSA signatures to be produced later, and
it achieves therefore a so-called silent preprocessing. Our protocol achieves active security against any
number of arbitrarily corrupted parties.

1 Introduction

Threshold signatures allow a set of n servers to produce digital signatures, while ensuring that no subset
of up to t < n colluding servers can forge valid signatures on their own. Threshold signatures can be used
to provide an additional layer of security in a cryptographic application, by removing the single point of
failure that comes from storing the signing key in one place. There has recently been a renewed interest in
building threshold signatures for financial applications, particularly for the case of protecting the secret key
in a cryptocurrency wallet used to authorize transactions.

The elliptic curve digital signature algorithm, or ECDSA, is one of the most popular signature schemes
used today. This is in part due its use in the Bitcoin protocol, where it is deployed with the secp256k1

curve. Unlike with Schnorr signatures, ECDSA also happens to be a more challenging scheme to make work
in the threshold setting, so there have been a number of works in recent years designing new and improved
protocols for threshold ECDSA such as [Lin17, GG18, DKLs18, LNR18, CCL+19, DKLs19, ST19, CCL+20,
DOK+20, CGG+20, DJN+20, KMOS21]. Most of these works have been in the dishonest majority setting
and with active security, where up to t = n− 1 of the servers may be maliciously corrupted, and this is the
setting we focus on in this paper.

Moreover, several of these protocols work in the preprocessing model, consisting of a preprocessing phase,
which is a protocol used to generate correlated randomness needed for the signing phase. In ECDSA, we
sometimes also consider a pre-signing phase, where the message-independent component of a signature is
produced, possibly before the message is known. Each invocation of the (pre)-signing phase requires fresh
preprocessing material, so in large-scale applications, a significant quantity of correlated randomness must
be first generated, and then stored for later use. Generating this correlated randomness is typically quite
expensive, involving heavy cryptographic machinery like homomorphic encryption and zero-knowledge proofs;
however, this cost can be mitigated by executing it ahead of time and in large batches. In contrast, the signing
phase is often relatively simple, with a cost not much larger than that of signing in the clear.

1.1 Our Contributions

In this work, we present a new protocol for threshold ECDSA with silent preprocessing, by building on recent
work on pseudorandom correlation generators (PCGs) [BCG+19b]. In a silent preprocessing phase, the parties
first interact to obtain a small amount of correlated randomness, called the PCG seeds, which can later be
locally expanded to produce a much larger amount of correlated randomness of the right form. Compared
with other approaches, using PCGs allows for a preprocessing phase with greatly reduced communication
and storage costs among the servers.

Furthermore, we can obtain a non-interactive signing phase, where, after receiving the message to be
signed in the online phase, each server only needs to send a single message to obtain the digital signature.
Similar to previous works [DOK+20, CGG+20], we do this by revealing the message-independent part of
the signature in the pre-signing phase. This requires assuming the enhanced unforgeability property of
ECDSA, namely, that unforgeability still holds when these nonces are seen in advance (see the discussion in
Section 3.3).

We have implemented our protocol, for the simplified setting where the PCG seeds are distributed to the
servers by a dealer in a trusted setup phase. This model is meaningful in practical applications in which,
for instance, a client generates its own ECDSA secret key and then distributes it to a number of servers. In
this case it is meaningful to ask the client to (also) generate the (short) PCG seeds that will be used in the
protocol.

We also describe a cryptographic protocol that can be used to replace the dealer, but have not imple-
mented this.

1.2 Technical Overview

Background: ECDSA algorithm Let G be an elliptic curve group with order q and generator G. Recall
that an ECDSA signature on a message m is a pair (r, s), where r is the x-coordinate of x ·G, for a random
nonce x ∈ Fq, and s = x−1 · (H(m) + r · sk). Here, H is a cryptographic hash function into Fq, and sk ∈ Fq
is the secret key. As noted in previous work, the reason why turning ECDSA into a threshold algorithm
is challenging is mainly the fact that the signing algorithm requires computing the inverse of x, which is a
highly non-linear operation.

Threshold ECDSA with ECDSA Tuples We start by describing a simple, passively secure version of
our ECDSA protocol and the preprocessing material it uses.

Suppose the parties start with an extended variant of additively secret-shared multiplication triple, that
is, each party Pi has random shares xi, yi, zi, di ∈ Fq, satisfying

n∑
i=1

zi = x · y,
n∑
i=1

di = sk · y where x =
∑
i

xi, y =
∑
i

yi

and where sk is the ECDSA signing key. We denote these sharings by [x], [y], [z], [d]. (Note, the secret value
x will take the role of the random nonce in the signature.)

We refer to this correlated randomness setup as an ECDSA tuple. Such a tuple can be used very easily
for threshold ECDSA, as follows. In the first round, the parties can reconstruct x ·G by simply broadcasting
the shares xi ·G, and adding these. Then, given the x-coordinate r of x ·G, each Pi can compute shares of

[τ] := H(m) · [y] + r · [d]

Notice that, since z = xy and d = sk · y, computing τ · z−1 gives the correct s component of the signature.
Therefore, to obtain the signature, it is enough for each party Pi to broadcast the shares zi and τi in the
second round.

The above approach roughly follows the method of Smart and Talibi [ST19] and Dalskov et al. [DOK+20],
who showed how to perform the signing operation using generic MPC operations over the field Fq. However,

2

by using specialized ECDSA tuples instead of regular multiplication triples, our protocol reduces the number
of rounds in the preprocessing phase. We can then obtain different variants for our protocol: we can get a
non-interactive signing phase, with a one-round pre-signing stage (to open r), or a non-interactive pre-signing
stage (with silent preprocessing) and a two-round online phase. Note moreover that this can be turned into
an amortized one-round protocol by performing the pre-signing step for signature i + 1 (i.e., opening r)
together with the i-th signing phase (i.e., the opening of s).

Active Security In the above sketch, a corrupt party may lie about its shares xi · G, zi, τi, violating cor-
rectness and potentially harming security. To mitigate this, [DOK+20] uses a generic, actively secure MPC
protocol, for instance, by enhancing the additive secret sharing with information-theoretic MACs as in the
BeDOZa [BDOZ11] and SPDZ [DPSZ12,DKL+13] protocols. Unfortunately, for our goal of threshold ECDSA
with silent preprocessing, this approach is too expensive: while there are efficient PCGs for authenticated
multiplication triples [BCG+20], the best construction only works in the two-party setting, and although
this was recently extended to the multi-party setting, the concrete costs are much higher [AS21].

Instead of authenticating the entire shared ECDSA tuple, we observe that this is actually unnecessary,
and it is enough to only authenticate the shares of x. The MACs on x are used to verify the reconstruction
of x · G, while for z and τ , we allow corrupt parties to introduce errors. We show that any error in either
of these values will always lead to an abort, which can be reliably detected by verifying the final signature
with the ECDSA public key. This simplification of the preprocessing phase allows us to take advantage of
efficient PCG constructions to realize the preprocessing phase with very low communication costs.

Silent Preprocessing When including the MACs on x, the complete correlated randomness we need for
our ECDSA tuple is a set of additive sharings over Fq:

[x], [y], [x · y], [y · sk], (Mi,j ,Kj,i)i,j∈[n]

where sk is the ECDSA signing key and (Mi,j ,Ki,j) is a BeDOZa-like MAC on xi w.r.t. Pj ’s MAC key αj
4.

To realize the preprocessing phase to produce ECDSA tuples with low communication, we adopt tech-
niques based on the LPN and ring-LPN assumptions (and a random oracle to generate public LPN matrix)
which were used previously to construction PCGs for vector-OLE [BCGI18] and OLE [BCG+20], respectively.
The main technique is a method of sparse vector compression, which, roughly speaking, allows for succinctly
compressing two-party additive shares of a sparse vector, using distributed point functions (DPFs). For a
vector of length m with t non-zero coordinates, the size of the compressed shares is roughly tλ logm bits.

Our approach to compressing ECDSA tuples is to sample long, sparse vectors ui,vi, for each party Pi,
which will later be used as a seed to expand into pseudorandom vectors xi,yi ∈ FNq via the LPN assumption,
which will make up the shares of the x and y values. Note that if ui,vj have t non-zero coordinates, then
the tensor product ui ⊗ vj has at most t2, and can also be shared between (Pi, Pj) with the sparse vector
compression technique. This then allows the two parties to locally obtain shares of the component-wise
products of xi and yj , by applying linear maps based on the LPN assumption. By repeating this between
all pairs of parties, we can obtain secret shares of the x · y values in the ECDSA tuples. The drawback
of this approach is that computing the full shared tensor product ui ⊗ vj has O(N2) complexity, which is
prohibitively expensive when N is large. To avoid this cost, we instead use the ring-LPN based approach
from [BCG+20]; this replaces the tensor product with a constant number of polynomial multiplications over
Fq, an O(N logN) operation, while relying on a variant of LPN over polynomial rings.

The remaining terms are the shares of y · sk and (xi · αj)i,j∈[n]. Since sk and αj are fixed for each tuple,
these can be distributed by applying sparse vector compression on the pairs of products ui · αj ,vi · skj ,
each of which is a t-sparse vector. Note that this last technique is essentially a multi-party application of
vector-OLE from LPN [BCGI18,BCG+19b]. However, since we are combining this with the ring-LPN based
compression for x · y, here we also need to rely on the ring-LPN assumption.

4 Mi,j = Ki,j + αj · xi, where Mi,j and xi belong to Pi and Ki,j and αj are known only to Pj .

3

Overall, the PCG for ECDSA tuples requires compressing O(n2) sets of sparse vectors, where to achieve
λ-bit computational security against the best known attacks on ring-LPN, the sparsity is up to O(λ2). This
gives a seed size of O(nλ3 logN) bits per party, for compressing N ECDSA tuples. When N is large enough,
this is a significant saving on the naive storage cost of O(λN) bits. Importantly, since the product [x · y]
in an ECDSA tuple does not need to be authenticated, we avoid having to use 3-party DPFs to compress
the sparse vectors, as is needed when compressing fully authenticated multiplication triples between > 2
parties [BCG+20, AS21]; 3-party DPFs have a seed size scaling with

√
N instead of logN , so this is a

significant saving in practice.

1.3 Related Work

The first threshold ECDSA protocol in the dishonest majority setting was presented by Mackenzie and
Reiter [MR01], but for the 2-party case only. Their protocol was later improved in [GGN16] and [Lin17].
A different approach to the 2-party case was taken by [DKLs18], which presented a less computationally
expensive protocol at the expense of increasing the bandwidth and round complexity. The first attempt to
generalize these solutions to any number of parties was taken by [GGN16]. However, this protocol relied on
distributed Paillier key generation, which is not known to be practical for more than 2 parties. The first
multiparty ECDSA protocols with both practical signing and key generation were introduced independently
by Lindell and Nof [LN18], Gennaro and Goldfeder [GG18] and Doerner et al. [DKLs19]. These were followed
by [CCL+20] and [CGG+20], which provide significant improvements to the communication and round
complexity. Moreover, Canetti et al. [CGG+20] also showed how to extend their protocol to identifiable
abort. Smart and Talibi [ST19] and Dalskov et al. [DOK+20] developed frameworks for threshold ECDSA
based on any MPC protocol over the field Fq. For further related work, we refer to the survey of [AHS20].

In Table 1, we present a comparison with all recent threshold ECDSA constructions tolerating any
number of parties n and any dishonest majority: for each protocol, the table reports the estimate of the
communication complexity amortised between each pair of parties and per signature. For all protocols other
than ours, we use the estimates from [CGG+20]. Consistingly with them, we assume all group elements are
represented using 256 bits and we ignore the communication complexity for key-generation, that in some cases
also includes other one-time setup costs. The communication for our protocol considers also the amortised
cost for the generation of one ECDSA tuple, when produced in batches of N = 94019 units. Note that in
our construction, the communication between each pair of parties scales linearly with the total number of
players. However, as it can be seen by the table, our solution greatly outperforms existing work for any
reasonable value of n.

Communication

Gennaro and Goldfeder [GG18] 7 KiB

Lindell et al. [LN18] (Paillier) 7.5 KiB

Lindell et al. [LN18] (OT) 8 190 KiB

Doerner et al. [DKLs19] 90 KiB

Castagnos et al. [CCL+20] 4.5 KiB

Canetti et al. [CGG+20] 15 KiB

This work 0.017n+0.18 KiB

Table 1: Comparison to previous works: Communication complexity of the protocol, amortized both over the
number of signatures and the number of parties n. See the text for more details.

4

2 Preliminaries

2.1 Notation

Let G be a group of prime order q, and let Fq be the finite field with q elements. We use additive notation
for G.

We consider n parties P0, P1, . . . , Pn−1. Let C denote the set of (indices of) corrupted parties, and H
denote the complement set of honest parties.

We write [m] to mean the set {0, 1, . . . ,m−1}. Vectors are represented using bold letters and we indicate
the j-th entry of v either as a subscript, e.g. vj , or between square brackets, e.g. v[j]. For two vectors u and
v, we write 〈u,v〉 to mean the inner product, and denote the outer product and outer sum by u ⊗ v and
u � v respectively. Recall that if u and v have dimensions m and l, the outer product and outer sum are
the ml-dimensional vectors whose (im+ j)-th entry is ui · vj and ui + vj respectively. We use P to denote a
probability measure and λ for the security parameter.

2.2 The ECDSA Signing Algorithm

Let (G, G, q) be a tuple of an Elliptic curve group, generator and the group order. Assume that q is prime.
Each element a ∈ G is represented by a pair (ax, ay) where ax is the projection of a on the x-axis and ay is
the projection of a on the y-axis. Let π : G → Fq be the function that maps a point a ∈ G into ax mod q,
moreover, let H : {0, 1}∗ → Fq be a hash function. The ECDSA scheme consists of the following algorithms:

– KeyGen(G, G, q): choose a random sk ∈ Fq and set PK← sk ·G. Output is (sk,PK).
– Signsk(m): set m′ ← H(m) and choose a random x ∈ Fq. Then, compute r ← π(x · G) and s ←
x−1 · (m′ + r · sk)). Output (r, s).

– VerifyPK
(
m, (r, s)

)
: set m′ ← H(m), output 1 if r = π

(
(m′ ·G+ r · PK) · s−1

)
, 0 otherwise.

Observe that if (r, s) is a valid ECDSA signature for the message m, also the pair (r, q−s) is a valid signature
for m. That implies that the ECDSA version above is not strongly unforgeable, i.e. given a valid signature
for a message m, the adversary is able to generate another valid signature for m without knowing the secret
key. Interestingly, [FKP16] proves that this is the only malleability attack against ECDSA and it is therefore
possible to make ECDSA strongly unforgeable by only generating signatures (r, s) with s < q/2. Clearly,
the verification algorithm needs to be modified accordingly, so that (r, s) is rejected whenever s ≥ q/2. Our
protocol is agnostic of whether we use the strongly unforgeable version of ECDSA or not, as discussed in
the next subsection.

Elliptic Curves with Small Cofactor In our security proof, we need to efficiently sample a point R ∈ 〈G〉
such that π(R) = r, when given only the r value of a valid signature (r, s). When the cofactor of 〈G〉 in G is
small (polynomial in λ), this is always possible. Indeed, since q is prime and q2 - |G| (otherwise, the cofactor
would not be polynomial), it is easy to check whether a point R belongs to 〈G〉 by verifying that qR = ∞.
Moreover, by Hasse’s theorem, |G| ≤ 2p, where Fp is the prime field on which the curve is defined. As a
consequence, p/q is dominated by a polynomial, so there are only a polynomial number of values x ∈ Fp for
which x mod q = r. Since the signature (r, s) is valid, we know that one of these values is the x-coordinate
of a point in 〈G〉. Computing an elliptic curve point of a given x-coordinate can always be done efficiently.

In ECDSA instantiations, the cofactor of 〈G〉 is almost always small. This is in particular true for the
Bitcoin curve secp256k1 (the cofactor is 1).

2.3 Threshold ECDSA - Security Definition

We define security similarly to [LN18]. In Figure 1 we present the functionality FECDSA. The functionality
is defined with three commands: key generation, pre-signing and signing. Key generation is called once, and
then any number of signing operations can be carried out with the generated key. The signing process is

5

split into pre-signing (which computes and reveals a nonce r) and the actual signing (that computes s).
Our protocol achieves security with abort, reflected in the functionality by letting the ideal-world adversary
choose whether to send the output to the honest parties or not. We stress that FECDSA is defined in a generic
way that can be used with both versions of ECDSA, with or without the the strongly-unforgeable property.
Therefore the functionality allows the ideal adversary to see the generated signature but then force the
honest parties to output another signature (r, s′) as long as it verifies w.r.t. the message m. Clearly, when
combining our functionality with the strongly-unforgeable version of ECDSA the adversary cannot come up
with a different signature for m.

The Ideal Functionality FECDSA

FECDSA works with parties P0, . . . , Pn−1 and an ideal world adversary A, controlling a subset C ([n] of parties.
KeyGen. Upon receiving KeyGen from all parties P0, . . . , Pn−1.

1. Generate an ECDSA key pair (PK, sk) by choosing a random sk ∈ Fq and let PK← sk ·G.
2. Send PK to all parties.
3. Ignore future calls to KeyGen.

PreSign. Upon receiving Presign(sid) from all parties, if KeyGen was already called and sid has not been
previously used:

1. Choose a random x ∈ Fq, compute r ← π(x ·G) and send r to A.
2. Upon receiving (continue, sid) from A, store (sid, r, x).

Sign. Upon receiving Sign(sid,m) from all P0, . . . , Pn−1, if (sid, r, x) is stored and has not been previously used:

1. Compute s← x−1 · (H(m) + r · sk).
2. Send s to A and wait for a pair (r, s′) as a reply. If VerifyPK

(
m, (r, s′)

)
= 1, output (r, s′) to all honest

parties. Otherwise abort.

Fig. 1: The ECDSA ideal functionality FECDSA

2.4 Module-LPN with Static Leakage

Our protocol is based on the Module-LPN assumption with static leakage, which was defined and analysed
for the first time by Boyle et al. in [BCG+20]. This is a variant of the LPN assumption over polynomial
rings (analogously to how ring-LWE extends LWE), with the addition of some leakage. The leakage (which
arises in the protocols from [BCG+20]) allows the adversary to try to guess error coordinates, but aborts if
any guess is incorrect; this only reveals an average of one bit on the module-LPN secret overall.

Definition 1 (Module-LPN with static leakage). Consider the ring Rλ := Fq[X]/
(
F (X)

)
, where q is

a prime and F (X) is a polynomial of degree N . Let tλ and cλ ≥ 2 be two positive integers and define the
distribution HWt that independently samples t noise positions

(
ω[i]
)
i∈[t] uniformly in [N] and t payloads(

β[i]
)
i∈[t] uniformly in Fq, outputting the ring element

e(X) :=
∑
i∈[t]

β[i] ·Xω[i]

Consider the game GModule-LPN
R,t,c,A described in Figure 2. We say that the Rc-LPNt problem with static leakage

is hard if, for every PPT adversary A, the advantage

AdvModule-LPN
R,t,c,A (λ) :=

∣∣∣∣P(GModule-LPN
R,t,c,A (λ) = 1

)
−

1

2

∣∣∣∣
6

is negligible in the security parameter λ.

The Game GModule-LPN
R,t,c,A (λ)

Initialisation. The challenger activates the adversary A with 1lλ and samples a random bit b
$← {0, 1}. Then,

it samples c elements of the ring e0, e1, . . . , ec−1
$← HWt. Let the j-th noise positions of ei be ωi[j].

Query. The adversary is allowed to adaptively issue queries of the form (i, j, I) where i ∈ [c], j ∈ [t] and I ⊆ [N].
If ωi[j] ∈ I, the challenger answers with Success, otherwise, it sends Abort and halts.

Challenge. For every i ∈ [c− 1], the challenger samples ai
$← R and sets ac−1 ← 1. Then, it computes

u1 ←
c−1∑
i=0

ai · ei =

c−2∑
i=0

ai · ei + ec−1.

Moreover, it samples u0
$← R. Finally, it gives (a0, a1, . . . , ac−2, ub) to A. The adversary replies with a bit b′.

The final output of the game is 1 if and only if b = b′.

Fig. 2: The Module-LPN game.

It is easy to see that the bigger c and t become, the harder it is for the adversary to win the game. Observe that
when F (X) splits into N distinct linear factors over Fq corresponding to N distinct roots ξ0, ξ1, . . . , ξN−1,
the ring R is isomorphic to FNq by the Chinese Remainder Theorem5. The isomorphism map φ sends a

polynomial p(X) ∈ R to
(
p(ξ0), p(ξ1), . . . , p(ξN−1)

)
∈ FNq . Observe that the map is well defined as the ideal(

F (X)
)

vanishes over ξ0, ξ1, . . . , ξN−1. If we additionally assume that F (X) is a cyclotomic polynomial, the
isomorphism can be efficiently computed using the Fast Fourier Transform (FFT) [BCG+20]. The security
analysis of [BCG+20] argues that this does not introduce any significant vulnerability, so our protocol will
take advantage of cyclotomic polynomials.

2.5 Pseudorandom Correlation Generators

To achieve low-bandwidth in the preprocessing phase, we use Pseudorandom Correlation Generators (PCGs)
[BCG+19a,BCG+19b,BCG+20]. Informally speaking, a PCG is a distributed form of pseudorandom genera-
tor (PRG), where each party has a different seed that can be expanded into a long stream of bits. Now, while
a PRG produces a stream of uniformly random bits, a PCG lets each party expand their seed into different
streams that satisfy some joint correlation. In more detail, a PCG is a pair of algorithms (PCG.Gen,PCG.Eval),
the first one of which generates n short correlated seeds, one for each player. The evaluation algorithm is used
to expand each seed into a large amount of correlated randomness without any interaction. Furthermore, the
security of the construction guarantees that corrupted parties learn nothing about the outputs of the honest
parties as long as their seeds remain secret.

This framework has a double advantage. First of all, in order to generate large amounts of correlated
material, we can just focus our attention on designing secure setup protocols for the generation and dis-
tributions of the small seeds. The second and most important advantage is that, due to their small size, it
possible to generate the seeds using setup protocols with very low communication complexity compared to
the size of the expanded seeds.

To formalize this, we first recall the notion of a reverse samplable correlation generator [BCG+19b], which
captures the class of correlations that PCGs may support.

5 FNq is a ring with relation to pointwise addition and multiplication.

7

Definition 2 (Reverse Samplable Correlation Generator). An n-party correlation generator is a PPT
algorithm CorGen taking as input the security parameter 1lλ and outputting n correlated outputs R0, R1, . . . , Rn−1,
one for each party.

We say that CorGen is reverse samplable if there exists a PPT algorithm RSample such that, for every
set of corrupted parties C ([n] the following distribution(R′i)i∈[n]

∣∣∣∣∣∣∣∣
(R0, R1, . . . , Rn−1)

$← CorGen(1lλ)

∀i ∈ C : R′i ← Ri

(R′i)i∈H
$← RSample

(
1lλ, C, (R′i)i∈C

)

is computationally indistinguishable from CorGen(1lλ).

The definition says that given a subset of outputs of the correlation generator CorGen, we are able to simulate
the remaining outputs. In general, there exist correlation generators that are not reverse samplable. However,
finding meaningful definitions for PCG becomes hard in such cases [BCG+19b]. Moreover, since the type of
correlation used in this paper is reverse samplable, we do not need to worry about this issue.

We now finally formalise the definition of PCG.

Definition 3 (Pseudorandom Correlation Generator). Let CorGen be an n-party reverse samplable
correlation generator. A PCG for CorGen is a pair of PPT algorithms (PCG.Gen,PCG.Eval) with the following
syntax.

– PCG.Gen takes as input the security parameter 1lλ and outputs n small correlated seeds κ0, κ1, . . . , κn−1,
one for each party.

– PCG.Eval takes as input a PCG seed κi and the associated index i ∈ [n]. The output is an element Ri,
ideally corresponding to the i-th output of CorGen(1lλ).

We require that the construction satisfies the following properties.

– Correctness. The following distribution is computationally indistinguishable from CorGen(1lλ).{
(Ri)i∈[n]

∣∣∣∣∣ (κ0, κ1, . . . , κn−1)
$← PCG.Gen(1lλ)

∀i ∈ [n] : Ri ← PCG.Eval(κi, i)

}

– Security. For every subset of corrupted parties C ([n], the following two distributions are computation-
ally indistinguishable. {

(κi)i∈C

(Ri)i∈H

∣∣∣∣∣ (κ0, κ1, . . . , κn−1)
$← PCG.Gen(1lλ)

∀i ∈ [n] : Ri ← PCG.Eval(κi, i)

}

(κi)i∈C

(Ri)i∈H

∣∣∣∣∣∣∣∣
(κ0, κ1, . . . , κn−1)

$← PCG.Gen(1lλ)

∀i ∈ C : Ri ← PCG.Eval(κi, i)

(Ri)i∈H
$← RSample

(
1lλ, C, (Ri)i∈C

)

Informally speaking, correctness states that the expansions of the seeds looks like the output of CorGen(1lλ).
Security instead asserts that the information leaked by a subset of seeds about the remaining outputs is no
more than what can be extracted from their expansion.

2.6 Distributed Point Functions

Let N be a positive integer and (D,+) be a group. A point function is a function f : [N]→ D, parametrised
by ω ∈ [N] and β ∈ D, such that

8

f(x) =

{
β if x = ω,

0 otherwise.

We refer to ω as the special position of the point function, while β = f(ω) is called the non-zero element.

A distributed point function, or DPF, is a compact way of secret-sharing a point function without
leaking its special position nor the non-zero element. Given such a share of the function, each party can
locally compute an additive share of f(x) at any point x.

It is not difficult to notice the strong similarities between PCGs and DPFs. In both cases, we are indeed
compressing large outputs in n small objects, each of them addressed to a different party. Moreover, an
evaluation algorithm permits to re-expand the information without any need for communication. For this
reason, PCGs are often based on DPFs. This paper is no exception from this point of view.

Below, we give the formal syntax of a DPF [GI14,BGI15].

Definition 4 (Distributed Point Function). Let N be a positive integer and let (D,+) be a finite group.
An n-party DPF with domain [N] and codomain (D,+) is a pair of PPT algorithms (DPF.Gen,DPF.Eval)
with the following syntax.

– DPF.Gen takes as input the security parameter 1lλ and a description of the point function f , specifically,
the special position ω ∈ [N] and the non-zero element β ∈ D. The output is n keys κ0, κ1, . . . , κn−1.

– DPF.Eval takes as input a DPF key κi, index i ∈ [n] and a value x ∈ [N], outputting an additive share
vi of f(x).

A DPF should satisfy the following properties.

– Correctness. For every special position ω ∈ [N], non-zero element β ∈ D and element x ∈ [N], we
have that

P

∑
i∈[n]

vi = f(x)

∣∣∣∣∣∣ (κi)i
$← DPF.Gen(1lλ, ω, β)

∀i : vi ← DPF.Eval(κi, i, x)

 = 1.

– Security. There exists a PPT simulator Sim such that, for every set of corrupted parties C ([n],
special position ω ∈ [N] and non-zero element β ∈ D, the output of Sim(1lλ, C) is computationally
indistinguishable from {

(κi)i∈C

∣∣∣ (κ0, κ1, . . . , κn−1)
$← DPF.Gen(1lλ, ω, β)

}
.

Observe that the correctness property states that the evaluation of the keys over the input x ∈ [N]
produces a secret-sharing of β when x = ω, of 0 otherwise. Security instead guarantees that the knowledge of
a proper subset of the DPF keys leaks no information about the special position ω and the non-zero element
β.

To simplify notation, we write DPF.FullEval(κi, i) to denote the evaluation of the key κi over the whole
domain [N]. This results in an additive share of the full N -dimensional vector with only one non-zero entry
in the ω-th position. Abusing terminology slightly, we refer to a vector of this type as a unit vector.

State-of-the-Art We use DPFs for 2 parties only. In this setting, the most efficient construction is due
to [BGI16], has O(λ · logN) key size and supports any abelian group as the codomain D. Regarding compu-
tational efficiency, the dominant cost of a full-domain evaluation DPF.FullEval is around 2N evaluations of
a length-doubling PRG.

9

Distributed Sum of Point Functions We will use an extension of DPFs, called distributed sums of point
functions, as used previously [BCG+20]. A distributed sum of t point functions, or DSPFt, is a way to
secret-share a function obtained by adding t point functions. As with DPF, we express a DSPFt by a pair of
PPT algorithms (DSPFt.Gen,DSPFt.Eval), the first one of which takes as input the t special positions and
the t non-zero elements describing the function f , outputting n small keys, one for each party. The latter
can then be locally evaluated by the parties over an additional input x ∈ [N], obtaining a secret-sharing
of f(x). This time, the evaluation over the whole domain leads to a secret-sharing of an N -dimensional
t-sparse vector. Correctness and security of DSPFts are defined as for DPFs, with minimal adaptation to
the increased number of special positions and non-zero elements.

To construct a DSPFts, we simply use a DPF instance for each of the t points of the DSPFt. Each DSPFt

key is therefore composed of t DPF keys, and evaluated on input x by computing the sum of the evaluations
of the t DPF keys over x.

3 Key Generation and Signing

3.1 ECDSA Tuples and the Ideal Functionality FR
Prep

Our threshold ECDSA construction is based on the offline phase-online phase paradigm. In other words, the
protocol is split into two parts: an input-independent preprocessing phase called the offline phase and a light
online phase where we generate ECDSA signatures using the pregenerated data.

Each party Pi is associated with some key material, in particular, an additive share of the ECDSA private
key ski ∈ Fq and a BeDOZa style MAC key αi ∈ Fq [BDOZ11]. In the offline phase, we generate ECDSA
tuples, i.e. each party Pi obtains a list of Fq elements of the form(

xi, (Mi,j ,Kj,i)j 6=i, yi, di, zi
)

where Mi,j and Ki,j are BeDOZa style MACs over xi w.r.t. the MAC key αj
6, i.e.

Mi,j = Ki,j + αj · xi,

and the remaining terms satisfy the following conditions∑
i∈[n]

ski ·
∑
i∈[n]

yi =
∑
i∈[n]

di,
∑
i∈[n]

xi ·
∑
i∈[n]

yi =
∑
i∈[n]

zi.

The offline phase takes also care of computing the ECDSA public key

PK :=
∑
i∈[n]

ski ·G.

Ring ECDSA Tuples and FR
Prep In our protocol, we actually deal with a generalisation of the ECDSA

tuples to rings R in which the multiplication by Fq elements is well-defined. Specifically, we generate material
with the same structure as ECDSA tuples, however using elements belonging to R rather than Fq. The key
material ski and αi will instead remain in Fq as before. We call such tuples ring ECDSA tuples. Our protocol
is going to generate them over a Module-LPN ring.

The functionality FRPrep implemented by our preprocessing protocol is formalised in Figure 3. Essentially,
the functionality allows the adversary to choose the BeDOZa MAC keys and the material of the corrupted
parties. Once it received them, FRPrep completes the ECDSA tuples sampling random elements. Finally, it
outputs the produced material to the honest parties.

Notice that FRPrep is parametrised by the ring R over which the ECDSA tuples are generated. In order

to produce ECDSA signature, we are actually interested in the case R = FNq where the latter is equipped
with the pointwise addition and multiplication. An ECDSA tuple over such ring corresponds indeed to N
ECDSA tuples over Fq. As we discussed in Section 2.4, FNq is isomorphic to a Module-LPN ring allowing us
to base the preprocessing protocol on the corresponding assumption.

6 Observe that Pi knows only xi and Mi,j , whereas Pj knows αj and Ki,j .

10

The Ideal Functionality FRPrep
Initialisation. On input Init from every party, the functionality samples the ECDSA private key sk

$← Fq and

waits for (αi)i∈C from the corrupted parties. Then, it samples random αi
$← F for every i ∈ H. The functionality

sends PK ← sk · G to the adversary. Finally, upon receiving an OK from the adversary, it outputs (αi,PK) to
every honest party Pi.

ECDSA Tuple. On input Tuple from every party, the functionality samples x, y
$← R and sets z ← x · y. Then,

it waits for a tuple
(
x̂i, (Mi,j ,Kj,i)j∈H, ŷi, d̂i, ẑi

)
i∈C over R from the adversary. Finally, it samples a random

tuple (xi, (Mi,j ,Kj,i)j 6=i, yi, di, zi) over R for every i ∈ H subject to∑
i∈H

xi +
∑
i∈C

x̂i = x,
∑
i∈H

yi +
∑
i∈C

ŷi = y,
∑
i∈H

zi +
∑
i∈C

ẑi = z,

Mi,j = Ki,j + αj · xi,
∑
i∈H

di +
∑
i∈C

d̂i = sk · y.

At the end, it outputs (xi, (Mi,j ,Kj,i)j 6=i, yi, di, zi) to every honest party Pi.
Abort. On input Abort from the adversary, the functionality outputs ⊥ to every honest party and halts.

Fig. 3: The offline phase functionality FRPrep

3.2 Distributed Key Generation and Signing in the FR
Prep-Hybrid Model

Given our functionality FRPrep for R = FNq , the multiparty key generation is straight-forward. Specifically,

the parties send the command Init to the ideal functionality FRPrep, to receive back the public key PK (and a
MAC key αi).

We proceed to present our multiparty signing protocol, where the parties jointly sign a message m.
This protocol relies on an offline phase that uses FRPrep and then requires the parties to have one round of
interaction, in which r is revealed. Then, once the message to be signed becomes known, there is one more
round of interaction where the signature is revealed.

In more details, in the offline step, the parties open x · G by having each party Pi sending xi · G to
all the other parties. To prevent cheating, we use the secret MAC key to ensure that each party used the
xi given by FRPrep. Specifically, each Pi sends also Mi,j · G to Pj . Holding Kj,i and αj , Pj can check that

Mi,j ·G = Ki,j ·G+αj ·(xi ·G). If this check holds for all j 6= i, then party Pi can compute x·G←
∑n−1
j=0 (xj ·G)

and take r to be the x-axis of the result. Once the parties receive a message m to sign, each party Pi sets
m′ ← H(m), computes τi ← yi · m′ + r · di and sends zi and τi to all the other parties. Upon receiving

τj and zj for all j 6= i, each party Pi computes τ ←
∑n−1
j=0 τj and z ←

∑n−1
j=0 zj , and sets (r, s) where

s ← τ
z . Note that corrupted parties may send incorrect shares for z and τ . To detect this, each party runs

the verification algorithm over m, (r, s). If the verification succeeds, then the party outputs (r, s) as a valid
signature. Otherwise, it aborts.

To see that the protocol is correct, observe that z = x · y and d = sk · y and so

s = τ · z−1 = (y ·m′ + r · d) · (x−1 · y−1) = x−1 · (m′ + r · sk)

as required.

Communication In our protocol each party sends 2 messages in each of the two rounds to each other party.
Thus, the total communication between each 2 parties is 2 · (log q+ log p+ 1), where Fp is the field on which
the eleliptic curve is defined, plus the cost of FRPrep, which we realise in Section 4.

3.3 Round Complexity and Relation to ECDSA Security

A natural question when using our protocol in practice, is when one should run the pre-signing phase. From
one side, opening r in advance allows to have a one-round protocol once the message m to be signed becomes

11

The Protocol ΠECDSA

Let π : G→ Fq be the function that maps a point a ∈ G into ax mod q and let H : M → Fq be a hash function.

Distributed Key Generation The parties send the command Init to FRPrep, to receive back PK. In addition,
each party Pi receives also a MAC key αi.

Distributed Signing

– Round 1 (Presigning):
1. If no ECDSA tuples are currently stored, the parties send the command Tuple to FRPrep obtaining N

fresh tuples.
2. Each party Pi retrieves the shares of the next tuple (xi, (Mi,j ,Kj,i)j 6=i, yi, di, zi).
3. Each party Pi sends xi ·G and Mi,j ·G to each Pj .
4. Upon receiving xj ·G and Mj,i ·G for each j 6= i, each party Pi checks that Mj,i ·G = Kj,i ·G+αi ·(xj ·G).

If the equation holds for each j 6= i, then Pi computes R←
∑n−1
j=0 xj ·G and sets r ← π(R). Otherwise,

it sends abort to the other parties and halts.
– Round 2 (Signing): Upon receving a message m: each party Pi computes m′ ← H(m) and τi ← yi ·m′+r·di

and broadcasts zi and τi.
– Output:

1. Upon receiving τj and zj for all j 6= i, each party Pi computes τ ←
∑n−1
j=0 τj and z ←

∑n−1
j=0 zj , and

sets s← τ/z.
2. Each party Pi run VerifyPK(m, (r, s)). If the result is 1, then Pi outputs (r, s). Otherwise, it outputs ⊥

and halts.

Fig. 4: The distributed ECDSA protocol

known. On the other hand, opening r before m is known does not match the standard unforgeability game for
ECDSA security, and therefore one needs to be careful about opening potential vulnerabilities. The work of
Canetti et al. [CGG+20] considers security of ECDSA with presignatures and shows that security of ECDSA
is preserved when a constant number of nonces are available to the adversary. In particular, their reduction
shows an exponential security loss in the number of released nonces. Therefore, performing a large number of
pre-signing operations before the message is known appears to be a bad idea. The work of [GS21] highlights
that pre-signing requires to assume an extra property on the hash function than plain ECDSA (note that
a random oracle would satisfy the assumption). They propose some countermeasures where the nonce is
re-randomized after the message to be signed has been chosen. However, these countermeasures appear
incompatible with any known preprocessing protocol for ECDSA. Thus, one can either use our protocol as a
two-round protocol (where the pre-singing is performed after the message is chosen) if one is worried of the
potential attack vector described by [GS21], or one can use our protocol as an amortised one-round protocol
by revealing the r for signature i+ 1 in parallel with the computation of s for signature i.

3.4 Security Proof

Theorem 1. The protocol ΠECDSA UC-implements FECDSA in the FRPrep-hybrid model with statistical error
1
q , in the presence of malicious adversaries controlling up to n− 1 parties.

Proof. Let S be the ideal world adversary and let A be the real world adversary. To prove UC-security, we
assume that an external environment gives S the commands to invoke each step of the execution and also
controls A. The simulation works as follows:

Key Generation Upon receiving the command (Init) from the external environment, S sends the command
KeyGen to the trusted party computing FECDSA to receive back the public key PK. Then, upon receiving
(αi)i∈C from A, it sends PK to A. Finally, upon receiving OK from A, the simulator S stores (PK, (αi)i∈C).

12

Presigning Upon receiving a command Presign(sid) from the external environment, S works as follows:

1. S sends Presign(sid) to FECDSA to receive back r.

2. If new ECDSA tuples are needed, playing the role of FRPrep, S receives the tuples
(
x̂i, (Mi,j ,Kj,i)j∈H, ŷi, d̂i, ẑi

)
i∈C

from A. If A sent abort, then S sends abort to FECDSA, simulates the honest parties aborting in the real
execution and outputs whatever A outputs.

3. S chooses a point R in 〈G〉 such that r = π(R). Note that there is more than one point on the curve
that satisfies it. Finding such R is however efficient when the cofactor of 〈G〉 is small (as it usually is in
ECDSA instantiations, including the Bitcoin curve).

4. S chooses a random Ri ∈ 〈G〉 for each i ∈ H (i.e., Pi is an honest party), under the constraint that
R =

∑
i∈HRi +

∑
i∈C x̂i · G. Finally, for each honest party Pj and corrupted party Pi, it computes

M j,i = Kj,i ·G+ αi ·Rj (this is enabled since S received Kj,i and αi from A).

5. S sends Rj and M j,i for each honest Pj and corrupted Pi to A.

6. Upon receiving Mi,j · G and x̂i · G from A for each corrupted Pi and honest Pj , S checks that A sent
the correct Mi,j ·G and x̂i ·G to all parties. If not, it sends abort to FECDSA, simulates the honest parties
aborting and outputs whatever A outputs. If the correct values were sent, then it sends continue to
FECDSA.

Signing Upon receiving a command Sign(sid,m) from the external environment, S works as follows:

1. S sends Sign(sid,m) to FECDSA, to receive back s.

2. S computes m′ ← H(m). Then, for each corrupted Pi, it computes τ̂i ← ŷi ·m′ + r · d̂i. Then, S chooses
a random zj ∈ Fq for each j ∈ H, sets τ ← s · z where z =

∑
i∈H zi +

∑
i∈C ẑi and chooses a random τj

for each honest party Pj such that τ =
∑
j∈H τj +

∑
i∈C τ̂i.

3. S sends τj and zj for each j ∈ H to A, to receive back from A the messages τ ′i and z′i sent by each i ∈ C.
4. S computes

s′ ←
∑
j∈H τj +

∑
i∈C τ

′
i∑

j∈H zj +
∑
i∈C z

′
i

Then, S sends (r, s′) to FECDSA.

5. Finally, S outputs whatever A outputs.

It is straightforward that the simulation in the key generation is identical to a real execution in the key
generation step. In the presigning step, the only difference between the simulation and the real execution is
when the adversary sends incorrect values, but the MAC check in the exponent does not detect it. However,
this event happens with probability 1

q , which is allowed by the theorem.

We proceed to the signing phase. Observe that in the real execution, the view of the adversary consists
of the values

R = x ·G z = x · y τ = y · (m′ + r · sk)

where x and y are random. In contrast, in the simulation, the adversary’s view is

R = x ·G z τ = s · z.

Where x and z are random. However, since in the real execution s = τ
z , the distributions in the two executions

are statistically close (they differ if and only if x = 0, this event occurs with probability at most 1/q).

Observe that the pair (r, s′) sent by the simulator to the functional is exactly what the honest parties
would output assuming that the signature verifies. This concludes the proof.

�

13

4 Realizing FR
Prep - Silent Preprocessing

In this section, we present the major contribution of this paper, namely how to implement the functionality
FRPrep described in Figure 3, generating N ECDSA tuples with O(logN) communication complexity.

We will split the discussion into two parts. We start by presenting an efficient PCG for the generation
of ECDSA tuples over a Module-LPN ring R and, secondly, we will describe the protocol ΠRPrep, translating

the PCG blueprint in an actual implementation of FRPrep.
We recall that FNq , equipped with pointwise addition and multiplication, is isomorphic to a Module-LPN

ring R (see Section 2.4). Furthermore, due to the linearity of the isomorphism φ, converting the ring ECDSA
tuples over R to FNq does not require any communication. As a matter of fact, each party just needs to apply
φ to its own shares. Finally, the isomorphism map is also efficiently computable using FFT. Rephrasing what
we have said in simple words, we can instantiate ΠRPrep over FNq without any problems.

4.1 An Efficient PCG for Ring ECDSA Tuples

In this section, we describe a PCG for ECDSA tuples over a Module-LPN ring R. Observe that the correlation
we aim to produce is trivially reverse samplable as we can always efficiently complete the shares of the
corrupted parties to an ECDSA tuple. The PCG we are going to present is the construction underlying the
preprocessing protocol ΠRPrep and the main reason why it achieves a so low communication complexity. A
formal description of PCGECDSA can be found in Figure 5. Observe that it uses a random oracle O. We now
sketch the main ideas at the base of the construction.

From the Ring R to the Vectorial Representation and its Compression In Section 2, we observed how DPFs
permit to compress 2-party secret-sharings of large unit vectors. Consider now the Module-LPN assumption.
Each element of the ring R can be represented as a polynomial of degree at most N − 1. Therefore, we
can convert it into a N -dimensional vector over Fq. When we are actually dealing with a monomial, the
representation becomes a unit vector. Now, the distribution HWt samples random t-sparse polynomials in
R, so we can represent its outputs with sums of t unit vectors.

Compressing the Terms xi and yi When we look at a ring ECDSA tuple, we observe that the shares xi
and yi of the i-th party are random elements in R. In order to compress them, we rely on the Module-LPN
assumption: for every r ∈ [c], each party Pi generates two t-sparse polynomials in R

uri (X) :=
∑
l∈[t]

βri [l] ·Xωr
i [l], vri (X) :=

∑
l∈[t]

γri [l] ·Xηri [l]

by sampling the non-zero coefficients (βri [l])l∈[t] and (γri [l])l∈[t] and the degree of the associated monomials
(ωri [l])l∈[t] and (ηri [l])l∈[t]. During the evaluation, using a random oracle, the parties will obtain c−1 random
elements a0, a1, . . . , ac−2 in R. The values of xi and yi will be computed as

xi = 〈a,ui〉 =

c−2∑
j=0

aj · uji + uc−1i , yi = 〈a,vi〉 =

c−2∑
j=0

aj · vji + vc−1i .

By the Rc-LPNt assumption, xi and yi are indistinguishable from random.

Compressing the BeDOZa Style MACs It remains to explain how to derive the remaining parts of the ring
ECDSA tuple. We start by observing that, for every i 6= j, Mi,j and Ki,j are random elements satisfying

Mi,j −Ki,j = αj · xi. (1)

We recall that αj ∈ Fq, so we have that

αj · xi = αj · 〈a,ui〉 = 〈a, αj · ui〉.

14

The Pseudorandom Correlation Generator PCGECDSA

Let R := Fq[X]/
(
F (X)

)
, t and c be the parameters of the Module-LPN assumption. Denote the degree of F (X)

by N .

Gen. On input 1lλ, do the following:

1. Sample a BeDOZa style MAC key αi
$← Fq and ECDSA key shares ski

$← Fq, for every i ∈ [n].

2. For every i ∈ [n], r ∈ [c], sample ωri ,η
r
i

$← [N]t and βri ,γ
r
i

$← Ftq.
3. For every i, j ∈ [n] with i 6= j, r ∈ [c], compute(

Ur,0i,j , U
r,1
i,j

)
$← DSPFtN .Gen

(
1lλ, ωri , αj · βri

)
,

(
V r,0i,j , V

r,1
i,j

)
$← DSPFtN .Gen

(
1lλ, ηri , skj · γri

)
.

4. For every i, j ∈ [n] with i 6= j, r, s ∈ [c], compute(
Cr,s,hi,j

)
h∈[2]

$← DSPFt
2

2N .Gen
(

1lλ, ωri � η
s
j , β

r
i ⊗ γsj

)
.

5. For every i ∈ [n], output the seed

κi ←
(
αi, ski,

(
ωri ,β

r
i

)
r∈[c],

(
ηri ,γ

r
i

)
r∈[c],

(
Ur,0i,j , U

r,1
j,i

)
j 6=i
r∈[c]

,
(
V r,0i,j , V

r,1
j,i

)
j 6=i
r∈[c]

,
(
Cr,s,0i,j , Cr,s,1j,i

)
j 6=i

r,s∈[c]

)
Eval. On input the seed κi, do the following:

1. For every r ∈ [c], define the two polynomials

uri (X) :=
∑
l∈[t]

βri [l] ·Xω
r
i [l], vri (X) :=

∑
l∈[t]

γri [l] ·Xη
r
i [l]

2. For every r ∈ [c], compute

M̃r
i,j ← DSPFtN .FullEval(Ur,0i,j) K̃r

j,i ← DSPFtN .FullEval(Ur,1j,i)

ṽri ← ski · vri +
∑
j 6=i

(
DSPFtN .FullEval(V r,0i,j) + DSPFtN .FullEval(V r,1j,i)

)
(viewing outputs of FullEval as degree N − 1 polynomials over Fq)

3. For every r, s ∈ [c], compute

wr,si ← uri · vsi +
∑
j 6=i

(
DSPFt

2

2N .FullEval(Cr,s,0i,j) + DSPFt
2

2N .FullEval(Cr,s,1j,i)
)

4. Define the vectors of polynomials ui := (u0
i , . . . , u

c−1
i), vi := (v0i , . . . , v

c−1
i), similarly for M̃i,j , K̃j,i, ṽi.

Let wi := (w0,0
i , . . . , wc−1,0

i , w0,1
i , . . . , wc−1,1

i , . . . , wc−1,c−1
i).

5. For a random a ∈ Rc with ac−1 = 1 provided by the random oracle O, compute the final shares

xi ← 〈a,ui〉 , yi ← 〈a,vi〉 , zi ← 〈a⊗ a,wi〉 ,

Mi,j ←
〈
a,M̃i,j

〉
, Kj,i ← −

〈
a, K̃j,i

〉
, di ← 〈a, ṽi〉

in Fq[X]/
(
F (X)

)
. Output (αi, ski, xi, (Mi,j ,Kj,i)j 6=i, yi, zi, di).

Fig. 5: The PCG for ring ECDSA tuples.

15

Now, if we secret-share αj · uri = M̃r
i,j + K̃r

i,j between Pi and Pj , we leak no additional information to the
parties, while obtaining

αj · xi = 〈a,M̃i,j + K̃i,j〉 = 〈a,M̃i,j〉+ 〈a, K̃i,j〉.

In other words, the values Mi,j := 〈a,M̃i,j〉 and Ki,j = −〈a, K̃i,j〉 satisfy (1). Finally, observe that, for
every r ∈ [c], αj · uri is a t-sparse polynomial, so we can compress a 2-party secret-sharing between Pi and
Pj using t DPF keys. In total, this procedure requires c · t · n(n− 1) of them.

Compressing the Term di Once we understood how to obtain compressed BeDOZa style MACs, it is easy to
generalise the ideas for the terms (di)i∈[n]. As a matter of fact, the following relation holds∑

i∈[n]

di =
∑
j∈[n]

skj ·
∑
i∈[n]

yi =
∑
i∈[n]

(ski · yi) +
∑
i 6=j

(skj · yi).

Since skj belongs to Fq, we can apply the techniques described in the previous paragraph to compress a
secret-sharing of skj · yi = d0i,j + d1i,j between Pi and Pj , while leaking no additional information to the
parties. Specifically, we observe that skj · yi = 〈a, skj · vi〉. Moreover, skj · vri (X) is a t-sparse polynomial for
every r ∈ [c], allowing us to compress a two party secret-sharing between Pi and Pj using t DPF keys. Once
d0i,j and d1i,j are available for every pair (i, j) with i 6= j, each party Pi can set

di ← ski · yi +
∑
j 6=i

(d0i,j + d1j,i).

In total, this procedure requires c · t · n(n− 1) DPF keys.

Compressing the Term zi This is probably the most complex part of the construction but the main ideas
are the same as before. We observe that the terms (zi)i∈[n] are random values satisfying∑

i∈[n]

zi =
∑
i∈[n]

xi ·
∑
j∈[n]

yj =
∑
i∈[n]

(xi · yi) +
∑
i 6=j

(xi · yj).

Again, our plan is to compress a secret-sharing of xi · yj between Pi and Pj without leaking any additional
information to the parties. This time, however, the major issue is that both xi and yj belong to the ring R.
By extending our analysis, we notice that

xi · yj =
(∑
r∈[c]

ar · uri
)
·
(∑
s∈[c]

as · vsj
)

=
∑
r,s∈[c]

(ar · as) · (uri · vsj).

The polynomials uri and vsj are both t-sparse of degree at most N −1, so their product over Fq[X] consists in

a t2-sparse polynomial of degree at most 2N −2. We can therefore compress a secret-sharing of such product
between Pi and Pj using t2 DPF keys. The linearity of the reduction modulo F (X) allows then projecting
such secret-sharing over R.

The generation of the terms (zi)i∈[n] in the PCG follows exactly the blueprint sketched above, using outer
products ⊗ and outer sums � to compress the notation. In total, we need c2 · t2 · n(n− 1) DPF keys.

Theorem 2. If the Rc-LPNt problem is hard and DSPF is a secure distributed sum of point functions,
PCGECDSA is a correct and secure PCG for ring ECDSA tuples over R in the random oracle model. Moreover,
if we instantiate DSPF with the 2-party DPF of [BGI16], the size of the seeds is

2 log q + 2c · t · (log q + logN) + 4c · t · (n− 1) · (λ · logN + log q) + 2c2 · t2 · (n− 1) · (λ · log 2N + log q).

Proof. Define sk :=
∑
i∈[n] ski.

16

Claim 2.1 The following relations hold

∀i 6= j : Mi,j = Ki,j + αj · xi,
∑
i∈[n]

di = sk ·
∑
i∈[n]

yi.

Proof (of the claim). By the correctness of the DSPF, we know that for every i 6= j and r ∈ [c]

M̃r
i,j(X) + K̃r

i,j(X) =
∑
l∈[t]

αj · βri [l] ·Xωr
i [l] = αj · uri (X).

Moreover, for every r ∈ [c],

∑
i∈[n]

ṽri (X) =
∑
i∈[n]

ski · vri (X) +
∑
i 6=j

∑
l∈[t]

skj · γri [l] ·Xηri [l] =

=
∑
i∈[n]

ski · vri (X) +
∑
i 6=j

skj · vri (X) =

=
∑
i,j∈[n]

skj · vri (X) = sk ·
∑
i∈[n]

vri (X).

As a consequence, we understand that

Mi,j = 〈a,M̃i,j〉 = 〈a,−K̃i,j + αj · ui〉 = −〈a, K̃i,j〉+ αj · 〈a,ui〉 = Ki,j + αj · xi.

Moreover, ∑
i∈[n]

di =
∑
i∈[n]

〈a, ṽi〉 = 〈a,
∑
i∈[n]

ṽi〉 = 〈a, sk ·
∑
i∈[n]

vi〉 = sk ·
∑
i∈[n]

〈a,vi〉 = sk ·
∑
i∈[n]

yi.

�

Claim 2.2 The following relation holds

∑
i∈[n]

zi =
(∑
i∈[n]

xi

)
·
(∑
j∈[n]

yj

)
.

Proof (of the claim). By the correctness of the DSPF, we know that for every r, s ∈ [c], we have

∑
i∈[n]

wr,si =
∑
i∈[n]

uri (X) · vsi (X) +
∑
i 6=j

∑
l,h∈[t]

βri [l] · γsj [h] ·Xωr
i [l]+η

s
j [h] =

=
∑
i∈[n]

uri (X) · vsi (X) +
∑
i 6=j

(∑
l∈[t]

βri [l] ·Xωr
i [l]
)
·
(∑
h∈[t]

γsj [h] ·Xηsj [h]
)

=

=
∑
i∈[n]

uri (X) · vsi (X) +
∑
i 6=j

uri (X) · vsj (X) =

=
(∑
i∈[n]

uri (X)
)
·
(∑
j∈[n]

vsj (X)
)

17

As a consequence, we have that∑
i∈[n]

zi =
∑
i∈[n]

〈a⊗ a,wi〉 = 〈a⊗ a,
∑
i∈[n]

wi〉 =

=
∑
r,s∈[c]

ar · as ·
(∑
i∈[n]

uri (X)
)
·
(∑
j∈[n]

vsj (X)
)

=

=
(∑
r∈[c]

∑
i∈[n]

ar · uri (X)
)
·
(∑
s∈[c]

∑
j∈[n]

as · vsj (X)
)

=

=
(∑
i∈[n]

〈a,ui〉
)
·
(∑
j∈[n]

〈a,vj〉
)

=

=
(∑
i∈[n]

xi

)
·
(∑
j∈[n]

yj

)

�

Claim 2.3 Let S ⊆ [n] be a non-empty subset of parties. No PPT adversary provided with the PCG seeds
of the parties not in S can distinguish between the real (αi, ski, xi, (Mi,j ,Kj,i)j 6=i, yi, zi, di)i∈S and the cor-
responding tuples in which (Mi,j ,Kj,i)j 6=i, zi and di are substituted with random elements (M ′i,j ,K

′
j,i)j 6=i, z

′
i

and d′i subject to

M ′i,j = K ′i,j + αj · xi,
∑
i∈S

d′i +
∑
i 6∈S

di = sk ·
∑
i∈[n]

yi,

∑
i∈S

z′i +
∑
i 6∈S

zi =
(∑
i∈[n]

xi

)
·
(∑
j∈[n]

yj

)
.

Proof (of the claim). By Claims 2.1 and 2.2, we know that

Mi,j = Ki,j + αj · xi,
∑
i∈[n]

di = sk ·
∑
i∈[n]

yi,

∑
i∈[n]

zi =
(∑
i∈[n]

xi

)
·
(∑
j∈[n]

yj

)
.

These relations hold in both the analysed cases. It remains to show that the the values (Mi,j ,Kj,i)j 6=i, zi
and di for i ∈ S are pseudorandom elements satisfying the above conditions.

In [BGI15], the authors proved that the shares of any DPF are pseudorandom. As a consequence, we

immediately understand that, in such hybrid, for every i, j ∈ S with i 6= j, K̃c−1
i,j (X) is pseudorandom in R.

Since ac−1 = 1, we conclude that Ki,j is indistinguishable from a random element in R.

Take now ι ∈ S. Following the same argument as above, we understand that the values (ṽc−1i , wc−1,c−1i)i∈S,i 6=ι
are pseudorandom in R. Again, since ac−1 = 1, we conclude that the elements (di, zi)i∈S,i 6=ι are indistin-
guishable from 2|S| − 2 random elements in R. That ends the proof of the claim. �

We are now ready to prove both correctness and security in one go. We do it by strengthening Claim 2.3.
Specifically, for every subset of party S ⊆ [n], we show that no PPT adversary provided with the PCG
seeds of the parties not in S can distinguish between the real (αi, ski, xi, (Mi,j ,Kj,i)j 6=i, yi, zi, di)i∈S and the
corresponding tuples in which xi and yi are substituted with random elements in R and (Mi,j ,Kj,i)j 6=i, zi

18

and di are substituted with random elements (M ′i,j ,K
′
j,i)j 6=i, z

′
i and d′i subject to

M ′i,j = K ′i,j + αj · xi, (2)∑
i∈S

d′i +
∑
i6∈S

di = sk ·
∑
i∈[n]

yi, (3)

∑
i∈S

z′i +
∑
i6∈S

zi =
(∑
i∈[n]

xi

)
·
(∑
j∈[n]

yj

)
. (4)

We achieve this goal by a series of 2|S|+2 hybrids. In the initial stage, we provide the adversary with the
PCG seeds of the parties not in S, the original (αi, ski, xi, yi)i∈S and the randomly sampled (M ′i,j ,K

′
j,i)j 6=i,

z′i and d′i. Observe that the adversary cannot distinguish this stage from the situation in which it receives
the real outputs of the PCG. This is due to Claim 2.3.

In the subsequent stage, for every i 6∈ S and j ∈ S, we substitute the DPFS keys (Ur,0i,j , U
r,1
j,i , V

r,0
i,j , V

r,1
j,i)r∈[c]

and (Cr,s,0i,j , Cr,s,1j,i)r,s∈[c] in the PCG seeds of the parties not in S with keys generated using Sim. This hybrid
is indistinguishable from the previous one, due to the security of the 2-party DPSF.

We now describe the subsequent stages. Let j be the index of the i-th party in S. The 2i-th hybrid
is obtained from the (2i − 1)-th one, by substituting xj with a random element in R before sampling the
fake (M ′i,j ,K

′
j,i)j 6=i, z

′
i and d′i. In a similar way, the (2i + 1)-th hybrid is obtained from the 2i-th one, by

substituting yj with a random element in R.
We show that any adversary A distinguishing between two consecutive hybrids can be converted into a

successful Module-LPN attacker A′. Without loss of generality, we can assume that A distinguishes between
the (2l − 1)-th and the 2l-th hybrid. Let ι be the index of the l-th party in S.

Upon activationA′ generates the PCG seeds of the parties not in S sampling random key material, random
special positions and non-zero elements and simulating the DSPF keys using Sim whenever the other key is
addressed to a party in S. Then, A′ samples random ski and αi in Fq for every i ∈ S and random xi and
yi in R for every i ∈ S with i < ι. Moreover, it waits for (a, xι) from its challenger and, for every r ∈ [c]

and i, j ∈ S with i > ι and j ≥ ι, samples random t-sparse polynomials uri (X), vrj (X)
$← HWt. As a last

step, it computes xi ← 〈a,ui〉 and yj ← 〈a,vj〉 for every i, j ∈ S with i > ι and j ≥ ι, generates the values
(M ′i,j ,K

′
j,i)j 6=i, z

′
i and d′i for every i ∈ S sampling them randomly subject to (2), (3) and (4) and provides

A with the PCG seeds of the parties not in S, a and the tuples (αi, ski, xi, (M
′
i,j ,K

′
j,i)j 6=i, yi, z

′
i, d
′
i)i∈S . At

the end, A′ outputs the same bit as A.
Observe that when the Module-LPN challenger generates xι using the uniform distribution, the view of

A is identical to the 2l-th hybrid. If instead xι is generated using t-sparse polynomials, the view of A is
perfectly indistinguishable from the (2l − 1)-th hybrid. Hence, if A wins with non-negligible advantage, A′
breaks the Module-LPN assumption, reaching a contradiction. In a totally analogous way, we are able to
show that no PPT adversary can distinguish between the 2l-th and the (2l + 1)-th hybrid.

Observe that in the last hybrid of the sequence, the values (xi, yi)i∈S are all sampled randomly in R,
however, the DSPF keys in the seeds of the parties not in S are still generated using Sim. In the last stage,
we revert to the original DSPF keys. Indistinguishability is guaranteed by the DSPF security.

This ends the proof of correctness and security of the PCG. The second part of the theorem is a mere
computation, which is easily checkable. �

4.2 The Preprocessing Protocol

We start by assuming the existence of a random oracle O and a generic MPC functionality FMPC, which is for-
malised in Figure 6. Such resource can be implemented in several ways, for instance, using Tiny-OT [NNOB12]
(for bit operations) SPDZ [BDOZ11,DPSZ12] (for field operations) and the induced multiparty computation
protocol over elliptic curves [DOK+20]. A protocol implementing 2-DPF with O(λ · logN) communication
was instead presented in [BCG+20]. Sometimes, we use FMPC to perform additions between Module-LPN
special positions, although integer operations are not supported by the functionality. In such case, we assume

19

The Ideal Functionality FMPC

In addition to the usual operations (i.e. additions, multiplications, inputs and outputs over Fq and F2), the
functionality features the following procedures.
From-Fq-to-G. On input To-G

(
[[sk]]

)
, the functionality computes PK ← sk · G and sends it to the adversary,

waiting for a reply. If the answer is OK, the functionality outputs PK to every honest party, otherwise, it aborts.
2-DPF. On input 2-DPF

(
N, [[ω]]2, [[β]], σ1, σ2

)
from every party, where σ1 and σ2 are different indexes in [n],

N is a power of 2, ω is the bit representation of an integer in [N] and β belongs to Fq, the functionality does
the following.

– If Pσ1 and Pσ2 are both corrupted, it sends β and ω to the adversary.
– If β = 0, it sends Zero to the adversary. If the reply is OK, the functionality outputs Zero to the honest

partiesa.
– If one party Pσ among Pσ1 and Pσ2 is corrupted, it waits for the adversary to send yσ in FNq . Moreover, it

waits for a set I ⊆ [N]. If ω 6∈ I, it aborts. Otherwise, denoting by θ the index of the honest party among
Pσ1 and Pσ2 , it outputs to Pθ

yθ ← (

ω︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0︸ ︷︷ ︸

N

)− yσ.

– If Pσ1 and Pσ2 are both honest, it samples y1 uniformly in FNq and computes

y2 ← (

ω︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0︸ ︷︷ ︸

N

)− y1.

Finally, it outputs yi to Pσi for every i ∈ {1, 2}.
a The 2-DPF protocol reveals the multiplication of β by a random element in F×q . The operation leaks no

information except whether β = 0 or not.

Fig. 6: The MPC functionality

that the special positions are stored bit by bit, and therefore, we are able to compute sums using operations
over F2. In order to make our presentation clearer, we will use the symbols [[·]] and [[·]]2 to denote elements
stored by FMPC over Fq and F2 respectively.

We are now ready to describe the preprocessing protocol ΠR
Prep. A formal description is available in

Figure 7 and 8. The construction closely follows the blueprint outlined by PCGECDSA, performing however the
operations in a distributed manner and merging the seed generation and evaluation phases indissolubly7. In
order to ease the notation, we will denote by 2-DSPF the multiparty procedure implementing the distributed
sum of point functions, although it is not featured in FMPC. The operation will take as input the dimension
of the resulting vector N , the t special positions, the corresponding t non-zero elements and the indexes i
and j of the two parties among which the output is secret-shared. Observe that the output is not a series of
DSPF keys but their full evaluation. The instruction has to be regarded as a shorthand for t executions of
2-DPF among the same parties Pi and Pj , outputting the sum of the resulting t secret-shared unit vectors
and allowing the corresponding influence and leakage. In ΠRPrep, the latter will be absorbed by the hardness
of the Module-LPN assumption and therefore, it will not constitute a problem for security.

We now proceed by outlining the operations of ΠRPrep.
During the initialisation every party Pi samples the key material ski and αi, inputting their values in

FMPC. Using the latter, the parties compute and output the ECDSA public key PK =
∑
i∈[n] ski ·G.

In order to generate a ring ECDSA tuple, each party Pi starts by sampling, for every r ∈ [c], the t special
positions and non-zero elements describing uri (X) and vri (X). The sampled values are input in the FMPC

7 The reason why this is unavoidable is that the DPF protocol of [BCG+20] does not permit to perform the DPF
key generation and evaluation separately.

20

functionality. Later on, using 2-DSPF as in PCGECDSA, each party Pi computes ṽi, w̃i and, for every j 6= i,

M̃i,j and K̃j,i. Finally, after sampling a using the random oracle O, each party can terminate the evaluation
of the PCG seeds obtaining their share of the ring ECDSA tuple.

Theorem 3. Let F (X) be a degree-N polynomial over the prime field Fq and let t, c ∈ N. Define the
ring R := Fq[X]/

(
F (X)

)
. If the Rc-LPNt problem with static leakage is hard, then the protocol ΠRPrep UC-

implements FRPrep in the FMPC-hybrid model with random oracle. Moreover, if all the parties are honest, the
protocol aborts with negligible probability.

The security proof of the preprocessing protocol ΠRPrep strictly resembles the proof of Theorem 2. The
only major difference is the leakage about the special positions allowed by the DPSF procedure in FMPC. In
any case, this fact will not constitute a security issue as the leakage will be absorbed the the hardness of
Module-LPN.

The complete proof follows.

Proof. This is an adaptation of the proof of [AS21, Theorem 5] to ΠRPrep.

Consider the simulator SRPrep described in Figure 9. We prove that no PPT adversary is able to distinguish

between the protocol ΠRPrep and the composition of FRPrep with SRPrep. Clearly, the simulation of the initialisation
is perfectly secure. We therefore focus our attention the the generation of ECDSA tuples.

It is immediate to see that ΠRPrep aborts with negligible probability if all the parties are honest. Indeed,
an abort happens only if the non-zero element of a DPF execution is actually equal to zero, and therefore if
and only if αj = 0 or skj = 0 for any j ∈ [n], or there exist i ∈ [n], r ∈ [c] and l ∈ [t] such that βri [l] = 0
or γri [l] = 0. All these elements are uniformly distributed over Fq, therefore, since q ∼ 2λ, the probability of
such event is negligible.

The simulation is unconditionally secure until the outputs are revealed. Moreover, if the adversary chose
αj = 0, or skj = 0, or βrj [l] = 0 or γrj [l] = 0 for some r ∈ [c] and l ∈ [t] and corrupted party Pj , both the
protocol and the simulation abort during an execution of 2-DSPF.

Before proceeding with our analysis, we define the random variables sk :=
∑
i∈[n] ski, x :=

∑
i∈[n] xi and

y :=
∑
i∈[n] yi.

Claim 3.1 In the protocol, we have the following relations∑
i∈[n]

di := sk · y,
∑
i∈[n]

zi = x · y, Mi,j = Ki,j + αj · xi.

Proof (of the claim). The proof strictly resembles the one of Claims 2.1 and 2.2. �

Claim 3.2 Consider the protocol and let Pι be an honest party. The values (dj , zj)j∈H\{ι} are uniformly
distributed in R and independent of the remaining outputs and the view of the adversary. Moreover, if Pi
and Pj are both honest, Ki,j and Mi,j are random subject to Mi,j = Ki,j + αj · xi.

Proof (of the claim). Observe that for every j ∈ H with j 6= ι, the polynomials ṽc−1,0j,ι (X) and wc−1,c−1,0j,ι (X)
are both random in R and independent of the view of the adversary and of the honest parties (Pi)i∈H\{j,ι}.
This is due to the behaviour of 2-DPF when the targeted parties are both honest. Actually, we are implicitly
relying on the fact that the polynomials in Fq[X] of degree less than 2N form a vector space and the reduction
modulo F (X) is a Fq-linear operation from this space to R. As a consequence, every element in R has the
same number of preimages, therefore, the reduction modulo F (X) maps the uniform distribution over the
polynomials of degree less than 2N into the uniform distribution over R.

Since ṽc−1,0j,ι (X) and wc−1,c−1,0j,ι (X) are terms of ṽc−1j (X) and wc
2−1
j (X) respectively, we understand that

the latter are random in R and independent.
To conclude the first part of the claim, observe that ṽc−1j (X) is multiplied by ac−1 = 1 when computing

dj = 〈a, ṽj〉. Moreover, wc
2−1
j (X) is multiplied by ac−1 · ac−1 = 1 when computing zj = 〈a⊗ a,wj〉.

21

The Protocol ΠRPrep
Let N be a power of 2. Take a degree N polynomial F (X) over the prime field Fq. Define the ring R :=
Fq[X]/

(
F (X)

)
and consider Module-LPN parameters t, c ∈ N.

Initialisation Each party Pi samples αi, ski
$← Fq and inputs the values in FMPC to obtain [[αi]] and [[ski]].

Using FMPC, the parties compute and open PK←
∑n
i=1[[ski]]G. Then, every party Pi outputs (αi,PK).

Ecdsa Tuple

1. For all i ∈ [n] and r ∈ [c], Pi samples βri
$← Ftq, ωri

$← [N]t, γri
$← Ftq and ηri

$← [N]t. Then, it computes the
polynomials

uri (X)←
∑
l∈[t]

βri [l] ·Xωr
i [l], vri (X)←

∑
l∈[t]

γri [l] ·Xηri [l]

2. For every i ∈ [n] and r ∈ [c], the parties compute the following operations using FMPC.

[[βri]]← Input(Pi,β
r
i), [[γri]]← Input(Pi,γ

r
i),

[[ωri]]2 ← Input(Pi,ω
r
i), [[ηri]]2 ← Input(Pi,η

r
i).

3. For every i, j ∈ [n] with i 6= j and r ∈ [c], the parties compute, using FMPC,

[[µri,j]]← [[αi]] · [[βrj]], [[νri,j]]← [[ski]] · [[γrj]].

4. For every i, j ∈ [n] with i 6= j and r ∈ [c], the parties call FMPC to compute

(K̃r
j,i,M̃

r
j,i)← 2-DSPF(N, [[ωrj]]2, [[µ

r
i,j]], i, j)

and obtain a 2-party secret-sharing among Pi and Pj of the N -dimensional t-point vector with special

positions [[ωrj]]2 and non-zero elements [[µri,j]]. If FMPC outputs Zero, the protocol aborts. Let K̃r
j,i and

M̃r
j,i denote the shares obtained by Pi and Pj respectively. We regard them as degree-(N − 1) polynomials

K̃r
j,i(X) and M̃r

j,i(X).
5. For every i, j ∈ [n] with i 6= j and r ∈ [c], the parties call FMPC to compute

(ṽr,0i,j , ṽ
r,1
i,j)← 2-DSPF(N, [[ηrj]]2, [[ν

r
i,j]], i, j)

and obtain a 2-party secret-sharing among Pi and Pj of the N -dimensional t-point vector with special
positions [[ηrj]]2 and non-zero elements [[νri,j]]. If FMPC outputs Zero, the protocol aborts. Let ṽr,0i,j and ṽr,1i,j
denote the shares obtained by Pi and Pj respectively. We regard them as degree-(N−1) polynomials ṽr,0i,j (X)

and ṽr,1i,j (X).
6. For every i 6= j and r, s ∈ [c], the parties compute

[[ρr,si,j]]← [[βri]]⊗ [[γsj]], [[ζr,si,j]]← [[ωri]]2 � [[ηsj]]2.

7. For every i, j ∈ [n] with i 6= j and r, s ∈ [c], the parties call FMPC to compute

(wr,s,0i,j ,wr,s,1i,j)← 2-DSPF(2N, [[ζr,si,j]]2, [[ρ
r,s
i,j]], i, j)

and obtain a 2-party secret-sharing among Pi and Pj of the 2N -dimensional t2-point vector with special
positions [[ζr,si,j]]2 and non-zero elements [[ρr,si,j]]. Let wr,s,0i,j and wr,s,1i,j denote the shares obtained by Pi

and Pj respectively. We regard them as degree-(2N − 1) polynomials wr,s,0i,j (X) and wr,s,1i,j (X).
8. For every r ∈ [c], each party Pi computes

ṽri (X)← ski · vri (X) +
∑
j 6=i

(
ṽr,0i,j (X) + ṽr,1j,i (X)

)
.

Fig. 7: The preprocessing protocol - Part 1

22

9. For every r, s ∈ [c], each party Pi computes over R

wrc+si (X)← uri (X) · vsi (X) +
∑
j 6=i

(
wr,s,0i,j (X) + wr,s,1j,i (X)

)
.

10. The parties call O to obtain ai
$← R for every i ∈ [c− 1]. Let a← (a0, a1, . . . , ac−2, 1).

11. Each party Pi outputs

xi ← 〈a,ui〉, yi ← 〈a,vi〉, zi ← 〈a⊗ a,wi〉,

Mi,j ← 〈a,M̃i,j〉, Kj,i ← −〈a, K̃j,i〉 di ← 〈a, ṽi〉.

Fig. 8: The preprocessing protocol - Part 2

For the second part of the claim, notice that when Pi and Pj are both honest, K̃c−1
i,j is random, due to

the behaviour of 2-DPF. Since K̃c−1
i,j is multiplied by ac−1 = 1 when computing Ki,j = −〈a, K̃i,j〉, Ki,j is

random. The fact that Mi,j = Ki,j + αj · xi is a consequence of Claim 3.1. �

Claim 3.3 By the Rc-LPNt assumption with static leakage, no PPT adversary can distinguish between the
procedure Tuple and its simulation.

Proof (of the claim). Let the random variables d̂ and ẑ represent the sum of the shares of the corrupted
parties, defined as in SRPrep.

We proceed by a series of 2|H| hybrids. In the initial stage, we consider the protocol execution in which,
for every i ∈ H, the values di and zi are substituted with random elements in R, subject to∑

i∈H
di + d̂ = sk · y,

∑
i∈H

zi + ẑ = x · y

and (Mi,j ,Kj,i)j 6=i are sampled randomly under the condition Mi,j = Ki,j+αj ·xi. Observe that by Claims 3.1
and 3.2, the initial stage is perfectly indistinguishable from ΠRPrep.

Consider now an integer i ≤ |H| and let j be the index of the i-th honest party. In the 2i-th hybrid,
we will substitute the final output xj with a random element in R, keeping all the rest as in the previous
stage. In the (2i + 1)-th hybrid, we will do the same with yj . Observe that in the last stage, the execution
is identical to the simulation.

We show that any PPT adversary A distinguishing between two consequent hybrids can be converted
into an efficient attacker A′ against the Rc-LPNt assumption.

Suppose that A distinguishes between the (2i − 1)-th and the 2i-th hybrid. Let Pj be the i-th honest
party. Observe that the only difference between the two stages is that xj is computed as in the protocol in
the former and randomly sampled in the latter. We construct the Module-LPN attacker A′ as follows. Upon
activation A′ initialises an internal copy of A and runs the protocol simulating the honest parties. During
the generation of ECDSA tuples, A′ lets its challenger select the non-zero values βr

j and special positions ωr
j

for every r ∈ [c]. When A tries to guess a special position ωrj [l] for some r ∈ [c] and l ∈ [t] by specifying a set
I ⊆ [N] during 2-DSPF, A′ issues a query (r, l, I) to its challenger and forwards the reply to A. Moreover,
when A tries to guess a special position ζr,sj,k [lt + h] = ωrj [l] + ηsk[h] for some k ∈ [n], r, s ∈ [c] and l, h ∈ [t]
by specifying a set I ′ ⊆ [2N] during 2-DSPF, A′ computes the set

I ′′ ←
{
χ− ηsk[h] | χ ∈ I ′

}
,

issues the query (r, l, I ′′) to its challenger and forwards the reply to A. Observe that A′ knows ηsk[h] so I ′′

can always be computed.
Finally, A′ waits for (a, xj) from its challenger. We recall that xj is computed as in the protocol with

probability 1/2. In the other cases, it is uniformly sampled in R. A′ models O by sending a to A. At the end,

23

The Simulator SRPrep

Initialisation The simulator waits for (αi)i∈C from the adversary and forwards them to the functionality.

Upon receiving PK as a reply, the simulator forwards it to the adversary. At the end, SRPrep samples αi, ski
$← Fq

for every i ∈ H.

Ecdsa Tuple The simulator runs the protocol with the adversary simulating the honest parties:

1. If the simulation aborts, the simulator sends Abort to the functionality.
2. At the end, the simulator reconstructs the sum of the outputs of the corrupted parties

x̂←
∑
i∈C

xi, ŷ ←
∑
i∈C

yi, ẑ ←
∑
i∈C

zi, d̂←
∑
i∈C

di.

Furthermore, it computes the pair (Mi,j ,Kj,i) for every i ∈ C and j ∈ H. Observe that SRPrep can perform
this operation. Indeed, in the initialisation, it learnt (αi)i∈C . Moreover, at the beginning of the procedure, it
received βri ,γ

r
i ,ω

r
i ,η

r
i for every i ∈ C and r ∈ [c]. Finally, in every execution of 2-DSPF involving corrupted

parties, the adversary sends to the simulator the shares that the corrupted parties selected for the output.
3. Let ι be the index of a corrupted party. The simulator sets x̂ι ← x̂, ŷι ← ŷ, ẑι ← ẑ and d̂ι ← d̂. More-

over, for every i ∈ C \ {ι}, SRPrep sets x̂i ← 0, ŷi ← 0, ẑi ← 0 and d̂i ← 0. Finally, the simulator sends

(x̂i, (Mi,j ,Kj,i)j∈H, ŷi, d̂i, ẑi)i∈C to the functionality.

Fig. 9: The simulator SRPrep

the attacker A′ computes (Mi,j ,Kj,i)i∈C,j∈H, d̂, ẑ and the outputs of the honest parties. For every k ∈ H
with k < j, it substitutes xk and yk with random elements in R. Finally, it generates (Mi,j ,Kj,i)j 6=i, di and
zi for every i ∈ H as in the simulation.

Observe that when the challenger replies with random elements in R, the view of A is indistinguishable
from the view in the 2i-th hybrid. If instead the challenger computes xj using sparse polynomials in R, the
view of A is indistinguishable from the view in the (2i− 1)-th hybrid.

So, if A distinguished between the (2i− 1)-th and the 2i-th hybrid with non-negligible advantage, then
A′ would break the Rc-LPNt hardness. In a totally analogous way, we can prove that the same holds if A
distinguished between the 2i-th and the (2i+ 1)-th hybrid. �

�

Efficiency Our protocol is particularly efficient from a communication point of view. The cost of the triple
generation procedure per party is indeed

– 2(n− 1) · c · t times the total complexity of 2-DPF with output length N ,
– (n− 1) · c2 · t2 times the total complexity of 2-DPF with output length 2N ,
– 2c · t ·

(
log q + logN

)
bits of communication for the inputs,

– 4n(n− 1) · c · t · log q bits for the multiplications in step 3,
– 2n(n− 1) · c2 · t2 · log q bits for the outer product,
– 2n(n− 1) · c2 · t2 · logN bits for the outer sum,
– O(λ · n+ log q) complexity for the MAC checks8.

Considered the complexity analysis of 2-DPF [BCG+20], we conclude that the communication complexity
of the procedure is dominated by 13n2 · c2 · t2 · (logN + log q) + 4n · c2 · t2 · logN · λ. We recall that every
execution of Tuple permits to produce N fresh ECDSA tuples.

8 It is fundamental to run a check on the inputs of 2-DPF before executing the procedures. Clearly, the MAC checks
can be batched.

24

Observe that the implementation of FMPC requires some additional preprocessing material, the generation
of which does not affect the overall asymptotic complexity (even if it needs to be produced by some other
preprocessing protocol). Specifically, we need

– 2n · c · t input masks over Fq (step 2),
– 2n · c · t · log(N) input masks over F2 (step 2),
– 2n(n− 1) · c · t+ n(n− 1) · c2 · t2 multiplication triples over Fq (step 3 and outer product),
– n(n− 1) · c2 · t2 · log(N) AND triples over F2 (outer sum).

5 Implementation and Experimental Results

We implemented our protocol and run experiments to test its practicality. 9.
Our code is implemented for the Secp256k1 elliptic curve used in Bitcoin. This is done to demonstrate

the applicability of our threshold ECDSA to blockchain wallets. For the DPF, we choose to implement the
optimized protocol from [BGI16, Figure 4]. The DSPF is optimised using multi-threading.

Setup We chose to implement the simplified version of the protocol in the setting where a trusted dealer
distributes the PCG seeds, and then the servers perform the local seed expansion before interacting for the
distributed computation of the signing phase. This model is meaningful in practical applications in which,
for instance, a client generates its own ECDSA secret key and then distributes it to a number of servers. In
this case it is meaningful to ask the client to (also) generate the (short) PCG seeds that will be used in the
protocol. This is a setting which makes sense e.g. in applications to threshold wallets [AF21].

Instantiating Module-LPN For Module-LPN, we use a cyclotomic ring as defined in [BCG+20] where the
prime q is the order of the elliptic curve. Note that q is not well suited for radix 2 FFT, because the maximum
power of two dividing q− 1 is 26. Our FFT, implementing the Cooley-Tuckey algorithm, is optimised for the
factors of q−1. This is why the parameter N , which eventualy accounts for the number of offline signatures, is
not a power of 2 and is taken from a given set of optimised values. We considered different configurations of t, c
that achieve the 128-bit security level, and finally picked the one for which we got the best performances. In
particular, we chose (c, t) = (4, 16), which we found performed better than (c, t) = (2, 76) and (c, t) = (8, 5).
These values are taken from [BCG+20] for dimension N = 220; however, as noted by the analysis in that
paper, the hardness of ring-LPN with cyclotomic polynomials essentially only depends on (c, t) and not N ,
due to a dimension-reduction attack.

Measurements We measured the performance of our protocol by looking at three measures: (i) storage cost
(due to the PCG seeds); (ii) offline time per signature (amortised); and (iii) online time to generate a single
signature. Our measurements were done on a machine with Intel i7 2.6GHz 6 core CPU, and 16GB memory.
For benchmarks, we used an AWS t3.large machine with 8GB of memory.

One unique feature of our construction is that the memory footprint required to store N preprocessed
signatures is growing linearly in the PCG seed size. Therefore, it is only logarithmic in N unlike all previous
constructions, which require O(N) memory size. We show this property in Figure 10 for 2 and 3-party
computation.

Next, we measured the time it takes for the parties to produce one signature. The online signing phase in
our protocol (Round 2 in Figure 4) is simple: it involves one message, after which each party can run a local
linear computation, which is dependent in the number of parties, to compute the full signature and verify it.
In our implementation, the operation takes on average 5ms in the 2-party case and 11ms for three parties.

Finally, we measured the local computation time for the PCG seed expansion in the offline protocol
(Round 1 in Figure 4). Since the seed expansion is fully non-interactive, local computation time is the main
bottleneck. Figure 11 shows the amortised time necessary to preprocess one signature. We note that by
profiling the pre-signing phase, we can say that, on average, 98% of the time goes on step 2 – retrieving
shares of the next ECDSA tuple, which includes expanding the stored data. This is also where the dependence
in N comes into play.

9 https://github.com/ZenGo-X/silent-ecdsa

25

https://github.com/ZenGo-X/silent-ecdsa

Fig. 10: PCG seed size in N, the number of ECDSA
tuples we generate offline. The x-axis uses a loga-
rithmic scale.

Fig. 11: Offline computation time per signature
(amortised).

Future work The main bottleneck in our code is the execution of an NTT/FFT over Secp256k1. This is due
to the order of Secp256k1, which has no large enough power of 2 factor. Improvements to the NTT/FFT
algorithm for such curves may dramatically reduce the computation time of the preprocessing [BCKL21]. In
addition, another possibility is to use ring-LPN with a more structured, regular error distribution [BCG+20],
which would reduce the runtime of DPF evaluation (however, this is not currently the bottleneck). Moreover,
our preprocessing protocol to setup the PCG seeds uses generic MPC primitives, and its implementation is
left as future work.

Acknowledgments. We would like to thank Matan Hamilis for helping out with the implementation of the
protocol. Work supported partially by: the Concordium Blockhain Research Center, Aarhus University,
Denmark; the Carlsberg Foundation under the Semper Ardens Research Project CF18-112 (BCM); the
European Research Council (ERC) under the European Unions’s Horizon 2020 research and innovation
programme under grant agreement No 803096 (SPEC); ERC Project NTSC (742754); the Aarhus University
Research Foundation (AUFF); and the Independent Research Fund Denmark (DFF) under project number
0165-00107B.

References

AF21. Robert Annessi and Ethan Fast. Improving security for users of decentralized exchanges through multi-
party computation. CoRR, abs/2106.10972, 2021.

AHS20. Jean-Philippe Aumasson, Adrian Hamelink, and Omer Shlomovits. A survey of ECDSA threshold signing.
Cryptology ePrint Archive, Report 2020/1390, 2020. https://eprint.iacr.org/2020/1390.

AS21. Damiano Abram and Peter Scholl. Low-Communication Multiparty Triple Generation for SPDZ from
Ring-LPN. Cryptology ePrint Archive, 2021, 2021.

BCG+19a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl.
Efficient two-round OT extension and silent non-interactive secure computation. In ACM CCS 2019.
ACM Press, November 2019.

BCG+19b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In CRYPTO 2019, Part III, LNCS.
Springer, Heidelberg, August 2019.

BCG+20. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient pseudo-
random correlation generators from ring-LPN. In CRYPTO 2020, Part II, LNCS. Springer, Heidelberg,
August 2020.

BCGI18. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE. In ACM CCS
2018. ACM Press, October 2018.

26

https://eprint.iacr.org/2020/1390

BCKL21. Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. Elliptic curve fast fourier transform
(ECFFT) part I: fast polynomial algorithms over all finite fields. CoRR, abs/2107.08473, 2021.

BDOZ11. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption and
multiparty computation. In EUROCRYPT 2011, LNCS. Springer, Heidelberg, May 2011.

BGI15. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In EUROCRYPT 2015, Part II,
LNCS. Springer, Heidelberg, April 2015.

BGI16. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and extensions. In
ACM CCS 2016. ACM Press, October 2016.

CCL+19. Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker. Two-party
ECDSA from hash proof systems and efficient instantiations. In CRYPTO 2019, Part III, LNCS. Springer,
Heidelberg, August 2019.

CCL+20. Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker. Bandwidth-
efficient threshold EC-DSA. In PKC 2020, Part II, LNCS. Springer, Heidelberg, May 2020.

CGG+20. Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled. UC non-
interactive, proactive, threshold ECDSA with identifiable aborts. In ACM CCS 20. ACM Press, November
2020.

DJN+20. Ivan Damg̊ard, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Jakob Illeborg Pagter, and
Michael Bæksvang Østergaard. Fast threshold ECDSA with honest majority. In SCN 20, LNCS. Springer,
Heidelberg, September 2020.

DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart. Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In ESORICS 2013, LNCS.
Springer, Heidelberg, September 2013.

DKLs18. Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure two-party threshold ECDSA from
ECDSA assumptions. In 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society Press,
May 2018.

DKLs19. Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Threshold ECDSA from ECDSA assumptions:
The multiparty case. In 2019 IEEE Symposium on Security and Privacy. IEEE Computer Society Press,
May 2019.

DOK+20. Anders P. K. Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak, and Haya Shulman. Securing
DNSSEC keys via threshold ECDSA from generic MPC. In ESORICS 2020, Part II, LNCS. Springer,
Heidelberg, September 2020.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from some-
what homomorphic encryption. In CRYPTO 2012, LNCS. Springer, Heidelberg, August 2012.

FKP16. Manuel Fersch, Eike Kiltz, and Bertram Poettering. On the provable security of (EC)DSA signatures. In
ACM CCS 2016. ACM Press, October 2016.

GG18. Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless setup. In
ACM CCS 2018. ACM Press, October 2018.

GGN16. Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal DSA/ECDSA signatures
and an application to bitcoin wallet security. In ACNS 16, LNCS. Springer, Heidelberg, June 2016.

GI14. Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In EUROCRYPT 2014,
LNCS. Springer, Heidelberg, May 2014.

GS21. Jens Groth and Victor Shoup. On the security of ecdsa with additive key derivation and presignatures.
Cryptology ePrint Archive, Report 2021/1330, 2021. https://ia.cr/2021/1330.

KMOS21. Yashvanth Kondi, Bernardo Magri, Claudio Orlandi, and Omer Shlomovits. Refresh when you wake up:
Proactive threshold wallets with offline devices. In 42nd IEEE Symposium on Security and Privacy, SP
2021, San Francisco, CA, USA, 24-27 May 2021, pages 608–625. IEEE, 2021.

Lin17. Yehuda Lindell. Fast secure two-party ECDSA signing. In CRYPTO 2017, Part II, LNCS. Springer,
Heidelberg, August 2017.

LN18. Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed key generation
and applications to cryptocurrency custody. In ACM CCS 2018. ACM Press, October 2018.

LNR18. Yehuda Lindell, Ariel Nof, and Samuel Ranellucci. Fast secure multiparty ECDSA with practical dis-
tributed key generation and applications to cryptocurrency custody. Cryptology ePrint Archive, Report
2018/987, 2018. https://eprint.iacr.org/2018/987.

MR01. Philip D. MacKenzie and Michael K. Reiter. Two-party generation of DSA signatures. In CRYPTO 2001,
LNCS. Springer, Heidelberg, August 2001.

NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new ap-
proach to practical active-secure two-party computation. In CRYPTO 2012, LNCS. Springer, Heidelberg,
August 2012.

27

https://ia.cr/2021/1330
https://eprint.iacr.org/2018/987

ST19. Nigel P. Smart and Younes Talibi Alaoui. Distributing any elliptic curve based protocol. In 17th IMA
International Conference on Cryptography and Coding, LNCS. Springer, Heidelberg, December 2019.

28

	Low-Bandwidth Threshold ECDSA via Pseudorandom Correlation Generators
	Introduction
	Our Contributions
	Technical Overview
	Related Work

	Preliminaries
	Notation
	The ECDSA Signing Algorithm
	Threshold ECDSA - Security Definition
	Module-LPN with Static Leakage
	Pseudorandom Correlation Generators
	Distributed Point Functions

	Key Generation and Signing
	ECDSA Tuples and the Ideal Functionality FPrepR
	Distributed Key Generation and Signing in the FPrepR-Hybrid Model
	Round Complexity and Relation to ECDSA Security
	Security Proof

	Realizing FPrepR - Silent Preprocessing
	An Efficient PCG for Ring ECDSA Tuples
	The Preprocessing Protocol

	Implementation and Experimental Results

