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ABSTRACT
Despite significant recent progress toward making multi-party com-

putation (MPC) practical, no existing MPC library offers complete

robustness—meaning guaranteed output delivery, including in the

offline phase—in a network that even has intermittent delays. Im-

portantly, several theoretical MPC constructions already ensure

robustness in this setting. We observe that the key reason for this

gap between theory and practice is the absence of efficient verifi-

able/complete secret sharing (VSS/CSS) constructions; existing CSS

protocols either require a) challenging broadcast channels in prac-

tice or b) introducing computation and communication overhead

that is at least quadratic in the number of players.

This work presents hbACSS, a suite of optimal-resilience asyn-

chronous complete secret sharing protocols that are (quasi)linear

in both computation and communication overhead. Towards devel-

oping hbACSS, we develop hbPolyCommit, an efficient polynomial

commitment scheme that is (quasi)linear (in the polynomial degree)

in terms of computation and communication overhead without

requiring a trusted setup. We implement our hbACSS protocols,

extensively analyze their practicality, and observe that our proto-

cols scale well with an increasing number of parties. In particular,

we use hbACSS to generate MPC input masks: a useful primitive

which had previously only been calculated nonrobustly in practice.

1 INTRODUCTION
Multiparty Computation (MPC) is a widely useful way to build con-

fidentiality and privacy-preserving computations into a distributed

system, with applications such as anonymous messaging [2, 3, 47],

secure auctions and digital asset exchanges [25, 49], and parameter

generation [28]. As such systems grow closer to practice, we also

start to care about robustness, where secrecy and liveness guaran-

tees hold in spite of intermittent (non-synchronous) networks and a

minority of faulty nodes. While several MPC implementations and

libraries [4, 39, 44, 47, 51, 59] have emerged over the last decade, it

remains an open problem to provide robust MPC in a practical way

in networks without strong synchrony assumptions.

Recent work shows how to make the online phase of practical

asynchronous MPC robust [47]. However, the preprocessing phase,

which must be run by the servers prior to receiving input, is much

harder to make robust in practice. To explain the problem we will

focus on generating random input masks, which allow clients to

easily contribute secret inputs to an MPC program. The goal is to

produce a random secret sharing J𝑟K𝑡 which satisfies the following:

if no more than 𝑡 of the 𝑁 MPC server nodes are corrupted, 𝑟 is

uniformly random, unknown, and any 𝑡 + 1 parties can reconstruct

the same 𝑟 . The standard way to generate such values is for all

the servers to contribute shares they sample individually, which

are then all combined to extract fully random values, even if some

corrupt parties chose their inputs in a correlated way [10]. This

approach hinges on a protocol that can be used to verify that the

individually chosen shares are chosen correctly. Verifiable Secret

Sharing (VSS) [21, 30, 41] is a natural choice for this task. In partic-

ular, Asynchronous Complete Secret Sharing (ACSS) [54] provides

all the robustness guarantees needed for the MPC application, since

it guarantees not only that the secret inputs can be reconstructed

if necessary, but also that each of the servers can receive its origi-

nal share of the secret as well. However, existing ACSS protocols

introduce a computation and communication overhead that is qua-

dratic in the number of parties and cannot scale well beyond a small

number of nodes. This motivates the design of an efficient, scalable

ACSS protocol without compromising the optimal replication factor

of 3𝑡 + 1 or the asynchronous communication setting.

1.1 Challenges and overview of our solution
Good performance under worst case conditions. The asynchronous

network setting is fundamentally challenging. If a synchronous net-

work is assumed, then we can simply wait to hear a confirmation

message from all 𝑁 parties; otherwise, abort. However, in the asyn-

chronous case, we must proceed after hearing from only 𝑁 − 𝑡 of
the parties, where 𝑡 is a bound on the number of parties that can

fail. Since crashed nodes are indistinguishable from slow nodes,

it could be that 𝑡 parties for which we waited are corrupted, and

thus only 𝑁 − 2𝑡 correct parties received valid shares. To cope with
asynchrony, the most closely related protocol, VSS-R [8], falls back

to an inefficient backup mode with communication overhead that

is quadratic in the number of servers, even after a brief period of

desynchronization. Alternately, Patra et al. give AVSS protocols

with linear communication overhead [53], but require weakening

resilience (𝑡 < 𝑁 /4). We remark, however, that many 𝑡 < 𝑁 /3,
AVSS/AVCSS protocols (including ours) could improve their amor-

tized bandwidth by a factor of 𝑂 (𝑁 ) through the use of Packed

Secret Sharing. Consequently, we focus on the 𝑡 < 𝑁 /3 setting,

knowing that improvements here can also lead to improvements in

more relaxed settings.

Aggressive batching for large secrets. Motivated by our applica-

tion of MPC preprocessing, we want efficiency of communication

and computation assuming the amount of data that needs to be

shared is large. We focus on the case where each single dealer needs

to deal a large batch of secrets, such as for precomputation purposes.

In doing so, we can amortize away one-time startup costs.



The secret share encodings and polynomial commitments in

our work function similar to other VSS-based schemes. Starting

from Feldman [41], cryptographic VSS protocols are centered around

broadcasting a polynomial commitment [43] along with an eval-

uation proof that enables each server to validate the share they

received. The performance challenge arises when providing enough

redundancy for VSS to recover from missing or corrupt shares.

Our solution is based on what we call encrypt-then-disperse,
which generalizes a technique from HoneyBadgerBFT [50]. Before

transmitting the payload of secret shares and evaluation proofs, the

payload is first encrypted using public-key encryption. Next, the

encrypted payload is dispersed using an Asynchronous Verifiable

Information Dispersal (AVID [22]) routine, which can be more effi-

cient because we do not need to hide the already-encrypted payload.

The use of AVID guarantees that every honest node receives some

data from the dealer, even in the asynchronous setting. If this data

turns out to be invalid, it can be used as evidence to implicate the

dealer. Once the dealer is determined to be faulty, we enter a share

recovery phase, which ensures every correct party receives their

share. The share recovery phase can be very efficient too, since we

do not ensure the confidentiality of a malicious dealer’s shares.

Avoiding Trusted Setup. Our protocol, hbACSS, can be instanti-

ated with any polynomial commitment scheme, but we focus on

two: first, a state of the art scheme from Tomescu et al. [57], and

second, our own scheme which avoids trusted setup. Tomescu et

al.’s scalable VSS scheme is built around a polynomial commitment

scheme based on efficient multipoint evaluation trees (AMTs) that

achieves quasilinear overhead; i.e., for AMT, the resources incurred

at each server—communication and computation—do not increase

significantly as the system setup grows. However, a limitation of

this scheme is that it relies on a trusted setup. Trusted setup is a

significant obstacle to deployment of a distributed system, which

requires a difficult-to-coordinate setup ceremony [17, 18] which

may need to be performed again if parameters are changed.

Our construction, hbPolyCommit, is based on Bulletproofs [20]

and achieves similar asymptotic and practical performance as AMT

while requiring only uniform reference strings and the discrete log

assumption. Beyond VSS, polynomial commitments are also widely

used in applications such as SNARKs [29], hence our construction

is likely of independent interest.

To complement our constructions, security proofs, and asymp-

totic analysis, we empirically evaluate both hbACSS and hbPoly-

Commit. We show that hbPolyCommit is comparable in perfor-

mance with AMT, eliminating the need for a trusted setup in prac-

tice. When used to instantiate hbACSS, we find that we can robustly

generate input masks at a rate of ∼39 input masks per CPU-second

when 𝑁 = 31 and ∼9 per second at 𝑁 = 127.

To summarize our contributions: we design and implement a set

of ACSS schemes which simultaneously achieve better asymptotic

bounds than previouswork aswell as demonstrate the growing prac-

ticality of asynchronous, optimally-resilient MPC. We instantiate

our ACSS schemes with a batch-optimized polynomial commitment

scheme that achieves similar performance to state-of-the-art work

while negating the need for a trusted setup. Lastly we use our new

constructions to demonstrate the robust computation of a useful

MPC primitive.

2 PRELIMINARIES
2.1 Threat Model
We assume the standard asynchronous fully-connected network

of 𝑁 parties {P1, ...,P𝑁 } [21]. A special party 𝐷 works as a dealer,

which can either be one of𝑁 parties or the𝑁 +1th party. The indices
for 𝑁 parties are chosen from F𝑝 . Without loss of generality, we

assume these to be 1, . . . , 𝑁 .

Every pair of parties is connected by an authenticated commu-

nication channel. The adversary can corrupt and coordinate the

actions of up to 𝑡 out of 𝑁 parties. If the dealer 𝐷 is the 𝑁 + 1th
party, the adversary may additionally compromise the dealer. The

adversary is assumed to be adaptive, and may corrupt a party of its

choice at any instance during a protocol execution. A party is said

to be correct if the adversary has not corrupted it. The adversary

controls the network and may delay messages between any two

correct parties. However, it cannot modify messages, and it also

has to eventually deliver messages from correct parties.

Finally, we assume the adversary to be computationally bounded

with security parameter ^ such that the adversarial advantage of

breaking the security of the protocol is negligible in ^.

2.2 Asynchronous Complete Secret Sharing
Here we give our security definition for Asynchronous Complete

Secret Sharing (ACSS). Compared to Asynchronous Verifiable Secret

Sharing (AVSS), which only guarantees that parties can reconstruct

the secret 𝑠 , ACSS also guarantees that the parties can reconstruct

the entire secret sharing polynomial 𝜙 associated with it, which is

necessary when using this primitive for MPC applications.

Definition 1. (Asynchronous Complete Secret Sharing—ACSS [52])
In an ACSS protocol, the dealer𝐷 receives input 𝑠 ∈ F𝑝 , and each party
𝑃𝑖 receives a share 𝜙 (𝑖) for some degree-𝑡 polynomial 𝜙 : F𝑝 → F𝑝 .
The protocol must satisfy the following properties

• Correctness: If the dealer 𝐷 is correct, then all correct parties

eventually output a share 𝜙 (𝑖) where 𝜙 is a random polynomial

with 𝜙 (0) = 𝑠 .
• Secrecy: If the dealer𝐷 is correct, then a computationally bounded

adversary learns no information about 𝜙 except for the shares of

corrupted parties, except with negligible probability.

• Agreement: If any correct party receives output, then there

exists a unique degree-𝑡 polynomial 𝜙 ′ such that each correct

party P𝑖 eventually outputs 𝜙 ′(𝑖).
For simplicity, this definition is specific to Shamir sharing, though

a more generic definition based on linear secret sharing is possible.

Our agreement property incorporates the completeness property
of Patra et al. [52], enforcing that all honest parties must hold a

valid share at the end of the sharing phase of the protocol.

2.3 Polynomial Commitments
One of the main building blocks we use are Polynomial Commit-

ment (PolyCommit) schemes. This primitive enables a committer

to commit to a polynomial. The commitment can be checked by a

verifier to assert correctness of claimed evaluation points on the

committed polynomial. We formally define this primitive as follows:

Definition 2. (Polynomial Commitment—PolyCommit [43]) Let
(F𝑝 )̂ be a family of finite fields indexed by a security parameter
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^ (we typically omit ^ and write F𝑝 ). A PolyCommit scheme for F𝑝
consists of the following five algorithms:

• Setup(1^ , 𝑡) → SP: generates system parameters SP to commit

to a polynomial over F𝑝 of degree bound 𝑡 . Setup is run by a

trusted or distributed authority. SP can also be standardized for

repeated use.

• PolyCommit(SP, 𝜙 (·)) → (𝐶, aux): outputs a commitment 𝐶

to a polynomial 𝜙 (·) for the system parameters SP and some

associated scheme-specific decommitment information aux.
• VerifyPoly(SP,𝐶, 𝜙 (·), aux) → bool: verifies that 𝐶 is a commit-

ment to 𝜙 (·), created with decommitment information aux. The
algorithm accepts if verification succeeds, and rejects otherwise.
• ProveEval(SP, 𝜙 (·), 𝑖, aux) → (𝑖, 𝜙 (𝑖), 𝜋𝑖 ): outputs a index 𝑖 , eval-
uation point 𝜙 (𝑖), and a proof 𝜋𝑖 for the evaluation 𝜙 (𝑖) of 𝜙 (·) at
the index 𝑖 .

• VerifyEval(SP,𝐶, 𝑖, 𝜙 (𝑖), 𝜋𝑖 ) → bool: verifies that 𝜙 (𝑖) is indeed
the evaluation at index 𝑖 of the polynomial committed in 𝐶 . If

verification succeeds, the algorithm accepts, and otherwise rejects.

We use the functions BatchProveEval and BatchVerifyEval to allow
participants to prove (resp. verify) many evaluations at once. In the

event that specific batch functions are undefined, we assume that

many invocations of ProveEval and VerifyEval are used instead.

A valid PolyCommit scheme must satisfy the following:

• Correctness: If 𝐶, aux ← Commit(SP, 𝜙 (·)) and 𝜋𝑖 , aux𝑖 ←
ProveEval(SP, 𝜙 (·), 𝑖, aux), then the correct evaluation of 𝜙 (𝑖) is
successfully verified by VerifyEval(SP,𝐶, 𝑖, 𝜙 (𝑖), 𝜋𝑖 , aux𝑖 ).
• Polynomial Binding: If 𝐶, aux← Commit(SP, 𝜙 (·)), then ex-

cept with negligible probability, an adversary cannot create a

polynomial 𝜙 ′(·) such that VerifyPoly(SP,𝐶, 𝜙 (·)′, aux) = 1 if

𝜙 (·) ≠ 𝜙 ′(·).
• Strong Evaluation Binding: Any commitment and evaluation

proofs generated by an adversary must be consistent with some

degree-𝑡 polynomial. Formally,
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SP← Setup(1^ , 𝑡)
(𝐶, {𝑥𝑖 , 𝑦𝑖 , 𝜋𝑖 }𝑖∈[1..ℓ ] ) ← A(SP)
∀𝑖 ∈ [1..ℓ] .
VerifyEval(SP,𝐶, 𝑥𝑖 , 𝑦𝑖 , 𝜋𝑖 ) = 1 ∧
∄ deg-𝑡 𝜙 (·) 𝑠 .𝑡 .
∀𝑖 ∈ [1..ℓ] . 𝑦𝑖 = 𝜙 (𝑥𝑖 )


≤ negl(^)

That is, given

𝐶, aux← Commit(SP, 𝜙 (·)), and
𝜋𝑖 , aux𝑖 ← ProveEval(SP, 𝜙 (·), 𝑖, aux),

except with negligible probability, an adversary cannot create an

evaluation 𝜙 ( 𝑗), proof 𝜋 𝑗 , and decommitment information aux𝑗
such that VerifyEval(SP,𝐶, 𝑖, 𝜙 ( 𝑗), 𝜋 𝑗 , aux𝑗 ) = 1 if 𝑖 ≠ 𝑗 .

• Zero-Knowledge: Informally, the commitment and evaluation

proofs should not reveal any information about the polynomial be-

yond what is implied by public information. Formally, there must

exist a simulator (Sim1, Sim2), such that for all adversariesA, the

following two distributions are (computationally or information-

theoretically) similar—we refer to the information-theoretic case

as perfect zero-knowledge. We use this stronger definition in place

of the hiding definition introduced by Kate et al. [43].

Real World:
SP← Setup

1
(1^ , 𝑡)

(𝜙 (·), {𝑥𝑖 }𝑖∈[1..ℓ ] ) ← A(SP)
(𝐶, aux) ← PolyCommit(SP, 𝜙 (·))
∀𝑖 ∈ [1..ℓ] . 𝜋𝑖 ← ProveEval(SP, 𝜙 (·), 𝑥𝑖 , aux)
: (𝐶, {𝑥𝑖 , 𝑦𝑖 , 𝜋𝑖 }𝑖∈[1..ℓ ] )


Ideal World:

(SP, st) ← Sim1 (1^ , 𝑡)
(𝜙 (·), {𝑥𝑖 }𝑖∈[1..ℓ ] ) ← A(SP)
(𝐶, {𝜋𝑖 }) ← Sim2 (st, {𝑥𝑖 , 𝜙 (𝑥𝑖 )}𝑖∈[1..ℓ ] )
: (𝐶, {𝑥𝑖 , 𝑦𝑖 , 𝜋𝑖 }𝑖∈[1..ℓ ] )


2.4 Arguments of Knowledge
To make it easy to check, we need to use zero knowledge proofs.

We do not use arguments of knowledge to check the correctness

of the shares, it is only used during key exchange.

In particular, we start with public-coin interactive arguments of

knowledge, where the verifierV chooses its messages uniformly

at random and independent of the prior messages sent by P, and
apply Fiat-Shamir as a last step in our construction.

Notation. Let G denote a cyclic group of prime order 𝑝 . We

use bold font for vectors, i.e. a ∈ Z𝑛𝑝 is a vector with elements

𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ Z𝑝 . For a scalar 𝑐 ∈ Z𝑝 and a vector a ∈ Z𝑛𝑝 ,
we compute b := 𝑐 · a ∈ Z𝑛𝑝 by scaling each element in a by 𝑐 ,

i.e. 𝑏𝑖 := 𝑐 · 𝑎𝑖 for 𝑖 ∈ [𝑛]. Let ⟨a, b⟩ :=
∑𝑛
𝑖=1 𝑎𝑖 · 𝑏𝑖 denote the

inner product between two vectors a, b ∈ Z𝑛 . Let ab = a · b :=

(𝑎1 · 𝑏1, 𝑎2 · 𝑏2, . . . , 𝑎𝑛 · 𝑏𝑛) ∈ Z𝑛𝑝 be the entry-wise multiplication

of two vectors. For a vector g = (𝑔1, 𝑔2, . . . , 𝑔𝑛) ∈ G𝑛 and a ∈ Z𝑛𝑝
we write ga =

∏𝑛
𝑖=1 𝑔𝑖

𝑎𝑖 ∈ G. For 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, we use Python
notation to denote slices of vectors as follows:

a[𝑖:𝑗 ] = (𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎 𝑗−1) ∈ Z
𝑗−𝑖
𝑝

where a is an 𝑛-length vector and indexing begins with zero. For

some integer 𝑖 and vector a ∈ Z𝑛𝑝 , a[𝑖 ] refers to the (𝑖 mod 𝑛)-th
entry in a. We often use a[−1] to refer to the last item in the array.

We define a𝑧 := (𝑧𝑎1, 𝑧𝑎2, . . . , 𝑧𝑎𝑛) for a ∈ Z𝑛𝑝 and 𝑧 ∈ Z𝑝 . Denote
the concatenation of two vectors a ∈ Z𝑖𝑝 , b ∈ Z

𝑗
𝑝 as a | | b ∈ Z𝑖+𝑗𝑝 .

Let {𝑅 [crs]}crs be a family of polynomial-time decidable rela-

tions indexed by a string crs. We call𝑤 a witness for a statement

stmtwith respect to the relation 𝑅 [crs] if (stmt,𝑤) ∈ 𝑅 [crs]. We of-

ten use 𝑅 := 𝑅 [crs] as shorthand. We write {Public Input;Witness :

Relation} to denote the relation Relation using the specified Public

Input and Witness.

For an interactive proof system ⟨Gen(1^ ),P,V⟩, the following
properties must hold:

Definition 3. Perfect Completeness. For every ^ ∈ N, every crs
in the support of Gen(1^ ), and every (stmt,𝑤) ∈ 𝑅 [crs],

Pr[⟨P(crs, stmt,𝑤),V(crs, stmt)⟩ = 1] = 1.

Definition 4. Knowledge Soundness. For every deterministic,
polynomial-time prover P∗, there exists an expected polynomial-time
extractor E𝑃∗ , and negligible function negl(·) such that for every
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stmt and every 𝑧, and every ^ ∈ N,

Pr


crs← Gen(1^ ),
𝑡𝑟 ← ⟨P∗ (crs, stmt, 𝑧),V(crs, stmt)⟩,
𝑤 ← EP∗ (crs, stmt, 𝑧) :
if 𝑡𝑟 is accepting then (stmt,𝑤) ∈ 𝑅

 ≥ 1 − negl(^)

2.5 Asynchronous Verifiable Information
Dispersal

Our protocol relies on an information dispersal protocol [22] as

specified below. Our definition is for a batch such that𝑀 messages

𝑣1, ..., 𝑣𝑀 are dispersed at once and can be individually retrieved.

Definition 5. (Asynchronous Verifiable Information Dispersal—
AVID [22]) A (𝑡 + 1, 𝑁 ) AVID scheme AVID for𝑀 values is a pair of
protocols (Disperse,Retrieve) which satisfy the following function-
ality:
• Disperse: A message is split into 𝑁 blocks, each one being stored
by one of the 𝑁 protocol participants.
• Retrieve: Message blocks are requested from the other participants
until there is sufficient information to fully reconstruct the original
message.
The following properties must be satisfied with high probability:

• Termination: If the dealer 𝐷 is correct and initiates

Disperse(𝑣1, ..., 𝑣𝑀 ), then every correct party eventually com-

pletes Disperse.
• Agreement: If any correct party completes Disperse, all correct
parties eventually complete Disperse.
• Availability: If 𝑡+1 correct parties have completedDisperse, and
some correct party initiates Retrieve(𝑖), then the party eventually

reconstructs a message 𝑣 ′
𝑖
.

• Correctness:After 𝑡+1 correct parties have completedDisperse,
then for each index 𝑖 ∈ [𝑀] there is a value 𝑣𝑖 such that if a correct
party receives 𝑣 ′

𝑖
from Retrieve(𝑖), then 𝑣 ′

𝑖
= 𝑣𝑖 . Furthermore, if

the dealer is correct, then 𝑣𝑖 is the value input by the dealer.

In particular, we use the AVID − H protocol from Cachin and

Tessaro [22], in which the total communication complexity is only

𝑂 ( |𝑣 |) in the Disperse phase for a sufficiently large batch 𝑣 ≫
𝑁 log𝑁 . That is, it achieves only constant communication overhead

— this property is essential to reaching our asymptotic goals.

2.6 Reliable Broadcast
Reliable broadcast [19] allows a dealer𝐷 to broadcast a message 𝑣 to

every party. Regardless of whether the dealer is correct, if any party

receives some output 𝑣 ′, then every party eventually receives 𝑣 ′.
Reliable broadcast is a special case of information dispersal, where

each party simply begins Retrieve immediately after Disperse com-

pletes. In fact, all efficient protocols we know of, such as Cachin and

Tessaro [22] or Duan et al. [40], are built from an AVID protocol. We

therefore skip the definition but use the ReliableBroadcast syntax
in our protocol description as shorthand for Disperse followed by

all parties immediately beginning Retrieve.

2.7 Public-Key Encryption
Wemake use of a semantically secure public-key encryption scheme

(Gen, Enc,Dec), such that EncPK (𝑚) produces a ciphertext en-

crypted under public key PK, while DecSK (𝑐) decrypts the message

using secret key SK. We assume a PKI, such that each party P𝑖 al-
ready knows SK𝑖 . We also assume that each public key is a function

of the secret key, written PK = 𝑔SK.

3 RELATEDWORK: THE MANY SETTINGS
FOR VERIFIABLE SECRET SHARING

Verifiable secret sharing (VSS) has been widely studied, but there

are many variations of security models. To help place our work in

context, we review the related work in the most relevant settings.

3.1 Completeness (Share Recovery)
An important design goal for our protocol is Completeness [52],
which essentially guarantees that every honest party receives their

share of J𝑣K. While necessary for our target application of MPC,

this property is not needed for all use cases of VSS, such as the

backup storage and key management of Unbound [46]. In MPC

however, share unavailability can cause the protocol to be aborted.

Although we use the terminology from Choudhury [31], the

completeness property appears earlier in Ben-Or et al. [13] where it

is known as Ultimate Secret Sharing. In this work, an AVSS scheme

is invoked 𝑛 times to essentially secret-share every individual share,

so that all honest parties can reconstruct their share if needed.

Recently, Basu et al. [8] give a protocol for this setting called VSS

with Share Recovery (VSS-R).

3.2 Adversarial Assumptions
Unconditional vs Computational Security. The most aggressive

adversarial assumption for VSS is a computationally-unbounded

Byzantine adversary, or information-theoretic security. There a va-
riety of such VSS protocols for both the synchronous [12] and

asynchronous [24] network settings. Information-theoretic VSS

can tolerate a maximum of 𝑡 < ⌊𝑁 /3⌋ Byzantine faults (though
such an asynchronous protocol must have a non-zero probability of

failing to terminate[1]). Information-theoretic protocols may either

be perfectly secure [33, 53] (i.e. protocols with zero failure proba-

bility) or statistically secure [52] (with some failure probability).

The best optimally-resilient, statistically secure ACSS protocol we

know of in the information-theoretic setting [32] has a bandwidth

complexity of 𝑂 (𝑁 3).
All of the unconditionally secure VSS protocols require ad-

ditional communication rounds due to the need for interactive

proofs [55]. The use of cryptography based on computational as-

sumptions can lower communication costs both in round com-

plexity and total bandwidth [6, 8, 48, 57]. In fact, our use of such

cryptography allows us to improve our amortized network band-

width by a factor of at least 𝑂 (𝑁 ) over all information theoretic

ACSS protocols we know of.

3.3 Network Models
There are various choices of network models which significantly af-

fect the achievable fault tolerance and performance of VSS protocols.

The most common network assumption is synchrony (i.e. a strictly

bounded network propagation time), which is useful since nodes

can be timed out, allowing for a fault tolerance of 𝑡 < ⌊𝑁 /2⌋. The
primary drawback of synchronous networks is that if the network

is briefly unresponsive, it can lower the resulting fault tolerance. A

related drawback of synchronous protocols is the need to tune the
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timeout parameter. If this parameter is set too small, it risks ejecting

honest parties. If a timeout parameter is too large, performance

may suffer. Asynchronous protocols avoid this dilemma.

The protocol from Basu et al. [8] works in a partially synchro-

nous network setting. Their protocol is safe and live even in an

asynchronous network, but in an asynchronous network it may fall

back to a less-efficient backup mode.

3.4 Batching
Most VSS protocols are written to share a single secret, and this is

sufficient for many applications such as distributed key generation

or small queries to an MPC-based service. Batched secret sharing

has received comparatively less attention, much of which has been

in Packed Secret Sharing (PSS).

Packed Secret Sharing. In PSS, a single polynomial has multiple

evaluation points that correspond to secrets. To achieve this, the

degree of the sharing polynomial must be 𝑡 + 𝑏 − 1, where 𝑡 is the
fault tolerance threshold and 𝑏 is the number of secrets shared.

PSS inherently requires weakening the fault tolerance threshold

as the polynomials must be of a larger degree than normal, but at

the same time, allows for more secrets to be packed as the number of

players increases. For example, using a fault tolerance of 𝑁 = 4𝑡 + 1
in the asynchronous setting would allow each polynomial to encode

3 secrets when 𝑁 = 9, but 26 secrets when 𝑁 = 101. Despite this,

some recent VSS schemes leverage PSS [7, 26, 37]. Notably, Patra

et al. [54] use packing to shave off an 𝑂 (𝑁 ) factor in their AVSS

scheme in the 𝑁 = 4𝑡 + 1 setting.
The goal of our work is to optimize the performance of AVSS at

the optimal Byzantine fault tolerance setting. However, we do feel

that lessening the fault tolerance to increase overall throughput is

a topic worth exploring in future work.

Batched Single-Share Polynomials. Batched secret sharing

through the use of many polynomials at once has been explored

in previous research [54], albeit with a differing end goal. While

this work explored batched VSS to improve the throughput of ex-

isting protocols, our end goal is to use batching to bring down the

overhead of asynchronous VSS to incentivize the development and

deployment of network-robust multiparty protocols.

3.5 Polynomial Commitments in VSS
The choice of a polynomial commitment scheme used to instantiate

a VSS protocol has large implications for the overall computational

work and bandwidth. While polynomial commitment schemes have

received recent research interest due to their usefulness in circuit

satisfiability arguments, schemes such as [15, 16] will not be consid-

ered in this analysis, as they are only intended to be used to prove

a polynomial evaluation at a single point. Instead, we will focus

on schemes derived from the original PolyCommit scheme of Kate,

Zaverucha, and Goldberg (KZG)[43] and other schemes which do

not require a structured CRS.

KZG-like Schemes. KZG polynomial commitments are a com-

mon first choice due to being both constant-sized and additively

homomorphic. While these properties translate well to protocols

that attempt to achieve new asymptotic communication bounds,

they require 𝑂 (𝑁 ) elliptic curve point multiplications per evalu-

ation proof, which can slow down actual VSS implementations

Prover

Comp

Verifier

Comp

Proof Size

PolyCommitPed [43] 𝑂 (𝑁 ) 𝑂 (1) 𝑂 (1)
PolyCommitHB 𝑂 (𝑁 ) 𝑂 (𝑁 ) 𝑂 (log𝑁 )
PolyCommitHB-Batch 𝑂 (𝑁 ) 𝑂 (log𝑁 ) 𝑂 (log𝑁 )
AMT PolyCommit [57] 𝑂 (log𝑁 ) 𝑂 (log𝑁 ) 𝑂 (log𝑁 )

Table 1: Amortized Asymptotic Behaviors of PolyCommit
Schemes

(both we and the authors of [8] noticed that 𝑂 (𝑡)-sized polynomial

commitments were faster in practice because of this).

Fortunately, the recent work of Tomescu et al. [57] addresses

this issue through the development of authenticated multipoint
evaluation trees (AMTs). More specifically, proof computation cost

is lowered considerably at the cost of 𝑂 (log(𝑡))-sized evaluation

proofs, with trade-off of the proof size and verification times be-

coming logarithmic. We consider this to be the current state of the

art for KZG-style PolyCommit schemes.

Schemes with an Unstructured CRS. Furthermore, KZG-style Poly-

Commits have other properties that make them less than ideal:

nonstandard hardness assumptions and reliance on trusted setup.

In fact, the authors of CHURP [48] thought that these problems

were significant enough that they designed their protocol to have

a backup operational mode if it detected that KZG assumptions

were violated. Further, while a trusted setup is not an unsolved

problem [17, 18] it does present a logistical hurdle to deployment

and may need to be redone on protocol redesign.

In contrast, an unstructured CRS does not require trusted setup

and can instead consist of nothing-up-my-sleeve numbers. Ped-

ersen’s VSS scheme [55] was the first VSS to use non-interactive

evaluation proofs and also happens to feature the first polynomial

commitment scheme with an unstructured CRS. While this work

predates KZG polynomial commitments, the cryptography involved

can be fit into the PolyCommit interface to create a scheme with

lightweight operations at the cost of 𝑂 (𝑁 ) size and verification, a

trade-off worth making even in recent works [8]. Our PolyCommit

scheme, hbPolyCommit, aims to be similarly useful, but with im-

proved performance characteristics. We compare hbPolyCommit

with similar work in Table 1.

4 EFFICIENT POLYNOMIAL COMMITMENTS
WITHOUT TRUSTED SETUP

Our ACSS construction uses polynomial commitments to abstract

away the cryptographic components of share validation. Most poly-

nomial commitment schemes, dating back to Kate et al. [43] and in-

cluding state-of-the-art AMTs [57], rely on a trusted setup. Our goal

in this section is to design a polynomial commitment scheme that

can achieve similar performance to the state-of-the-art, but without

requiring a trusted setup ceremony. The resulting performance of

hbACSS largely relies on the performance of this primitive.

4.1 Bulletproofs for Polynomial Evaluation
We follow an approach by Wahby et al. [58] which is to build

polynomial commitments based on Bulletproofs [20], a recent inno-

vation for proofs involving inner-products that does not require a

trusted setup. To summarize with Camenisch-Stadler notation [23],
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a Bulletproof can provide a computationally sound argument for

the following relation:

{(a ∈ Z𝑞𝑝 ) : 𝐴 = ga ∧ 𝑣 = ⟨a, y⟩} (1)

where g ∈ G𝑞 are public parameters, 𝐴 ∈ G is a commitment to a

polynomial given by coefficients a, 𝑣 is the purported evaluation

result, and y = 1, 𝑖, ..., 𝑖𝑞−1 defines the evaluation point. Put another

way, it proves that 𝑣 = 𝜙 (𝑖) where the committed polynomial is

𝜙 (𝑋 ) = a0 + a1𝑋 + ...a𝑞−1𝑋𝑞−1.

4.2 Batching verification of multiple
evaluations

Directly using the Bulletproofs inner-product argument would pro-

vide a logarithmic proof size, but without batch verification, the

verification cost would be too high for our purposes. We can de-

scribe the batching needed in our ACSS setting as follows,

{[𝑃 ↔ 𝑉𝑖 ] (a ∈ Z𝐵×𝑞𝑝 ) : 𝐴 = ga𝑗,: ∧ 𝑣 = ⟨aj,:, y:,i⟩}𝑖, 𝑗 (2)

where 𝑖 ∈ [1..𝑁 ] ranges over the verifiers in the protocol, and

𝑗 ∈ [1..𝐵] ranges over all the secrets to be shared. That is, we are
sharing 𝐵 polynomials {a𝑗 }, and each verifier 𝑉𝑖 is responsible for

checking all the polynomials at a given evaluation point y𝑖 .
In Figure 7 in the Appendix we give the base protocol for hbPoly-

Commit. For readers familiar with Bulletproofs, most of the protocol

is a straightforward adaptation of the inner-product argument of

that work. The protocol is interactive, though Fiat-Shamir can be ap-

plied at a later stage. Similarly the base proof is not zero-knowledge,

although this can be fixed in a layered way by rerandomizing the

polynomial before proving it.

In the inner-product argument protocol, the group element vec-

tor g is folded in half at each recursive step in response to a chal-

lenge. This operation requires 2𝑞 group exponentiations overall,

and different challenges result in new folding computations that

need to be performed for every proof. However, if we were able

to reuse the set of challenges for a batch of proofs, then the vector

folding would only need to be calculated once for the whole batch.

The Fiat-Shamir heuristic by itself can accommodate some degree

of parallel challenge reuse. Consider a prover who wishes to make

several simultaneous evaluation proofs to a verifier. If many proofs

are made in parallel, then the transcript for each could be included

in the hash function that maps to a challenge. This alone reduces

the verifier’s amortized total computation from 𝑂 (𝑞) to 𝑂 (log(𝑞)).
We take this idea a step further and use the same set of challenges

for all proofs for all verifiers. Since we cannot send every transcript

to ever verifier, when a challenge is required, we build a Merkle tree

where each leaf contains all of the transcripts of a given verifier and

the roothash serves as the challenge. Then we send each verifier

a Merkle branch, allowing the verifier to reconstruct the roothash

and verify that it fully incorporates all of the verifier’s transcripts.

We show this modification in Fiqure 1, where we express a prover

who is providing 𝐵 different length-𝑞 inner product arguments to 𝑁

different verifiers as a series of matrix operations. As this protocol

uses extensive matrix slicing, we refer toM𝑖,: as the 𝑖
′𝑡ℎ row of a

matrixM,M:, 𝑗 as the 𝑗 ’th column,M
1:𝑘,: as rows 1 to 𝑘 − 1 and so

on, while𝑀𝑖 𝑗 denotes a single element.

Using Merkle trees introduces communication and computation

overhead which are amortized away given a linear batch size (as

hbPolyCommit-Core (Batch Inner-Product Proof)

Let a be a 𝐵 × 𝑞 matrix, and y a 𝑞 × 𝑁 matrix

Each verifierV𝑖 knows the 𝑖’th column, y:,𝑖 .
batch_inner_product_proof

1
(stmt):

1. Setup. Run G ← G(1^ ) and let g := (𝑔0, . . . , 𝑔𝑞−1), and
crs := (G, g, ℎ).

2. Input. Both P and V𝑖 know the statement

stmt𝑖 := (A:,𝑖 , y:,𝑖 , v:,𝑖 ) and P knows a witness a such that

v := a · y and 𝐴 𝑗,𝑖 := gaj,: · ℎv𝑗,𝑖 .
3. let 𝑧𝑖 = H(stmt𝑖 )
4. P andV𝑖 compute 𝐴′

𝑗𝑖
:= 𝐴 𝑗𝑖 · ℎ𝑧𝑖 ·𝑣𝑗𝑖 .

Return batch_reduce_proof(crs,A′, y, 𝑞; a).
batch_reduce_proof(crs,A, y, 𝑞; a):

1. if 𝑞 = 1:

1.1. P sends a toV𝑖 .
1.2. V𝑖 returns the result of

∧𝐵
𝑗=1 (𝐴 𝑗𝑖

?

= 𝑔𝑎 𝑗,; · ℎ𝑎 𝑗,; ·𝑦:,𝑖 ).
2. if 𝑞 is odd:

2.1. P sends na := −a:,𝑞 toV𝑖 .
2.2. P sets a := a:,1:𝑞 .
2.3. P andV𝑖 update A, y, g, and 𝑞 as follows:

𝐴 𝑗𝑖 := 𝐴 𝑗𝑖 · 𝑔
na𝑗𝑖
𝑞 · ℎ (na𝑗𝑖 ·y𝑞𝑖 )

y := y1:𝑞,:, g := g1:𝑞, 𝑞 := 𝑞 − 1
3. Let 𝑞′ = 𝑞/2 and

a𝐿 = a:,1:𝑞′ and a𝑅 = a:,𝑞′:𝑞 be 𝐵 × 𝑞′ matrices

and y𝐿 = y1:𝑞′,: and y𝑅 = y𝑞′:𝑞,: be 𝑞′ × 𝑁 matrices

4. P computes:c𝐿 := a𝐿 · y𝑅, c𝑅 := a𝑅 · y𝐿
L𝑗𝑖 := g𝐿a𝐿𝑗,: · ℎc𝐿𝑗𝑖 , R𝑗𝑖 := g𝑅a𝑅𝑗,: · ℎc𝑅𝑗𝑖

and sends {L:,𝑖 ,R:,𝑖 } toV𝑖 .
5. P builds a Merkle Tree over all transcript sets where:

leaf𝑖 = H(g, 𝑞, ℎ, y:,𝑖 , 𝐴:,𝑖 , 𝐿:,𝑖 , 𝑅:,𝑖 , 𝑛𝑎:,𝑖 )
6. P sendsV𝑖 {𝑧 := roothash, 𝑏𝑖 := MerkleBranch(𝑖)}.
7. V𝑖 calculates leaf𝑖 and returns False if:

!MerkleVerify(leaf𝑖 , 𝑧, 𝑏𝑖 )
8. P andV𝑖 both compute:

𝐴′
𝑗𝑖
:= 𝐿𝑧

2

𝑗𝑖
· 𝐴 𝑗𝑖 · 𝑅𝑧

−2
𝑗𝑖
, g′ := g𝐿 · g𝑅

y′
:,𝑖
:= 𝑧−1 · y𝐿:,𝑖 + 𝑧1 · y𝑅:,𝑖

9. P computes a′
𝑗,:

:= 𝑧1 · a𝐿𝑗,: + 𝑧−1 · a𝑅𝑗,:.
10. Return batch_reduce_proof((G, g′, ℎ), 𝐴′, y′, 𝑞′; a′).

Figure 1: A protocol for proving many inner-product evalu-
ations to many verifiers where the y matrix is public.

they are only performed once, regardless of the batch size). This

technique reduces the prover’s group exponentiation work from

𝑂 (𝑞) to𝑂 (log(𝑞)) per proof.While this does not reduce the prover’s

overall computation complexity (due to the dot products in part

3 of reduce_proof) it does offer a large practical speed-up due to

the remaining 𝑂 (𝑡) operations being very fast.

Making it zero knowledge. So far the scheme we have pre-

sented is not zero knowledge, and in particular the statement

𝐴 itself reveals information about the witness a. In order to in-

stantiate the PolyCommit, we need to blind the statement before

batch_reduce_proof is called. This is achieved by extending the
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wrapper function (batch_inner_product_proof1) with the fol-

lowing: the prover must convince the verifier that, in addition

proving that a is a valid opening of 𝐴, it knows some 𝑢 such that

𝑢 = ⟨a, y⟩ and 𝑈 = 𝑔𝑢 . This enables implicit verification of the

original statement, as it can be instead verified in the exponent. We

give more detail on this technique in Appendix A.

5 THE HBACSS PROTOCOLS
5.1 Protocol description
We present our main construction in three incremental variants

hbACSS0, hbACSS1, hbACSS2. Our simplest protocol hbACSS0 can

be instantiated with any polynomial commitment scheme that sup-

ports at least 𝑡 + 1 evaluations. This starting point is asymptotically

similar to VSS-R [8] in that it achieves linear overhead in the op-

timistic case, but quadratic overhead in the worst case. The next

protocol hbACSS1 achieves better batching in the worst case as

well, but relies on a homomorphic polynomial commitment scheme,

which precludes (among others) our polynomial commitment with

no trusted setup in (see Appendix B). Finally, hbACSS2 achieves

the same asymptotic costs as hbACSS1 but restores the flexibility

to use any polynomial commitment.

All of the hbACSS protocols closely follow the same main steps:

(1) Dealer’s phase: the dealer computes each of the 𝐵 secrets

from polynomials and broadcasts the corresponding polyno-

mial commitments. She then encrypts each party’s shares

and evaluation proofs using their public keys and verifiably

sends them via an AVID scheme.

(2) Share validation: each party retrieves their encrypted pay-

load and attempts to decrypt and validate their shares against

the polynomial commitments. If sufficiently many parties

successfully receive valid shares, then the shares are output.

(3) Implicating a faulty dealer: if any party finds that the shares

they receive are invalid or fail to decrypt, they reveal their

secret key, enabling the other parties to confirm that the

dealer was faulty after retrieving that party’s payload from

the dispersal scheme.

(4) Share recovery: once the dealer is implicated as faulty, the

parties who did receive valid shares distribute them to enable

the remaining parties also to reconstruct their shares.

We now explain the steps of hbACSS0 in more detail, following

along with the protocol pseudocode given in Algorithm 1. Security

analysis and the other variants follow in this section.

1) Sharing and Committing. The protocol shares a batch of 𝐵

inputs at a time, {𝑠1, ..., 𝑠𝐵}. The dealer creates a degree-𝑡 Shamir

sharing 𝜙𝑘 (·) for each input such that 𝜙𝑘 (0) = 𝑠𝑘 , and each party

P𝑖 ’s share of 𝑠𝑘 is 𝜙𝑘 (𝑖).
The dealer then uses the PolyCommit procedure to create a

commitment 𝐶𝑘 to each polynomial 𝜙𝑘 (·). The commitments are

then broadcasted, ensuring all the parties can validate their shares

against the same set of commitments.

Next, for each party P𝑖 , the dealer creates an encrypted payload

𝑧𝑖 , consisting of the shares {𝜙𝑘 (𝑖)}𝑘∈[1,𝐵 ] and the polynomial eval-

uation proof 𝜋𝑖 , encrypted under P𝑖 ’s public key PK𝑖 . The dealer
then Disperses these encrypted payloads. With the broadcast and

dispersal complete, the dealer’s role in the protocol is complete—in

fact since information dispersal itself requires only one initial round

of messages from the dealer, the dealer’s entire role is just to send

messages in the first round.

2) Share Verification. Each party P𝑖 waits for ReliableBroadcast
andDisperse to complete, and then retrieves their payload {𝑧𝑖 }. The
party then attempts to decrypt and validate its shares. If decryption

is successful and all the shares are valid, then P𝑖 signals this by
sending an OK message to the other recipients. The goal of the OK
and READY messages (lines 302-307) is to ensure that if any party

outputs a share, then enough correct parties have shares for share

recovery to succeed if necessary.

3) Implicating a faulty dealer. If any honest party P𝑖 receives a
share that either fails to decrypt or fails verification, they reveal

their secret key by sending (IMPLICATE, 𝑆𝐾𝑖 , 𝑘) to all, which other

parties can use to repeat the decryption and confirm that the dealer

dispersed invalid data.

4) Share Recovery. If an honest party discovers their shares are

faulty after other honest parties have already output, the protocol

must enter Share Recovery. In this phase, parties with valid shares

are presented with evidence that the dealer is faulty. If convinced,

these parties will divulge the keys needed to decrypt their own

shares. To avoid the need for constant re-keying, we present a

practical modification for long-term keys in Section 5.3.

5.2 Bandwidth-Optimized Failure Recovery
hbACSS1: Efficient Recovery for Additively-Homomorphic Poly-

Commits. When using an additively homomorphic PolyCommit

scheme (such as AMT proofs [57]), share recovery can be performed

in a more bandwidth-efficient manner by utilizing the batch recon-

struction technique of Beerliová-Trubíniová and Hirt [10].

When instantiated with the KZG PolyCommit, our scheme

achieves an improved asymptotic worst-case bandwidth over pre-

vious work, as shown in Table 2. However, due to high real-world

proof cost of the KZG scheme, we find that optimizing for compu-

tational efficiency is more important to achieve network scaling.

Nonetheless, we present this optimization as potential future work.

We show the pseudocode for this optimization inAlgorithm 2 and

refer to the version of our ACSS scheme which utilizes additively

homomorphic polynomial commitments in this way as hbACSS1.

This algorithm specification assumes that a single evaluation can

be checked without knowledge of other evaluations, but this is not

strictly necessary (as we will later show).

In the first step of the new share recovery, parties wait for 𝑡 +
1 R1 messages from parties that received valid shares originally.

These messages can be checked individually by making use of

homomorphic properties of the PolyCommit scheme. Every correct

party P𝑗 participates in the second phase of share recovery by

reconstructing one column of the bivariate polynomial 𝜙 (·, 𝑗).
The second step is the transpose, where each party reconstructs

the row polynomial corresponding to its shares. Since all correct

parties send an R2 message, even if they did not originally receive

valid shares, we can interpolate through ordinary robust decoding

rather than using the evaluation proofs.

hbACSS2: Efficient Recovery for any PolyCommits. We now de-

scribe hbACSS2, which achieves the same asymptotic behavior as
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Algorithm 1 hbACSS0(𝐷,P1, ...,P𝑁 ) for dealer 𝐷 and parties P1, ...,P𝑁
Setup:

1: Each party begins P𝑖 with SK𝑖 such that PK𝑖 = 𝑔SK𝑖

2: The set of all {PK𝑗 }𝑗∈[𝑁 ] are publicly known

3: Set up the polynomial commitment SP← Setup(1^ , 𝑡 )

As dealer 𝐷 with input (𝑠1, ..., 𝑠𝐵 ) :

// Secret Share Encoding
101: Sample𝐵 random degree-𝑡 polynomials𝜙1 ( ·) ...𝜙𝐵 ( ·) such that

each 𝜙𝑘 (0) = 𝑠𝑘 and 𝜙𝑘 (𝑖) is P𝑖 ’s share of 𝑠𝑘
// Polynomial Commitment

102: C← {PolyCommit(𝑆𝑃,𝜙𝑘 ( ·)) }𝑘∈[𝐵 ]
103: ReliableBroadcast(C)

// Encrypt and Disperse
104: {𝜋𝑖 }𝑖∈[1,𝑁 ] ← BatchProveEval(𝑆𝑃,C, {𝜙𝑘 ( ·) }𝑘∈[1,𝐵 ] )
105: for each P𝑖 do
106: 𝑧𝑖 ← EncPK𝑖 (𝜋𝑖 ∥ {𝜙𝑘 (𝑖) }𝑘∈[1,𝐵 ] )
107: Disperse( {𝑧𝑖 }𝑖∈[1,𝑁 ] )

As receiver P𝑖 :

// Wait for broadcasts
201: Wait to receive C := {𝐶𝑘 }𝑘∈[𝐵 ] ← ReliableBroadcast
202: Wait for Disperse to complete

// Decrypt and validate
203: 𝑧𝑖 ← Retrieve(𝑖)
204: {𝜙𝑘 (𝑖) }𝑘∈[𝐵 ] , 𝜋𝑖 ← DecryptSK𝑖 (𝑧𝑖 )
205: if BatchVerifyEval(C, 𝑖, {𝜙𝑘 (𝑖) }𝑘∈[1,𝐵 ] , 𝜋𝑖 ) ≠ 1 or decryption

fails then
206: sendall (IMPLICATE, SK𝑖 )
207: otherwise, valid shares are owned, so sendall OK

As receiver P𝑖 (continued)

// Bracha-style agreement
301: On receiving OK from 2𝑡 + 1 parties,
302: sendall READY
303: On receiving READY from 𝑡 + 1 parties,
304: sendall READY (if haven’t yet)

305: Wait to receive READY from 2𝑡 + 1 parties,
306: if all owned shares are valid (line 207) then
307: output shares {𝜙𝑘 (𝑖) }𝑘∈[𝐵 ]

// Handling Implication
401: On receiving (IMPLICATE, SK𝑗 ) from some P𝑗 ,

402: ignore if already in Share Recovery
403: Discard if PK𝑗 ≠ 𝑔

SK𝑗

404: 𝑧 𝑗 ← Retrieve( 𝑗)
405: if BatchVerifyEval(C, 𝑗, {𝜙𝑘 ( 𝑗) }𝑘∈[1,𝐵 ] , 𝜋 𝑗 ) ≠ 1 or de-

cryption fails then
406: Proceed to Share Recovery below

// Share Recovery
501: if 𝑃𝑖 previously output valid shares (line 307) thenMulticast

𝑆𝐾𝑖 and return

502: Otherwise, on receiving 𝑆𝐾𝑗 from P𝑗 ,

503: 𝑧 𝑗 ← Retrieve( 𝑗)
504: if BatchVerifyEval(C, 𝑗, {𝜙𝑘 ( 𝑗), 𝜋 𝑗,𝑘 }𝑘∈[𝐵 ] ) then
505: Save {𝜙𝑘 ( 𝑗) }𝑘∈[𝐵 ]
506: On successfully verifying shares from 𝑡 + 1 parties
507: Interpolate {𝜙𝑘 (𝑖) }𝑘∈[𝐵 ] from valid shares

508: output shares {𝜙𝑘 (𝑖) }𝑘∈[𝐵 ]

Algorithm 2 hbACSS1ShareRecovery(P1 ...P𝑁 ) as party Pi
Let 𝜙 (𝑥, 𝑦) be a degree 𝑡, 𝑡 bivariate polynomial such that

𝜙 (𝑖, 𝑘) gives Pi’s share of 𝑠𝑘
501: for each set of 𝑡 + 1 secrets in 𝐵 do
502: Interpolate {𝐶𝑘 }𝑘∈[𝑁 ] from {𝐶𝑘 }𝑘∈[𝑡+1]
503: if we previously received valid shares (line 307) then
504: Interpolate {𝜋𝑖,𝑘 }𝑘∈[𝑁 ] from {𝜋𝑖,𝑘 }𝑘∈[𝑡+1]
505: for each P𝑗 do
506: send (R1, 𝜙 (𝑖, 𝑗), 𝜋𝑖,𝑗 ) to P𝑗

507: On receiving (R1, 𝜙 (𝑘, 𝑖), 𝜋𝑘,𝑖 ) from 𝑡 + 1 parties such that

VerifyEval(𝐶𝑖 , 𝑘, 𝜙 (𝑘, 𝑖), 𝜋𝑘,𝑖 ) = 1,

508: Interpolate 𝜙 ( ·, 𝑖)
509: for each P𝑗 do
510: send (R2, 𝜙 ( 𝑗, 𝑖)) to P𝑗

511: On receiving (R2, 𝜙 (𝑖, 𝑘)) from at least 2𝑡 + 1 parties,
512: Robustly interpolate 𝜙 (𝑖, ·)
513: output shares {𝜙 (𝑖, 𝑘) }𝑘∈[𝑡+1]

hbACSS1 with non-homomorphic PolyCommits at the practical

cost of a ∼3× overhead to computation and bandwidth.

We again make use of the batch recovery protocol of [10]. Ob-

serve that this base protocol requires two robust polynomial inter-

polations (In R1 and R2). In Algorithm 2 we are able to make up

for missing shares by utilizing homomorphic evaluation proofs to

individually validate each point of R1, negating the need to rely on

enough honest points to perform error correction.

Lacking this option, we can instead have the dealer provide the

additional required information. This manifests as a requirement for

the dealer to deal 𝐵𝑁 /(𝑡 +1) polynomials to share 𝐵 secrets, leading

to a ∼3× overhead in the 𝑁 = 3𝑡 + 1 setting. In short, the dealer

needs to interpolate polynomials 𝑡 + 2 through 𝑁 for every batch of

𝑡 + 1 polynomials and provide the necessary proofs to replace lines

502 and 504 in Algorithm 2. We additionally can no longer assume

that evaluation proofs are separable and instead require the dealer

to split each recipient’s proofs into 𝑁 different batch-verifiable

sets which themselves can be passed along into share recovery. We

include a complete protocol description of hbACSS2 in Appendix C.

hbACSS2 may be desirable in systems that reach a level of scaling

in which 𝑂 (𝑁 2
log(𝑁 )) amortized network bandwidth is a signifi-

cant hurdle or where DOS-like behaviour may be routine. We do

note, however, that because all of our hbACSS protocols provide

proof of Byzantine behavior (and share recovery is only necessary

under Byzantine faults), combining hbACSS0 with malicious player

eviction is likely to be more practical for many settings.
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5.3 Long-Term Key Use
For simplicity, we described hbACSS using a generic public-key

encryption scheme. While easier to explain, this would lead to

suboptimal performance in practice due to (a) the high concrete

complexity of public-key encryption and (b) the need to refresh

keys after dealer implication. This can be ameliorated with a hybrid

encryption scheme with long-term keys as follows:

At the start of the protocol, the dealer should create an ephemeral

keypair {SK𝑑 , PK𝑑 = 𝑔SK𝑑 } and add 𝑔SK𝑑
to the ReliableBroadcast

message of line 103 in Algorithm 1. Next, in line 106, the dealer

should encrypt Pi’s message with a symmetric encryption scheme,

using the shared key K
𝑖
𝑑
= PK

SK𝑑

𝑖
. Lastly, in the implicate phase,

instead of sending SK𝑖 , Pi should instead send K
𝑖
𝑑
and the zero

knowledge proof NIZK{(SK𝑖 ) : 𝑔SK𝑖 = PK𝑖 ∧ PKSK𝑖

𝑑
= K

𝑖
𝑑
}.

In this way, we avoid the need to use a different PKI for every

hbACSS instance, so long as said PKI is not used in a different pro-

tocol which could compromise the secret keys. These modifications

apply for every version of our scheme.

5.4 Security Analysis of hbACSS
Theorem 1. The hbACSS protocol (Algorithm 1) satisfies the re-

quirements of an ACSS protocol (with high probability) when instan-
tiated with a polynomial commitment scheme (Setup, PolyCommit),
an AVID protocol (Disperse,Retrieve), a reliable broadcast protocol
ReliableBroadcast, and a semantically public key encryption scheme
(Enc,Dec) with a pre-established PKI such that each party P𝑖 knows
their secret key SK𝑖 and the public keys {PK𝑖 = 𝑔SK𝑖 }𝑖∈[𝑁 ] are known.

Proof. Correctness. The correctness property follows easily:

If the dealer𝐷 is correct, then ReliableBroadcast andDisperse com-

plete, so each honest party receives their valid shares and outputs

them through the ordinary case (line 307).

Secrecy. We will first consider an honest dealer’s share secrecy

when the Share Recovery phase is not invoked (for simplicity,

we will refer to hbACSS with a batch size of 1). We do not as-

sume any secrecy property in our AVID protocol, and therefore

assume our adversary can see every message sent by the dealer:

{EncPK𝑖
(𝜋𝑖 ∥{𝜙𝑘 (𝑖)}𝑘∈[1,𝐵 ] )}𝑖∈[1,𝑁 ] , along with the broadcasted

polynomial commitment, the PKI, and its 𝑡 decryption keys.

We now design a simulator which can simulate the adversary’s

view. The simulator receives as input the 𝑡 polynomial shares be-

longing to corrupted parties. The simulator chooses a polynomial

ˆ𝜙 that is consistent with these 𝑡 shares, and for simplicity fixes the

remaining degree of freedom such that
ˆ𝜙 (0) = 0. The simulator

creates an honest commitment to
ˆ𝜙 and creates 𝑡 honest evalua-

tion proofs, and encrypts these. Lastly, the adversary generates the

adversary’s keypairs, fills the rest of the PKI with random strings,

and generates the remaining ciphertexts by encrypting zero-strings.

More formally, our indistinguishability argument is:

Real World:
SP← Setup(1^ , 𝑡)
𝐶 ← PolyCommit(SP, 𝜙 (·))
PK𝑖∈[1..𝑁 ] , SK𝑖∈[1..𝑡 ] ← GenPKI(1^ , 𝑁 )
{EncPK𝑖

((𝑖, 𝜙 (𝑖), 𝜋𝑖 ) ← ProveEval(SP, 𝜙 (𝑖), aux)}𝑖∈𝑁



Ideal World:

SP
$← Setup(1^ , 𝑡)

𝐶 ← PolyCommit(SP, 𝜙 (𝑖)𝑖∈[1..𝑡 ]
⋃

ˆ𝜙 (0) $← 𝑍 ∗𝑝 )
PK𝑖∈[1..𝑡 ] , SK𝑖∈[1..𝑡 ]

$← GenPKI(1^ , 𝑡)
PK𝑖∈[𝑡+1..𝑁 ]

$←U
{EncPK𝑖

((𝑖, ˆ𝜙 (𝑖), 𝜋𝑖 ) ← ProveEval(SP, ˆ𝜙 (𝑖), aux)}𝑖∈[1..𝑡 ]
{EncPK𝑖

(0∗)}𝑖∈[𝑡+1..𝑁 ]


In particular, a simulator algorithm that only knows 𝑡 , 𝑁 , and the

adversary’s 𝑡 shares can create a protocol view that is computation-

ally indistinguishable from the adversary’s view in hbACSS, thus

proving that our protocol leaks no additional information about 𝜙 .

The other option is for an adversary to attempt to initiate Share

Recovery. However, to get an honest party to divulge their share,

an adversary must present them with a valid Implication proof. The

correctness property of the AVID scheme ensures that honest parties

will retrieve the correct encrypted shares. Consequently, the use

of an incorrect SK will be rejected (line 402), whereas a correct SK

will retrieve the untampered message, which will verify given an

honest dealer.

Agreement. It is easy to check that parties only output shares that
are consistent with the broadcasted polynomial commitments. The

challenge is in showing that if any correct party outputs a share,

then all of them do. In the following, assume a correct party has

output a share, either through the typical path (line 307) or through

share recovery (line 508). In either case, broadcast and dispersal

must have completed and the party must have received 2𝑡 +1 READY
messages (line 305).

First, notice the READY-amplification in line 304 plays the same

role as in Bracha broadcast:

Claim 1. If any correct party outputs a share, then all correct
parties eventually receive 2𝑡 + 1 READY messages (line 305).

If any correct party receives 2𝑡 + 1 READY messages, then at least

𝑡 + 1 correct parties must have sent READY messages, which causes

all correct parties to send READY messages.

Next, the following claim ensures that share recovery can pro-

ceed if necessary:

Claim 2. If any correct party outputs a share, then at least 𝑡 + 1
correct parties receive valid shares.

For READY-amplification to begin, some correct party must have

initially sent READY after receiving 2𝑡 + 1 OK messages (line 302),

thus 𝑡 + 1 correct parties must have successfully received valid

shares (line 207).

Because of the availability and agreement properties of dispersal,

every correct party either receives valid shares (and by then Claim 1

outputs ordinarily) or else receives an invalid share and initiates

share recovery, which by Claim 2 is able to proceed. □

5.5 Performance Analysis of hbACSS
Although instantiating hbACSS with KZG PolyCommits sets a new

asymptotic bandwidth record, we focus our analysis on hbPoly-

Commit, which we believe to be more practical due to lower com-

putation costs and the lack of a trusted setup. Still, we summarize
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Protocol Best Case Crash/Delay Byzantine
hbACSS0 +HBPC 𝑂 (𝑁 log𝑁 ) 𝑂 (𝑁 log𝑁 ) 𝑂 (𝑁 2

log𝑁 )
hbACSS2 +HBPC 𝑂 (𝑁 log𝑁 ) 𝑂 (𝑁 log𝑁 ) 𝑂 (𝑁 log𝑁 )

hbACSS1 +KZG [43] 𝑂 (𝑁 ) 𝑂 (𝑁 ) 𝑂 (𝑁 )
hbACSS1 +AMT [57] 𝑂 (𝑁 log𝑁 ) 𝑂 (𝑁 log𝑁 ) 𝑂 (𝑁 log𝑁 )

VSS-R [8] 𝑂 (𝑁 ) 𝑂 (𝑁 2) 𝑂 (𝑁 2)
eAVSS-SC [6] 𝑂 (𝑁 2) 𝑂 (𝑁 2) 𝑂 (𝑁 2)

AVSS [21] 𝑂 (𝑁 3) 𝑂 (𝑁 3) 𝑂 (𝑁 3)
Table 2: Amortized whole-network bandwidth of AVSS pro-
tocols with optimal resilience and share recovery

some notable asymptotic results relating various hbACSS options

with other works in Table 2.

AVID Costs. In order to allow Byzantine parties to always be

identified (a property we refer to as non-repudiation), we rely on

Asynchronous Verifiable Information Dispersal (AVID). To send a

message of size𝑀 , our implementation of AVID in the 𝑡 < ⌊𝑁 /3⌋
setting incurs a bandwidth overhead of ∼3𝑀 + 𝑁 log(𝑁 ) for the
sender and receiver, and an overhead of ∼𝑀/𝑡 + log(𝑁 ) to be sent

and received by each non-receiving participant. The logarithmic

factors of this overhead are due to the sending of Merkle branches

to validate erasure-codings. We remark that this cost does not

depend on the size of𝑀 and is consequently amortized away with

a sufficiently large message. Computational costs related to Merkle

trees are similarly amortized.

In hbACSS, the dealer must use AVID to send 𝑁 messages of

size𝑀 , which incurs a constant factor overhead of 3𝑁𝑀 provided

that the messages are at least𝑂 (𝑁 log(𝑁 ))-sized, which is the case

given a batch size 𝐵 of at least 𝑂 (𝑁 ) and logarithmically-sized

evaluation proofs. For the purposes of this analysis, we will be

operating under those two assumptions and therefore write the

total dealer bandwidth as ∼3𝑁𝐵 log𝑁 .

A recipient must use AVID to retrieve one𝑀-sized message and

aid in the retrieval of 𝑁 − 1 other𝑀-sized messages. In hbACSS0

and hbACSS1, provided that 𝑀 is of size 𝐵 log(𝑁 ) as before, this
leads to an amortized overhead of ∼3𝐵 log(𝑁 ) sent and ∼6𝐵 log(𝑁 )
received. In the case of hbACSS2, these become ∼9𝐵 log(𝑁 ) and
∼18𝐵 log(𝑁 ) respectively.

PolyCommit Costs. The computational costs associated with our

ACSS scheme are dominated by the costs of proving and verify-

ing polynomial evaluations through a PolyCommit scheme. While

many suitable schemes could be used to instantiate hbACSS, here

we will analyse the computation involved when the hbPolyCommit

scheme is chosen.

For the dealer, the most asymptotically significant computations

are the matrix multiplications required to compute 𝑐𝐿 and 𝑐𝑅 . These

result in 2𝑡+2 field integer multiplications and 2𝑡 additions for every

proof in each batch. Thus, the total number of required field integer

operations is ∼4𝐵𝑁𝑡 (∼12𝐵𝑁𝑡 for hbACSS2) to calculate 𝐵𝑁 proofs,

leading to an amortized dealer computation complexity of 𝑂 (𝑁 )
per proof. We note that the 𝑂 (log(𝑁 )) required group operations

per proof are more significant at the levels of 𝑁 where we evaluate

our protocol, as we show by achieving similar performance to a

scheme with 𝑂 (log(𝑁 )) amortized computation in Section 7.

For the verifier, there is no similar 𝑂 (𝑁 ) operation that must be

performed for each proof in the batch. Instead, the most asymp-

totically and practically significant part of the verifier’s work is

exponentiating the group elements 𝐿 and 𝑅 at each recursive step of

the protocol for each proof. This leads to an amortized 𝑂 (log(𝑁 ))
verifier computation per proof in 𝐵.

Overall Best Case Performance. hbACSS has favorable perfor-

mance characteristics when equipped with a PolyCommit scheme

that utilizes batch amortization. In the best case, the dealer incurs

∼3𝑁𝐵 log(𝑁 ) bandwidth overhead in sending 𝐵 logarithmically-

sized proofs to 𝑁 different receivers. The dealer performs 𝑂 (𝑁 )
computation per proof in field integer operations, and at most

𝑂 (log(𝑁 )) computation for all other operations. This does not

change, regardless of the failure model.

In the best case, recipients receive and verify 𝐵 evaluation proofs

and aid in the retrieval of an additional 𝑁𝐵 proofs. The amor-

tized computation cost is then 𝑂 (log(𝑁 )) while the bandwidth

is ∼3𝐵 log(𝑁 ) sent and ∼6𝐵 log(𝑁 ) received. All of these costs in-
crease by a constant factor of 3 in hbACSS2.

Crash Fault Performance. As a fully asynchronous protocol, the

performance of hbACSS is minimally affected by crashed nodes,

network delays, and partitions. The protocol will progress as quickly

as computation and the network allow.

Byzantine Fault Performance. If the dealer is Byzantine, we use
our Share Recovery protocol satisfy our agreement property: if
some honest parties output valid shares, all honest parties do. In

hbACSS0, those without valid shares initially need to download

at least 𝑡 + 1 batches of shares and run BatchVerifyEval on each

of them. When using hbPolyCommit, this requires an additional

𝑂 (𝐵𝑁 log(𝑁 )) bandwidth and 𝑂 (𝐵𝑁 log(𝑁 )) computation to ob-

tain 𝐵 valid shares, while honest parties with valid shares incur an

additional 𝑂 (𝐵 log(𝑁 )) computation to check an implication and

𝑂 (𝐵𝑁 log(𝑁 )) bandwidth in assisting AVID retrievals.

In contrast, hbACSS1 and hbACSS2 use a more efficient share re-

covery mechanism. In the first round, each honest party with valid

shares sends𝑂 (𝐵 log(𝑁 )) information, followed by all parties send-

ing𝑂 (𝐵) in the second round. The overall amortized network band-

width is thus still 𝑂 (𝑁 log(𝑁 )). Computationally, nodes need to

validate an additional 𝐵(𝑡 +1)/𝑁 shares in round one, but otherwise

only need to perform polynomial interpolations and evaluations.

A Byzantine recipient can attempt to interfere with the AVID

protocol, inaccurately send OK and READY messages, and attempt

to falsely implicate the dealer. Of these, none impact the security

of the protocol and only false implications affect protocol perfor-

mance. A Byzantine adversary controlling 𝑡 participants could initi-

ate 𝑡 false IMPLICATE messages, causing honest parties to retrieve

𝑂 (𝐵𝑁 log(𝑁 )) additional data and run BatchVerifyEval 𝑡 times.

The Byzantine recipient case can be mitigated against by us-

ing even larger batches. Namely, instead of using one 𝑂 (𝑁 )-sized
batch, the dealer should deal 𝑁 different 𝑂 (𝑁 )-sized sub-batches,

for a total batch size of 𝑂 (𝑁 2). Each sub-batch is encrypted and

dispersed individually and the IMPLICATE message is modified to

include a block number where an invalid proof can be found. With

this modification, the amortized computation and communication

complexity of an honest party who receives valid shares is the same

as in the best case.
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We remark that although our performance can be worsened by a

Byzantine adversary, every Byzantine action leaves behind a proof

of the adversary’s malfeasance. Since Byzantine adversaries can

be identified and excluded from subsequent protocol invocations,

we do not feel that a performance degradation due to Byzantine

behavior is a significant drawback of our protocol.

6 USING HBAVSS FOR ROBUST INPUT TO
MPC

Recent work [47] has explored the practicality of robust and asyn-

chronous MPC, but falls short of full robustness, instead dividing

itself into a robust online phase which responds to client inputs and

a non-robust offline phase which performs input-independent pre-

computation. One such precomputation is generating randomized

input masks: unknown random values shared amongst the servers

to facilitate easy client input. When a client wishes to contribute an

input𝑚, servers send the client their shares of the mask 𝑟 , allowing

the client to privately reconstruct it. The client then broadcasts

(𝑟 +𝑚) and servers locally compute J𝑚K = (𝑟 +𝑚) − J𝑟K.
Beerliová-Trubíniová and Hirt [10] introduced a method to

compute secret-shared random values by using hyperinvertible

matrices to create linear combinations of (non-verifiably) secret

shared locally-random values. However, as this protocol lacks non-

repudiation in the case of faults, its player elimination protocol

proceeds two at a time, making it unsuitable for an asynchronous,

optimally fault tolerant setting.

The use of a complete AVSS scheme bypasses this issue entirely,

as it guarantees that all honest parties hold well-formed shares and

no further integrity checking is needed. As the previous integrity

check involved opening some random values, we also improve

input mask yield. Provided that 𝑁 − 𝑡 ≤ 𝑗 ≤ 𝑁 parties secret share

a random input, the yield 𝑦 is given by 𝑗 − 𝑡 . An asynchronous

common subset protocol can be used to agree on a 𝑗-sized set of

inputs to use, provided parties have access to a random beacon.

Regardless of whether a client uses input masks or acts as an

AVSS dealer to instantiate its inputs, we stress that using an AVSS

with recoverable shares is essential. Once the MPC is underway,

the shares J𝑚K may be used in arithmetic circuits, depending on

the computation. Further, it may be necessary to reconstruct linear

combinations of J𝑚K along with inputs contributed by other parties.

In our setting, we expect MPC servers to be fairly long-lasting

entities. Because hbACSS provides non-repudiation, any server

acting maliciously will be caught and should be excluded from

subsequent rounds. Consequently, we expect Byzantine faults to be

minimal and therefore use hbACSS0 for our application as it offers

the best performance in scenarios where such faults are uncommon.

We evaluate the performance of our solution in Section 7.

7 IMPLEMENTATION AND EVALUATION
In this section, we evaluate hbPolyCommit and hbACSS in the 𝑁 =

3𝑡+1 setting. In particular, we directly compare hbPolyCommit with

the state-of-the-art AMT polynomial commitments, demonstrate

baseline costs of each of our protocols, show full end-to-end costs

of hbACSS0 and hbACSS2 when instantiated with hbPolyCommit,

and demonstrate the resulting MPC input mask yield.
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Experimental Setup. We implemented
1

hbPolyCommit and

hbACSS primarily in Python, using a wrapper for the Zcash team’s

Rust pairing library [42], which implements the bls12-381 elliptic

curve. Our benchmarks are all single-threaded and done inside a

docker container for easy replicability. Since the original AMT VSS

benchmarks run on Linux, we created a docker image for the AMT

benchmarks so that container-induced overhead is consistent. We

also modified their code so that it would run in the 𝑁 = 3𝑡 + 1
setting. Both containers run on our experiment machine which has

an Intel Xeon E5-2620 v4 CPU and 128GB RAM.

All benchmarks are given as a per-share per-user measurement.

Unless otherwise specified, our benchmarks are run on a batch of

∼2𝑁 shares, as we found this sufficient to demonstrate asymptotic

behavior. All experiments were run using pytest-benchmark and

were run at least three times.

Limitations. We believe the code can be optimized by moving

more of it to Rust and optimizing some algorithms, such as poly-

nomial interpolation. Our ACSS evaluation does not account for

network latency as we estimate network effects to be relatively in-

significant. However, we still perform serialization and use Asyncio

queues to approximate I/O between tasks.

7.1 Polynomial Commitment Evaluations
Proof generation time. In Figure 2, we show the per-proof gener-

ation time of AMT PolyCommits and hbPolyCommit. Asymptoti-

cally, AMT’s 𝑂 (log(𝑁 )) per-proof generation time is better than

hbPolyCommit’s 𝑂 (𝑁 ) amortized per-proof generation time, but

the practical gap between them is small since the only linear com-

ponent of hbPolyCommit is cheap field operations. From the graph,

the reference implementation for AMTs shows a spike in costs

whenever 𝑁 crosses a power of 2, whereas hbPolyCommit shows a

jagged-but-gradual increase in cost as the amount of work required

varies based on the number of 1’s in the bit decomposition of 𝑡 + 1.
Verification time. In Figure 3, we show the per-prove verifica-

tion times of both PolyCommit schemes. Both schemes exhibit a

𝑂 (log𝑁 ) runtime and have similar performance in practice. hbPoly-

Commit is jagged for the same reasons as before, with AMT ex-

hibiting spikes when 𝑡 crosses a power of 2.

Proof size. Given𝑁 = 3𝑡 +1 and assuming one field element takes

32 bytes, hbPolyCommit roughly needs 32+(⌈log(𝑡)⌉+1)∗2∗32 bytes
amortized per proof. In practice, as 𝑁 increases, the length varies

slightly since our hbPolyCommit construction handles odd and even

𝑁 differently at each recursive step. AMT PolyCommits need 32 +
(⌈log(𝑁 )⌉ + 1) ∗ 32 bytes per proof. Though hbPolyCommit proofs

are slightly larger, both exhibit the same asymptotic behavior.

7.2 hbACSS Evaluations
We implement our ACSS protocols and evaluate them in two fault

scenarios: zero faults and 𝑡 dealer-injected faults (the maximum

in which the protocol will still complete). We avoid evaluating

Byzantine receivers as all they can do to slow down the protocol

is send false IMPLICATE messages, which are easily detected and

the impact can be mitigated by more batching (as in Section 5.5).

Moreover, DOS-like behavior could easily be done out-of-band.

1
code available at github.com/tyurek/hbACSS

Figure 4 shows our fault-free performance for hbACSS0 instanti-

ated with both hbPolyCommit and AMTs as well as hbACSS2 with

hbPolyCommit. To see the amortization benefits of hbACSS2, we

ran it with a batch size of ∼𝑁 2
(as necessitated by design).

The performance of hbACSS0 with AMTs is estimated from

our baseline estimates and results from running their benchmark

scripts. While it would make sense to include hbACSS1 +AMT, this

would require interpolating their evaluation proofs, which we have

not reimplemented in our framework. Regardless, our fault-free

benchmark shows that hbACSS0 +AMT is slightly faster as expected,

while hbACSS2 +hbPolyCommit incurs a modest overhead.

These trends change in Figure 5 where we evaluate the end-to-

end performance when the dealer sends faulty shares to 𝑡 different

verifiers. Since hbACSS0 needs to verify asymptotically more eval-

uation proofs under maximal Byzantine faults, its performance

relative to hbACSS2 decays as 𝑁 grows larger.

While our figures do not include latency and bandwidth, we

estimate that they do not significantly impact our protocol’s per-

formance. To give some real-world context, Amazon Web Services

(AWS) has a typical 206 ms inter-region latency between North

Virginia and Sydney [5, 56] with roughly 55 Mbps of bandwidth

[36]. hbACSS has a constant round complexity of four one-way

trips in the fault-free case (two for ReliableBroadcast and AVID in

parallel, one for theOKmessages and one for the READYmessages),

resulting in roughly 0.8 seconds of cumulative latency that gets

amortized away with a sufficiently large batch size.

When 𝑁 = 127 (the largest case we evaluate), the hbPolyCommit

evaluation proofs are roughly 416 bytes each, which is far larger

than anything else sent in hbACSS. Nonetheless, after applying the

roughly 6𝑥 bandwidth penalty our method of distributing payloads,

recipients could still receive thousands of shares per second with

our scheme if computation was not an issue.

7.3 Input Mask Generation
In Section 6 we showed how ACSS can be used to robustly generate

input masks in an asynchronous setting. Moreover, the number of

input masks yielded is linear in the number of total shares dealt.

We demonstrate this in Figure 6: even with 𝑡 crash faults, the total

per-node computation required is only moderately affected, with

roughly 30% overhead for larger values of 𝑁 . In the case where

all simulated servers ran a hbACSS instance, we saw yields of ∼39
input masks per second when 𝑁 = 31 and ∼9 per second at 𝑁 = 127.

7.4 Further Applications
We note that while this paper primarily focuses on one particular

MPC use-case, the tools that we have developed here are more

broadly useful in the MPC space. For example, many asynchronous

MPC protocols [9, 34, 35, 52, 54] rely on AVSS for robustness, which

usually ends up as the primary bottleneck. The recent work of [32]

set a new network bandwidth record in optimally-resilient infor-

mation theoretic ACSS of 𝑂 (𝑁 3), which when combined with the

techniques of [35] achieved an asynchronous MPC with𝑂 (𝑁 4) bits
of bandwidth per multiplication gate. By using the same techniques

from [35] and switching to a computational adversary, our work

could result 𝑂 (𝑁 2) bits per multiplication gate given trusted setup

and 𝑂 (𝑁 2
log𝑁 ) bits without trusted setup. We also remark that
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our protocols could prove useful in the construction of a random-

ness beacon (an input mask is merely a piece of public randomness),

a problem which has seen a surge of recent interest [14, 27, 38].

However, we leave such applications to future work.

8 CONCLUSION
In this paper, we took a significant step towards closing the gap

between theory and practice in robust and asynchronous multi-

party computation. We designed and implemented a batch-efficient

ACSS scheme which itself utilizes batch-efficient polynomial com-

mitment schemes. We created the first optimally-resilient ACSS

protocol with amortized linear network overhead along the way, but

focused our attention on computational hurdles and trusted setup

assumptions that stand as a barrier to practical deployment (while

still achieving new asymptotic goals). To that end, we developed

a polynomial commitment protocol which performs comparably

to peer constructions while removing the need for trusted setup.

Lastly, we demonstrated the utility of our constructions in robustly

generating MPC input masks.
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A INTERACTIVE INNER-PRODUCT
ARGUMENT

A.1 Definitions
Definition 6. Discrete Log Relation Assumption. For all proba-

bilistic, polynomial-time adversaries A and for all 𝑛 ≥ 2 there exists
a negligible function negl(^) such that

Pr


G = Setup(1^ ), 𝑔1, . . . , 𝑔𝑛

$← G
𝑎1, . . . , 𝑎𝑛 ∈ Z𝑝 ← A(G, 𝑔1, . . . , 𝑔𝑛) :
∃𝑎𝑖 ≠ 0 ∧∏𝑛

𝑖=1 𝑔𝑖
𝑎𝑖 = 1

 ≤ negl(^)

We say

∏𝑛
𝑖=1 𝑔𝑖

𝑎𝑖 = 1 is a non-trivial discrete log relation be-

tween the generators 𝑔1, . . . , 𝑔𝑛 .

Definition 7. Zero-Knowledge Argument of Knowledge. An
argument of knowledge for 𝑅 [crs] consists of three probabilistic

polynomial-time algorithms: the prover P, verifierV , and Gen(1^ )
which outputs a common reference string crs. The transcript pro-
duced by P and V when interacting on inputs 𝑠 and 𝑡 is de-
noted by 𝑡𝑟 ← ⟨P(crs, 𝑠),V(csr, 𝑡)⟩. If V outputs 1 we write
⟨P(crs, 𝑠),V(crs, 𝑡)⟩ = 1 and say that 𝑡𝑟 is accepting. Similarly,
ifV outputs 0 we write ⟨P(crs, 𝑠),V(crs, 𝑡)⟩ = 0 and say that 𝑡𝑟 is
rejecting.

Definition 8. Perfect Special Honest-Verifier Zero-Knowledge
(PSHVZK). There exists a polynomial-time simulator S such that for
every ^ ∈ N, every crs in the support of Gen(1^ ), every (stmt,𝑤) ∈
𝑅 [crs] and every 𝑧,

{⟨P(crs, stmt,𝑤),V(crs, stmt; 𝑧)⟩} ≡ {S(crs, stmt, 𝑧)}.

A.2 Knowledge Soundness
Wewill need to apply the following general forking lemma of Bootle

et al. [15, 20] to prove knowledge soundness.

Theorem 2. General forking lemma [15, 20]. Suppose that there
exists a polynomial-time witness extractor E(crs, ·) such that when
given any crs in the support of Gen(1^ ) and a polynomial-size tree of
accepting transcripts, E succeeds with negligible failure in extracting
a witness or a non-trivial discrete logarithm relation between the
generators in the crs.

Lemma 1. The protocol presented in Figures 7 satisfies our defini-
tion of knowledge soundness (Definition 4) so long as the Discrete Log
Assumption (Assumption 6) holds in G.

Proof. We will show that if P can succeed in completing the

proof for four different challenges fromV for the same initial state-

ment (g, ℎ, 𝐴), E can either extract a witness a, or find a nontrivial

discrete logarithm relation between g and h. It suffices to show that

this holds for one recursive step since the hardness of finding a

discrete logarithm relation between g′ and ℎ implies the hardness

of computing one between g and ℎ in Protocol 7. The recursive

protocol is the case where the (7a.) branch is ignored in Figure 7.

E works as follows. Suppose that the four provers produce a′
1
,

a′
2
, a′

3
, and a′

4
after respectively receiving 𝑧1, 𝑧2, 𝑧3, and 𝑧4 from the

same initial statement such that 𝑧𝑖 ≠ 𝑧 𝑗 for 1 ≤ 𝑖 ≤ 𝑗 ≤ 4. We have

that for 𝑖 ∈ [4]:

(g𝑧
−1
𝑖

[:𝑛′ ] · g
𝑧1𝑖
[𝑛′:] )

a′𝑖 · ℎ ⟨a
′
𝑖 ,y𝑖 ⟩ = 𝐿𝑧

2

𝑖 · 𝐴 · 𝑅𝑧
−2
𝑖 (3)

Now, so long as the following holds

det

𝑧−2
1

𝑧−2
2

𝑧−2
3

1 1 1

𝑧2
1

𝑧2
2

𝑧2
3

 ≠ 0

we can find coefficients 𝑣1, 𝑣2, and 𝑣3 using 𝑧1, 𝑧2 and 𝑧3:

3∑
𝑖=1

𝑣𝑖𝑧
2

𝑖 = 1,

3∑
𝑖=1

𝑣𝑖 = 0,

3∑
𝑖=1

𝑣𝑖𝑧
−2
𝑖 = 0.
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Interactive Inner-Product Argument of Knowledge

• inner_product_proof
1
(stmt) :

1. Setup. Run G← G(1^ ) and let 𝑔0, . . . , 𝑔𝑛−1, ℎ be random gen-

erators of G. Let g := (𝑔0, . . . , 𝑔𝑛−1) and crs := (G, g, ℎ) .
2. Input. Both P and V know the statement stmt = (𝐴, y, 𝑣)

where y ∈ Z𝑛𝑝 and P knows a witness a such that 𝑣 = ⟨a, y⟩
and ga · ℎ𝑣 = 𝐴.

3. V challenges P with a uniform sample 𝑧
$← Z∗𝑝 .

4. P and V compute 𝐴′ := 𝐴 · ℎ𝑧·𝑣 .
Return reduce_proof(crs, 𝐴′, y, 𝑛; a) .

• reduce_proof(crs, 𝐴, y, 𝑛; a) :
1. if 𝑛 = 1:

1.1. P sends a to V .

1.2. V returns the result of 𝐴
?

= 𝑔𝑎 · ℎ⟨𝑎,𝑦⟩ .
2. if 𝑛 is odd:

2.1. P sends a[−1] to V .

2.2. P sets a := a[:−1] .
2.3. P and V update 𝐴, y, g, and 𝑛 as follows:

𝐴 := 𝐴 · g−a[−1][−1] · ℎ
−(a[−1] ·y[−1] )

y := y[:−1] , g := g[:−1] , 𝑛 := 𝑛 − 1
3. P computes:

𝑐𝐿 := ⟨a[:𝑛′ ] , y[𝑛′:] ⟩, 𝑐𝑅 := ⟨a[𝑛′:] , y[:𝑛′ ] ⟩
𝐿 := g[𝑛′:]

a[:𝑛′ ] · ℎ𝑐𝐿 , 𝑅 := g[:𝑛′ ]
a[𝑛′:] · ℎ𝑐𝑅

and sends 𝐿 and 𝑅 to V .

4. V challenges P with a uniform sample 𝑧
$← Z∗𝑝 .

5. P and V both compute:

𝐴′ := 𝐿𝑧
2

𝐴𝑅𝑧
−2
, g′ := g𝑧

−1
[:𝑛′ ] · g

𝑧1

[𝑛′:]
y′ := 𝑧−1 · y[:𝑛′ ] + 𝑧1 · y[𝑛′:]

6. P computes a′ := 𝑧1 · a[:𝑛′ ] + 𝑧−1 · a[𝑛′:] .
7a Recursive option. Return:

reduce_proof( (G, g′, ℎ), 𝐴′, y′, 𝑛′; a′) .
7b Non-recursive option (just for analysis).
7b.1. P sends 𝑎′ to V .

7b.2. V returns the result of the following:

⟨a′, y′⟩ ?

= 𝑐𝐿 · 𝑧2 + 𝑐𝑅 · 𝑧−2 + 𝑣 ∧
g′a
′ · ℎ𝑐𝐿 ·𝑧2+𝑐𝑅 ·𝑧−2+𝑣 ?

= 𝐴′.

Figure 7: Protocol specification of the (non-zero-knowledge)
inner-product argument. This protocol is optimized for eval-
uation proofs by publicizing the y vector which halves com-
munication complexity with respect to Bulletproofs [20].

These coefficients yield a discrete logarithm representation of 𝐿

as follows:

3∏
𝑖=1

((g𝑧
−1
𝑖

[:𝑛′ ] · g
𝑧𝑖
[𝑛′:] )

a′𝑖 · ℎ ⟨a
′
𝑖 ,y𝑖 ⟩)𝑣𝑖 =

3∏
𝑖=3

(𝐿𝑧
2

𝑖𝐴𝑅𝑧
−2
𝑖 )𝑣𝑖

3∏
𝑖=1

g𝑣𝑖𝑧
−1
𝑖 a′𝑖

[:𝑛′ ] · g
𝑣𝑖𝑧𝑖a′𝑖
[𝑛′:] · ℎ

𝑣𝑖 ⟨a′𝑖 ,y𝑖 ⟩ =
3∏
𝑖=3

𝐿𝑣𝑖𝑧
2

𝑖 · 𝐴𝑣𝑖 · 𝑅𝑣𝑖𝑧
−2
𝑖

g
∑

3

𝑖=1 𝑣𝑖𝑧
−1
𝑖 a′𝑖

[:𝑛′ ] · g
∑

3

𝑖=1 𝑣𝑖𝑧𝑖a
′
𝑖

[𝑛′:] · ℎ
∑

3

𝑖=1 𝑣𝑖 ⟨a′𝑖 ,y𝑖 ⟩ = 𝐿

ga𝐿 · ℎ𝑣𝐿 = 𝐿

where

a𝐿 = (
3∑
𝑖=1

𝑣𝑖𝑧
−1
𝑖 a′𝑖 ) | | (

3∑
𝑖=1

𝑣𝑖𝑧𝑖a′𝑖 ) ∈ Z
𝑛
𝑝 ,

𝑣𝐿 =

3∑
𝑖=1

𝑣𝑖 ⟨a′𝑖 , y𝑖 ⟩ ∈ Z𝑝 .

By computing fresh coefficients to target the 𝐴 and 𝑅 terms

respectively, we can obtain discrete logarithm representations of

all three terms:

𝐿 = ga𝐿 · ℎ𝑣𝐿 , 𝐴 = ga𝐴 · ℎ𝑣𝐴 , 𝑅 = ga𝑅 · ℎ𝑣𝑅 . (4)

Using the equations in (4), we can simplify the equations in (3):

g
𝑧−1𝑖 a′𝑖
[:𝑛′ ] ·g

𝑧𝑖a′𝑖
[𝑛′:] · ℎ

⟨a′𝑖 ,y𝑖 ⟩

= 𝐿𝑧
2

𝑖𝐴𝑅𝑧
−2
𝑖

= (ga𝐿ℎ𝑣𝐿 )𝑧
2

𝑖 · (gaℎ𝑣𝐴 ) · (ga𝑅ℎ𝑣𝑅 )𝑧
−2
𝑖

= ga𝐿𝑧
2

𝑖 +a𝐴+a𝑅𝑧−2𝑖 ℎ𝑣𝐿𝑧
2

𝑖 +𝑣𝐴+𝑣𝑅𝑧−2𝑖 for 𝑖 ∈ [4] .

This implies the following equations for 𝑖 ∈ [4]:

a′𝑖𝑧
−1
𝑖 = a𝐿, [:𝑛′ ]𝑧

2

𝑖 + a𝐴, [:𝑛′ ] + a𝑅, [:𝑛′ ]𝑧
−2
𝑖 (5)

a′𝑖𝑧
1

𝑖 = a𝐿, [𝑛′:]𝑧
2

𝑖 + a𝐴, [𝑛′:] + a𝑅, [𝑛′:]𝑧
−2
𝑖 (6)

⟨a′𝑖 , y𝑖 ⟩ = 𝑣𝐿𝑧
2

𝑖 + 𝑣𝐴 + 𝑣𝑅𝑧
−2
𝑖 (7)

Taking a linear combination of equations (5) and (6) above with

𝑧𝑖 and 𝑧
−1
𝑖

as the respective coefficients, we have that for 𝑖 ∈ [4],

a𝐿, [:𝑛′ ]𝑧
3

𝑖 + (a𝐴, [:𝑛′ ] − a𝐿, [𝑛′:] )𝑧𝑖 (8)

+ (a𝑅, [:𝑛′ ] − a𝐴, [𝑛′:] )𝑧−1𝑖 − a𝑅, [𝑛′:]𝑧
−3
𝑖 = 0. (9)

Now, if the following holds:

det


𝑧−3
1

𝑧−3
2

𝑧−3
3

𝑧−3
4

𝑧−1
1

𝑧−1
2

𝑧−1
3

𝑧−1
4

𝑧1
1

𝑧1
2

𝑧1
3

𝑧1
4

𝑧3
1

𝑧3
2

𝑧3
3

𝑧3
4

 ≠ 0

it must be that:

a𝐿, [:𝑛′ ] = a𝑅, [𝑛′:] = 0,

a𝐴, [:𝑛′ ] = a𝐿, [𝑛′:] , and
a𝑅, [:𝑛′ ] = a𝐴, [𝑛′:] .

We can use these equations to simplify the equations in (9):

a′𝑖 = 𝑧𝑖a𝐴, [:𝑛′ ] + 𝑧
−1
𝑖 a𝐴, [𝑛′:] for 𝑖 ∈ [4] .

Thus, E can extract a𝐴 knowing 𝑧1, 𝑧2, a′
1
, and a′

2
by solving

linear equations as long as 𝑧2
1
≠ 𝑧2

2
. Finally, since equation (7) must

hold, it must be that for 𝑖 ∈ [4]:

𝑐𝐿𝑧
2

𝑖 + 𝑐𝑅𝑧
−2
𝑖 + 𝑣

= ⟨𝑧𝑖a𝐴, [:𝑛′ ] + 𝑧−1𝑖 a𝐴, [𝑛′:] , 𝑧
−1
𝑖 y[:𝑛′ ] + 𝑧𝑖y[𝑛′:]⟩

= 𝑧2𝑖 ⟨a𝐴, [:𝑛′ ] , y[𝑛′:]⟩ + 𝑧
−2
𝑖 ⟨a𝐴, [𝑛′:] , y[:𝑛′ ]⟩ + ⟨a𝐴, y⟩. (10)

For equation (10) to hold for 𝑧1, 𝑧2, and 𝑧3, it must be that a𝐴
satisfies ⟨a𝐴, y⟩ = 𝑣 .

□
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A.3 Making the Protocol Zero-Knowledge
The protocol presented in Figures 7 and 7 is not zero-knowledge; we
present a modified protocol in Figure 8 which achieves perfect zero-

knowledge using the non-zero-knowledge inner-product argument

as a subroutine.

Zero-Knowledge Argument of Knowledge

inner_product_proof_ZK(s ∈ Z𝑡+1𝑝 , 𝜌 ∈ Z𝑝 ):
Setup. Run G ← G(1^ ) and let 𝑔, ℎ, 𝑔0, . . . , 𝑔𝑡 be random

generators of G. Let g := (𝑔0, . . . , 𝑔𝑡 ).
Input. Both P andV know the statement (𝐴, y,𝑈 ) where
y ∈ Z𝑛𝑝 and 𝑈 ∈ G. P additionally knows the witness

a ∈ Z𝑡+1𝑝 and 𝑟 ∈ Z𝑝 satisfying ga ·ℎ𝑟 = 𝐴 and 𝑢 satisfying

𝑔𝑢 = 𝑈 .

1. P computes 𝑇 := 𝑔 ⟨s,y⟩ and 𝑆 := gs · ℎ𝜌 , and sends 𝑆 and

𝑇 toV .

2. V challenges P with a uniform sample 𝑧 ∈ Z∗𝑝 .
3. P computes c := a + 𝑧 · s, a := 𝑟 + 𝑧 · 𝜌 , 𝑡 := ⟨c, y⟩, and
𝐶 := gc. It then sends c, a , 𝑡 , and 𝐶 toV .

4. V asserts that the following holds:

𝑔𝑡
?

= 𝑔𝑢 ·𝑇𝑧 ∧ gc · ℎa ?

= 𝑆𝑧 · 𝐴 ∧ 𝑡
?

= ⟨c, y⟩
5. P andV interactively compute

reduce_proof((G, g, ℎ), 𝐴, y, 𝑡 + 1; a).
6. V outputs success if the inner product proof succeeds.

Figure 8: Modified wrapper function which first blinds the
statement in order to achieve perfect zero-knowledge.

A.3.1 Security Proofs. We now show that our modified protocol

in Figure 8 satisfies our definitions of security.

Lemma 2. The protocol presented in Figure 8 satisfies perfect special
honest-verifier zero-knowledge (Definition 8).

Proof. The simulator S needs to simulate the transcript be-

tween P andV without knowing the witness. Given theV’s ran-

domness 𝑧 ∈ Z∗𝑝 , S can simulate a protocol transcript for proving

an evaluation at point 𝑦 as follows:

First, the S chooses c
$← Z𝑛𝑝 and a

$← Z𝑝 and computes:

𝑡 := ⟨c, y⟩, 𝑇 :=

(
𝑔𝑡

𝑔𝑢

)𝑧−1
, 𝑆 :=

(
gc · ℎa
𝐴

)𝑧−1
S then runs the non-zero-knowledge protocol to simulate the re-

maining transcript messages. It follows that the simulated transcript

are identically distributed to the honestly generated transcript on

randomness 𝑧. □

Lemma 3. There exists a polynomial-time extractor E such that
given poly(^) accepting transcripts for the same initial statement,
E either extracts a valid witness to the statement or a generalized
discrete logarithm relation between the generators (g, 𝑔, ℎ) for the
protocol presented in Figure 8.

Proof. Given poly(^) accepting transcripts corresponding to

the same initial statement at Line 5, we use the extractor of Lemma 1

to extract all witnesses corresponding to the inner-product proof.

We proceed if there are at least two.

Given two accepting transcripts with different (c𝑖 , 𝑧𝑖 , a𝑖 , 𝑡𝑖 ) tu-
ples for 𝑖 ∈ [2], we can compute decommitments for 𝑆 , 𝐴, and 𝑇 in

the exponent as follows:

𝑆 = (gc1−c2 · ℎa1−a2 )
1

𝑧
1
−𝑧

2 ,

𝐴 = gc1−
𝑧
1
(c
1
−c

2
)

𝑧
1
−𝑧

2 · ℎa1−
𝑧
1
(a
1
−a

2
)

𝑧
1
−𝑧

2 ,

𝑇 = 𝑔
𝑡
1
−𝑡

2

𝑧
1
−𝑧

2

Thus, we define s, 𝜌 , a, 𝑟 , and 𝑡 from the exponents as follows:

s := (c1 − c2) (𝑧1 − 𝑧2)−1,
𝜌 := (a1 − a2) (𝑧1 − 𝑧2)−1,
a := c1 − 𝑧1 (c1 − c2) (𝑧1 − 𝑧2)−1,
𝑟 := a1 − 𝑧1 (a1 − a2) (𝑧1 − 𝑧2)−1,
𝑡 := (𝑡1 − 𝑡2) (𝑧1 − 𝑧2)−1

Now, verification equations (Line 4 in Figure 8) must hold for the

two accepting transcripts. From 𝑔𝑡𝑖 = 𝑔𝑢 · ℎa𝑖 , we get 𝑢 = 𝑡𝑖 − 𝑡 · 𝑧𝑖
for 𝑖 ∈ [2]. Furthermore, from g𝑖 c𝑖 · ℎa𝑖 = 𝑆𝑧𝑖 · 𝐴, it must be that

c𝑖 = s𝑧𝑖 + a and a𝑖 = 𝜌𝑧𝑖 + 𝑟 for 𝑖 ∈ [2] or we would have a

generalized discrete logarithm relation between generators g and

ℎ. Hence if we have not extracted a generalized discrete logarithm

relation, we get that ⟨s𝑧𝑖 + a, y⟩ = 𝑢 + 𝑡𝑧𝑖 for 𝑖 ∈ [2], which implies

that ⟨a, y⟩ = 𝑢. That is, the extracted components a and 𝑢 satisfy

the statement being proven. □

We can now conclude with the proof of the following theorem:

Theorem 3. Assuming that discrete-log relation (Definition 6)
holds for the group generator G, the protocol presented in Figure 8 is
a secure zero-knowledge argument of knowledge.

Proof. Perfect completeness follows trivially from the construc-

tion. We have perfect special honest-verifier zero-knowledge from

Lemma 2. Knowledge soundness follows from Lemma 3 and Theo-

rem 2 of Bootle et al. □

Corollary 1. It follows from the witness-extended emulation
lemma of Lindell (Lemma 3.1 of [45]) that the protocol presented in
Figure 8 has witness-extended emulation.

B HBPOLYCOMMIT
B.1 Explicit hbPolyCommit Construction
So far, we have presented and proved the security of an interactive

inner-product argument protocol. Since the protocol is public-coin,

we can convert it into a non-interactive protocol that is secure in
the random oracle model using the Fiat-Shamir heuristic [11]. For

each of the verifier’s uniformly random challenges, we instead use

random oracle queries which depend on a) the current crs and stmt
being proven, and b) the full transcript between the prover and

verifier up to the current point. We use the resulting scheme in

hbPolyCommit.

Theorem 4. Assuming that the Discrete Logarithm Relation As-
sumption (Definition 6) holds for the group generator G, the protocol
presented in Figure 9 is a secure polynomial commitment scheme with
perfect zero-knowledge.
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Formal hbPolyCommit Construction

• Setup() → SP:
Let 𝑑 be the maximum degree for a polynomial that

can be committed to with 𝑆𝑃 . Run G ← G, and let

𝑔, ℎ, 𝑔0, 𝑔1, . . . , 𝑔𝑡 be random generators of G. Let g :=

(𝑔1, . . . , 𝑔𝑑 ). Output SP := (G, 𝑔, g, ℎ)
• PolyCommit(𝑆𝑃, 𝜙 (𝑥)) → 𝐶:

Sample 𝑟
$← Z𝑝 and let a denote the coefficient vector for

𝜙 (𝑥). Output 𝐶 = (∏𝑑𝑒𝑔 (𝜙)
𝑖=0

𝑔
𝑎𝑖
𝑖
) · ℎ𝑟

• VerifyPoly(𝑆𝑃,𝐶, 𝜙 (𝑥), 𝑟 ):
Output 𝑏𝑜𝑜𝑙 := 𝐶

?

= (∏𝑑𝑒𝑔 (𝜙)
𝑖=0

𝑔
𝑎𝑖
𝑖
) · ℎ𝑟

• CreateEvalProof (𝑆𝑃,𝐶, 𝑖, 𝜙 (𝑖)) → 𝜋𝑖 :

y = (𝑖0, 𝑖1, . . . , 𝑖𝑑 ), s := (𝑠0, 𝑠1, . . . , 𝑠𝑡 ) ← Z𝑝 ,
𝑇 := 𝑔 ⟨s,y⟩, 𝜌 ← Z𝑝 , 𝑆 := gsℎ𝜌 , 𝑧 := H(𝑆𝑃,𝐶, 𝑆,𝑇 ),
b := a + s𝑧, 𝐵 := Π

𝑑𝑒𝑔 (𝜙)
𝑗=0

𝑔
𝑏 𝑗
𝑗
, a := 𝑟 + 𝜌𝑧, �̂� := ⟨b, y⟩

Output:

𝜋𝑖 = (𝑇, 𝑆, �̂�, a, 𝐵, ProveInnerProduct(𝑆𝑃, b, y, �̂�))
• VerifyEval(𝑆𝑃,𝐶, 𝑖, 𝜙 (𝑖), 𝜋𝑖 ) → 𝑏𝑜𝑜𝑙 :

𝑧 := H(𝑆𝑃,𝐶, 𝑆,𝑇 )
Output 𝑏𝑜𝑜𝑙 := 𝑔�̂�

?

= 𝑔𝜙 (𝑖) · 𝑇𝑧 & 𝐵 · ℎa ?

= 𝑆𝑧 · 𝐶 &

VerifyInnerProduct(𝑆𝑃, y, �̂�)
Figure 9: Formal specification of hbPolyCommit. The
PolyCommit and ProveEval procedures in this scheme are in-
dependent since vector commitments are used to commit to
the whole polynomial, but a separate argument of knowl-
edge (Figure 8) is used to prove an evaluation.

Proof. Correctness. The verification equations (Step 4 in Fig-

ure 8) are easily verified by inspection.

Correctness of ProveInnerProduct and VerifyInnerProduct fol-
low from the security of the protocol in Figure 8.

Polynomial Binding. To commit to a polynomial with hbPoly-

Commit, we commit to the coefficients of the polynomial with a

Pedersen vector commitment. Polynomial binding follows from the

computational binding property of Pedersen commitments—this

holds as long as computing discrete logarithms is intractable in G.
Strong Evaluation Binding. Suppose that for honestly gener-

ated system parameters SP,A outputs the tuple (𝐶, {𝑥𝑖 , 𝑦𝑖 , 𝜋𝑖 }𝑖∈[ℓ ] )
for ℓ ≥ 𝑡 + 1, where each 𝜋𝑖 is a proof that (𝑥𝑖 , 𝑦𝑖 ) point lies on the

committed polynomial 𝜙 (·), and 𝐶 is a valid commitment to 𝜙 (·).
For any (𝑡 + 1)-sized subset 𝑆 ⊆ [ℓ], Lagrange interpolation

guarantees the extraction of a polynomial consistent with the 𝑡 + 1
evaluations corresponding to 𝑆 . We will prove that regardless of

the particular 𝑡 + 1-sized subset, Lagrange interpolation will always

recover the same polynomial with overwhelming probability.

It follows from knowledge soundness of the embedded proof

system (Lemma 1) that there exists polynomial-time extractors EA,𝑖
for 𝑖 ∈ [ℓ] where the 𝑖-th extractor extracts a valid witness of the

form (𝜙 ′
𝑖
(·), 𝑟𝑖 ) where 𝜙 ′𝑖 (·) is a degree-𝑡 polynomial and 𝑟𝑖 is the

randomness used in the PolyCommit procedure to generate𝐶 , and

𝜙 ′
𝑖
(𝑥𝑖 ) = 𝑦𝑖 .
First, fix the randomness consumed by A to 𝑧 (denote this by

A(𝑧)). Next, give the honest SP to A(𝑧) and, in parallel, run the

extractors E𝐴,𝑖 for 𝑖 ∈ [ℓ] on the same SP and randomness 𝑧. With

overwhelming probability, if A outputs a polynomial commitment

and valid evaluation proofs at ℓ distinct points, then each extractor

extracts a witness (𝜙 ′
𝑖
, 𝑟𝑖 ).

Assume that there is a polynomial ` (^) such that with 1/` (^)
probability, when we generate SP and give it to A, the adversary

outputs a polynomial commitment and 𝑡 + 1 valid evaluation proofs

at distinct points. If this is the case, we say that A succeeded.
Suppose that for some inverse-polynomial probability, the above

does not hold for infinitely many ^ values. WLOG, assume that

𝑝 (^) ≥ ^10 + 10. We use the ℓ extractors to construct a polynomial-

time algorithm B that with non-negligible probability finds a com-

mitment with two different openings when given a random SP.
Once a random SP is generated, B runs A and waits for its

output.B then runs the ℓ extractors on the same SP and randomness.

For each extractor, B bounds its runtime with a suitably large

polynomial 𝑝 ′(^). If any extractor fails to complete in 𝑝 ′(^) time, it

outputs abort. If all extractors completed their execution, B checks

all of the outputs for a commitment with two openings. WLOG, if

A was not successful, the extractors simply abort.
It suffices to show that there exists a suitable choice of 𝑝 ′(^)

that depends on 𝑞(^) such that with 1 − 2/𝑝3 (^) probability, no
extractors abort. If this is true, then the probability that A is suc-

cessful, none of the extractors abort, and the computational binding

of the polynomial commitment scheme is not broken is at least

1/𝑝 (^) − 2/𝑝3 (^). We prove this as follows:

Let 𝑞(^) denote A’s maximum runtime such that ℓ ≤ 𝑞. Let

𝑝1 (^) = 𝑝3 (^) · 𝑞(^) and 𝑝 ′ be a suitable polynomial such that for

each extractor, there can be at most 1/𝑝1 (^) fraction of bad SP’s
where at least one extractor exceeds its computational bound 𝑝 ′(^)
with probability higher than 1/𝑝1 (^). The total probability mass

of bad SP’s is upper bounded by ℓ/𝑝1 (^) ≤ 𝑞(^)/𝑝1 (^) = 1/𝑝3 (^).
Thus, conditioned on a good SP, the probability the extractors do

not abort is at least (1 − 1/𝑝1 (^))ℓ ≥ (1 − 1/𝑝1 (^))𝑞 . Finally, the
probability the extractors do not abort is at least (1 − 1/𝑝3 (^)) ·
(1 − 1/𝑝1 (^))𝑞 (^) ≥ 1 − 2/𝑝3 (^).

It follows that since ℓ ≥ 𝑡 + 1, the polynomial interpolated from

from the points corresponding to any set 𝑆 ⊆ [ℓ] results in the

same polynomial with overwhelming probability.

Perfect Zero-Knowledge. We define the simulator S :=

(S1,S2) as follows:
To simulate the Setup procedure, S1 calls the underlying zero-

knowledge argument of knowledge simulator (guaranteed by

Lemma 2) to generate a crs.
S2 honestly commits to a random univariate polynomial. When-

ever the simulator must generate a proof asserting that the com-

mitted polynomial evaluate to 𝑦 at point 𝑥 , the simulator of the

underlying proof system is called to simulate the proof. This is pos-

sible because the underlying proof system has PSHVZK (Lemma 2).

We use a simple hybrid argument to prove that the view ofA in

the above ideal-world experiment is information-theoretically in-

distinguishable to its view in the real-world experiment. Essentially,

the adversary is given an honest commitment of the polynomial

submitted in the real-world experiment rather than the random

univariate polynomial. Since Pedersen vector commitments are

information-theoretically hiding, the hybrid experiment is identi-

cally distributed to the ideal-world experiment. Secondly, since the
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underlying proof system provides PSHVZK, the hybrid experiment

is information-theoretically indistinguishable to the real-world ex-

periment. It follows that any statement passed to the simulator of

the underlying inner-product argument must be a true statement.

□

C HBACSS2 FULL PROTOCOL
The primary challenge in realizing hbACSS2 is recreating the effect

of Algorithm 2 without access to homomorphic commitments or

seperable evaluation proofs. The ideas for solving this are straight-

forward: 1) the dealer provides the commitments and proofs needed

to verify the values that would have been interpolated, 2) the

proofs can still be batched along groups that do not need to be

separated for share recovery (i.e. each recipient would perform 𝑁

BatchVerifyEvals). We specify the full hbACSS2 protocol with these

changes in Algorithm 3.

C.1 Notation
When describing hbACSS2, we make use of a few notational conve-

niences that may not be common in other works. Firstly, we follow

every 𝑡 +1 sharing polynomials with 𝑁 −(𝑡 +1) that are interpolated
from these first 𝑡 + 1 (we call the latter redundancy polynomials). By
interpolate we mean that we use lagrange coefficients to calculate

the later polynomials as linear combinations of the former. This is

necessary for the dealer to be able to provide proofs that will work

for points that would have been interpolated in share recovery.

Another notational convenience we employ is a stepping no-

tation similar to how the range() function works in Python. For

example in line 208, we have 𝑘 ∈ [ 𝑗, 𝑁 , 𝑃] which means to assign 𝑘

values starting at 𝑗 and incrementing by 𝑁 up to and including 𝑃 .
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Algorithm 3 hbACSS2(𝐷,P1, ...,P𝑁 ) for dealer 𝐷 and parties P1, ...,P𝑁
Setup:

1: Each party begins P𝑖 with SK𝑖 such that PK𝑖 = 𝑔SK𝑖

2: The set of all {PK𝑗 }𝑗∈[𝑁 ] are publicly known

3: Set up the polynomial commitment SP← Setup(𝑡 )

As dealer 𝐷 with input (𝑠1, ..., 𝑠𝐵 ) :

// Secret Share Encoding
101: Sample𝐵 random degree-𝑡 polynomials𝜙1 ( ·) ...𝜙𝐵 ( ·) such that

each 𝜙𝑘 (0) = 𝑠𝑘 and 𝜙𝑘 (𝑖) is P𝑖 ’s share of 𝑠𝑘
102: For every 𝑡 + 1 polynomials, interpolate 𝑁 − (𝑡 + 1) different

degree-𝑡 redundancy polynomials 𝜓 ( ·) for a total of 𝑅 such

polynomials.

103: Let 𝑃 be the ordered set of polynomials of size 𝐵 + 𝑅 such that

every consecutive subset of size 𝑁 contains 𝑡 + 1 polynomials

from [𝐵 ] followed by the 𝑁 − (𝑡 + 1) redundancy polynomials

interpolated from them.

// Polynomial Commitment
104: C← {PolyCommit(𝑆𝑃,𝜙𝑘 ( ·)) }𝑘∈[𝐵 ]
105: C𝑟 ← {PolyCommit(𝑆𝑃,𝜓𝑘 ( ·)) }𝑘∈[𝑅 ]
106: ReliableBroadcast(C,C𝑟 )

// Encrypt and Disperse
107: for 𝑖 ∈ [1, 𝑁 ] do
108: for 𝑗 ∈ [1, 𝑡 + 1] do
109: 𝜋𝑖,𝑗 ← BatchProveEval(𝑆𝑃,C, {𝜙𝑘 ( ·) }𝑘∈[ 𝑗,𝑁 ,𝑃 ] )
110: for 𝑗 ∈ [𝑡 + 2, 𝑁 ] do
111: 𝜋𝑖,𝑗 ← BatchProveEval(𝑆𝑃,C𝑟 , {𝜓𝑘 ( ·) }𝑘∈[ 𝑗,𝑁 ,𝑃 ] )
112: for each P𝑖 do
113: 𝑧𝑖 ← EncPK𝑖 ( {𝜋𝑖,𝑗 }𝑗∈[1,𝑁 ] ∥ {𝜙𝑘 (𝑖) }𝑘∈[𝐵 ] )
114: Disperse( {𝑧𝑖 }𝑖∈[1,𝑁 ] )

As receiver P𝑖 :

// Wait for broadcasts
201: Wait to receive C,C𝑟 ← ReliableBroadcast
202: Wait for Disperse to complete

// Decrypt and validate
203: 𝑧𝑖 ← Retrieve(𝑖)
204: {𝜙𝑘 (𝑖) }𝑘∈[𝐵 ] , {𝜋𝑖,𝑗 }𝑗∈[1,𝑁 ] ← DecryptSK𝑖 (𝑧𝑖 )
205: if decryption fails then GoTo 212

206: Interpolate {𝜓𝑘 (𝑖) }𝑘∈[𝑅 ] from {𝜙𝑘 (𝑖) }𝑘∈[𝐵 ]
207: for 𝑗 ∈ [1, 𝑡 + 1] do
208: if BatchVerifyEval(C, 𝑖, {𝜙𝑘 (𝑖) }𝑘∈[ 𝑗,𝑁 ,𝑃 ] , 𝜋𝑖,𝑗 ) ≠ 1 then
209: GoTo 212

210: for 𝑗 ∈ [𝑡 + 2, 𝑁 ] do
211: if BatchVerifyEval(C𝑟 , 𝑖, {𝜓𝑘 (𝑖) }𝑘∈[ 𝑗,𝑁 ,𝑃 ] , 𝜋𝑖,𝑗 ) ≠ 1 then

212: sendall (IMPLICATE, SK𝑖 )
213: otherwise, valid shares are owned, so sendall OK

As receiver P𝑖 (continued)

// Bracha-style agreement
301: On receiving OK from 2𝑡 + 1 parties,
302: sendall READY
303: On receiving READY from 𝑡 + 1 parties,
304: sendall READY (if haven’t yet)

305: Wait to receive READY from 2𝑡 + 1 parties,
306: if all owned shares are valid (line 213) then
307: output shares {𝜙𝑘 (𝑖) }𝑘∈[𝐵 ]

// Handling Implication
401: On receiving (IMPLICATE, SK𝑗 ) from some P𝑗 ,

402: ignore if already in Share Recovery
403: Discard if PK𝑗 ≠ 𝑔

SK𝑗

404: 𝑧 𝑗 ← Retrieve( 𝑗)
405: if one or more checks from lines 205- 211 fail then
406: Proceed to Share Recovery below

// Share Recovery
Let 𝜙 (𝑥, 𝑦) be a degree 𝑡, 𝑡 bivariate polynomial such that

𝜙 (𝑖, 𝑘) gives Pi’s share of 𝑠𝑘
Let 𝜙𝑙 (𝑥, 𝑦) be the 𝑙 ’th such polynomial for a total of 𝐿 :=

⌈𝐵/(𝑡 + 1) ⌉ such polynomials

Let C𝑇 := {C,C𝑟 }
501: if we previously received valid shares (line 307) then
502: for each P𝑗 do
503: send (R1, {𝜙𝑙 (𝑖, 𝑗) }𝑙∈[𝐿] , 𝜋𝑖,𝑗 ) to P𝑗

504: On receiving (R1, {𝜙𝑙 (𝑘, 𝑖) }𝑙∈[𝐿] , 𝜋𝑘,𝑖 ) from 𝑡 + 1 dif-

ferent parties (with varying values of 𝑘) such that

BatchVerifyEval(C𝑇 , 𝑘, {𝜙𝑙 (𝑘, 𝑖) }𝑙∈[𝐿] , 𝜋𝑘,𝑖 ) = 1,

505: Interpolate {𝜙 ( ·, 𝑖) }𝑙∈[𝐿]
506: for each P𝑗 do
507: send (R2, {𝜙𝑙 ( 𝑗, 𝑖) }𝑙∈[𝐿] ) to P𝑗

508: On receiving (R2, {𝜙𝑙 (𝑖, 𝑘) }𝑙∈[𝐿] ) from at least 2𝑡 + 1 parties,
509: Robustly interpolate {𝜙𝑙 (𝑖, ·) }𝑙∈[𝐿]
510: output shares {𝜙𝑙 (𝑖, 𝑘) }𝑘∈[𝑡+1],𝑙∈[𝐿]
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