
The Need for Speed: A Fast Guessing Entropy
Calculation for Deep Learning-based SCA

Guilherme Perin
Delft University of Technology

The Netherlands

Lichao Wu
Delft University of Technology

The Netherlands

Stjepan Picek
Radboud University

The Netherlands

Abstract—In recent years, the adoption of deep learning dras-
tically improved profiling side-channel attacks (SCA). Although
guessing entropy is a highly informative metric for profiling
SCA, it is time-consuming, especially if computed for all epochs
during training. This paper shows that guessing entropy can be
efficiently computed during training by reducing the number
of validation traces. Our solution significantly speeds up the
process, impacting hyperparameter search and profiling attack
performances. Our fast guessing entropy calculation is up to 16×
faster and results in more hyperparameter tuning experiments,
allowing us to find more efficient deep learning models.

Index Terms—Side-channel Analysis, Deep learning, Guessing
entropy, Validation phase, Fast Guessing Entropy

I. INTRODUCTION

Side-channel attacks (SCA) explore the unintentional leak-
ages (such as power consumption, time, and electromagnetic
emissions) from electronic devices running secret-sensitive
operations such as cryptographic algorithms. Profiling SCA,
one of the most popular attack methods, is widely considered
by developers and manufacturers to assess worst-case security
under the strongest adversary assumptions. This type of attack
assumes an adversary has a clone (open) device to build the
strongest possible probabilistic model from collected side-
channel information. This way, the adversary applies the model
to the victim’s devices to recover the secret. This attack phase
usually requires fewer side-channel measurements.

Template attacks are the most classic form of profiling
SCA [1]. Template attacks represent the strongest profiling
model theoretically because of their typical underlying statisti-
cal distribution of side-channel leakages following multivariate
Gaussian (or normal) distributions. Machine learning methods
(e.g., random forest or support vector machines) also provide
strong profiling models, while their statistical parameters are
learned from side-channel measurements rather than directly
computed. Both Gaussian templates and machine learning
models require feature selection, which is usually only possi-
ble by skipping black-box assumptions. Indeed, an effective
feature selection requires a strong correlation between the
leakages and processed intermediate data. For instance, for
protected cryptographic designs with masking countermea-
sures, the selected features would be valid by knowing the se-
cret random masks. Then, one can deploy worst-case security
evaluations to emulate the strongest adversary. Additionally,
template and machine learning-based models are susceptible to

desynchronization effects in side-channel measurements, thus
bringing additional challenges.

In recent years, the adoption of deep neural networks
(DNNs) for profiling SCA provided superior results com-
pared to template attacks and classical machine learning-based
methods, especially against AES implementations [2], [3].
Without feature selection (which implies considering a weaker
adversary), deep learning-based SCA can break cryptographic
implementations protected with different countermeasures,
such as Boolean masking and timing desynchronization. Their
high complexity follows the high learning capacity of DNNs;
the expensive hyperparameter tuning becomes a limitation to
fully explore the real potential of deep learning to find vulner-
abilities in software and hardware implementations. Indeed,
smaller DNNs may limit the learning capacity of a model,
underfitting the profiling side-channel traces and providing
poor attack performance. On the other hand, adding too many
layers results in larger models but can easily overfit, thus
reducing the possibility of obtaining the secret information.
One straightforward way to avoid this problem is by allowing
larger models to be trained with regularization, restricting the
model’s capacity during training. Dropout, weight decay, and
data augmentation are well-known methods for regulariza-
tion, but their indirect influence on the attack performance
makes newly introduced hyperparameters difficult to tune.
Early stopping is a very efficient regularization mechanism
that returns the model when the training reaches the best
generalization moment. This is done by monitoring validation
metrics, such as accuracy or loss. Unfortunately, in profiling
SCA, collected leakages are normally extremely noisy because
of environmental noise and implemented countermeasures.
Therefore, as demonstrated in [4], validation accuracy and loss
are inconsistent with SCA performance. Although the model
can be optimized through gradient descent by minimizing
generic loss functions (such as categorical cross-entropy or
negative log-likelihood) and not an SCA metric, the calculation
of guessing entropy (GE) from a set of validation traces is
consistent and highly informative concerning the profiling
model generalization in SCA. The application of empirical
GE as an early stopping metric provides significant overheads,
rendering the hyperparameter tuning process very slow and, in
some cases, impractical.

We propose a faster guessing entropy calculation by re-
ducing the number of validation traces and still achieving

highly efficient results for early stopping. We compare our
fast GE method (denoted FGE) with state-of-the-art metrics
for early stopping and guessing entropy. We show that FGE
estimation is highly competitive and provides superior results
with a neglecting time overhead in all scenarios. With FGE,
hyperparameter tuning becomes more efficient, increasing the
chances to select an optimal model with less time.

II. BACKGROUND

A. Deep learning-based SCA

Profiling SCAs consider the strongest adversary with access
to a clone device running the target cryptographic algo-
rithm. The adversary can query the clone device with any
set of plaintext P = (p0, p1, . . . , pN−1) and chosen keys
K = (K0,K1, . . . ,KN−1), and measure side-channel traces
X = (x0, x1, . . . , xN−1). These traces are used for training
the classification algorithm (i.e., to build a machine learning
model). This phase is known as the training or profiling phase.
Also, during this phase, a validation set containing V traces is
selected from the profiling set to validate the model. Next, the
adversary takes measurements on the target device, where few
traces are captured with known input. The previously trained
model is then exploited to recover the secret key used in the
target device. This phase is known as the attack or test phase.

The training process has as the main goal the minimization
of the selected loss function. In this paper, we consider
the categorical cross-entropy (CCE) as the loss function. As
demonstrated in [4], due to the imbalanced dataset problem,
validation loss function values (including CCE) are inconsis-
tent with SCA metrics, which is also the case of SCA-based
loss functions, as already proposed in [5], [6]. Therefore, we
must select a more efficient validation metric to assess the
model’s performance for SCA.

Metrics like guessing entropy (GE) [7] are commonly used
by an adversary to estimate the required effort to obtain the
key. A side-channel attack outputs a key guessing vector
g = [g1, g2, . . . , g|K|] in decreasing order of probability, i.e.,
g1 represents the most likely key candidate and g|K| the least
likely key candidate. Guessing entropy is the average position
of k∗ in g. Commonly, the averaged value is calculated
over multiple independent experiments to obtain statistically
significant results. In this paper, this GE method is called
empirical GE, and it is evaluated on a set of V validation
traces, where the results of multiple key rank executions are
averaged and performed on a partition Q from V .

B. Datasets

We evaluate ASCAD datasets [8] which contain electro-
magnetic side-channel measurements collected from the first-
order protected software implementations of AES-128 running
on an 8-bit AVR microcontroller [9]. There are two versions
of the ASCAD dataset. The first version, ASCADf, has a
fixed key and 60 000 traces in total. We split the dataset
into 50 000, 5 000, and 5 000 for profiling, validation, and
attack sets, respectively. The second version of the ASCAD
dataset, ASCADr, has fixed and random keys, and it consists of

300 000 traces. In this case, we consider 200 000 for profiling
(with random keys), 10 000 for validation, and 10 000 for the
attack set. Both validation and attack sets have a fixed key. For
both versions, we attack the third key byte (which is the first
masked byte) by using the trimmed intervals already extracted
and released in [8]. Thus, we use a pre-selected window of
700 features for ASCADf, while for ASCADr, the window
size equals 1 400 features. For all experiments, the datasets are
labeled according to the leakage model from the third Sbox
output byte in the first AES encryption round, i.e., S(pi ⊕ ki)
and HW (S(pi ⊕ ki)) for the Identity and Hamming weight
leakage models, respectively.

III. RELATED WORKS

Due to the expensive trial-and-error cost in the profiling
phase, enhancing performance in DL-based profiling SCA is
a challenging task. In recent years, the SCA community devel-
oped two main alternatives to improve the attack efficiency:
(1) by defining small neural network models that are faster to
train and easier to tune [2], [3] and (2) by reducing the number
of the required profiling traces during training [10]. Both
solutions can have severe impacts on attack or generalization
performance. The first approach may result in models that
underfit for more noisy leakages or leakages obtained from
other devices (portability problem). The second alternative
speeds up the process; still, it may result in limited learnability
due to the eventually low number of profiling traces.

Besides the methods mentioned above, a third alternative
uses efficient and reliable validation metrics to evaluate train-
ing and, consequently, implement faster hyperparameter tuning
(which can provide faster convergence) with larger models and
larger profiling sets. Empirical GE (described in Section II-A)
can be very expensive to compute with larger validation sets,
especially if used during training to detect the best training
epoch. In a recent publication, Zhang et al. [5] proposed
Guessing Entropy Estimation Algorithm (GEEA) to reduce
the computational limitation cost of empirical GE for the full
attacked key scenarios, which computes faster than empirical
GE calculation on separate key bytes. Indeed, empirical GE
executes multiple key rank executions over multiple partitions
of the dataset V , each partition containing Q measurements.
GEEA, on the other hand, only requires one execution over
the Q measurements.

Alternative solutions were proposed as new validation met-
rics for early stopping, which can stop training sooner and
speed up the process. In [11], the authors considered mutual
information approach between the output probabilities and
validation labels to monitor the best epoch during training. The
work of [12] monitors the epoch when the training achieves
the minimal difference between the number of profiling and
validation traces that are required to achieve 90% of success
rate. The authors proposed a routine to abort training if
this difference keeps increasing after reaching its minimum
value. In our work, we also consider the mutual information
metric for comparison. The method proposed in [12] is not
considered in our comparative analysis as it is directly adapted

to datasets with fixed keys in the profiling set, which is not
the case of ASCADr. The method requires estimating the
number of traces to reach a success rate of 90%, which
implies obtaining the evolution of success rate concerning the
number of validation traces. This means that the success rate
is computed Q times for each epoch, adding significant time
overhead to the process.

As we can see, none of the mentioned approaches compute
GE directly from the validation traces at the end of each
training epoch. GEEA was proposed as a fast and more stable
GE estimation, but it is not suggested to be used during
network training. On the other hand, although GE can be a
potential metric candidate, its computation could be very slow
if more validation traces are considered (which is required
for GE stability), finally providing significant overheads to
the training process. Therefore, the SCA community did
not consider directly applying GE (including GEEA) as the
early stopping metric, especially in the hyperparameter search
processes. This work shows that significantly reducing the
number of validation traces for GE estimation during training
is a reliable and efficient metric for early stopping, benefiting
hyperparameter tuning optimization.

IV. FAST GE FOR EARLY STOPPING

Running hyperparameter search without pre-selecting effi-
cient ranges for each hyperparameter may fail to find powerful
attack models. A solution could be searching for small models
with restricted search ranges, as proposed in [2], [13] or by
setting the objective of the search as being a small model, as
proposed by Rijsdijk et al. in [3]. Still, small models suffer
from limited fitting capacity, which is particularly problematic
for noise and protected targets. An alternative is to allow larger
models and add regularization to prevent overfitting [14]. Al-
though regularization tends to improve model generalization,
regularized models with increased size require more training
epochs, reducing the efficiency in a hyperparameter search
process.

We propose a fast GE (FGE) calculation during training
that reduces the overhead due to GE up to 16×. When used
as an early stopping metric, the FGE metric provides very
small overheads to the training process, usually between 1.5%
and 3.3%, while, e.g., empirical GE shows overheads between
18.59% and 28.19%, as reported in Section V. Our idea
consists in reducing the number of validation traces when
using GE as a metric, which has multiple benefits in DL-based
SCA.

If the model converges, the attack is successful, and the GE
for a reduced number of validation traces can also indicate
the best epoch to stop training efficiently. Using too many
validation traces for the metric calculation may obscure the
real performance of the model: a model that overfits may also
slowly decrease guessing entropy to 1 after processing enough
validation traces. In contrast, FGE is more sensitive to the
model’s performance change, thanks to its low usage of the
validation traces. This situation is illustrated in Figure 1. As
we can see in Figure 1a, when using partitions of Q = 3000

(a) GE vs epochs. (b) GE vs attack traces.

Fig. 1: Fast GE vs Empirical GE (ES = Early Stopping).

validation traces for empirical GE, the best epoch will be
returned at the moment when GE is equal to 1. If the next
epochs indicate a model that requires fewer attack traces to
succeed (which means better generalization), this empirical
GE will not capture that. On the other hand, using fewer traces
allows us to get this convergence and, as a consequence, be
able to recover the key with fewer attack traces, as shown in
Figure 1b. Of course, the question here is: why would this be
a problem if reaching GE of 1 also allows an adversary to
recover the key? We can observe two main problems in this
scenario: first, empirical GE with more traces provides more
overheads and limits the number of hyperparameter search
attempts, preventing us from finding a model that eventually
breaks the target (which is the example of model found in
Figure 1). Second, from the current model, we would select
trained parameters before it reaches its best attack performance
or generalization capacity, which can also indicate overfitting
on the validation set, possibly opening issues in portability
scenarios (when the device used for profiling is different from
the device used for attack [15]). If a model generalizes, then
GE will eventually decrease. Therefore, the final GE value
with reduced validation traces should be correlated to GE with
more traces.

V. EXPERIMENTAL RESULTS

A. Hyperparameter Search Ranges

In this work, we only consider convolutional neural net-
works (CNNs) as they contain a large number of hyperpa-
rameters to tune and, therefore, it becomes more challenging
to find good hyperparameter combinations in comparison to,
e.g., multilayer perceptrons. Table I provides the selected
ranges for the hyperparameter tuning processes. These selected
ranges result in a search space containing 2.7× 109 possible
combinations. As we can see, we allow CNNs to contain up to
eight hidden layers, combining convolution and dense layers.
Each convolution layer is always followed by a pooling layer.
As the ASCADf and ASCADr datasets contain 50 000 and
200 000 profiling traces, respectively, larger models would run
out of GPU memory, and in most of the cases, become too
complex for the considered problem.

TABLE I: Hyperparameter search space for CNNs (c in
convolution filters indicates the convolution layer index).

Hyperparameter Ranges
Min Max Step

Batch Size 100 1 000 100
Convolution Layers 1 4 1
Convolution Filters 2× 2c−1 16× 2c−1 2
Kernel Size 4 20 1
Stride 1 4 1
Pooling Size 1 4 1
Pooling Stride 1 4 1
Dense layers 1 4 1

Options
Neurons 10, 20, 30, 40, 50, 100, 200, 300, 400, 500
Activation function ReLU, ELU, or SELU
Learning Rate 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5
Pooling Type Average, Max
Weight Initializer He, Random Uniform, Glorot Uniform
Optimizer Adam, RMSprop

B. Random Hyperparameter Search with Different Validation
Metrics

We compare different early stopping in a random hyper-
parameter search process for the two ASCAD datasets and
different leakage models. Each randomly selected CNN is
trained for 200 epochs, and we save the trained weights at
the end of each epoch. At the end of the training, each early
stopping metric indicates what the best training epoch was,
and we restore the trained weights from that epoch in order
to compute GE for the attack set. Note that 200 epochs is a
relatively small number for training epochs, and, as shown in
this section, stopping the training for 200 epochs also delivers
good results.

Table II gives the number of validation traces V considered
for each metric, while the partition amount Q is the number
of the traces used to calculate each specific metric. Note that
we set V greater than Q so that the sampling of each data
in Q preserves certain randomness. By doing so, the obtained
results would have more generality. For mutual information,
we apply V validation traces. FGE estimation considers only
50 traces for Q and 500 traces for V . We tested several
numbers for Q and V , and this was the minimum value for Q
and V that still preserves the best results for FGE.

TABLE II: Number of validation traces for each early stopping
method.

ASCADf ASCADr
V Q V Q

Fast GE (this work) 500 50 500 50
Empirical GE 5 000 3 000 10 000 5 000

GEEA 5 000 3 000 10 000 5 000
Mutual Information 5 000 5 000 10 000 10 000

We execute 500 searches for each dataset and leakage
model. Table III provides the average time overhead in per-

centage for each considered metric. As we can see, the FGE
estimation provides a maximum of 3.35% overhead among
the four considered scenarios. For the ASCADr dataset, the
overhead is only 1.19% and 1.49%, which can be considered
negligible for the training time compared with its counterparts.
As expected, empirical GE and GEEA methods provide the
largest overheads, although GEEA is faster than empirical
GE. The mutual information method provides the second-best
results, which is related to the more straightforward calculation
than guessing entropy.

TABLE III: Average time overhead of different early stopping
methods.

ASCADf ASCADr
HW Identity HW Identity

Fast GE (this work) 2.66% 3.35% 1.19% 1.49%
Empirical GE 20.70% 28.19% 18.59% 24.21%

GEEA 11.48% 23.95% 9.31% 20.17%
Mutual Information 9.28% 7.46% 7.81% 6.30%

Table IV provides the % that each metric can select a
generalizing model with early stopping (DNN that reaches
GE=1 in the attack phase) from the random search. Together
with GEEA, the fast GE is a highly efficient metric (top two
performance in all considered scenarios). Most importantly, we
successfully verify that FGE is always superior to the situation
where no early stopping is used (200 epochs in the table) and
with neglecting overhead.

TABLE IV: % of times a generalizing DNN was selected from
each metric and from the training with all 200 epochs.

ASCADf ASCADr
HW Identity HW Identity

Fast GE (this work) 56.52% 43.46% 49.63% 34.13%
Empirical GE 59.66% 43.16% 50.00% 33.23%

GEEA 59.66% 43.46% 54.34% 29.30%
Mutual Information 50.74% 37.38% 43.84% 33.53%

200 epochs 49.75% 40.42% 45.83% 32.62%

Figure 2 shows results for the ASCADf dataset. When side-
channel traces are labeled according to the Hamming weight
leakage model, the correct key is recovered with 514 traces for
GEEA metric and 534 traces (the second best) with FGE early
stopping metric. In the case of the Identity leakage model,
the best results are achieved for the FGE metric, where 101
attack traces are needed to achieve GE equal to 1, which
is completely aligned with state-of-the-art results [2], [3],
[13]. The good-performing results from the mutual information
metric and the GE obtained with 200 epochs indicate the
effectiveness of early-stopping metrics in preventing the best-
obtained model from overfitting. Again, we confirm that FGE
is highly competitive in both leakage models and requires 10×
fewer validation traces.

(a) Hamming weight leakage model.

(b) Identity leakage model.

Fig. 2: GE results from best models selected from different
early stopping metrics for ASCADf dataset.

(a) Hamming weight leakage model.

(b) Identity leakage model.

Fig. 3: GE results from best models selected from different
early stopping metrics for ASCADr dataset.

For ASCADr dataset, results for FGE are also very promis-
ing, as shown in Figure 3. For the Hamming weight leakage
model, FGE provides the best results, followed by mutual
information metric. In the case of the Identity leakage model,
the best result is obtained with all 200 epochs, showing that
this number of epochs is appropriate for this best model found
through random search. When early stopping is considered, the
best results are obtained with the FGE metric.

Furthermore, the performance of best models selected from
empirical GE as an early stopping metric provided less ef-
ficient results. As already mentioned in [5], empirical GE
requires a very large validation set N , and a more stable GE
estimation can be obtained by the selection of an increased
number of partitions Q. This directly implies that empirical
GE, although convenient for GE estimation for larger N at the

(a) Hamming weight leakage model.

(b) Identity leakage model.

Fig. 4: GE results from best models found with BO with
different early stopping metrics for ASCADf dataset.

end of the profiling phase, is inefficient as an early stopping
metric while also having a significant time overhead.

C. Hyperparameter Tuning with Different Validation Metrics

This section analyzes how the evaluated early stopping
metrics perform with Bayesian optimization (BO) for hy-
perparameter search [16]. For that, we consider the open-
source BayesianOptimization method provided in keras-
tuner [17] Python package. We run BO for 100 searches
with ASCAD datasets and the Hamming weight and Identity
leakage models. We repeat each search process five times for
each different early stopping metric. Results for all epochs (as
indicated in the previous section) are omitted because keras-
tuner requires a validation metric computed for each training
epoch. The results reported in this section are extracted from
the best-found model out of the five search attempts.

Results from BO for ASCADf dataset are shown in Figure 4.
The best results are obtained from FGE for both Hamming
weight and Identity leakage models. In particular, for the
Identity leakage model, as shown in Figure 4b, the best found
model achieves GE equal to 1 with less than half of the
attack traces needed for GEEA. In these experiments, mutual
information provides less efficient results.

Figure 5 provides BO results for ASCADr dataset. For the
Hamming leakage model, GEEA and FGE provide the best
results. For the Identity leakage model, results for FGE are
superior, and only 60 attack traces are required for key byte
recovery, while empirical GE requires 10× more attack traces
to succeed. Again, the mutual information metric delivers the
worst results.

D. State-Of-The-Art Models with Different Validation Metrics

Here, we provide attack results when applying early stop-
ping to three different CNN architectures considered state-of-
the-art for the ASCADf dataset. As the results for these CNN

(a) Hamming weight leakage model.

(b) Identity leakage model.

Fig. 5: GE results from best models found with BO with
different early stopping metrics for ASCADr dataset.

(a) CNN from [2]

(b) CNN from [13]

(c) Best CNN from [3]

Fig. 6: Performance of different validation metrics on state-
of-the-art CNN architectures.

were reported for the Identity leakage model, we only consider
this scenario in our analysis. As shown in Figure 6, for CNN
models from [2] and [3], our FGE metric provides best results.
Results for CNN model from [13] also put FGE among the
best-performing metrics.

VI. CONCLUSIONS

Hyperparameter tuning is an expensive process in DL-based
profiling SCA. To solve this issue, the number of search
attempts should be optimized by selecting the best possible
validation metric to find a neural network generalizing to
different attack sets. We propose using a fast GE metric that
significantly reduces the number of validation traces in the
GE calculation. Our results indicate that fast GE as a valida-
tion metric delivers efficient and competitive early stopping
results. Our technique is validated in different scenarios and
shows good results with neglecting time overheads. Thus, we
consider FGE as the method of choice for practical deep
learning-based SCA hyperparameter tuning. In future work,
we will explore the efficiency of different validation metrics
in portability settings.

REFERENCES

[1] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Cryptographic
Hardware and Embedded Systems - CHES 2002. Springer Berlin
Heidelberg, 2003, pp. 13–28.

[2] G. Zaid, L. Bossuet, A. Habrard, and A. Venelli, “Methodology for
efficient CNN architectures in profiling attacks,” IACR Trans. Cryptogr.
Hardw. Embed. Syst., vol. 2020, no. 1, pp. 1–36, 2020.

[3] J. Rijsdijk, L. Wu, G. Perin, and S. Picek, “Reinforcement learning for
hyperparameter tuning in deep learning-based side-channel analysis,”
IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2021, no. 3, pp. 677–
707, 2021.

[4] S. Picek, A. Heuser, A. Jovic, S. Bhasin, and F. Regazzoni, “The curse
of class imbalance and conflicting metrics with machine learning for
side-channel evaluations,” IACR Trans. Cryptogr. Hardw. Embed. Syst.,
vol. 2019, no. 1, pp. 209–237, 2019.

[5] J. Zhang, M. Zheng, J. Nan, H. Hu, and N. Yu, “A novel evaluation
metric for deep learning-based side channel analysis and its extended
application to imbalanced data,” IACR Trans. Cryptogr. Hardw. Embed.
Syst., vol. 2020, no. 3, pp. 73–96, 2020.

[6] G. Zaid, L. Bossuet, F. Dassance, A. Habrard, and A. Venelli, “Ranking
loss: Maximizing the success rate in deep learning side-channel analy-
sis,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2021, no. 1, pp.
25–55, 2021.

[7] F. X. Standaert, T. G. Malkin, and M. Yung, “A unified framework
for the analysis of side-channel key recovery attacks,” Lecture Notes in
Computer Science, vol. 5479 LNCS, pp. 443–461, 2009.

[8] “ASCAD GitHub Repository,” Website, 2018,
https://github.com/ANSSI-FR/ASCAD.

[9] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep
learning for side-channel analysis and introduction to ASCAD database,”
J. Cryptographic Engineering, vol. 10, no. 2, pp. 163–188, 2020.

[10] S. Picek, A. Heuser, G. Perin, and S. Guilley, “Profiling side-channel
analysis in the efficient attacker framework,” Cryptology ePrint Archive,
Report 2019/168, 2019.

[11] G. Perin, I. Buhan, and S. Picek, “Learning when to stop: A mutual
information approach to prevent overfitting in profiled side-channel
analysis,” ser. LNCS, vol. 12910. Springer, 2021, pp. 53–81.

[12] D. Robissout, G. Zaid, B. Colombier, L. Bossuet, and A. Habrard,
“Online performance evaluation of deep learning networks for profiled
side-channel analysis,” ser. Lecture Notes in Computer Science, vol.
12244. Springer, 2020, pp. 200–218.

[13] L. Wouters, V. Arribas, B. Gierlichs, and B. Preneel, “Revisiting a
methodology for efficient CNN architectures in profiling attacks,” IACR
Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 3, pp. 147–168,
2020.

[14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” Journal of Machine Learning Research, vol. 15, no. 56, pp.
1929–1958, 2014.

[15] S. Bhasin, A. Chattopadhyay, A. Heuser, D. Jap, S. Picek, and R. R.
Shrivastwa, “Mind the portability: A warriors guide through realistic
profiled side-channel analysis,” in 27th NDSS, 2020.

[16] L. Wu, G. Perin, and S. Picek, “I choose you: Automated hyperparameter
tuning for deep learning-based side-channel analysis,” Cryptology ePrint
Archive, Report 2020/1293, 2020.

[17] T. O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin, L. Invernizzi et al.,
“Kerastuner,” https://github.com/keras-team/keras-tuner, 2019.

