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Abstract. The Even-Mansour cipher is a simple method for construct-
ing a (keyed) pseudorandom permutation E from a public random per-
mutation P : {0, 1}n → {0, 1}n. It is a core ingredient in a wide array
of symmetric-key constructions, including several lightweight cryptosys-
tems presently under consideration for standardization by NIST. It is se-
cure against classical attacks, with optimal attacks requiring qE queries
to E and qP queries to P such that qE · qP ≈ 2n. If the attacker is given
quantum access to both E and P , however, the cipher is completely
insecure, with attacks using qE , qP = O(n) queries known.

In any plausible real-world setting, however, a quantum attacker would
have only classical access to the keyed permutation E implemented by
honest parties, while retaining quantum access to P . Attacks in this
setting with qE · q2P ≈ 2n are known, showing that security degrades as
compared to the purely classical case, but leaving open the question as
to whether the Even-Mansour cipher can still be proven secure in this
natural “post-quantum” setting.

We resolve this question, showing that any attack in that setting requires
qE ·q2P +qP ·q2E ≈ 2n. Our results apply to both the two-key and single-key
variants of Even-Mansour. Along the way, we establish several general-
izations of results from prior work on quantum-query lower bounds that
may be of independent interest.

1 Introduction

The Even-Mansour cipher [11] is a well-known approach for constructing a block
cipher E from a public random permutation P : {0, 1}n → {0, 1}n. The cipher
E : {0, 1}2n × {0, 1}n → {0, 1}n is defined as

Ek1,k2(x) = P (x⊕ k1)⊕ k2

where, at least in the original construction, k1, k2 are uniform and independent.
Security in the standard (classical) setting is well understood [11,9]: roughly, an
unbounded attacker with access to P and P−1 cannot distinguish whether it is



interacting with Ek1,k2 and E−1k1,k2 (for uniform k1, k2) or R and R−1 (for an inde-

pendent, random permutation R) unless it makes ≈ 2n/2 queries to its oracles. A
variant where k1 is uniform and k2 = k1 has the same security [9]. These bounds
are tight, and key-recovery attacks using O(2n/2) queries are known [11,9].

Unfortunately, the Even-Mansour construction is insecure against a fully
quantum attack in which the attacker is given quantum access to its oracles [19,16].
In such a setting, the adversary can evaluate the unitary operators

UP : |x〉|y〉 7→ |x〉|y ⊕ P (x)〉
UEk1,k2

: |x〉|y〉 7→ |x〉|y ⊕ Ek1,k2(x)〉

(and the analogous unitaries for P−1 and E−1k1,k2) on any quantum state it pre-
pares. Here, Simon’s algorithm [21] can be applied to Ek1,k2 ⊕ P to give a key-
recovery attack using only O(n) queries.

To place this seemingly devastating attack in context, it is worth recalling
that the original motivation for considering unitary oracles of the form above in
quantum-query complexity was that one can always transform a classical circuit
for a function f into a reversible (and hence unitary) quantum circuit for Uf .
In a cryptographic context, it is thus reasonable (indeed, necessary) to allow
adversaries to use Uf whenever f is a function whose circuit they know. On the
other hand, if the circuit for f is not known to the adversary, then there is no
mechanism by which it can implement Uf on its own. In particular, if f involves
a private key, then the only way an adversary could possibly obtain quantum
access to f would be if there were an explicit interface granting such access. In
many (if not most) real-world applications, however, the honest parties using
the keyed function f will be using classical computers, and it is then implausible
that the adversary could force such devices to behave like quantum computers—
especially if the only interface with f is via a classical communication channel.

In most real-world applications of Even-Mansour, therefore, an attacker would
have only classical access to the keyed permutation Ek1,k2 and its inverse, while
retaining quantum access to P and P−1. In particular, this seems to be the
“right” attack model for most applications of the resulting block cipher, e.g.,
to constructing a secure encryption scheme using some mode of operation. The
setting in which the attacker is given classical oracle access to keyed primitives
but quantum access to public primitives is sometimes called the “Q1 setting” [5];
we will refer to it simply as the post-quantum setting. In this setting, Kuwakado
and Morii [19] showed a key-recovery attack on Even-Mansour using the BHT
collision-finding algorithm [7] that requires only ≈ 2n/3 oracle queries. Their at-
tack uses exponential memory but this was improved in subsequent work [14,5],
culminating in an attack using the same number of queries but with polynomial
memory complexity. While these results demonstrate that the Even-Mansour
construction is quantitatively less secure in the post-quantum setting than in
the classical setting, they do not answer the more important qualitative question
of whether the Even-Mansour construction remains secure in the post-quantum
setting, or whether attacks using polynomially many queries might be possible.
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1.1 Our Results

As our main result, we prove a lower bound showing that ≈ 2n/3 queries are
necessary for attacking the Even-Mansour cipher in the post-quantum setting.
In more detail, if qP denotes the number of (quantum) queries to P, P−1 and
qE denotes the number of (classical) queries to Ek1,k2 , E

−1
k1,k2

, we show that any

attack succeeding with constant probability requires either q2P · qE = Ω(2n) or
qP · q2E = Ω(2n). (Equating qP and qE gives the claimed result.) Formally:

Theorem 1. Let A be a quantum algorithm making qE classical queries to its
first oracle (including forward and inverse queries) and qP quantum queries to
its second oracle (including forward and inverse queries.) Then∣∣∣∣ Pr

k1,k2,P

[
AEk1,k2

,P (1n) = 1
]
− Pr
R,P

[
AR,P (1n) = 1

]∣∣∣∣
≤ 10 · 2−n/2 · (qE

√
qP + qP

√
qE) ,

where P,R are uniform n-bit permutations, and the marginal distributions of
k1, k2 ∈ {0, 1}n are uniform.

The above applies, in particular, to the two-key and one-key variants of the
cipher. A simplified version of the proof works also for the case where P is a
random function, Ek(x) = P (x⊕k) with k uniform, and A is given forward-only
access to both P and E.

Real-world attackers are usually assumed to make far fewer queries to keyed,
“online” primitives than to public, “offline” primitives. (Indeed, while an offline
query is just a local computation, an online query requires, e.g., causing an
honest user to encrypt a certain message.) In such a regime, where qE � qP , the
bound on the adversary’s advantage in Theorem 1 simplifies to O(qP

√
qE
/

2n/2).
In that case q2P qE = Ω(2n) is necessary for constant success probability, which
matches the BHT and offline Simon algorithms [19,5].1

Techniques and new technical results. Proving Theorem 1 required us to
develop new techniques that we believe are interesting beyond our immediate
application. We describe the main challenge and its resolution in what follows.

As we have already discussed, in the setting of post-quantum security adver-
saries may have a combination of classical and quantum oracles. In particular,
such situations arise when a post-quantum security notion that involves keyed
oracles is analyzed in the quantum random oracle model (QROM), such as when
analyzing the Fujisaki-Okamoto transform [22,13,4,25,18,8] or the Fiat-Shamir
transform [23,17,12]. In general, this presents a problem: quantum-query lower
bounds typically begin by “purifying” the adversary and postponing all mea-
surements to the end of its execution; this does not work if the adversary may
decide what query to make to a classical oracle (or even whether to query that

1 While our bound is tight with respect to the number of queries, it is loose with
regard to the attacker’s advantage, as both the BHT and offline Simon algorithms
achieve advantage Θ(q2P qE

/
2n). Reducing this gap is an interesting open question.
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oracle at all) based on the outcome of an intermediate measurement. The proofs
cited above address this problem in various ways, e.g., by simulating the classical
oracle or by relaxing the problem and allowing quantum access to all oracles.

In our case, in contrast, mixed classical/quantum access to different oracles
appears inherent. (In particular, if we allow quantum access to all oracles in our
case, an efficient attack becomes possible!) We deal with the problem by dividing
the execution of an algorithm that has classical access to O1 and quantum access
to O2 into stages, where a stage corresponds to a period between classical queries
to O1, and then analyzing the algorithm stage-by-stage. In doing so, however,
we introduce another problem: the adversary may adaptively choose the number
of queries to O2 in each stage based on outcomes of intermediate measurements.
While it is possible to upper bound the number of queries to O2 in each stage
by the number of queries made to O2 overall, this will (in general) result in a
very loose security bound. To avoid such a loss, we extend the “blinding lemma”
of Alagic et al. [1] so that in addition to accommodating two-way accessible
permutations (and some other generalizations) we also obtain a bound in terms
of the expected number of queries made by a distinguisher.

Lemma 1 (Arbitrary reprogramming, informal). Consider the following
game played by a distinguisher D making at most q queries in expectation.

Phase 1: D outputs a function F and a randomized algorithm B that specifies
how to reprogram F .

Phase 2: Randomness r is sampled and B(r) is run to reprogram F , giving F ′.
A uniform b ∈ {0, 1} is chosen, and D receives oracle access to either F (if
b = 0) or F ′ (if b = 1).

Phase 3: D loses access to its oracle and receives r; D outputs a bit b′.

Then |Pr[D outputs 1 | b = 0]− Pr[D outputs 1 | b = 1]| ≤ 2q ·
√
ε, where ε is an

upper bound on the probability that any given input is reprogrammed.

The name “arbitrary reprogramming” is motivated by the fact that F is com-
pletely arbitrary (and known), and the fact that the adversary can reprogram
F arbitrarily—so long as some bound on the probability of reprogramming each
individual input exists.

We also extend the “adaptive reprogramming lemma” [12] to the case of
two-way-accessible, random permutations:

Lemma 2 (Resampling for permutations, informal). Consider the fol-
lowing game played by a distinguisher D making at most q queries.

Phase 1: D makes at most q (forward or inverse) quantum queries to a uniform
permutation P : {0, 1}n → {0, 1}n.

Phase 2: A uniform b ∈ {0, 1} is chosen, and D is allowed to make an arbitrary
number of queries to an oracle that is either equal to P (if b = 0) or P ′ (if
b = 1), where P ′ is obtained from P by swapping the output values at two
uniform points (which are given to D.) Then D outputs a bit b′.

Then |Pr[D outputs 1 | b = 0]− Pr[D outputs 1 | b = 1]| ≤ 4
√
q · 2−n/2.
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This is tight up to a constant factor (cf. [12, Theorem 7]). The name “re-
sampling lemma” is motivated by the fact that reprogramming is restricted to
resampling output values from the same distribution used to initially sample
outputs of P . Note that, while Lemma 1 allows for much more general distribu-
tions, Lemma 2 gives a bound that is independent of the number of queries D
makes after the reprogramming occurs.

Implications for a variant of the Hidden Shift problem. In the well-
studied Hidden Shift problem [24], one is asked to find an unknown shift s by
querying an oracle for a (typically injective) function f on a group G and an
oracle for its shift fs(x) = f(x · s). If both oracles are classical, this problem has
query complexity superpolynomial in log |G|. If both oracles are quantum, then
the query complexity is polynomial [10] but the algorithmic difficulty appears to
depend critically on the structure of G (e.g., while G = Zn2 is easy [21], G = Sn
appears to be intractable [2]).

The obvious connection between the Hidden Shift problem and Even-Mansour
in general groups has been considered before [2,15,6]. In our case, it leads us to
define two natural variants of the Hidden Shift problem:

1. “post-quantum” Hidden Shift: the oracle for f is quantum while the oracle
for fs is classical;

2. “two-sided” Hidden Shift: in place of fs, use fs1,s2(x) = f(x · s1) · s2; if f is
a permutation, grant access to f−1 and f−1s1,s2 as well.

These two variants can be considered jointly or separately and, for either variant,
one can consider worst-case or average-case settings [2]. Our main result implies:

Theorem 2 (informal). Solving the post-quantum Hidden Shift problem on
any group G requires a number of queries that is superpolynomial in log |G|.
This holds for both the one-sided and two-sided versions of the problem, and for
both the worst-case and the average-case settings.

Theorem 2 follows from the proof of Theorem 1 via a few straightforward
observations. First, an inspection of the proof shows that the particular structure
of the underlying group (i.e., the XOR operation on {0, 1}n) is not relevant; the
proof works identically for any group, simply replacing 2n with |G| in the bounds.
The two-sided case of Theorem 2 then follows almost immediately: worst-case
search is at least as hard as average-case search, and average-case search is at
least as hard as average-case decision, which is precisely Theorem 1 (with the
appropriate underlying group). Finally, as noted earlier, an appropriate analogue
of Theorem 1 also holds in the “forward-only” case where E(x) = P (x⊕ k) and
P is a random function. This yields the one-sided case of Theorem 2.

Paper organization. In Section 2 we state the technical lemmas needed for
our main result. In Section 3 we give the full proof of Theorem 1, i.e., post-
quantum security of the Even-Mansour cipher (both the two-key and one-key
variants), based on the technical lemmas stated informally above (and formally
in Section 2). In Section 4 we prove the technical lemmas themselves. Finally, in
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Appendix A, we give a proof of post-quantum security for the one-key, “forward-
only” variant of Even-Mansour. While this is a relatively straightforward adapta-
tion of the proof of our main result, it does not follow directly from it; moreover,
it is substantially simpler and so may serve as a good warm-up for the reader
before tackling our main result.

2 Reprogramming Lemmas

In this section we collect some technical lemmas that we will need for the proof
of Theorem 1. We first discuss a particular extension of the “blinding lemma” of
Alagic et al. [1, Theorem 11], which formalizes Lemma 1. We then state a gen-
eralization of the “reprogramming lemma” of Grilo et al. [12], which formalizes
Lemma 2. The complete proofs of these technical results are given in Section 4.

We frequently consider adversaries with “quantum access” to some function
f : {0, 1}n → {0, 1}m. This means the adversary is given access to a black-box
gate implementing the (n+m)-qubit unitary operator |x〉|y〉 7→ |x〉|y ⊕ f(x)〉.

2.1 Arbitrary Reprogramming

Consider a reprogramming experiment that proceeds as follows. First, a dis-
tinguisher D specifies an arbitrary function F along with a probabilistic algo-
rithm B which describes how to reprogram F . Specifically, the output of B is a
set of points B1 at which F may be reprogrammed, along with the values the
function should take at those potentially reprogrammed points. Then D is given
quantum oracle access to either F or the reprogrammed version of F , its goal
being to determine which is the case. Finally, when D is done making its oracle
queries, D is also given the randomness that was used to run B. Intuitively, the
only way D can tell if its oracle has been reprogrammed is by querying with
significant amplitude on some point in B1. We bound D’s advantage in terms of
the probability that any particular value lies in the set B1 defined by B’s output.

By suitably modifying the proof of Alagic et al. [1, Theorem 11], one can
show that the distinguishing probability of D in the game described above is at
most 2q ·

√
ε, where q is an upper bound on the number of oracle queries and ε

is an upper bound on the probability that any given input x is reprogrammed
(i.e., that x ∈ B1). However, that result is only proved for distinguishers with
a fixed upper bound on the number of queries they make. To obtain a tighter
bound for our application, we need a version of the result for distinguishers
that may adaptively choose how many queries they make based on outcomes of
intermediate measurements. We recover the aforementioned bound if we let q
denote the number of queries made by D in expectation.

For a set B ⊂ {0, 1}m×{0, 1}n such that each w ∈ {0, 1}m is the first element
of at most one tuple in B, and a function F : {0, 1}m → {0, 1}n, define

F (B)(w) :=

{
y if (w, y) ∈ B
F (w) otherwise.
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We prove the following in Section 4.1:

Lemma 3 (Formal version of Lemma 1). Let D be a distinguisher in the
following game:

Phase 1: D outputs descriptions of a function F0 = F : {0, 1}m → {0, 1}n
and a randomized algorithm B whose output is a set B ⊂ {0, 1}m × {0, 1}n
where each x ∈ {0, 1}m is the first element of at most one tuple in B. Let

B1
def
= {x | ∃y : (x, y) ∈ B} and ε = maxx∈{0,1}m {PrB←B[x ∈ B1]} .

Phase 2: B is run to obtain B. Let F1 = F (B). A uniform bit b is chosen, and
D is given quantum access to Fb.

Phase 3: D loses access to Fb, and receives the randomness r used to invoke B
in phase 2. Then D outputs a guess b′.

For any D making q queries in expectation when its oracle is F0, it holds that

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]| ≤ 2q ·
√
ε .

2.2 Resampling

Next, we consider the following experiment: first, a distinguisher D is given
quantum access to an oracle for a random function F ; then, in the second stage,
F may be “reprogrammed” so its value on a single, uniform point s is changed
to an independent, uniform value. Because the distribution of F (s) is the same
both before and after any reprogramming, we refer to this as “resampling.”
The goal for D is to determine whether or not its oracle was reprogrammed.
Intuitively, the only way D can tell if this is the case—even if it is given s and
unbounded access to the oracle in the second stage—is if D happened to put a
large amplitude on s in some query to the oracle in the first stage. The lemmas
we state here formalize this intuition.

We begin by establishing notation and recalling a result of Grilo et al. [12].
Given a function F : {0, 1}m → {0, 1}n and s ∈ {0, 1}m, y ∈ {0, 1}n, define the
“reprogrammed” function Fs7→y : {0, 1}m → {0, 1}n as

Fs7→y(w) =

{
y if w = s

F (w) otherwise.

The following is a special case of [12, Prop. 1]:

Lemma 4 (Resampling for random functions). Let D be a distinguisher
in the following game:

Phase 1: A uniform F : {0, 1}m → {0, 1}n is chosen, and D is given quantum
access to F0 = F .

Phase 2: Uniform s ∈ {0, 1}m, y ∈ {0, 1}n are chosen, and we let F1 = Fs7→y.
A uniform bit b is chosen, and D is given s and quantum access to Fb. Then
D outputs a guess b′.
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For any D making at most q queries to F0 in Phase 1, it holds that

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]| ≤ 1.5
√
q/2m .

We extend the above to the case of two-way accessible, random permutations.
Now, a random permutation P is chosen in the first phase; in the second phase,
P may be reprogrammed by swapping the outputs corresponding to two random
inputs. For a, b ∈ {0, 1}n, let swapa,b : {0, 1}n → {0, 1}n denote the permutation
that maps a 7→ b and b 7→ a but is otherwise equal to the identity.

Lemma 5 (Formal version of Lemma 2). Let D be a distinguisher in the
following game:

Phase 1: A uniform permutation P : {0, 1}n → {0, 1}n is chosen, and D is
given quantum access to P0 = P and P−10 = P−1.

Phase 2: Uniform s0, s1 ∈ {0, 1}n are chosen, and we let P1 = P ◦ swaps0,s1 .
Uniform b ∈ {0, 1} is chosen, and D is given s0, s1, and quantum access
to Pb, P

−1
b . Then D outputs a guess b′.

For any D making at most q queries (combined) to P0, P
−1
0 in the first phase,

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]| ≤ 4
√
q/2n.

The proof of this lemma is given in Section 4.2.

3 Post-Quantum Security of Even-Mansour

We now establish the post-quantum security of the Even-Mansour cipher based
on the lemmas from the previous section. Recall that the Even-Mansour cipher
is defined as Ek(x) := P (x ⊕ k1) ⊕ k2, where P : {0, 1}n → {0, 1}n is a public
random permutation and k = (k1, k2) ∈ {0, 1}2n is a key. Our proof assumes
only that the marginal distributions of k1 and k2 are each uniform, i.e., that

Pr[k1 = κ] = Pr[k2 = κ] = 2−n ∀κ .

This covers the original Even-Mansour cipher [11] where k is uniform over {0, 1}2n
and the one-key variant [9] where k1 is uniform and then k2 is set equal to k1.

For Ek to be efficiently invertible, the permutation P must itself support
efficient inversion; that is, the oracle for P must be accessible in both the forward
and inverse directions. We thus consider adversaries A who can access both the
cipher Ek and the permutation P in both the forward and inverse directions. The
goal of A is to distinguish this world from the ideal world in which it interacts
with independent random permutations R,P . In this section, it will be implicit
in our notation that all oracles are two-way accessible.

In the following, we let Pn be the set of all permutations of {0, 1}n. We write
Ek[P ] to denote the Even-Mansour cipher using permutation P and key k; we
do this both to emphasize the dependence on P , and to enable references to
Even-Mansour with a permutation other than P . Our main result is as follows:
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Theorem 3 (Theorem 1, restated). Let A be an adversary making qE clas-
sical queries to its first oracle and qP quantum queries to its second oracle. Then∣∣∣∣∣∣ Pr

k←D
P←Pn

[
AEk[P ],P (1n) = 1

]
− Pr
R,P←Pn

[
AR,P (1n) = 1

]∣∣∣∣∣∣
≤ 10 · 2−n/2 (qE

√
qP + qP

√
qE) ,

where D is any distribution over k = (k1, k2) such that the marginal distributions
of k1 and k2 are each uniform.

Proof. Without loss of generality, we assume A never makes a redundant clas-
sical query: once it learns an input/output pair (x, y) by making a query to
its classical oracle, it never again submits the query x (respectively, y) to the
forward (respectively, inverse) direction of that oracle.

We divide an execution of A into qE +1 stages 0, . . . , qE , where the jth stage
corresponds to the time between the jth and (j + 1)st classical queries of A.
In particular, the 0th stage corresponds to the period of time before A makes
its first classical query, and the qEth stage corresponds to the period of time
after A makes its last classical query. We allow A to adaptively distribute its qP
quantum queries between these stages arbitrarily, provided the total is qP . We
let qP,j denote the expected number of queries A makes in the jth stage in the
ideal world AR,P and we observe that

∑qE
j=0 qP,j = qP .

Recall that swapa,b swaps a and b and fixes all other inputs. Given a permuta-

tion P , an ordered list of pairs T =
(
(x1, y1), . . . , (xt, yt)

)
, and a key k = (k1, k2),

define
PT,k = swapP (x1⊕k1),y1⊕k2 ◦ · · · ◦ swapP (xt⊕k1),yt⊕k2 ◦ P . (1)

(If T is empty, then PT,k = P .) Note that Ek[PT,k](xi) = yi for all i. The intuition
is as follows: if we first fix a P , and then select a set T of observed cipher input-
output pairs, then (except for some edge cases) PT,k is a permutation which
appears to be consistent with that cipher and is otherwise nearly equal to P .

We now define a sequence of experiments Hj , for j = 0, . . . , qE .

Experiment Hj . Sample R,P ← Pn and k ← D. Then:

1. Run A, answering its classical queries using R and its quantum queries us-
ing P , stopping immediately before its (j + 1)st classical query. Let Tj =(
(x1, y1), . . . , (xj , yj)

)
be the ordered list of all input/output pairs that A

received from its classical oracle.
2. For the remainder of the execution of A, answer its classical queries using
Ek[P ] and its quantum queries using PTj ,k.

We can compactly represent Hj as the experiment in which A’s queries are
answered using the oracle sequence

P,R, P, · · · , R, P,︸ ︷︷ ︸
j classical queries

Ek[P ], PTj ,k, · · · , Ek[P ], PTj ,k︸ ︷︷ ︸
qE − j classical queries

.
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Each appearance of R or Ek[P ] indicates a single classical query. Each appear-
ance of P or PTj ,k indicates a stage during which A makes multiple (quantum)
queries to that oracle but no queries to its classical oracle. Observe that H0

corresponds to the execution of A in the real world, i.e., AEk[P ],P , and that HqE

is the execution of A in the ideal world, i.e., AR,P .
For j = 0, . . . , qE − 1, we introduce additional experiments H′j :

Experiment H′j . Sample R,P ← Pn and k ← D. Then:

1. Run A, answering its classical queries using R and its quantum queries us-
ing P , stopping immediately after its (j + 1)st classical query. Let Tj+1 =(
(x1, y1), . . . , (xj+1, yj+1)

)
be the ordered list of all input/output pairs that

A learned from its classical oracle.
2. For the remainder of the execution of A, answer its classical queries using
Ek[P ] and its quantum queries using PTj+1,k.

Thus, H′j corresponds to running A using the oracle sequence

P,R, P, · · · , R, P,︸ ︷︷ ︸
j classical queries

R,PTj+1,k, Ek[P ], PTj+1,k · · · , Ek[P ], PTj+1,k︸ ︷︷ ︸
qE − j − 1 classical queries

.

In Lemmas 6 and 7, we establish bounds on the distinguishability of H′j and Hj+1,

as well as Hj and H′j . For 0 ≤ j < qE these give:∣∣Pr[A(H′j) = 1]− Pr[A(Hj+1) = 1]
∣∣ ≤ 2 · qP,j+1 ·

√
2 · (j + 1)

2n
.∣∣Pr[A(Hj) = 1]− Pr[A(H′j) = 1]

∣∣ ≤ 8 ·
√
qP
2n

+ 2qE · 2−n

Using the above, we have

|Pr[A(H0) = 1]− Pr[A(HqE ) = 1]|

≤
qE−1∑
j=0

(
8 ·
√
qP
2n

+ 2qE · 2−n + 2 · qP,j+1

√
2 · (j + 1)

2n

)

≤ 2q2E · 2−n +

qE−1∑
j=0

(
8 ·
√
qP
2n

+ 2 · qP,j+1

√
2qE
2n

)

≤ 2q2E · 2−n + 2−n/2 ·
(

8qE
√
qP + 2 · qP

√
2qE

)
.

We now simplify the bound further. If qP = 0, then Ek and R are perfectly
indistinguishable and the theorem holds; thus, we may assume qP ≥ 1. We can
also assume qE < 2n/2 since otherwise the bound is larger than 1. Under these
assumptions, we have q2E · 2−n ≤ qE · 2−n/2 ≤ qE

√
qP · 2−n/2 and so

2q2E · 2−n + 2−n/2
(

8qE
√
qP + 2qP

√
2qE

)
≤ 2 · qE

√
qP · 2−n/2 + 2−n/2

(
8qE
√
qP + 2qP

√
2qE

)
≤ 10 · 2−n/2 (qE

√
qP + qP

√
qE) ,
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as claimed. ut

To complete the proof of Theorem 3, we now establish the two lemmas show-
ing that H′j is close to Hj+1 and Hj is close to H′j for 0 ≤ j < qE .

Lemma 6. For j = 0, . . . , qE − 1,

Pr[A(H′j) = 1]− Pr[A(Hj+1) = 1]| ≤ 2 · qP,j+1

√
2 · (j + 1)/2n ,

where qP,j+1 is the expected number of queries A makes to P in the (j + 1)st
stage in the ideal world (i.e., in HqE .)

Proof. Recall we can write the oracle sequences defined by H′j and Hj+1 as

H′j : P,R, P, · · · , R, P, R, PTj+1,k, Ek[P ], PTj+1,k, · · · , Ek[P ], PTj+1,k

Hj+1 : P,R, P, · · · , R, P︸ ︷︷ ︸
j classical queries

, R, P, Ek[P ], PTj+1,k, · · · , Ek[P ], PTj+1,k︸ ︷︷ ︸
qE − j − 1 classical queries

.

Let A be a distinguisher between H′j and Hj+1. We construct from A a distin-
guisher D for the blinding experiment from Lemma 3:

Phase 1: D samples P,R← Pn. It then runs A, answering its quantum queries
using P and its classical queries using R, until after it responds to A’s
(j + 1)st classical query. Let Tj+1 =

(
(x1, y1), . . . , (xj+1, yj+1)

)
be the list

of input/output pairs A received from its classical oracle thus far. D defines
F (t, x) := P t(x) for t ∈ {1,−1}. It also defines a randomized algorithm B,
which depends on P and Tj+1. Given randomness k = (k1, k2), the algo-
rithm B computes the set B of input-output pairs such that the result of
reprogramming F with B (i.e., F (B)(t, x)) is equal to P tTj+1,k

.

Phase 2: B is run using randomness k = (k1, k2) to generate B, and D is
given quantum access to an oracle Fb. D resumes running A, answering its
quantum queries using P t = Fb(t, ·). Phase 2 ends when A makes its next
(i.e., (j + 2)nd) classical query.

Phase 3: D is given the randomness used by B to generate k. It resumes run-
ning A, answering its classical queries using Ek[P ] and its quantum queries
using PTj+1,k. Finally, it outputs whatever A outputs.

Observe that D is a valid distinguisher for the arbitrary reprogramming
experiment of Lemma 3. It is immediate that if b = 0 (i.e., D’s oracle in
phase 2 is F0 = F ), then A’s output is identically distributed to its out-
put in Hj+1, whereas if b = 1 (i.e., D’s oracle in phase 2 is F1 = F (B)),
then A’s output is identically distributed to its output in H′j . It follows that

|Pr[A(H′j) = 1]− Pr[A(Hj+1) = 1]| is equal to the distinguishing advantage of
D in the reprogramming experiment. To bound this quantity using Lemma 3,
we bound the reprogramming probability and the expected number of queries of
D in Phase 2 (when F = F0.)

The reprogramming probability ε can be bounded using the definition (1) of
PTj+1,k and the fact that F (B)(t, x) = P tTj+1,k

. Fixing P and Tj+1, the probability

11



that any given (t, x) is reprogrammed is at most the probability (over k) that it
is in the set{

(1, xi ⊕ k1), (1, P−1(yi ⊕ k2)), (−1, P (xi ⊕ k1)), (−1, yi ⊕ k2)
}
1≤i≤j+1

.

Taking a union bound and applying the fact that the marginal distributions of
k1 and k2 are both uniform, we get ε ≤ 2(j + 1)/2n.

The expected number of queries made by D in Phase 2 when F = F0 is equal
to the expected number of queries made by A in its (j + 1)st stage in Hj+1.
Since Hj+1 and HqE are identical until after the (j+ 1)st stage is complete, this
is precisely qP,j+1. ut

Lemma 7. For j = 0, . . . , qE,

∣∣Pr[A(Hj) = 1]− Pr[A(H′j) = 1]
∣∣ ≤ 8 ·

√
qP
2n

+ 2qE · 2−n.

Proof. Recall that we can write the oracle sequences defined by Hj and H′j as

Hj : P,R, P, · · · , R, P, Ek[P ], PTj ,k, Ek[P ], PTj ,k , · · · , Ek[P ], PTj ,k

H′j : P,R, P, · · · , R, P︸ ︷︷ ︸
j classical queries

, R, PTj+1,k, Ek[P ], PTj+1,k, · · · , Ek[P ], PTj+1,k︸ ︷︷ ︸
qE − j − 1 classical queries

.

Let A be a distinguisher between Hj and H′j . We construct from A a distin-
guisher D for the reprogramming experiment of Lemma 5:

Phase 1: D is given quantum access to a permutation P . It samples R← Pn
and then runs A, answering its quantum queries with P and its classical
queries with R (in the appropriate directions), until2 A submits its (j + 1)st
classical query xj+1. At that point, D has a list Tj =

(
(x1, y1), · · · , (xj , yj)

)
of the input/output pairs A has received from its classical oracle thus far.

Phase 2: Now D receives s0, s1 ∈ {0, 1}n and quantum oracle access to a per-
mutation Pb. Then D sets k1 := s0 ⊕ xj+1, chooses k2 ← D|k1 (where this
represents the conditional distribution on k2 given k1), and sets k := (k1, k2).
D continues running A, answering its remaining classical queries (including
the (j + 1)st one) using Ek[Pb], and its remaining quantum queries using

(Pb)Tj ,k = swapPb(x1⊕k1),y1⊕k2 ◦ · · · ◦ swapPb(xj⊕k1),yj⊕k2 ◦ Pb .

Finally, D outputs whatever A outputs.

Note that although D needs to make additional queries to Pb at the start of
Phase 2 (to determine Pb(x1⊕k1), . . . , Pb(xj⊕k1)), the bound of Lemma 5 only
depends on the number of quantum queries D makes in Phase 1, which is at
most qP .

2 We assume for simplicity that this query is in the forward direction, but the case
where it is in the inverse direction can be handled entirely symmetrically (using the
fact that the marginal distribution of k2 is uniform).
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We now analyze the execution of D in the two cases of the game of Lemma 5:
b = 0 (no reprogramming) and b = 1 (reprogramming). In both cases, P and R
are independent, uniform permutations, and A is run with quantum oracle P
and classical oracle R until it makes its (j + 1)st classical query; thus, through
the end of Phase 1, the above execution of A is consistent with both Hj and H′j .

At the start of Phase 2, uniform s0, s1 ∈ {0, 1}n are chosen. Since D sets
k1 := s0 ⊕ xj+1, the distribution of k1 is uniform and hence k is distributed
according to D. The two cases (b = 0 and b = 1) now begin to diverge.

Case b = 0 (no reprogramming). In this case, A’s remaining classical queries
(including its (j + 1)st classical query) are answered using Ek[P0] = Ek[P ], and
its remaining quantum queries are answered using (P0)Tj ,k = PTj ,k. The output
of A is thus distributed identically to its output in Hj in this case.

Case b = 1 (reprogramming). In this case, we have

Pb = P1 = P ◦ swaps0,s1 = swapP (s0),P (s1) ◦ P = swapP (xj+1⊕k1),P (s1) ◦ P . (2)

The response to A’s (j + 1)st classical query is thus

yj+1
def
= Ek[P1](xj+1) = P1(xj+1 ⊕ k1)⊕ k2 = P1(s0)⊕ k2 = P (s1)⊕ k2 . (3)

The remaining classical queries of A are then answered using Ek[P1], while its
remaining quantum queries are answered using (P1)Tj ,k. If we let Exptj refer to
the experiment in which D executes A as a subroutine when b = 1, it follows
from Lemma 5 that∣∣Pr[A(Hj) = 1]− Pr[A(Exptj) = 1]

∣∣ ≤ 4
√
qP /2n. (4)

We now define three events:

1. bad1 is the event that yj+1 ∈ {y1, . . . , yj}.
2. bad2 is the event that s1 ⊕ k1 ∈ {x1, . . . , xj}.
3. bad3 is the event that, in phase 2, A queries its classical oracle in the forward

direction on s1⊕k1, or the inverse direction on P (s0)⊕k2 (with result s1⊕k1).

Since yj+1 = P (s1)⊕k2 is uniform (because k2 is uniform and independent of P
and s1), it is immediate that Pr[bad1] ≤ j/2n. Similarly, s1⊕k1 = s1⊕s0⊕xj+1

is uniform, and so Pr[bad2] ≤ j/2n. As for the last event, we have:

Claim. Pr[bad3] ≤ (qE − j)/2n + 4
√
qP /2n.

Proof. Consider the algorithm D′ that behaves identically to D in phases 1
and 2, but then when A terminates outputs 1 iff event bad3 occurred. When
b = 0 (no reprogramming), the execution of A is independent of s1, and so
the probability that bad3 occurs is at most (qE − j)/2n. Now observe that D′
is a distinguisher for the reprogramming game of Lemma 5, with advantage
|Pr[bad3|b = 1]− (qE − j)/2n|. The claim then follows from Lemma 5. ut
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1 P,R← Pn

2 Run A with quantum access to P and classical access to R, until A makes its
(j + 1)st classical query xj+1; let Tj be as in the text

3 s0, s1 ← {0, 1}n, P1 := P ◦ swaps0,s1
4 k1 := s0 ⊕ xj+1, k2 ← D|k1

, k := (k1, k2)
5 yj+1 := Ek[P1](xj+1)
6 Q := (P1)Tj ,k

7 if yj+1 ∈ {y1, . . . , yj} then bad1 := true, yj+1 ← {0, 1}n \ {y1, . . . , yj}
8 Give yj+1 to A as the answer to its (j + 1)st classical query
9 Tj+1 :=

(
(x1, y1), . . . , (xj+1, yj+1)

)
10 if s1 ⊕ k1 ∈ {x1, . . . , xj} then bad2 := true

11 if bad1 = true or bad2 = true then Q := PTj+1,k

12 Continue running A with quantum access to Q and classical access to O/O−1

13 O(x)

14 y := Ek[P1](x)
15 if x = s1 ⊕ k1 then

16 bad3 := true, y := Ek[P ](x)

17 return y

18 O−1(y)

19 x := E−1
k [P1](y)

20 if x = s1 ⊕ k1 then

21 bad3 := true, x := E−1
k [P ](y)

22 return x

Fig. 1. Expt′j includes the boxed statements, whereas Exptj does not.

In Figure 1, we show code for Exptj and a related experiment Expt′j . Note

that Exptj and Expt′j are identical until either bad1, bad2, or bad3 occur, and so
by the fundamental lemma of game playing [3]3 we have∣∣Pr[A(Expt′j) = 1]− Pr[A(Exptj) = 1]

∣∣ ≤ Pr[bad1 ∨ bad2 ∨ bad3]

≤ 2qE/2
n + 4

√
qP /2n . (5)

We complete the proof by arguing that Expt′j is identical to H′j :

1. In Expt′j , the oracle Q used in line 12 is always equal to PTj+1,k. When bad1
or bad2 occurs this is immediate (since then Q is set to PTj+1,k in line 11).
But if bad1 does not occur then Equation (3) holds, and if bad2 does not
occur then for i = 1, . . . , j we have xi ⊕ k1 6= s0 and xi ⊕ k1 6= s1 (where
the former is because xj+1 ⊕ k1 = s0 but xi 6= xj+1 by assumption, and the
latter is by definition of bad2). Thus P1(xi⊕k1) = P (xi⊕k1) for i = 1, . . . , j,

3 Note that the fundamental lemma of game playing is an information-theoretic result.
As bad1, bad2 and bad3 are classical probabilistic events in the execution of D, we
can thus apply this result in our (quantum) setting.
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and so

Q = (P1)Tj ,k = swapP1(x1⊕k1),y1⊕k2 ◦ · · · ◦ swapP1(xj⊕k1),yj⊕k2 ◦ P1

= swapP (x1⊕k1),y1⊕k2 ◦ · · · ◦ swapP (xj+1⊕k1),yj+1⊕k2 ◦ P
= PTj+1,k,

using Equations (2) and (3).
2. In Expt′j , the value yj+1 is uniformly distributed in {0, 1}n \ {y1, . . . , yj}.

Indeed, we have already argued above that the value yj+1 computed in line 14
is uniform in {0, 1}n. But if that value lies in {y1, . . . , yj} (and so bad1 occurs)
then yj+1 is re-sampled uniformly from {0, 1}n \ {y1, . . . , yj} in line 7.

3. In Expt′j , the response from oracle O(x) is always equal to Ek[P ](x). When
bad3 occurs this is immediate. But if bad3 does not occur then x 6= s1 ⊕ k1;
we also know that x 6= s0⊕k1 = xj+1 by assumption. But then P1(x⊕k1) =
P (x⊕ k1) and so Ek[P1](x) = Ek[P ](x). A similar argument shows that the
response from O−1(y) is always E−1k [P ](y).

Syntactically rewriting Expt′j using the above observations yields an experiment

that is identical to H′j . (See Appendix B for further details.) Lemma 7 thus
follows from Equations (4) and (5). ut

4 Proofs of the Technical Lemmas

In this section, we give the proofs of our technical lemmas: the “arbitrary repro-
gramming lemma” (Lemma 3) and the “resampling lemma” (Lemma 5).

4.1 Proof of the Arbitrary Reprogramming Lemma

Lemma 3 allows for distinguishers that choose the number of queries they make
adaptively, e.g., depending on the oracle provided and the outcomes of any mea-
surements, and the bound is in terms of the number of queries D makes in
expectation. As discussed in Section 1.1, the ability to directly handle adaptive
distinguishers is necessary for our proof, and to our knowledge has not been
addressed before. To formally reason about adaptive distinguishers, we model
the intermediate operations of the distinguisher and the measurements it makes
as quantum channels. With this as our goal, we first recall some necessary back-
ground and establish some notation.

Recall that a density matrix ρ is a positive semidefinite matrix with unit
trace. A quantum channel—the most general transformation between density
matrices allowed by quantum theory—is a completely positive, trace-preserving,
linear map. The quantum channel corresponding to the unitary operation U is
the map ρ 7→ UρU†. Another type of quantum channel is a pinching, which
corresponds to the operation of making a measurement. Specializing to the only
kind of pinching needed in our proof, consider the measurement of a single-qubit
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register C given by the projectors {Π0, Π1} with Πb = |b〉〈b|C . This corresponds
to the pinching MC where

MC(ρ) = Π0ρΠ0 +Π1ρΠ1.

Observe that a pinching only produces the post-measurement state, and does
not separately give the outcome (i.e., the result 0 or 1).

Consider a quantum algorithm D with access to an oracle O operating on
registers X,Y (so O|x〉|y〉 = |x〉|y ⊕ O(x)〉). We define the unitary cO for the
controlled version of O, operating on registers C,X, and Y (with C a single-qubit
register), as

cO|c〉|x〉|y〉 = |c〉|x〉|y ⊕ c · O(x)〉.

With this in place, we may now view an execution of DO as follows. The algo-
rithm uses registers C,X, Y , and E. Let qmax be an upper bound on the number
of queries D ever makes. Then D applies the quantum channel

(Φ ◦ cO ◦MC)
qmax (6)

to some initial state ρ = ρ
(0)
0 . That is, for each of qmax iterations, D applies to

its current state the pinchingMC followed by the controlled oracle cO and then
an arbitrary quantum channel Φ (that we take to be the same in all iterations
without loss of generality4) operating on all its registers. Finally, D applies a

measurement to produce its final output. If we let ρ
(0)
i−1 denote the intermedi-

ate state immediately before the pinching is applied in the ith iteration, then

pi−1 = Tr
[
|1〉〈1|C ρ(0)i−1

]
represents the probability that the oracle is applied (or,

equivalently, that a query is made) in the ith iteration, and so q =
∑qmax

i=1 pi−1
is the expected number of queries made by D when interacting with oracle O.

Proof of Lemma 3. An execution of D takes the form of Equation (6) up to a
final measurement. For some fixed value of the randomness r used to run B, set
Υb = Φ ◦ cOFb

◦MC , and define

ρk
def
=
(
Υ qmax−k
1 ◦ Υ k0

)
(ρ),

so that ρk is the final state if the first k queries are answered using a (con-
trolled) F0 oracle and then the remaining qmax − k queries are answered using

a (controlled) F1 oracle. Furthermore, we define ρ
(0)
i = Υ i0(ρ). Note also that

ρqmax
(resp., ρ0) is the final state of the algorithm when the F0 oracle (resp.,

F1 oracle) is used the entire time. We bound Er
[
δ
(
|r〉〈r| ⊗ ρqmax

, |r〉〈r| ⊗ ρ0
)]

,
where δ(·, ·) denotes the trace distance.

Define F̃ (B)(x) = F (x) ⊕ F (B)(x), and note that F̃ (B)(x) = 0n for x 6∈ B1.
Since the trace distance is non-increasing under quantum channels, for any r we

4 This can be done by having a register serve as a counter that is incremented with
each application of Φ.
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have

δ (|r〉〈r| ⊗ ρk, |r〉〈r| ⊗ ρk−1) ≤ δ
(
cOF0

◦MC

(
ρ
(0)
k−1

)
, cOF1

◦MC

(
ρ
(0)
k−1

))
= δ

(
MC

(
ρ
(0)
k−1

)
, cOF̃ (B) ◦MC

(
ρ
(0)
k−1

))
.

By definition of a controlled oracle,

cOF̃ (B) ◦MC

(
ρ
(0)
k−1

)
= cOF̃ (B)

(
|1〉〈1|C ρ(0)k−1 |1〉〈1|C

)
+ |0〉〈0|C ρ(0)k−1 |0〉〈0|C

= OF̃ (B)

(
|1〉〈1|C ρ(0)k−1 |1〉〈1|C

)
+ |0〉〈0|C ρ(0)k−1 |0〉〈0|C ,

and thus

δ
(
MC

(
ρ
(0)
k−1

)
, cOF̃ (B) ◦MC

(
ρ
(0)
k−1

))
= δ

(
|1〉〈1|C ρ(0)k−1 |1〉〈1|C , OF̃ (B)

(
|1〉〈1|C ρ(0)k−1 |1〉〈1|C

))
= pk−1 · δ (σk−1, OF̃ (B) (σk−1))

where, recall, pk−1 = Tr
[
|1〉〈1|C ρ(0)k−1

]
is the probability that a query is made in

the kth iteration, and we define the normalized state σk−1
def
=
|1〉〈1|C ρ(0)k−1 |1〉〈1|C

pk−1
.

Therefore,

Er [δ (|r〉〈r| ⊗ ρqmax
, |r〉〈r| ⊗ ρ0)]

≤
qmax∑
k=1

EB [δ((|r〉〈r| ⊗ ρk, |r〉〈r| ⊗ ρk−1)]

≤
qmax∑
k=1

pk−1 · EB [δ (σk−1, OF̃ (B) (σk−1))]

≤ q ·max
σ

EB [δ (σ, OF̃ (B) (σ))] , (7)

where we write EB for the expectation over the set B output by B in place of Er.
Since σ can be purified to some state |ψ〉, and δ(|ψ〉, |ψ′〉) ≤ ‖|ψ〉 − |ψ′〉‖2

for pure states |ψ〉, |ψ′〉, we have

max
σ

EB [δ (σ, OF̃ (B) (σ))] ≤ max
|ψ〉

EB [δ (|ψ〉, OF̃ (B) |ψ〉)]

≤ max
|ψ〉

EB [‖|ψ〉 − OF̃ (B) |ψ〉‖2].

Because OF̃ (B) acts as the identity on (I−ΠB1
)|ψ〉 for any |ψ〉, we have

EB [‖|ψ〉 − OF̃ (B) |ψ〉‖2]

= EB [‖ΠB1
|ψ〉 − OF̃ (B)ΠB1

|ψ〉+ (I−OF̃ (B))(I−ΠB1
)|ψ〉‖2]

≤ EB [‖ΠB1
|ψ〉‖2] + EB [‖OF̃ (B)ΠB1

|ψ〉‖2]

= 2 · EB [‖ΠB1
|ψ〉‖2]

≤ 2
√

EB
[
‖ΠB1 |ψ〉‖22

]
, (8)
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using Jensen’s inequality in the last step. Let |ψ〉 =
∑
x∈{0,1}m,y∈{0,1}n αx,y|x〉|y〉

where ‖|ψ〉‖22 =
∑
x,y α

2
x,y = 1. Then

EB
[
‖ΠB1 |ψ〉‖22

]
= EB

[∑
x,y: x∈B1

α2
x,y

]
=
∑
x,y

α2
x,y · Pr[x ∈ B1] ≤ ε. (9)

Together with Equations (7) and (8), this gives the desired result. ut

4.2 Proof of the Resampling Lemma

We begin by introducing a superposition-oracle technique based on the one by
Zhandry [25], but different in that our oracle represents a two-way accessible,
uniform permutation (rather than a uniform function). We also do not need to
“compress” the oracle, as an inefficient representation suffices for our purposes.

For an arbitrary function f : {0, 1}n → {0, 1}n, define the state

|f 〉F =
⊗

x∈{0,1}n
|f(x)〉Fx

,

where F is the collection of registers {Fx}x∈{0,1}n . We represent an evaluation
of f via an operator O whose action on the computational basis is given by

OXY F |x〉X |y〉Y |f 〉F = CNOT⊗nFx:Y
|x〉X |y〉Y |f 〉F = |x〉X |y ⊕ f(x)〉Y |f 〉F ,

where X,Y are n-qubit registers. Handling inverse queries to f is more difficult.
We want to define an inverse operator Oinv such that, for any permutation π,

Oinv
XY F |π〉F =

 ∑
x,y∈{0,1}n

|y〉〈y|Y ⊗ XxX ⊗ |y〉〈y|Fx

 |π〉F (10)

(where X is the Pauli-X operator, and for x ∈ {0, 1}n we let Xx := Xx1 ⊗ Xx2 ⊗
. . .⊗ Xxn so that Xx|x̂〉 = |x̂⊕ x〉); then,

Oinv
XY F |x〉X |y〉Y |π〉F = |x⊕ π−1(y)〉X |y〉Y |π〉F .

In order for Oinv to be a well-defined unitary operator, however, we must extend
its definition to the entire space of functions. A convenient extension is given by
the following action on arbitrary computational basis states:

Oinv
XY F =

∏
x′∈{0,1}n

(
Xx
′

X ⊗ |y〉〈y|Fx′ + (1− |y〉〈y|)Fx′

)
,

so that
Oinv
XY F |x〉X |y〉Y |f 〉F = |x⊕

(
⊕x′:f(x′)=y x′

)
〉X |y〉Y |f 〉F .
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In other words, the inverse operator XORs all preimages (under f) of the value
in register Y into the contents of register X.

We may view a uniform permutation as a uniform superposition over all
permutations in Pn; i.e., we model a uniform permutation as the state

|φ0〉F = (2n!)
− 1

2

∑
π∈Pn

|π〉F .

The final state of any oracle algorithm D is identically distributed whether we
(1) sample uniform π ∈ Pn and then run D with access to π and π−1, or (2) run
D with access to O and Oinv after initializing the F -registers to |φ0〉F (and, if
desired, at the end of its execution, measure the F -registers to obtain π and the
residual state of D).

Our proof relies on the following lemma, which is a special case of the con-
clusion of implication (�′) in [20]. (Here and in the following, we denote the

complementary projector of a projector P by P̄
def
= 1− P .)

Lemma 8 (Gentle measurement lemma). Let |ψ〉 be a quantum state and

let {Pi}qi=1 be a collection of projectors with
∥∥P̄i|ψ〉∥∥22 ≤ εi for all i. Then

1−

∣∣∣∣∣〈ψ|
(

q∏
i=1

Pi

)
|ψ〉

∣∣∣∣∣
2

≤
q∑
i=1

εi.

Proof of Lemma 5. We split the distinguisher D into two stages D = (D0,D1)
corresponding to the first and second phases of the experiment in Lemma 5. As
discussed above, we run the experiment using the superposition oracle |φ0〉F and
then measure the F -registers at the end. Informally, our goal is to show that on
average over the choice of reprogrammed positions s0, s1, the adversary-oracle
state after D0 finishes is almost invariant under the reprogramming operation
(i.e., the swap of registers Fs0 and Fs1) unless D0 makes a large number of oracle
queries. This will follow from Lemma 8 because, on average over the choice of
s0, s1, any particular query of D0 (whether using O or Oinv) only involves Fs0
or Fs1 with negligible amplitude.

We begin by defining the following projectors

(Ps0s1)X =

{
1 s0 = s1

1− |s0〉〈s0| − |s1〉〈s1| s0 6= s1(
P inv
s0s1

)
FY

=

{
1 s0 = s1∑
y∈{0,1}n |y〉〈y|Y ⊗ (1− |y〉〈y|)⊗2Fs0

Fs1
s0 6= s1.

It is straightforward to verify that for any s0, s1:[
SwapFs0

Fs1
, OXY F (Ps0s1)X

]
= 0 (11)[

SwapFs0
Fs1

, Oinv
XY F

(
P inv
s0s1

)
FY

]
= 0, (12)
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where [·, ·] denotes the commutator operation, and SwapAB is the swap operator
(i.e., SwapA,B |x〉A|x′〉B = |x′〉A|x〉B if the target registers A,B are distinct, and
the identity if A and B refer to the same register). In words, this means that
if we project a forward query to inputs other than s0, s1, then swapping the
outputs of a function at s0 and s1 before evaluating that function has no effect;
this holds also if we project an inverse query (for some associated function f) to
the set of output values that are not equal to f(s0) nor f(s1).

Since P̄s0s1
def
= 1−Ps0s1 ≤ |s0〉〈s0|+|s1〉〈s1| it follows that for any normalized

state |ψ〉XE of register X and an arbitrary register E,

E
s0,s1

∥∥(P̄s0s1)X |ψ〉XE∥∥22 ≤ E
s0,s1
〈ψ| (|s0〉〈s0|+ |s1〉〈s1|) |ψ〉

= 2 · 2−n. (13)

It turns out that we can make a similar statement about P inv
s0s1 . Let |ψ〉Y XEF

be the query state of an adversary interacting with the inverse interface of the
superposition oracle. We can write

|ψ〉Y XEF =
∑

y∈{0,1}n

∑
π∈Pn

cyπ (2n!)
− 1

2 |y〉Y |ψyπ〉XE |π〉F ,

for some quantum states {|ψyπ〉}y,π, with
∑
y∈{0,1}n |cyπ|2 = 1 for all π ∈ Pn.

Suppose s0 6= s1. The projector P inv
s0,s1 is diagonal in the computational basis, so∥∥(P̄ inv

s0s1

)
Y F
|ψ〉Y XEF

∥∥2
2

= 〈ψ|Y XEF
(
P̄ inv
s0s1

)
Y F
|ψ〉Y XEF

=
∑

y∈{0,1}n

∑
π∈Pn

|cyπ|2 (2n!)
−1 〈π|F

(
1− (1− |y〉〈y|)⊗2Fs0Fs1

)
|π〉F

=
∑

y∈{0,1}n

∑
π∈Pn:

y∈{π(s0),π(s1)}

|cyπ|2 (2n!)
−1

=
∑
π∈Pn:

y∈{π(s0),π(s1)}

(2n!)
−1

=
2 (2n − 1)!

2n!
= 2 · 2−n.

(The fourth inequality uses the normalization of the coefficients cyπ.) If s0 = s1,

then
∥∥(P̄ inv

s0s1

)
Y F
|ψ〉Y XEF

∥∥2
2

= 0 ≤ 2 · 2−n, so in summary we have∥∥(P̄ inv
s0s1

)
Y F
|ψ〉Y XEF

∥∥2
2
≤ 2 · 2−n (14)

for all s0, s1. Without loss of generality, we assume D0 starts with initial state
|ψ0〉 = |ψ′0〉|φ0〉 (which we take to include the superposition oracle’s initial state
|φ0〉), computes the state

|ψ〉 = UD0
|ψ0〉 = UqOqUq−1Oq−1 . . . U1O1|ψ0〉,
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and outputs all its registers as a state register E. Here, each Oi ∈ {O,Oinv} acts
on registers XY F , and each Uj acts on registers XY E. To each choice of s0, s1
we assign a decomposition |ψ〉 = |ψgood(s0, s1)〉+ |ψbad(s0, s1)〉 by defining

|ψgood(s0, s1)〉 = zUqOqP
q
s0s1Uq−1Oq−1P

q−1
s0s1 . . . U1O1P

1
s0s1 |ψ0〉,

where P is0s1 = Ps0s1 if Oi = O, P is0s1 = P inv
s0s1 if Oi = Oinv, and z ∈ C such that

|z| = 1 and 〈ψ | ψgood(s0, s1)〉 ∈ R≥0. Now note that

|ψgood(s0, s1)〉 = zUD0

(
q∏
i=1

Qis0s1

)
|ψ0〉,

with Qis0s1 = Ũ†i P
i
s0s1Ũi for Ũi = Ui−1Oi−1 . . . U1O1. We would like to use

Lemma 8, so let

εi(x0, x1) =
∥∥Q̄is0s1 |ψ0〉

∥∥2
2

=
∥∥∥P̄ is0s1Ũi|ψ0〉

∥∥∥2
2
.

Applying Lemma 8 yields

1− |〈ψ | ψgood(s0, s1)〉|2 ≤
q∑
i=1

εi(s0, s1).

We will now analyze the impact of reprogramming the superposition oracle
after D0 has finished. Recall that reprogramming swaps the values of the per-
mutation at points s0 and s1, which is implemented in the superposition-oracle
framework by applying SwapFs0

Fs1
. Note that SwapFs0

Fs1
|φ0〉 = |φ0〉. As the

adversary’s internal unitaries Ui do not act on F , Equations (11) and (12) then
imply that

SwapFs0
Fs1
|ψgood(s0, s1)〉 = |ψgood(s0, s1)〉 .

The standard formula for the trace distance of pure states yields

1

2

∥∥∥|ψ〉〈ψ| − SwapFs0
Fs1
|ψ〉〈ψ|SwapFs0

Fs1

∥∥∥
1

=

√
1−

∣∣∣〈ψ|SwapFs0
Fs1
|ψ〉
∣∣∣2. (15)

We further have∣∣∣〈ψ|SwapFs0Fs1
|ψ〉
∣∣∣ =

∣∣∣〈ψ | ψ〉+ 〈ψbad(s0, s1)|
(
SwapFs0Fs1

− 1
)
|ψbad(s0, s1)〉

∣∣∣
≥ 1− 2‖|ψbad(s0, s1)〉‖22 (16)

using the triangle and Cauchy-Schwarz inequalities. Combining Equations (15)
and (16) we obtain

1

2

∥∥∥|ψ〉〈ψ| − SwapFs0
Fs1
|ψ〉〈ψ|SwapFs0

Fs1

∥∥∥
1
≤ 2 · ‖|ψbad(s0, s1)〉‖2. (17)
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But as |ψbad(s0, s1)〉 = |ψ〉 − |ψgood(s0, s1)〉, we have

‖|ψbad(s0, s1)〉‖22 = 2− 2 · Re 〈ψ | ψgood(s0, s1)〉
= 2− 2 · |〈ψ | ψgood(s0, s1)〉|

≤ 2

q∑
i=1

εi(s0, s1). (18)

Combining the last two equations we obtain

1

2

∥∥∥|ψ〉〈ψ| − SwapFs0Fs1
|ψ〉〈ψ|SwapFs0Fs1

∥∥∥
1
≤ 2
√

2

√√√√ q∑
i=1

εi(s0, s1) . (19)

The remainder of the proof is the same as the analogous part of the proof
of [12, Theorem 6]. D1’s task boils down to distinguishing the states |ψ〉 and
SwapFs0Fs1

|ψ〉, for uniform s0, s1 that D1 receives as input, using the limited
set of instructions allowed by the superposition oracle. We can therefore bound
D’s advantage by the maximum distinguishing advantage for these two states
achievable when using arbitrary quantum computation, averaged over the choice
of s0, s1. Using the standard formula for this maximum distinguishing advantage
we obtain

Pr [D outputs b]− 1

2
≤ 1

4
E

s0,s1

[∥∥∥|ψ〉〈ψ| − SwapFs0
Fs1
|ψ〉〈ψ|SwapFs0

Fs1

∥∥∥
1

]
≤
√

2 E
s0,s1

√√√√ q∑
i=1

εi(s0, s1)


≤
√

2

√√√√ E
s0,s1

[
q∑
i=1

εi(s0, s1)

]
≤ 2

√
q

2n
,

where the second inequality is Equation (19), the third inequality is Jensen’s
inequality, and the last inequality is due to Equations (13) and (14). This implies
the lemma. ut
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Breaking symmetric cryptosystems using quantum period finding. In Advances in
Cryptology—Crypto 2016, Part II, volume 9815 of LNCS, pages 207–237. Springer,
2016.

17. Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment
of Fiat-Shamir signatures in the quantum random-oracle model. In Advances in
Cryptology—Eurocrypt 2018, Part III, volume 10822 of LNCS, pages 552–586.
Springer, 2018.

18. Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld, and Shifeng Sun.
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A Security of Forward-Only Even-Mansour

In this section we consider a simpler case, where Ek[F ](x) := F (x ⊕ k) for
F : {0, 1}n → {0, 1}n a uniform function and k a uniform n-bit string. Here we
restrict the adversary to forward queries only, i.e., the adversary has classical
access to Ek[F ] and quantum access to F ; note that E−1k [F ] and F−1 may not
even be well-defined.

We let Fn denote the set of all functions from {0, 1}n to {0, 1}n.

Theorem 4. Let A be a quantum algorithm making qE classical queries to its
first oracle and qF quantum queries to its second oracle. Then∣∣∣∣∣∣ Pr

k←{0,1}n
F←Fn

[
AEk[F ],F (1n) = 1

]
− Pr
R,F←Fn

[
AR,F (1n) = 1

]∣∣∣∣∣∣
≤ 2−n/2 · (2qE

√
qF + 2qF

√
qE) .
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Proof. We make the same assumptions about A as in the initial paragraphs of
the proof of Theorem 3. We also adopt analogous notation for the stages of A,
now using qE , qF , and qF,j as appropriate.

Given a function F : {0, 1}n → {0, 1}n, a set T of pairs where any x ∈ {0, 1}n
is the first element of at most one pair in T , and a key k ∈ {0, 1}n, we define
the function FT,k : {0, 1}n → {0, 1}n as

FT,k(x) :=

{
y if (x⊕ k, y) ∈ T
F (x) otherwise.

Note that, in contrast to the analogous definition in Theorem 3, here the order
of the tuples in T does not matter and so we may take it to be a set. Note also
that we are redefining the notation FT,k from how it was used in Theorem 3;
this new usage applies to this Appendix only.

We now define a sequence of experiments Hj , for j = 0, . . . , qE :

Experiment Hj . Sample R,F ← Fn and k ← {0, 1}n. Then:

1. Run A, answering its classical queries using R and its quantum queries us-
ing F , stopping immediately before its (j + 1)st classical query. Let Tj =
{(x1, y1), . . . , (xj , yj)} be the set of all classical queries made by A thus far
and their corresponding responses.

2. For the remainder of the execution of A, answer its classical queries using
Ek[F ] and its quantum queries using FTj ,k.

We can represent Hj as the experiment in which A’s queries are answered using
the oracle sequence

F,R, F, · · · , R, F︸ ︷︷ ︸
j classical queries

, Ek[F ], FTj ,k, · · · , Ek[F ], FTj ,k︸ ︷︷ ︸
qE − j classical queries

.

Note that H0 is exactly the real world (i.e., AEk[F ],F ) and HqE is exactly the
ideal world (i.e., AR,F .)

For j = 0, . . . , qE − 1, we define an additional experiment H′j :

Experiment H′j . Sample R,F ← Fn and k ← {0, 1}n. Then:

1. Run A, answering its classical queries using R and its quantum queries us-
ing F , stopping immediately after its (j + 1)st classical query. Let Tj+1 =(
(x1, y1), . . . , (xj+1, yj+1)

)
be the set of all classical queries made by A thus

far and their corresponding responses.
2. For the remainder of the execution of A, answer its classical queries using
Ek[F ] and its quantum queries using FTj+1,k.

I.e., H′j corresponds to answering A’s queries using the oracle sequence

F,R, F, · · · , R, F︸ ︷︷ ︸
j classical queries

, R, FTj+1,k, Ek[F ], FTj+1,k · · · , Ek[F ], FTj+1,k︸ ︷︷ ︸
qE − j − 1 classical queries

.

We now show that H′j is close to Hj+1 and Hj is close to H′j for 0 ≤ j < qE .
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Lemma 9. For j = 0, . . . , qE − 1,

|Pr[A(H′j) = 1]− Pr[A(Hj+1) = 1]| ≤ 2 · qF,j+1

√
(j + 1)/2n.

Proof. Given an adversary A, we construct a distinguisher D for the “blinding
game” of Lemma 3 that works as follows:

Phase 1: D samples F,R← Fn. It then runs A, answering its quantum queries
with F and its classical queries with R, until it replies to A’s (j + 1)st
classical query. Let Tj+1 = {(x1, y1), . . . , (xj+1, yj+1)} be the set of classical
queries made by A and their responses. D defines algorithm B as follows: on
randomness k ∈ {0, 1}n, output B = {(xj ⊕k, yj)}j+1

j=1. Finally, D outputs F
and B.

Phase 2: D is given quantum access to a function Fb. It continues to run A,
answering its quantum queries with Fb until A makes its next classical query.

Phase 3: D is given the randomness k used to run B. It continues runningA, an-
swering its classical queries with Ek[F ] and its quantum queries with FTj+1,k.
Finally, D outputs whatever A outputs.

When b = 0 (so Fb = F0 = F ), thenA’s output is identically distributed to its
output in Hj+1. On the other hand, when b = 1 then Fb = F1 = F (B) = FTj+1,k

and so A’s output is identically distributed to its output in H′j . The expected
number of queries made by D in phase 2 when F = F0 is the expected number
of queries made by A in stage (j+1) in Hj+1. Since Hj+1 and HqE are identical
until after the (j + 1)st stage, this is precisely qF,j+1. Because k is uniform, we
can apply Lemma 3 with ε = (j + 1)/2n. The lemma follows. ut

Lemma 10. For j = 0, . . . , qE,

|Pr[A(Hj) = 1]− Pr[A(H′j) = 1]| ≤ 1.5 ·
√
qF /2n .

Proof. From any adversary A, we construct a distinguisher D for the game of
Lemma 4. D works as follows:

Phase 1: D is given quantum access to a (random) function F . It samples
R ← Fn and then runs A, answering its quantum queries using F and its
classical queries using R, until A submits its (j+1)st classical query xj+1. At
that point, let Tj = {(x1, y1) . . . , (xj , yj)} be the set of input/output pairs
A has received from its classical oracle thus far.

Phase 2: D is given (uniform) s ∈ {0, 1}n and quantum oracle access to a
function Fb. D sets k := s⊕ xj+1, and then continues running A, answering
its classical queries (including the (j + 1)st) using Ek[Fb] and its quantum
queries using the function (Fb)Tj ,k, i.e.,

x 7→

{
y if (x⊕ k, y) ∈ Tj
Fb(x) otherwise.

Finally, D outputs whatever A outputs.
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We analyze the execution of D in the two cases of the game of Lemma 4.
In either case, the quantum queries of A in stages 0, . . . , j are answered using
a random function F , and A’s first j classical queries are answered using an
independent random function R. Note further that since s is uniform, so is k.

Case 1: b = 0. In this case, all the remaining classical queries of A (i.e., from
the (j + 1)st on) are answered using Ek[F ], and the remaining quantum queries
of A are answered using FTj ,k. The output of A is thus distributed identically
to its output in Hj in this case.

Case 2: b = 1. Here, Fb = F1 = Fs→y for a uniform y. Now, the response to the
(j + 1)st classical query of A is

Ek[Fb](xj+1) = Ek[Fs→y](xj+1) = Fs7→y(k ⊕ xj+1) = Fs→y(s) = y.

Since y is uniform and independent of anything else, and since A has never
previously queried xj+1 to its classical oracle, this is equivalent to answering
the first j + 1 classical queries of A using a random function R. The remain-
ing classical queries of A are also answered using Ek[Fs7→y]. However, since
Ek[Fs→y](x) = Ek[F ](x) for all x 6= xj+1 and A never repeats the query xj+1,
this is equivalent to answering the remaining classical queries of A using Ek[F ].

The remaining quantum queries of A are answered with the function

x 7→

{
y′ if (x⊕ k, y′) ∈ Tj
Fs→y(x) otherwise.

This, in turn, is precisely the function FTj+1,k, where Tj+1 is obtained by adding
(xj+1, y) to Tj (and thus consists of the first j+1 classical queries made by A and
their corresponding responses). Thus, the output of A in this case is distributed
identically to its output in H′j .

The number of quantum queries made by D in phase 1 is at most qF . The
claimed result thus follows from Lemma 4. ut

Using Lemmas 9 and 10, and the fact that
∑qE
j=1 qF,j = qF , we have

|Pr[A(H0) = 1]− Pr[A(HqE ) = 1]| ≤ 1.5qE
√
qF /2n + 2

qE∑
j=1

qF,j
√
j/2n

≤ 1.5qE
√
qF /2n + 2

√
qE/2n

qE∑
j=1

qF,j

≤ 1.5qE
√
qF /2n + 2qF

√
qE/2n ,

as required. ut

B Further Details for Lemma 7

The code in the top portion of Figure 2 is a syntactic rewriting of Expt′j . (Flags
that have no effect on the output of A are omitted.) In line 27, the computation
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of yj+1 has been expanded (note that Ek[P1](xj+1) = P1(s0)⊕k2 = P (s1)⊕k2).
In line 31, Q has been replaced with PTj+1,k and O has been replaced with Ek[P ]
as justified in the proof of Lemma 7.

The code in the middle portion of Figure 2 results from the following changes:
first, rather than sampling uniform s0 and then setting k1 := s0⊕xj+1, the code
now samples a uniform k1. Similarly, rather than choosing uniform s1 and then
setting yj+1 := P (s1) ⊕ k2, the code now samples a uniform yj+1 (note that P
is a permutation, so P (s1) is uniform). Since neither s0 nor s1 is used anywhere
else, each can now be omitted.

The code in the bottom portion of Figure 2 simply chooses k = (k1, k2)
according to distribution D, and chooses uniform yj+1 ∈ {0, 1}n \ {y1, . . . , yj}.
It can be verified by inspection that this final experiment is equivalent to H′j .

23 P,R← Pn

24 Run A with quantum access to P and classical access to R, until A makes its
(j + 1)st classical query xj+1; let Tj be as in the text

25 s0, s1 ← {0, 1}n
26 k1 := s0 ⊕ xj+1, k2 ← D|k1

, k := (k1, k2)
27 yj+1 := P (s1)⊕ k2
28 if yj+1 ∈ {y1, . . . , yj} then yj+1 ← {0, 1}n \ {y1, . . . , yj}
29 Give yj+1 to A as the answer to its (j + 1)st classical query
30 Tj+1 :=

(
(x1, y1), . . . , (xj+1, yj+1)

)
31 Continue running A with quantum access to PTj+1,k and classical access

to Ek[P ]

32 P,R← Pn

33 Run A with quantum access to P and classical access to R, until A makes its
(j + 1)st classical query xj+1; let Tj be as in the text

34 k1 ← {0, 1}n, k2 ← D|k1
, k := (k1, k2), yj+1 ← {0, 1}n

35 if yj+1 ∈ {y1, . . . , yj} then yj+1 ← {0, 1}n \ {y1, . . . , yj}
36 Give yj+1 to A as the answer to its (j + 1)st classical query
37 Tj+1 :=

(
(x1, y1), . . . , (xj+1, yj+1)

)
38 Continue running A with quantum access to PTj+1,k and classical access

to Ek[P ]

39 P,R← Pn

40 Run A with quantum access to P and classical access to R, until A makes its
(j + 1)st classical query xj+1; let Tj be as in the text

41 k ← D, yj+1 ← {0, 1}n \ {y1, . . . , yj}
42 Give yj+1 to A as the answer to its (j + 1)st classical query
43 Tj+1 :=

(
(x1, y1), . . . , (xj+1, yj+1)

)
44 Continue running A with quantum access to PTj+1,k and classical access

to Ek[P ]

Fig. 2. Syntactic rewritings of Expt′j .
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