
CHEX-MIX: Combining Homomorphic Encryption with Trusted Execution
Environments for Two-party Oblivious Inference in the Cloud

Deepika Natarajan

University of Michigan, Ann Arbor

Wei Dai

Microsoft Research

Ronald Dreslinski

University of Michigan, Ann Arbor

Abstract

Data, when coupled with state-of-the-art machine learning
models, can enable remarkable applications. But, there exists
an underlying tension: users wish to keep their data private,
and model providers wish to protect their intellectual property.
Homomorphic encryption (HE) and multi-party computation
(MPC) techniques have been proposed as solutions to this
problem; however, both techniques require model providers to
fully trust the server performing the machine learning compu-
tation. This limits the scale of inference applications since it
prevents model providers from leveraging shared public cloud
infrastructures.

In this work, we present CHEX-MIX, a solution to the prob-
lem of privacy-preserving machine learning between two mutu-
ally distrustful parties in an untrusted cloud setting. CHEX-MIX

relies on a combination of HE and trusted execution environ-
ments (TEEs) and leverages the benefits of each to counter
the drawbacks of the other. In particular, we use HE to provide
clients with confidentiality guarantees and TEEs to provide
model providers with confidentiality guarantees and protect
the integrity of computation from malicious cloud adversaries.
Unlike prior solutions to this problem, such as multi-key HE,
single-key HE, MPC, or TEE-only techniques, our solution
assumes that both clients and the cloud can be malicious,
makes no collusion assumptions, and frees model providers
from needing to maintain private online infrastructures. In this
paper, we analyze our solution from a security perspective
and detail the advantages that our solution provides over prior
works, including its ability to allow model providers to maintain
privacy of their software IP. We demonstrate the feasibility of
our solution by deploying CHEX-MIX in an Azure confidential
computing machine. Our results show that CHEX-MIX can
execute at high efficiency, with low communication cost, while
providing security guarantees unaddressed by prior work.

Figure 1: Two-party oblivious inference problem. Solutions
should preserve both client and ML model provider privacy.

1 Introduction

The rise of machine learning (ML) has enabled a host of im-
provements in nearly all aspects of life, from medical diagnosis,
to finance, personal assistants, and more. Alongside the rise
of cloud computing, these technologies have had the potential
to reach users across the globe at increasingly large scales.
However, deployments of machine learning inference services
often come at a high cost to user privacy since users must
provide their personal data to model providers in order to ob-
tain inference results. This threat is further exacerbated by the
prevalence of third-party attackers, who target vulnerabilities in
the infrastructure of large server deployments to obtain direct
access to user data.

As a simple solution to this problem, ML model providers
can choose to deploy their models close to users, such as
directly on client devices. However, companies often spend
significant time and resources developing and training models
for their inference services. Highly tuned models are often
thus considered vital pieces of intellectual property, which
companies are generally unwilling to share. Moreover, sharing
the details of a model can increase the ability of attackers
to perform re-identification or membership inference attacks
[3,71] that violate the privacy of user data in the model training
set. The problem we are faced with then is this: how can we

1



provide privacy to both clients and model providers in a cloud
setting?

This problem, known more generally as oblivious inference
in the literature [12, 58] and shown in Figure 1, has been
the subject of several prior works, with solutions typically con-
sisting of multi-party computation (MPC), homomorphic en-
cryption (HE), or hybrid HE-MPC techniques. However, these
techniques ultimately fall short of enabling scalable private ma-
chine learning since they still require ML model providers to
maintain a private online infrastructure, effectively preventing
model providers from taking full advantage of the public cloud.

More recently, trusted execution environments (TEEs) such
as Intel Software Guard Extensions (SGX) have been pro-
posed as a solution for secure cloud computing. TEEs allow
ML model providers to deploy services in the cloud without
needing to trust the host operating system of the cloud server.
This property allows both ML model providers and their users
to achieve security guarantees against third-party attackers.
However, these environments are either not able to provide
users with protection from the model providers themselves
or require clients to possess an unrealistic level of security
expertise in order to thoroughly verify the trustworthiness of
TEE code.

1.0.1 Our solution

We present a novel hybrid solution to the problem of two-party
oblivious inference in the cloud. Our solution, shown in Fig-
ure 2, relies on a combination of HE and TEEs and works
as follows: An ML model provider establishes a TEE in the
cloud and securely transfers the sensitive parameters of its
model (e.g., its weights and bias values) to the TEE. The ML
model provider then goes offline, and a client who wishes to
use the established ML service homomorphically encrypts
and sends their inputs to the TEE. The TEE performs a homo-
morphic evaluation over the client’s inputs and returns the still
HE-encrypted results to the client, who can then decrypt and
obtain the final results. The privacy of the client’s inputs and
results is protected by HE, while the privacy of the ML model
provider’s model parameters and the correctness of computa-
tion, including the integrity of the input and intermediate and
final results, is protected by the TEE. In this work, we make
the following contributions:

• We present the CHEX-MIX protocol for two-party oblivious
inference based on a combination of homomorphic en-
cryption and trusted execution environments. Compared
to prior works, our solution better enables ML model
providers to utilize the scale of the public cloud, free-
ing model providers from needing to maintain a private
online infrastructure and freeing clients from needing to
possess expert-level knowledge to verify the security of
TEE-code. Our solution provides privacy and correctness
guarantees to both clients and model providers under a

Figure 2: Overview of CHEX-MIX. The ML model provider
attests and sends the model parameters to the cloud TEE.
The client homomorphically encrypts and sends their inputs
to the TEE, which homomorphically computes the inference
results.

strong adversary model, tolerating malicious clients, mali-
cious cloud adversaries, and rational, actively adversarial
ML model providers.

• We demonstrate the CHEX-MIX baseline protocol target-
ing a five-layer CNN for inference over the MNIST dataset.
Our results show that CHEX-MIX is orders of magnitude
more efficient than prior solutions for two-party oblivious
inference over the target workload and provides security
guarantees not addressed by prior works.

• We further adapt the CHEX-MIX baseline protocol to pro-
vide the model provider with confidentiality of their infer-
ence code. This version of our protocol may be most
interesting for real-world deployments since it allows ML
model providers to maintain privacy of their software IP
while still providing both client and model provider parties
with privacy and correctness guarantees in an untrusted
cloud.

2 Background

2.1 Trusted Execution Environments

In a cloud environment, where computing resources are nat-
urally shared and computing stacks are large and difficult to
verify, malicious actors have abundant opportunities to access
sensitive data. In particular, attackers are often able to co-opt
the higher privilege level of OS/hypervisor layers by compro-
mising vulnerabilities in bloated software stacks, thereby gain-
ing direct access to user data. TEEs help solve this problem
by allowing users to define trust boundaries around private
regions of memory, called enclaves, in which users can store
and operate on sensitive data. Several types of TEEs exist to
date, including AMD Secure Encryption Virtualization, ARM
TrustZone, and Intel SGX. We focus on SGX as our TEE of
choice for the remaining descriptions, but the principles dis-
cussed in this paper can be extended to any TEE of a similar
nature.

2



To utilize an enclave, a user must first partition their appli-
cation code into trusted and untrusted components. Then, the
user loads the trusted component of the code into an enclave
through a series of enclave setup procedures. The process by
which a user can confirm that an enclave was created securely
and loaded with the expected code is called (remote) attesta-
tion, and it guarantees security against all attacks assumed
by the SGX adversary model [1].

TLS channel establishment can be integrated with the attes-
tation procedure, as discussed in [20,41], to further guarantee
confidentiality, integrity, and freshness of values transferred
between the user and the enclave against all attacks assumed
by the TLS threat model.

SGX cannot solve all problems of secure code execution. In
particular, SGX does not guarantee protection of enclave code
that is written in an insecure manner (e.g., contains buffer over-
flow vulnerabilities or side-channel-producing computation).
Intel contends that it is the enclave developer’s responsibility
to write secure and side-channel-free code [37]. Finally, users
of SGX must trust Intel attestation services to correctly identify
trustworthy platforms in order to trust the attested enclave.

2.2 Homomorphic Encryption

Homomorphic encryption schemes are a class of crypto-
graphic schemes that enable computations on encrypted data.
This property enables a user to outsource function computa-
tion to an entity that may not be fully trusted, without revealing
the underlying input or output values to the entity. Efficient
HE schemes such as BGV [9], BFV [8, 27], and CKKS [15]
represent plaintexts and ciphertexts as elements in polyno-
mial quotient rings and can operate on vectors of input values
in a single-instruction-multiple-data (SIMD) fashion by using
encoding techniques introduced in [65].

HE schemes consist of 7 main stages: parameter selection,
key generation, encoding, encryption, evaluation, decryption,
and decoding. HE parameters (e.g., the ring degree and co-
efficient moduli of the polynomial quotient rings) are chosen
during parameter selection to be within the bounds of the Ho-
momorphic Encryption Security Standard [11] and determine
both the security level of the scheme and the maximum mul-
tiplicative depth of the target computation circuit. During key
generation, a user generates a secret key (SK) for symmet-
ric encryption and decryption and certain encryptions of the
secret key known as evaluation keys (EK) that assist with
any ciphertext-ciphertext multiplications or ciphertext rotations
performed during evaluation.

The remaining stages represent the main components of
the HE protocol that contribute to its running time. Encoding
converts a vector of input values (integers or real numbers)
into a plaintext, while encryption transforms a plaintext into
a ciphertext. Decryption and decoding reverse this process,
transforming a ciphertext into a plaintext, then plaintext into
a vector of values. Evaluation refers to the computation on

ciphertexts, in the form of addition, multiplication, or rotation
operations, that is typically performed by an untrusted party.
For addition and multiplication operations, the computation
may be between two ciphertexts (CT-CT) or between a cipher-
text and a plaintext (CT-PT).

2.2.1 Homomorphic Inference

In their CryptoNets work [30], Bachrach et al. first described
how to use HE to achieve oblivious neural network inference
for an MNIST classification network. The main idea behind this
work and others that followed [10,12,18,36] was to interpret the
linear network layers as a series of additions, multiplications,
and rotations between fixed-length vectors. Non-linear network
layers, such as ReLU, were approximated by linear operations
such as square. Using these methods, prior works achieved
98.4% or higher accuracy for inference over the MNIST dataset
for homomorphic evaluation of a 5-layer CNN [10].

While CrypoNets demonstrated these techniques using the
BFV scheme, more recent works [12,36,40] prefer the newer,
more efficient CKKS scheme for ML-related tasks. The CKKS
scheme has the unique advantage that it can efficiently discard
unwanted precision in results of HE computation, essentially
preserving an approximate computation on the input vector 1.
Since this type of approximate computation is a good fit for
machine learning tasks, which are already approximate in
nature, CKKS is widely considered as the scheme of choice
for ML computations. Given our target application of oblivious
inference, we focus on the CKKS scheme in this work.

2.2.2 Security of HE and CKKS

The CKKS scheme is based on the (Ring) Learning with Errors
assumption and is IND-CPA secure. Though a recent work [44]
proposed a passive key-recovery attack on the CKKS scheme,
this attack requires access to a decryption oracle. As a sim-
ple mitigation, the decryptor can choose not to share the raw
decryption results2 with any untrusted entity. Additionally, HE
schemes are malleable by nature, meaning that an HE cipher-
text can be directly transformed into another valid ciphertext.
They offer no guarantee, therefore, that the untrusted party
computes a function f () instead of a different function f ′()
over an input. Thus, HE schemes alone are unable to provide
users with computational integrity.

2.3 Adversary Modeling

Traditionally, in the field of multi-party computation and re-
lated works, adversaries are classified into one of two cat-
egories: semi-honest (a.k.a., honest-but-curious) and mali-
cious. A semi-honest adversary refers to an adversary that,

1Discarding precision has a high computational cost in BFV and BGV [13].
2Sharing the general outcome of a decryption, such as the predicted class

in a classification network, however, is not considered insecure.

3



given a prescribed protocol, will passively follow the protocol
as described; thus, this adversary may only infer information
about other parties from the protocol messages it receives. A
malicious adversary, on the other hand, may actively and ar-
bitrarily deviate from the protocol specification and may seek
to compromise either the privacy of participant data or the
correctness of protocol execution.

While useful for modeling certain scenarios, however, the
above two designations fail to adequately capture how many
adversaries actually behave in practice. Some adversaries,
for example, cannot be trusted to only act passively (as in the
semi-honest case) but may still follow certain components of
the prescribed protocol if they are incentivized to do so. For
example, a model provider may ultimately wish to provide a
user with a functional service that provides the user with some
benefit, perhaps to prevent the client from using the service
of a competitor, or it may be that the provider would not wish
to deviate in a manner that would compromise the security of
their own private data. Put another way, the provider would
not be expected to act maliciously unless there were a clear
incentive to do so.

To deal with the above problems and more effectively model
real-world adversary behavior, we employ a rational adversary
assumption in this work. This adversary is described in several
works in the intersection of multi-party computation and game
theory [2, 32, 48, 77] as a realistic yet powerful assumption
upon which efficient MPC schemes can be based. Such an
adversary can be thought of as having capabilities nearly
equivalent to that of a malicious adversary, but bounded by
the adversary’s incentive to maximize their utility according to
some list of preferences3.

We point out that the rational adversary model considers
an additional problem not typically captured by semi-honest
or malicious models regarding the usefulness of any private
values the adversary may provide to the protocol. Consider, for
example, a protocol for computation that takes some private
value V as input from a semi-honest or malicious party P1
and provides another party P2 with the result. Since value V
constitutes P1’s private data, and since there is often no way
of describing in the protocol whether P1 provides some input
V := Input_1 over some other V := Input_2 to the protocol,
there is no restriction4 on what P1 defines as V. Since the
value of V likely affects the computation result, a solution that

3This adversary is similar in concept to a covert adversary [4], who may
be willing to (passively or actively) cheat, but would only do so if it can ensure
it would not be caught. The covert adversary model specifies a deterrence
factor ε that indicates the probability with which other parties would be able
to catch a covert adversary attempting to cheat. A rational adversary model,
on the other hand, does not require a specific deterrence factor or cheating
detection method and instead simply assumes certain protocol deviations
may or may not occur according to the preferences of the rational adversary.

4Some MPC models describe a notion of input consistency, which seeks
to verify that if a party P1 inputs V into some portion of the protocol, and
the same input is required elsewhere in the protocol, the same value of V is
used in both places. This does not prevent P1 from defining V as Dataset_1
instead of Dataset_2 in both places, however.

Table 1: Summary of Terms / Symbols

S Cloud server / Cloud model provider
ES Enclave established on S
C Client / Feature Provider
M ML model provider
AS Adversary S (malicious)
AC Adversary C (malicious)
AM Adversary M (rational)

π HE parameters
W M ’s neural network weights and biases

X / Y C ’s neural network feature inputs / outputs
X, Y HE-encrypted X, Y

F Neural network inference circuit
IF An implementation / code of F
IF IF encrypted with Intel PCL [33]
σ Communication channel

claims security for P2 against a semi-honest or malicious P1
may still allow P2 to receive incorrect results undetected. On
the other hand, a rational model can allow us to reason about
why such an outcome may or may not be possible under the
assumptions, which may be a valuable feature for real-world
deployments.

Finally, we note that, in order to protect against any of the
adversaries mentioned above, a solution must either prevent
the adversary from acting in a way that would compromise the
security of the protocol or allow parties to identify adversarial
actors and abort the protocol before the adversary is able to
compromise sensitive data5. We do not distinguish between
the two types of security in this work since either is sufficient
for our problem setting.

3 Problem Statement

We consider the scenario of two-party secure oblivious neural
network inference in the cloud. Specifically, we assume that
there exists an ML model provider M with a pre-trained neural
network model with weights and bias values and a client C with
inputs X. We refer to M ’s weights and bias values collectively
as W and M ’s model architecture (i.e., the number, ordering,
type, and sizes of layers) as F. We would like to allow the client
to submit their inputs to provider M to obtain result Y=F(X,
W) in a secure manner that preserves the privacy of X and Y
(as well as any intermediate ciphertexts) and guarantees no
corruptions of the result Y. We refer to X and Y collectively
as “client data” and provide a summary of all symbols used in
Table 1.

Importantly, we also wish to free the ML model provider from
having to maintain a private online infrastructure; that is, we

5Prior works sometimes refer to these two cases as robust security and
security with abort.

4



would like M to be able to take full advantage of all the benefits
of using a public cloud. Thus, we introduce an additional entity
S as the cloud model provider (e.g., Amazon AWS or Microsoft
Azure). We aim to allow M to host their inference service
on a server (or collection of servers) hosted by S in a secure
manner that preserves the privacy of W (as well as the privacy
of client data) and prevents cloud adversaries from tampering
with data execution.

3.1 CHEX-MIX Adversary Model

We consider three main types of adversaries in our solution: a
cloud server adversary AS , a client adversary AC , and an ML
model provider adversary AM . The cloud server adversary
AS may represent an untrusted cloud model provider them-
selves or a third-party attacker that is able to take advantage
of vulnerabilities in the public cloud infrastructure to access
M ’s or C ’s private data or tamper with computation execution.
We assume AS may have full control of the operating system
or hypervisor layer of any public cloud-based servers. The
client adversary AC may act maliciously to try and learn as
much about the model provider’s weights and bias values as
possible. We classify the model provider adversary AM as a
rational adversary (see Section 2.3) that seeks to maximize
their utility under the following preferences: 1) learning the
values of X, Y, or any intermediate ciphertext results, and 2)
providing C with a useful inference service. In other words,
we assume that M would like to provide C with a useful infer-
ence service, and M will not act in a way that counteracts this
purpose unless doing so might help reveal C ’s private data.
In Section 5.1, we further note that, while we consider AM
to be rational, our solution offers C data privacy protection
even if AM were considered arbitrarily malicious. We make
no assumptions about collusion between the adversaries (i.e.,
we assume AM may collude with AS , and AC may collude
with AS ).

3.1.1 Scope

Recent works have demonstrated how, by treating a machine
learning model as a black-box oracle, client adversaries may
be able to extract a local model that is the same or similar to
the deployed model (called a model-stealing attack), or may be
able to infer information about the training set used to develop
the model (a model-inversion or re-identification or member-
ship inference attack [63, 70, 71]). Protection against these
types of attacks is not the focus of our work, though several
other works detail mitigations that providers can take against
such attacks in practice [29, 38, 47, 63]. These techniques
can be added on top of our approach for added protection if
desired, as discussed in more detail in Appendix B.

Additionally, consistent with the threat model of SGX (see
Section 2.1), we do not consider side-channel attacks as part
of our threat model. Nevertheless, we provide a more detailed

consideration of our solution with respect to side-channel ad-
versaries in Section 7.2. We also consider denial-of-service
attacks to be out of scope for our work.

Finally, we address a concern pointed out by a prior
work [58] regarding the lack of a property known as circuit
privacy present in the 2PC-HE hybrid solution for oblivious
inference described in [39]. While no prior work has demon-
strated how an attacker can utilize a lack of robust circuit pri-
vacy to break the security of an HE-based oblivious inference
protocol in practice, we provide a more detailed discussion on
this topic in Section 7.1. We note in particular how our work
differs significantly from the construction of [39] and how these
differences render the concerns regarding circuit privacy less
applicable to our work.

3.1.2 Assumptions

We assume that all parties have access to standard network
protection mechanisms for transferring private data over an
untrusted network. In this work, we use the TLS protocol
for secure channel establishment, though any similar secure
network channel establishment process can be used in its
place. In order to securely share evaluation keys EK with
untrusted parties, all prior RLWE-based HE works utilize a
circular security assumption to assume it is secure to share
encryptions of the secret key SK under itself. We make this
assumption in our work as well. Additionally, prior HE works
for neural network inference [10,12,18,30] implement any final
softmax layers directly on the client device as part of the client
decryption and decoding process since this layer is expensive
to approximate for homomorphic evaluation [16]. We employ
the same approach in our evaluation and often refer to the
“machine learning model” as the model without this final layer.
Finally, since our solution leverages SGX, we assume that Intel
attestation services are trusted to correctly identify when an
enclave is malformed. Though this assumption is not required
to ensure the privacy of C ’s data, it is necessary to ensure the
privacy of M ’s data and the correctness of protocol execution.

4 Related Work

In Section 4.1, we first describe alternate approaches pro-
posed by prior works for oblivious inference. We provide a
summary of the main points discussed in this section in Ta-
ble 2. In Section 4.2, we discuss how our work differs from
prior discussions of HE-TEE hybrid solutions.

4.1 Prior Approaches for Oblivious Inference

4.1.1 TEE-Only

TEE-only solutions for oblivious inference [52,57,61,68,69]
heavily rely on remote attestation to guarantee privacy of client

5



Table 2: Summary of features of our solution compared to prior approaches for the problem of two-party oblivious inference. A
combined approach of HE+TEE provides security guarantees unaddressed by prior work while allowing M to offload computation
to the public cloud. “HE” techniques (excluding MKHE) refer to techniques where input feature values are encrypted while weights
and bias values remain in plaintext form (i.e., CT-PT computations). Dashes (–) indicate that a feature does not apply, since the
technique does not allow offload to an untrusted cloud. (R) refers to a “rational” adversary type, and (M) refers to a “malicious”
adversary type.

Technique
M can fully

offload
Privacy of X, Y (for C ) Integrity of Y (for C ) Privacy of W (for M )
AM (R) AS (M) AM (R) AS (M) AC (M) AS (M)

TEE 3 7 3 7 3 3 3

HE 7 3 – 3 – 3 –
MKHE 7 3 3 3 7 7 7

2PC 7 71 – 71 – 72 –
HE+2PC 7 71 – 71 – 7/32 –
HE+TEE 3 3 3 3 3 3 3
1 Most prior 2PC or HE-2PC solutions such as [39,49] assume only a semi-honest/passive model provider.
2 Most prior 2PC and HE-2PC solutions, with the exception of MUSE [43], assume a semi-honest client.

data; since all client data in these solutions is processed in-
the-clear within the enclaves, any security vulnerabilities in the
enclave code, including any back doors purposely inserted
by the model provider, could expose direct access to enclave
data. Malicious security from TEEs requires an impractical as-
sumption that clients must thoroughly verify or blindly trust the
security of enclave code. While ML model providers may pos-
sess the level of security expertise and code review resources
necessary to thoroughly analyze enclave code for security vul-
nerabilities, especially in the common scenario where model
providers develop their own inference code in-house, most
clients would not possess the same level of resources or ex-
pertise necessary to do so. Therefore, clients would not be
able to fully trust the enclave code to maintain confidentiality
of their private data. This problem becomes especially crit-
ical as the number of ML providers – and thus the number
and diversity of offered services – continues to grow, and ro-
bust community review of even publicly available enclave code
becomes infeasible.

4.1.2 HE-Only

CryptoNets [30] and LoLa [10] proposed HE-based solutions
for two-party oblivious inference. In these works, clients are
expected to encrypt their private inputs and send the resulting
ciphertexts to an untrusted server for homomorphic evaluation
of ML inference. However, this solution requires the server
to maintain a private online infrastructure to perform the ho-
momorphic evaluation in order to maintain privacy of their
parameters, preventing the model provider from making use
of the public cloud. Alternatively, E2DM [36] proposes having
both the client and the model provider homomorphically en-
crypt their data under the client’s key, allowing an untrusted
cloud to perform the HE evaluation. However, their technique
assumes a semi-honest cloud and an honest client.

4.1.3 Multi-Key HE (MKHE)

Multi-key HE [12,14,45] enables a client and model provider
to encrypt their private values using their respective private
keys and outsource homomorphic evaluation to an untrusted
cloud server. The final result ciphertext of the MKHE infer-
ence, now encrypted under the keys of both parties, must
be partially decrypted by the model provider before the final
client device decryption. Thus, this technique still requires the
model provider to maintain a private infrastructure for the par-
tial decryption process. More importantly, this technique is not
secure against active adversaries and is only secure against
semi-honest adversaries if the partial decryption is performed
with a secure method such as noise flooding.

4.1.4 2PC / Hybrid-2PC

Here we exclusively use the terms 2PC or MPC to refer to
protocols built with secret sharing, oblivious transfer, and/or
garbled circuits. We further use the terms hybrid-2PC or hybrid-
MPC to refer to works that use MPC in conjunction with addi-
tional technologies such as HE.

Several 2PC and hybrid-2PC protocols have been proposed
for the problem of oblivious inference [39,43,47,49,51,55,58].
However, all of these works require the model provider to main-
tain a private infrastructure for protocol execution and thus
do not utilize the public cloud. Furthermore, with the excep-
tion of [43], these works make a much weaker semi-honest
adversary assumption for both model provider and client ad-
versaries, which prior work [43] has demonstrated can lead
to devastating results in the client-malicious setting. Addition-
ally, while some works have claimed that the benefit of 2PC
techniques over HE is their ability to evaluate “unmodified”
non-polynomial activation functions, we note that prior works
nevertheless choose to implement truncated versions of these
activation functions to reduce computation/communication

6



costs [43, 49]. An interesting MPC-TEE hybrid solution was
proposed in [42], though unfortunately, without any experimen-
tal neural network inference results for the 2PC setting.

Known 3PC solutions for oblivious inference [42,50,59,75,
76] require two of the three parties to act honestly. This re-
quirement is difficult to set up in practice since it requires either
an honest third-party server or a non-collusion assumption
between public cloud servers. These solutions also include a
large communication cost to share the model to all three par-
ties, which must be incurred per inference, and cannot provide
security guarantees when all public cloud servers collude or
act maliciously.

4.2 Prior HE-TEE works

The few prior works [19,28,79] that propose hybrid HE-TEE so-
lutions for privacy-preserving inference propose using TEEs to
perform extremely sensitive stages of the HE flow (e.g., HE en-
cryption and/or decryption, involving knowledge of the client’s
secret key). These works, therefore, still share the drawback
of regular TEE-only solutions that the enclave code must be
thoroughly verified by a client, who must possess an unreal-
istic level of expertise to guarantee that the code is free from
vulnerabilities (including any intentionally-inserted backdoors)
in order to guarantee their data privacy. The authors of these
works additionally only assume a use-case of single-party
outsourced computation and do not discuss their solutions for
the problem of collaborative machine learning. Furthermore,
since these works ultimately propose having HE computations
occur in the non-enclave portion of the untrusted cloud, they
offer no integrity protections against a malicious server.

Still fewer prior works have proposed executing homo-
morphic evaluation routines inside a TEE. Drucker and
Gueron [25, 26] suggest combining HE and TEEs for out-
sourced computation. However, their evaluation uses the
addition-only Pallier HE scheme, which is significantly less
computationally powerful and less complex than modern HE
systems such as CKKS that support both addition and mul-
tiplication on ciphertexts. Thus, their demonstration is only
applicable to a small range of problems and cannot be applied
to neural network inference. Though the authors present an
evaluation of their system for a simple database query, they
do not specify a scenario in which a TEE can be trusted to
provide integrity but not confidentiality to justify the need for
HE, present a security analysis, or provide critical details of
their implementation (e.g., the encryption parameters, libraries,
or TEE-allocation size used). The authors briefly suggest that
TEEs can be used to provide integrity to an MKHE-based
voting system but do not provide any implementation results
for this extension.

In their master’s thesis [64], Singh details the process of
porting the TFHE homomorphic encryption library [17,67] to
the Rust programming language and evaluates their solution
on a “fused” millionaire problem inside an enclave. As noted

by the author, however, this problem would actually require a
multi-key HE scheme to be used to be deployed in practice,
unlike the single-key version that the author deployed. Similar
to the above works, the author also does not propose using
an HE-TEE combined approach for protecting the privacy of
two separate parties, nor does the author provide evaluation
results for an ML benchmark. Additionally, TFHE ciphertexts
are orders of magnitude larger than the underlying messages,
implying a high communication cost.

5 Our Solution: CHEX-MIX

5.1 Baseline Protocol

We describe our baseline protocol for two-party oblivious in-
ference below, summarized in Figures 3, 4, and 5.

5.1.1 Setup (M )

M begins the setup phase of the protocol by verifying that
code IF securely implements F. While SGX does provide cer-
tain guarantees for code and data protection (see Section 2.1),
the SGX threat model considers it the enclave developer’s
responsibility to verify that enclave code is free of all vulnera-
bilities. As discussed in Section 4.1.1, C cannot be expected
to possess the resources or expertise necessary to thoroughly
vet any segment of code. AM may ordinarily try to exploit this
property by inserting backdoors into IF that would thus be
undetected by C . However, since the client’s data remains ho-
momorphically encrypted throughout the enclave computation
(described in Section 5.1.3), the rational AM can recognize
that inserting a backdoor to the enclave will not allow it to
compromise C ’s data privacy. Thus, having no other rational
reason to do so, AM will not attempt to add a backdoor to the
enclave code. Since AM cannot achieve its primary objective
(to compromise C ’s data privacy, see Section 3.1), it falls back
to ensuring its second preference: to provide C with a useful
service. We can be sure M will thoroughly analyze and se-
cure IF from any vulnerabilities potentially exploitable by the
cloud adversary AS since attacks by AS could potentially com-
promise the utility of the service (e.g., by affecting the integrity
of the computation). M then proceeds with the protocol if IF
passes all internal security reviews.

Next, M establishes an enclave ES with code IF. Before
provisioning ES with private data W, M establishes an at-
tested TLS channel (see Section 2.1) with ES to ensure ES
was initialized correctly and that the communication endpoint is
the expected enclave. In order to later allow clients to connect
to ES without an attestation requirement (discussed in more
detail below), M establishes a key-pair for the TLS channel
establishment, obtains a certificate from a certificate authority
(CA) trusted by both M and C , and provisions ES with this
certificate. M establishes a certificate chain by further issuing
and provisioning ES with a certificate for ES ’s public key. At

7



Setup (M ) (One time)

1. M verifies that code IF securely implements F.
2. M initializes ES with code IF on a server hosted by S .
3. M generates a key pair for TLS channel establishment.
4. M obtains a certificate CertM for its public key from a

CA trusted by both M and C .
5. M attests and establishes a secure channel σM with

ES for all future communication.
6. M sends W to ES over σM .
7. M issues a certificate CertES for ES ’s public key and

sends (W,CertM ,CertES ,π) to ES over σM .
8. M exits the protocol and goes offline.

Figure 3: CHEX-MIX baseline setup protocol for M

Setup (C ) (Once per client)

1. C receives (CertM ,CertES ,π) from ES .
2. C verifies (CertM ,CertES ,π) and establishes a secure

channel σC with ES upon successful verification.
3. C generates HE keys SK and EK based on π.
4. C sends EK to ES over channel σC.

Figure 4: CHEX-MIX baseline setup protocol for C

the end of this process, which is only required once across all
clients, M can exit the protocol and go offline.

5.1.2 Setup (C )

After M completes the above setup procedure, C connects to
ES to receive the aforementioned certificates and the HE en-
cryption parameters π to use. After verifying the parameters6

and certificates, C establishes a (non-attested) TLS channel
with ES . C generates HE keys SK and EK based on π and
sends EK to ES over the secure channel. This setup phase
for C must be executed once per client.

5.1.3 Evaluation

Following the one-time setup phase, C can request an infer-
ence result from ES based on its inputs X. C encrypts X to X
using SK, sends X to ES over the established network chan-
nel, and waits for ES to compute the HE evaluation over the
neural network. C then receives the (still HE encrypted) result
Y from ES . Finally, C decrypts and decodes Y to Y using SK
to obtain the inference result.

We further elaborate on a few points pertaining to the above
protocol. First, we require all communication between clients

6Verifying the security of HE parameters is computationally simple and only
involves checking that the parameters are within the ranges recommended
by the Homomorphic Encryption Security Standard [11] for a given desired
security level (and can therefore be accomplished by a simple comparison).

Evaluation
1. C encrypts X to X using SK.
2. C sends X to ES over channel σC .
3. ES computes Y = Eval(IF,X,W,EK).
4. ES sends Y to C over channel σC .
5. C decrypts Y with SK to obtain result Y.

Figure 5: CHEX-MIX baseline evaluation protocol

and the enclave and between the model provider and the en-
clave to be secured by the TLS protocol upon network channel
establishment. Once a secure channel is established between
two entities in the protocol, all further communication occurs
over that secure channel. Transmitting client data via a secure
channel might appear redundant since the HE ciphertexts and
evaluation keys do not necessarily need this second encryp-
tion for confidentiality. However, this step is essential to protect
the integrity of all data, keys, and certificates and the confiden-
tiality and integrity of sensitive metadata/headers associated
with network packets themselves.

A stipulation that is generally not addressed in prior HE
works is the protection required for evaluation keys EK. Since
these keys are themselves types of HE ciphertexts, they re-
quire integrity protection during and after use. During evalua-
tion, integrity protection of EK can be provided by the enclave
ES itself. After evaluation, ES can opt not to store EK be-
tween subsequent requests from the same client (i.e., ES
could maintain a stateless service, requiring the client to re-
transmit EK for each subsequent set of inference requests),
or ES can store EK in an integrity-protected database (i.e.,
ES could maintain a stateful service and retrieve the client’s
EK from the database upon subsequent connections). The
implementation of such an integrity-protected key retrieval
database is not the focus of this work. However, we note that
M may implement this service within the evaluation enclave
itself (e.g., for a small number of clients) or by establishing
a separate enclave or set of enclaves for this purpose (e.g.,
for a large number of clients, using an SGX-based database
design such as those detailed in [56,74]), or use some other
integrity-protected database scheme. For simplicity, we model
a stateful service that stores evaluation keys in the evaluation
enclave itself in our evaluation results, discussed in the next
section.

Finally, we note that our solution does not require7 C to
attest ES because M already verifies the security of IF with
respect to AS in its setup phase and uses remote attestation
to verify that ES is a valid SGX enclave with code IF. C can
assume M would have completed this step correctly since
a vulnerability that would allow AS to modify or view the con-
tents of ES could compromise the correctness of the inference

7In Appendix A, we provide a discussion of any additional guarantees that
could be provided with attestation enabled, along with additional mechanisms
C can use for integrity assurance.

8



service (without providing AM with any meaningful way to
collude with AS to learn the values of C ’s private data since
C ’s data privacy is protected by the IND-CPA of HE). Since
M is rational, C can thus ensure an endpoint endorsed by M
(i.e., the enclave ES ) is secure with respect to AS , and that M
would not themselves attempt to modify the inference result
or circumvent enclave deployment to break the correctness
of computation. Therefore, so long as C can verify that they
are communicating with an endpoint verified by M , which C
can achieve through standard certificate verification, C can be
assured of secure communication with ES .

5.1.4 Security Analysis

As discussed in Section 3, we indicate that our solution must
provide the following guarantees in order to be secure: confi-
dentiality of C ’s inputs X, results Y, any intermediate cipher-
texts; confidentiality of M ’s inputs W; and correct evaluation of
F. The confidentiality of X and Y is secured against malicious
adversaries by the IND-CPA security of HE. The confiden-
tiality of intermediate ciphertext results is secured against a
malicious AC by the TEE and against all other malicious ad-
versaries by the IND-CPA security of HE. The confidentiality
of M ’s data W is protected against malicious adversaries by
the security properties of the TEE since M verifies via remote
attestation that ES is a secure enclave containing code IF and
verifies that IF contains no vulnerabilities exploitable by an
adversary to access enclave code or data. W is protected at
transit by the attested TLS channel used by M to securely
transfer W to ES ,

To ensure computation correctness, which is defined as
Y = F(X, W), all computation and associated data must be
protected from modification by adversaries. In step 1 of M ’s
setup protocol, M verifies that code IF implements desired
functionality F using homomorphic evaluation techniques such
that Y = F(X,W) = Decrypt(Eval(IF,X,W,EK)). Since
M cannot learn C ’s private data even if M actively cheats
this verification, M is expected to be rational and trusted by
C to correctly perform this verification8. C and M ensure
correct endpoints for network communication with ES through
standard certificate verification and certificate verification with
attestation, respectively. When in transit, values W, X, and Y
are thus integrity protected by the TLS protocol. The security
properties of the TEE further guarantee that IF, while deployed,
is executed correctly even in the presence of malicious cloud
adversaries. EK is either kept inside the protected enclave, or
stored in and retrieved from an integrity-protected database.
Since all computation and inputs are integrity protected against
AS , AM , and AC , the correctness of computation is ensured.

8Even if M acts maliciously and cheats this verification, this will not result in
a loss of confidentiality for C ’s private data, by the IND-CPA of HE. Therefore,
we offer even stronger protection than assumed by the rational model.

5.1.5 Takeaways

The CHEX-MIX protocol is beneficial to C and M in several
ways. First, CHEX-MIX relieves C of the burden of having to
thoroughly analyze code IF for security vulnerabilities. Second,
the procedure allows M to remain offline after the initial setup
phase of the protocol. This characteristic differentiates our
solution from prior works, which often require M to maintain a
private online infrastructure to communicate with the untrusted
cloud server or client directly. Third, our solution guarantees
privacy of provider data W and correctness of inference ex-
ecution F even while deployed in the public cloud. Thus, our
solution allows ML model providers to more effectively utilize
the scale made possible by public cloud infrastructures.

5.2 Achieving Privacy of IF IP

Recall from Section 4.1.1 that, in a TEE-only solution, C re-
quires access to code IF in order to attest ES . This attestation
step, as well as C ’s thorough verification of the enclave code
IF, is necessary in a TEE-only solution to ensure C of both
data privacy and computational integrity.

By contrast, in our protocol, C is ensured of data privacy
from its use of homomorphic encryption and can assume com-
putational integrity by the assumption that M is rational. Thus,
our solution removes the requirement for C to have access
to code IF, providing M the unique opportunity to maintain
privacy of IF. We note that the ability to keep IF code private
would likely be highly useful to model providers in a real-world
setting since many technology service provider companies
consider software implementations of their products to be
valuable IP. Additionally, protecting the details of IF may in
turn provide M with some level of model architecture privacy,
which may further reduce the likelihood of other model param-
eter attacks (e.g., model inference or model extraction attacks,
see Appendix F for more details).

The standard SGX deployment procedure, however, does
not offer confidentiality of enclave code since the enclave bi-
nary is sent in-the-clear to the remote server and may be
reverse-engineered by a cloud attacker. As a solution to this
problem, Intel released a Protected Code Loader (PCL) library
that allows a user to treat an enclave binary as private enclave
data, thereby offering privacy protection of software IP. While
Intel markets PCL as a tool that can protect a provider’s private
IP, it does not claim that PCL can encrypt the entirety of the
generated shared object binary. Some sections of the enclave
binary that PCL is not able to encrypt include portions specific
to the PCL code loader code itself, the BSS segment, and any
debugging info, with the full list given in [35]. Intel contends it
is the responsibility of the PCL user to verify that unencrypted
segments do not reveal private IP. We assume this is possible
for M to do, and thus treat IF here as those specific compo-
nents of the inference code that constitute private IP. Appendix
C gives an example of the protection provided by PCL for the

9



Setup (M ) (One time)

1. M verifies that code IF securely implements F.
2. M generates a symmetric (e.g. AES-GCM) encryption

key k for use with Intel PCL.
3. M uses Intel’s PCL to encrypt the shared binary object

of IF into IF using k.
4. M establishes an enclave ES1 on a server hosted by S .
5. M generates a key pair for TLS channel establishment.
6. M obtains a certificate CertM for its public key from a

CA trusted by both M and C .
7. M attests and establishes a secure channel σM with

ES1 for all future communication.
8. M sends k to ES1 over σM .
9. ES1 seals k to server storage and terminates.

10. M repeats steps 4 through 7 with enclave ES2 , where
ES2 ’s binary consists of IF and Intel PCL components.

11. ES2 unseals k, decrypts IF to IF using k, and executes
IF

12. M sends W to ES2 over σM .
13. M issues a certificate CertES2

for ES2 ’s public key and
sends (W,CertM ,CertES2

,π) to ES2 over σM .

14. M exits the protocol and goes offline.

Figure 6: CHEX-MIX protocol including privacy of IF IP for M

enclave binary symbol tables.

To utilize Intel’s PCL as part of our solution, we only need
to make minor modifications to part of M ’s setup phase of
the CHEX-MIX baseline protocol. In particular, after analyzing
the code for vulnerabilities as before, M uses Intel’s PCL
to encrypt the shared object file for the code IF. M shares
this encrypted file with the enclave ES , which then decrypts
and runs the IF binary from inside the enclave. We give a
revised setup protocol for M incorporating these modifications
in Figure 2. We note that the logical enclave ES is actually
split into two enclaves ES1 and ES2 in the protocol description,
consistent with the actual implementation of the PCL library.
ES1 shares data with ES2 by encrypting the desired shared
data using a sealing key, which ES1 derives from the identity
of the enclave developer and which can be obtained only by
enclaves signed by that developer9. Since both ES1 and ES2
were developed and signed by developer M , ES2 can then
decrypt the file containing the secret data after deriving the
sealing key in a similar manner. In the above procedure using
PCL, this “secret data” is the key k used to encrypt IF.

9It is also possible to construct a sealing key known only to a specific
enclave instance (i.e., not derivable even by another enclave signed by the
same developer). We do not require this version for our solution.

Table 3: Description of the CNN used to benchmark our solu-
tion based on the description given in Eff.-MKHE [12].

Layer Description
Convolution 28x28-pixel images, 4×4 windows, (2,2)

strides, 5 output channels
Square-1 Squares each of the 845 inputs

FC-1 Fully connects 845 inputs to 64 outputs
Square-2 Squares each of the 64 inputs

FC-2 Fully connects 64 inputs to 10 outputs

6 Evaluation

To demonstrate the efficiency and feasibility of our solution, we
implement both configurations of CHEX-MIX on a commodity
cloud server using Microsoft Azure. We use the Standard
DC8_v2 VM server configuration for our work with 8 vCPUs
and 32 GB of RAM. All our experiments are compiled with
GNU CC (version 7) on Ubuntu 18.04 and executed with a
single thread at 3.7 GHz.

6.1 Implementation Details

Enclave developers face a unique set of challenges when
developing enclave code. First, many standard programming
functionalities developers are accustomed to, such as the abil-
ity to use standard C/C++ library routines, are not natively
available inside enclaves. To cope with lacking these critical
components, developers are encouraged to use an SDK such
as the official Intel SGX SDK or the OpenEnclave SDK (the
latter of which was developed as a TEE-agnostic SDK by mul-
tiple companies, including Intel) to access these functionalities
in a secure manner. However, there are still several commonly-
used programming functionalities that even these SDKs are
unable to support, adding an additional layer of difficulty to
enclave code development. For example, the SDKs do not
support the use of <fstream> function calls, which natively
involve the untrusted host OS. We compile the server-side
enclave component of the Microsoft SEAL library with certain
optional optimizations disabled (namely, SEAL_USE_INTRIN,
SEAL_USE_EXPLICIT_BZERO, and SEAL_USE_MSGSL, as well
as ZLIB/ZSTD compression support) to remove calls to func-
tions not supported by the enclave/SDK. Similarly, the SDKs
do not provide access to runtime counters (e.g., calls to the
C++ chrono library) that developers typically use to mea-
sure code performance. Instead, we implement these mea-
surements by calling custom functions in the untrusted host
through enclave OCALLs (a term used for function calls that
call the untrusted host process from the enclave) and use
these host functions to implement the measurement check-
points. Since our measurements include the runtime of execut-
ing these OCALL switches, our results may slightly overesti-
mate the enclave code runtime. We additionally disable C++17

10



optimizations in Microsoft SEAL for server evaluation exper-
iments since C++17 is not supported by the Intel SGX SDK
(used for our PCL experiment, described below). We note that
disabling these optimizations does not affect the security of
our solution and instead at worst only affects the performance
or communication efficiency of the library by a small amount.
We discuss the cost of removing compression in more detail
at the end of this section.

For our baseline protocol evaluation, we utilize the Microsoft
SEAL library (version 3.7.1) [62] for the HE portion of our
solution, and the Open-Enclave SDK (version 0.15.0) [54] in
pre-release mode for implementing the server-side enclave.
We chose the Open-Enclave SDK rather than the Intel SGX
SDK for our experiments since the Open-Enclave SDK is more
user-friendly, and unlike the Intel SGX SDK, provides guidance
on the details of integrating standard secure channel estab-
lishment (i.e., TLS) with attestation. We disabled the Microsoft
SEAL flags listed earlier for the server-side HE code but left
all default flags enabled for the client-side HE implementation
since the client does not run inside the enclave. For simplicity,
we simulate a stateful service (see Section 5.1) for our server
deployment. Additionally, since we focus on implementing the
performance-critical portions of our solution to provide useful
evaluation results, we did not deploy features such as a full
client-side attestation result analysis (which would not affect
the runtime of the solution). However, we did integrate the
server-side pre-release mode attestation quote generation
process and server-client TLS channel establishment for proof
of concept and to ensure any effect the code had on increas-
ing the enclave binary size (and therefore, potentially, enclave
runtime) would be captured. Since communication latencies
can vary widely between network connection infrastructures,
user devices, and application types (e.g., high-performance
use cases vs. IoT, cellular vs. ethernet, etc.), we omit network
communication latencies from our overall runtime results.

We also implement the version of our solution described
in 5.2 to provide M with privacy of code IF. This experiment
is as similar to the baseline experiment as possible, with the
following differences: 1) we use the Intel SGX SDK (version
2.15) [34] rather than the OpenEnclave SDK for this experi-
ment since OpenEnclave does not yet support integration with
Intel PCL; 2) for simplicity, and since we already implement
the baseline protocol using full attestation and secure chan-
nel establishment procedures, we do not re-implement these
components with the Intel SGX SDK; and 3) we implement
the server evaluation code in this version with randomly gen-
erated data (i.e., not the true weights/bias or input ciphertext
values necessary) and/or generate necessary objects (e.g.,
evaluation keys) from within the enclave itself, and we take
care to ensure the sizes of all plaintext, ciphertext, and key ob-
jects used are the same as those used by the baseline. Table
4 shows that the runtime achieved by this solution is nearly
identical to the non-PCL version, proving that our solution can
provide this additional benefit to service providers essentially

for free. We emphasize that a TEE-only deployment could not
offer protection of IF IP since such deployments would require
clients to have full knowledge of enclave code for attestation.

In all our experiments, we target the same CNN and apply
the same inference evaluation structure as the MKHE work
[12], which we refer to as Eff.-MKHE. We also use the same HE
parameters chosen in Eff.-MKHE of a polynomial ring degree
of 16384, and 8 modulus primes with 53 or 60 bits each for
a total modulus size of 438 bits. This choice of CNN and
parameter set allows us to fairly compare against Eff.-MKHE,
which achieved a model accuracy of 98.4% over the MNIST
test dataset10. Additionally, by using a CNN with parameters
previously tuned by HE experts, we can more fairly assess the
capabilities of our solution compared to alternate techniques
(see Appendix E). We give the details of the target CNN in
Table 3.

To ensure as fair a comparison with Eff.-MKHE as possi-
ble, we upgrade the original Eff.-MKHE implementation to use
the latest version of Microsoft SEAL, including integrating the
same modifications the original work made to an earlier ver-
sion of the SEAL library into the latest SEAL version. We then
re-run their workload on the same server as our experiments
and report this more efficient runtime in Table 2, which may
be of independent interest.

Finally, we note that two versions of SGX have been re-
leased to date, which differ in their handling of memory al-
location. The first, SGXv1, requires the user to specify the
maximum enclave memory size required for the workload
prior to enclave initialization. SGXv2 removes this requirement
and allows the enclave to dynamically allocate memory as
needed. For our experiments, we target the more widely avail-
able SGXv1, though our findings should apply to SGXv2 as
well. We conservatively enable the baseline experiment en-
clave to use up to 512 MB of stack and 2 GB of heap memory,
and the PCL-encrypted enclave to use up to 128 KB of stack
and up to 512 MB of heap memory. We note that we only
perform a rudimentary analysis to determine performant stack
and heap memory configurations, so future work may be able
to determine tighter bounds for these sizes.

6.2 Results and Comparison with Prior Work

In Table 4, we give a comparison of our runtime and com-
munication costs per inference to those of prior approaches
for oblivious inference, for the target workload of inference
over the MNIST dataset, with workloads using similarly-sized
CNNs 11. For simplicity, we only include works that have been
shown most efficient for the target evaluation (i.e., for multiple

10Eff.-MKHE [12] uses public-key CKKS encryption and CT-CT homomor-
phic evaluation operations, as this was necessary for the functionality of their
solution. Since our work instead enables symmetric CKKS encryption and
CT-PT homomorphic evaluation operations, the final HE ciphertext error will
be less than in the prior work [12]. Thus, we expect our model to have the
same or better final model accuracy as [12] (i.e., ≥ 98.4%).

11See Appendix D for a description of the CNNs used in other works.

11



Table 4: Runtime and communication cost efficiency of CHEX-MIX compared to prior work for two-party oblivious CNN inference
over the MNIST dataset. CHEX-MIX achieves a competitive runtime and communication cost to prior approaches while providing
security guarantees not provided by prior work. GAZELLE [39], DELPHI [49], and MUSE [43] separate their performance and
communication costs into “offline” and “online” components (though both must be repeated per inference). We separate these two
costs by a (+) symbol. A number n in parenthesis following a runtime denotes the thread count, where n is the number of threads
used when n > 1. Bolded measurements are from this work.

Work Technique
M can fully

offload
Privacy

(X,Y / (AM )
Privacy

(W / AC )
Integrity
(Y / AS )

Runtime (s) Comm. (MB)

XONN1 [58] 2PC 7 7 7 – 0.16 38.28
GAZELLE1, 2 [39] 2PC+HE 7 7 7 – 0.15 + 0.05 5.9 + 2.1
DELPHI2,3 [49] 2PC+HE 7 7 7 – 7.41 (1-8) + 0.48 (8) 235.52 + 10.24

MUSE3 [43] 2PC+HE 7 7 3 – 22.67 (1-6) + 0.80 (8) 4270.08 + 10.24
Eff.-MKHE [12] MKHE 7 3 7 7 1.09 2.125

- HE 7 3 3 – 0.35 1.125
CHEX-MIX HE+TEE 3 3 3 3 1.32 1.125
CHEX-MIX HE+TEE (PCL) 3 3 3 3 1.38 1.125

1 Work did not explicitly mention evaluation thread count.
2 Runtime includes computation and LAN communication latency. Authors did not provide separate runtimes for computation only.
3 Runtime is the sum of multiple parts, each with a different thread count.

Table 5: Runtime and communication breakdown for Eff.-
MKHE, HE-only, and CHEX-MIX baseline evaluations. HE-only
and CHEX-MIX solutions enable lower client runtime and com-
munication costs than Eff.-MKHE.

Work
Runtime (s) Comm. (MB)

Client Server Inputs Results
Eff.-MKHE [12] 0.014 1.08 1.75 0.375

HE-only
0.008

0.34
0.875 0.25

CHEX-MIX 1.31

works that use the same technique, we list the work with the
most efficient runtime).

We emphasize that it would be misleading to compare solely
the performance of our solution with prior work since prior so-
lutions do not address the same problem statement and/or
assume a weaker threat model than ours. We include a subset
of the problem statement differences from Table 2 alongside
these results to remind the reader of some of the key advan-
tages of our approach over prior solutions. We also further
discuss our solution compared to prior works in more detail
below. We omit a comparison with TEE-only works since this
method cannot provide client data privacy against even a semi-
honest model provider (see Section 4.1.1).

6.2.1 XONN

Compared to CHEX-MIX, XONN [58] is 8× faster but has a
34× higher communication cost. Unlike CHEX-MIX, but similar
to other 2PC solutions, XONN does not allow M to offload
computation to a public cloud server. Additionally, XONN as-
sumes a much weaker passive (semi-honest) threat model and
therefore does not provide privacy guarantees in the presence
of a malicious AC or rational AM .

6.2.2 GAZELLE, DELPHI, and MUSE

Similar to XONN, none of these three solutions allow M to
offload computation to the public cloud. These solutions further
only assume a semi-honest threat model and therefore do
not protect against active adversaries, with the exception of
client-malicious protection offered by MUSE. Though these
solutions choose to split their evaluation into an “offline” and
“online” phase, as shown separated by a (+) symbol in Table
2, CHEX-MIX has a lower communication cost even compared
to just the online phase of all three of these works. Further, the
“offline” phase of these works is required for each inference
and should also be counted for a fair comparison against our
work, rendering our improvement even more significant.

It is difficult to fairly compare the runtime of our solution
against DELPHI [49] and MUSE [43] since these works only
report multi-threaded computation results. Compared to MUSE

with multiple threads, which has the closest threat model to
our solution amongst the 2PC+HE solutions, our solution with
a single thread is 16.5× faster and requires 3805× less com-
munication per inference. Though the performance of DELPHI

and MUSE in Table 2 are both reported by [43] over a seven
layer network, we note that our work would still be much more
efficient even if two of the seven layers were removed from
DELPHI or MUSE since their costs depend linearly on the num-
ber of layers. Finally, CHEX-MIX achieves ≥ 98.4% accuracy,
while neither DELPHI’s nor MUSE’s accuracy was reported
in [43].

6.2.3 Eff.-MKHE

Eff.-MKHE [12] allows offloading of some computation to an
untrusted cloud; however, it still requires M to maintain a
private online server to perform partial decryption of results.
Eff.-MKHE is also not secure against active adversaries and is

12



only secure against a semi-honest server if the model provider
performs partial decryption with a secure method such as
noise flooding. The implementation in [12] did not include
such a secure method and is therefore vulnerable to a passive
key-recovery attack on CKKS [44]. Compared to Eff.-MKHE,
CHEX-MIX reduces the communication cost by 1 MB (see
Section 6.3), achieves a comparable runtime, and since CHEX-
MIX uses symmetric HE encryption where Eff.-MKHE requires
asymmetric encryption, results in a smaller client computation
cost (see Table 5).

6.2.4 HE-only

The HE-only solution provides no privacy guarantees to M
when M wants to offload computation to the public cloud. To
achieve a comparable threat model to our solution, M needs
to host a private online infrastructure for HE evaluation, losing
the scalability and flexibility offered by the public cloud. The
performance of “HE” and “HE+TEE” in Table 2 are measured
with the same code executed outside and inside an enclave,
respectively.

6.3 Communication Cost

For our parameters, we would normally expect a freshly en-
crypted ciphertext to require 16384 × 8 bytes per polynomial
coefficient × 8 primes × 2 ciphertext components = 2 MB.
Microsoft SEAL employs a noise reduction technique that con-
sumes a prime during encryption, bringing this cost down to
1.75 MB. When symmetric HE encryption is used, this cost
can be further reduced by representing one component of
the ciphertext as a random seed to be later expanded by the
receiver using an extendable output function (e.g., Blake2xb
or SHAKE-256 in Microsoft SEAL), a technique which reduces
the communication cost to 0.875 MB (for a 64-byte seed).
During HE evaluation, modulus primes are consumed by the
operations to reduce noise growth in intermediate results. The
final result output ciphertext contains one prime for a total of
16384 × 8 bytes × 2 components = 0.25 MB, bringing the
total communication cost to 1.125 MB. Since MKHE results in
an output ciphertext with three components rather than two,
the result ciphertext size in MKHE is 0.375 MB.

Using Microsoft SEAL with our choice of primes ensures
that even the maximum values of ciphertext and key polyno-
mial coefficients require fewer bits than the datatype size of
a uint64_t. Therefore, the upper bits of many coefficients
are guaranteed to be zero and can easily be compressed by
a standard compression algorithm or even manual omission.
Microsoft SEAL contains an interface to use ZLIB or ZSTD
compression libraries for this purpose, though we omit these
from our experiments. For our solution, applying this compres-
sion would result in a new communication size of 0.738 MB
for the input ciphertext and 0.242 MB for the output ciphertext,
for a new total communication cost of 0.98 MB.

7 Discussion

7.1 Circuit Privacy

At a high level, a circuit-private protocol should ensure that
clients learn no more about the computation than the outputs
of their input queries. As discussed in previous works [39,58],
HE ciphertexts contain error terms that change as homomor-
phic evaluation operations are performed on the ciphertexts,
potentially leaking information about the types of operations
performed or the plaintext values multiplied or added with the
encrypted input. As pointed out in [58], the implementation
in [39] did not adequately satisfy the circuit privacy property.
As a hybrid 2PC-HE protocol, [39] requires a decryption of
HE ciphertexts after every linear layer evaluation, making it
plausible that an adversary could, in theory, derive the model
weights from the decrypted values. By contrast, our protocol
only involves client decryption after all network layers are eval-
uated. After several such layer computations, it becomes much
less clear that an attacker could plausibly use the final HE ci-
phertext error to learn the weights used in intermediate layers.
We note that no prior work has sufficiently demonstrated how
an adversary could extract plaintext input from noise in the
resulting ciphertexts of a nonlinear circuit in practice.

7.2 Side channels

Although we do not consider side channels as part of our
threat model (consistent with Intel’s official threat model for
SGX [37]), we nevertheless wish to devote some discussion
to them given their attention in the academic literature. In
this context, a side-channel adversary is an adversary that
exploits paths of unintended information leakage that result
from implementations of a technology, such as variations in
timing, power, or electromagnetic radiation, to recover a secret
value.

Side-channel attacks on TEEs fall into two main categories:
those that the software (enclave) developer can mitigate and
those that they cannot. The first type, Intel contends, is the re-
sponsibility of the enclave developer to safeguard against [37].
For example, SGX requires enclave developers to take steps
to write their enclave code in a secret-data-independent man-
ner if protection against timing side-channel adversaries is
desired. The second type of side-channel adversary appears
much more complicated to defend against; prior works have
detailed attacks mounted through side-channel vectors that
are either outside of the enclave code developer’s immediate
purview or are very difficult for the developer to properly pre-
vent [46,78]. Intel purports to take these attacks seriously and
continues to actively issue patches to SGX for numerous side
channels, as well as other vulnerabilities, as mitigations are
developed [37,46,66,72]. It is therefore critical that users of
SGX can ensure they are using the most up-to-date version
of the technology, which users can do through proper enclave

13



attestation. Additionally, several works ( [5, 24, 53], to name
a few) propose approaches that can be taken to mitigate the
ability of attackers to perform side-channel attacks on TEEs,
which can be added on top of our solution as well.

A significant advantage of our solution is that it does offer
clients privacy protection from malicious side-channel adver-
saries. In particular, since client data is always in HE ciphertext
form inside the enclave, any attack on the enclave cannot view
the underlying data of the HE ciphertexts. We additionally
take care to ensure that our implementation does not leak any
information about M ’s private values W through timing side
channels. Specifically, we verify that our inference code and
the implementation of CT-PT operations in Microsoft SEAL do
not contain any data-dependent computation, branching, or
memory access based on M ’s private data. Still, we note that
this is not a default property of an HE-TEE hybrid solution but
rather results from a secure implementation of both enclave
code and SGX technology.

8 Conclusion

In this work, we propose a novel approach for two-party
privacy-preserving machine learning inference in the public
cloud setting. Our solution, CHEX-MIX, features a hybrid HE-
TEE solution that provides both clients and model providers
with confidentiality and integrity guarantees. We demonstrate
the feasibility of performing homomorphic evaluation inside
TEEs by deploying CHEX-MIX on a Microsoft Azure confiden-
tial computing virtual machine. We compare our solution to
prior approaches for two-party oblivious inference and show
how our solution can provide security guarantees unaddressed
by prior works. Our experiments demonstrate that CHEX-MIX

is able to achieve runtime and communication costs compara-
ble to or more efficient than prior approaches while providing
powerful security guarantees not addressed by prior work.

References

[1] “Intel® Software Guard Extensions (Intel® SGX),”
Jun 2015, reference no. 332680-001. [Online].
Available: https://www.intel.com/content/dam/develop/
external/us/en/documents/332680-001-720907.pdf

[2] I. Abraham, D. Dolev, R. Gonen, and J. Y. Halpern, “Dis-
tributed computing meets game theory: robust mecha-
nisms for rational secret sharing and multiparty computa-
tion,” in 25th ACM PODC, E. Ruppert and D. Malkhi, Eds.
ACM, Jul. 2006, pp. 53–62.

[3] G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani,
D. Vitali, and G. Felici, “Hacking smart machines with
smarter ones: How to extract meaningful data from
machine learning classifiers,” Int. J. Secur. Netw., vol. 10,

no. 3, p. 137–150, Sep. 2015. [Online]. Available:
https://doi.org/10.1504/IJSN.2015.071829

[4] Y. Aumann and Y. Lindell, “Security against covert ad-
versaries: Efficient protocols for realistic adversaries,”
in TCC 2007, ser. LNCS, S. P. Vadhan, Ed., vol. 4392.
Springer, Heidelberg, Feb. 2007, pp. 137–156.

[5] S. Banerjee, P. Ramrakhyani, S. Wei, and M. Tiwari,
“SESAME: software defined enclaves to secure inference
accelerators with multi-tenant execution,” CoRR, vol.
abs/2007.06751, 2020. [Online]. Available: https://
arxiv.org/abs/2007.06751

[6] F. Boemer, A. Costache, R. Cammarota, and C. Wierzyn-
ski, “Ngraph-he2: A high-throughput framework for neural
network inference on encrypted data,” in Proceedings
of the 7th ACM Workshop on Encrypted Computing
Applied Homomorphic Cryptography, ser. WAHC’19.
New York, NY, USA: Association for Computing Ma-
chinery, 2019, p. 45–56. [Online]. Available: https://doi-
org.proxy.lib.umich.edu/10.1145/3338469.3358944

[7] F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski,
“Ngraph-he: A graph compiler for deep learning on
homomorphically encrypted data,” in Proceedings of
the 16th ACM International Conference on Computing
Frontiers, ser. CF ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 3–13. [Online].
Available: https://doi-org.proxy.lib.umich.edu/10.1145/
3310273.3323047

[8] Z. Brakerski, “Fully homomorphic encryption without mod-
ulus switching from classical GapSVP,” in CRYPTO 2012,
ser. LNCS, R. Safavi-Naini and R. Canetti, Eds., vol. 7417.
Springer, Heidelberg, Aug. 2012, pp. 868–886.

[9] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled)
fully homomorphic encryption without bootstrapping,” in
ITCS 2012, S. Goldwasser, Ed. ACM, Jan. 2012, pp.
309–325.

[10] A. Brutzkus, R. Gilad-Bachrach, and O. Elisha, “Low
latency privacy preserving inference,” in Proceedings of
the 36th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research,
K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97.
PMLR, 09–15 Jun 2019, pp. 812–821. [Online]. Available:
http://proceedings.mlr.press/v97/brutzkus19a.html

[11] M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
J. Hoffstein, K. Lauter, S. Lokam, D. Moody, T. Morrison,
A. Sahai, and V. Vaikuntanathan, “Security of homomor-
phic encryption,” HomomorphicEncryption.org, Redmond
WA, USA, Tech. Rep., July 2017.

14

https://www.intel.com/content/dam/develop/external/us/en/documents/332680-001-720907.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/332680-001-720907.pdf
https://doi.org/10.1504/IJSN.2015.071829
https://arxiv.org/abs/2007.06751
https://arxiv.org/abs/2007.06751
https://doi-org.proxy.lib.umich.edu/10.1145/3338469.3358944
https://doi-org.proxy.lib.umich.edu/10.1145/3338469.3358944
https://doi-org.proxy.lib.umich.edu/10.1145/3310273.3323047
https://doi-org.proxy.lib.umich.edu/10.1145/3310273.3323047
http://proceedings.mlr.press/v97/brutzkus19a.html


[12] H. Chen, W. Dai, M. Kim, and Y. Song, “Efficient multi-key
homomorphic encryption with packed ciphertexts with
application to oblivious neural network inference,” in ACM
CCS 2019, L. Cavallaro, J. Kinder, X. Wang, and J. Katz,
Eds. ACM Press, Nov. 2019, pp. 395–412.

[13] H. Chen and K. Han, “Homomorphic lower digits removal
and improved FHE bootstrapping,” in EUROCRYPT 2018,
Part I, ser. LNCS, J. B. Nielsen and V. Rijmen, Eds., vol.
10820. Springer, Heidelberg, Apr. / May 2018, pp. 315–
337.

[14] L. Chen, Z. Zhang, and X. Wang, “Batched multi-hop
multi-key FHE from ring-LWE with compact ciphertext
extension,” in TCC 2017, Part II, ser. LNCS, Y. Kalai and
L. Reyzin, Eds., vol. 10678. Springer, Heidelberg, Nov.
2017, pp. 597–627.

[15] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song, “Homomor-
phic encryption for arithmetic of approximate numbers,”
in ASIACRYPT 2017, Part I, ser. LNCS, T. Takagi and
T. Peyrin, Eds., vol. 10624. Springer, Heidelberg, Dec.
2017, pp. 409–437.

[16] J. H. Cheon, D. Kim, and D. Kim, “Efficient homomorphic
comparison methods with optimal complexity,” in ASI-
ACRYPT 2020, Part II, ser. LNCS, S. Moriai and H. Wang,
Eds., vol. 12492. Springer, Heidelberg, Dec. 2020, pp.
221–256.

[17] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène,
“TFHE: Fast fully homomorphic encryption over the torus,”
Journal of Cryptology, vol. 33, no. 1, pp. 34–91, Jan.
2020.

[18] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-
Fei, “Faster CryptoNets: Leveraging sparsity for real-
world encrypted inference,” CoRR, vol. abs/1811.09953,
2018. [Online]. Available: http://arxiv.org/abs/1811.09953

[19] L. Coppolino, S. D’Antonio, V. Formicola, G. Mazzeo, and
L. Romano, “VISE: Combining Intel SGX and homomor-
phic encryption for cloud industrial control systems,” IEEE
Transactions on Computers, vol. 70, no. 5, pp. 711–724,
2021.

[20] V. Costan and S. Devadas, “Intel SGX explained,”
Cryptology ePrint Archive, Report 2016/086, 2016.
[Online]. Available: https://eprint.iacr.org/2016/086

[21] B. Darvish Rouani, M. Samragh, T. Javidi, and
F. Koushanfar, “Safe machine learning and defeating ad-
versarial attacks,” IEEE Security & Privacy, vol. 17, no. 2,
pp. 31–38, 2019.

[22] R. Dathathri, B. Kostova, O. Saarikivi, W. Dai,
K. Laine, and M. Musuvathi, “Eva: An encrypted
vector arithmetic language and compiler for efficient

homomorphic computation,” in Proceedings of the
41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI
2020. New York, NY, USA: Association for Computing
Machinery, 2020, p. 546–561. [Online]. Available:
https://doi.org/10.1145/3385412.3386023

[23] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter,
S. Maleki, M. Musuvathi, and T. Mytkowicz, “Chet: An
optimizing compiler for fully-homomorphic neural-network
inferencing,” in Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and
Implementation, ser. PLDI 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 142–156.
[Online]. Available: https://doi-org.proxy.lib.umich.edu/
10.1145/3314221.3314628

[24] G. Dessouky, T. Frassetto, and A.-R. Sadeghi, “Hyb-
Cache: Hybrid side-channel-resilient caches for trusted
execution environments,” in USENIX Security 2020,
S. Capkun and F. Roesner, Eds. USENIX Association,
Aug. 2020, pp. 451–468.

[25] N. Drucker and S. Gueron, “Combining homomorphic
encryption with trusted execution environment: A
demonstration with Paillier encryption and SGX,” in
Proceedings of the 2017 International Workshop
on Managing Insider Security Threats, ser. MIST
’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 85–88. [Online]. Available: https:
//doi.org/10.1145/3139923.3139933

[26] ——, “Achieving trustworthy homomorphic encryption by
combining it with a trusted execution environment,” Jour-
nal of Wireless Mobile Networks, Ubiquitous Computing,
and Dependable Applications, vol. 9, pp. 86–, 03 2018.

[27] J. Fan and F. Vercauteren, “Somewhat practical fully ho-
momorphic encryption,” Cryptology ePrint Archive, Re-
port 2012/144, 2012, https://eprint.iacr.org/2012/144.

[28] A. Fischer, B. Fuhry, F. Kerschbaum, and E. Bodden,
“Computation on encrypted data using dataflow authenti-
cation,” PoPETs, vol. 2020, no. 1, pp. 5–25, Jan. 2020.

[29] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inver-
sion attacks that exploit confidence information and basic
countermeasures,” in ACM CCS 2015, I. Ray, N. Li, and
C. Kruegel, Eds. ACM Press, Oct. 2015, pp. 1322–1333.

[30] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter,
M. Naehrig, and J. Wernsing, “CryptoNets: Applying
neural networks to encrypted data with high throughput
and accuracy,” in Proceedings of The 33rd International
Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, M. F. Balcan and K. Q.
Weinberger, Eds., vol. 48. New York, New York, USA:

15

http://arxiv.org/abs/1811.09953
https://eprint.iacr.org/2016/086
https://doi.org/10.1145/3385412.3386023
https://doi-org.proxy.lib.umich.edu/10.1145/3314221.3314628
https://doi-org.proxy.lib.umich.edu/10.1145/3314221.3314628
https://doi.org/10.1145/3139923.3139933
https://doi.org/10.1145/3139923.3139933
https://eprint.iacr.org/2012/144


PMLR, 20–22 Jun 2016, pp. 201–210. [Online]. Available:
http://proceedings.mlr.press/v48/gilad-bachrach16.html

[31] J. Goodwin, “Elon Musk criticizes OpenAI ex-
clusively licensing GPT-3 to Microsoft,” https:
//www.cnn.com/2020/09/27/tech/elon-musk-tesla-
bill-gates-microsoft-open-ai/index.html, Sep 2020.

[32] J. Y. Halpern and V. Teague, “Rational secret sharing
and multiparty computation: Extended abstract,” in 36th
ACM STOC, L. Babai, Ed. ACM Press, Jun. 2004, pp.
623–632.

[33] “Intel® Software Guard Extensions (Intel® SGX) Pro-
tected Code Loader (PCL),” https://github.com/intel/linux-
sgx-pcl, May 2018.

[34] “Intel® Software Guard Extensions (Intel® SGX) SDK for
Linux* OS (version 2.15),” https://github.com/intel/linux-
sgx, Sep. 2021.

[35] “Intel® Software Guard Extensions (Intel® SGX) SDK
for Linux* OS,” https://download.01.org/intel-sgx/latest/
linux-latest/docs/Intel_SGX_Developer_Reference_
Linux_2.14_Open_Source.pdf, July 2021.

[36] X. Jiang, M. Kim, K. E. Lauter, and Y. Song, “Secure
outsourced matrix computation and application to neu-
ral networks,” in ACM CCS 2018, D. Lie, M. Mannan,
M. Backes, and X. Wang, Eds. ACM Press, Oct. 2018,
pp. 1209–1222.

[37] S. P. Johnson, “Intel® SGX and side-channels,”
https://software.intel.com/content/www/us/en/develop/
articles/intel-sgx-and-side-channels.html, March 2017.

[38] M. Juuti, S. Szyller, A. Dmitrenko, S. Marchal, and
N. Asokan, “Prada: Protecting against dnn model stealing
attacks,” 2019 IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 512–527, 2019.

[39] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan,
“GAZELLE: A low latency framework for secure neural
network inference,” in USENIX Security 2018, W. Enck
and A. P. Felt, Eds. USENIX Association, Aug. 2018,
pp. 1651–1669.

[40] M. Kim, Y. Song, B. Li, and D. Micciancio, “Semi-parallel
logistic regression for GWAS on encrypted data,” BMC
Medical Genomics, vol. 13, no. 7, pp. 1–13, 2020.

[41] T. Knauth, M. Steiner, S. Chakrabarti, L. Lei, C. Xing, and
M. Vij, “Integrating remote attestation with transport layer
security.” arXiv preprint arXiv:1801.05863, 2018.

[42] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “CrypTFlow: Secure TensorFlow infer-
ence,” in 2020 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, May 2020, pp. 336–353.

[43] R. Lehmkuhl, P. Mishra, A. Srinivasan, and R. A. Popa,
“MUSE: Secure inference resilient to malicious clients,”
in USENIX Security 2021. USENIX Association, Aug.
2021.

[44] B. Li and D. Micciancio, “On the security of homomor-
phic encryption on approximate numbers,” in Advances
in Cryptology – EUROCRYPT 2021, A. Canteaut and
F.-X. Standaert, Eds. Cham: Springer International Pub-
lishing, 2021, pp. 648–677.

[45] N. Li, T. Zhou, X. Yang, Y. Han, W. Liu, and G. Tu, “Effi-
cient multi-key FHE with short extended ciphertexts and
directed decryption protocol,” IEEE Access, vol. 7, pp.
56 724–56 732, 2019.

[46] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon,
C. Canella, and D. Gruss, “PLATYPUS: Software-based
power side-channel attacks on x86,” in 2021 IEEE Sym-
posium on Security and Privacy. IEEE Computer Society
Press, May 2021.

[47] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neu-
ral network predictions via MiniONN transformations,”
in ACM CCS 2017, B. M. Thuraisingham, D. Evans,
T. Malkin, and D. Xu, Eds. ACM Press, Oct. / Nov. 2017,
pp. 619–631.

[48] A. Lysyanskaya and N. Triandopoulos, “Rationality and
adversarial behavior in multi-party computation (ex-
tended abstract),” in CRYPTO 2006, ser. LNCS, C. Dwork,
Ed., vol. 4117. Springer, Heidelberg, Aug. 2006, pp. 180–
197.

[49] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and
R. A. Popa, “Delphi: A cryptographic inference service for
neural networks,” in USENIX Security 2020, S. Capkun
and F. Roesner, Eds. USENIX Association, Aug. 2020,
pp. 2505–2522.

[50] P. Mohassel and P. Rindal, “ABY3: A mixed protocol
framework for machine learning,” in ACM CCS 2018,
D. Lie, M. Mannan, M. Backes, and X. Wang, Eds. ACM
Press, Oct. 2018, pp. 35–52.

[51] P. Mohassel and Y. Zhang, “SecureML: A system for scal-
able privacy-preserving machine learning,” in 2017 IEEE
Symposium on Security and Privacy. IEEE Computer
Society Press, May 2017, pp. 19–38.

[52] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta,
S. Nowozin, K. Vaswani, and M. Costa, “Oblivious
multi-party machine learning on trusted processors,” in
USENIX Security 2016, T. Holz and S. Savage, Eds.
USENIX Association, Aug. 2016, pp. 619–636.

16

http://proceedings.mlr.press/v48/gilad-bachrach16.html
https://www.cnn.com/2020/09/27/tech/elon-musk-tesla-bill-gates-microsoft-open-ai/index.html
https://www.cnn.com/2020/09/27/tech/elon-musk-tesla-bill-gates-microsoft-open-ai/index.html
https://www.cnn.com/2020/09/27/tech/elon-musk-tesla-bill-gates-microsoft-open-ai/index.html
https://github.com/intel/linux-sgx-pcl
https://github.com/intel/linux-sgx-pcl
https://github.com/intel/linux-sgx
https://github.com/intel/linux-sgx
https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_Developer_Reference_Linux_2.14_Open_Source.pdf
https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_Developer_Reference_Linux_2.14_Open_Source.pdf
https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_Developer_Reference_Linux_2.14_Open_Source.pdf
https://software.intel.com/content/www/us/en/develop/articles/intel-sgx-and-side-channels.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sgx-and-side-channels.html


[53] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein,
and C. Fetzer, “Varys: Protecting SGX enclaves from
practical side-channel attacks,” in 2018 USENIX Annual
Technical Conference (USENIX ATC 18). Boston,
MA: USENIX Association, Jul. 2018, pp. 227–240.
[Online]. Available: https://www.usenix.org/conference/
atc18/presentation/oleksenko

[54] “Open Enclave SDK (version 0.15.0),” https://github.com/
openenclave/openenclave, Apr. 2021.

[55] A. Patra, T. Schneider, A. Suresh, and H. Yalame,
“ABY2.0: Improved mixed-protocol secure two-party com-
putation,” in USENIX Security 2021. USENIX Associa-
tion, Aug. 2021.

[56] C. Priebe, K. Vaswani, and M. Costa, “EnclaveDB: A
secure database using SGX,” in 2018 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press,
May 2018, pp. 264–278.

[57] D. L. Quoc, F. Gregor, S. Arnautov, R. Kunkel,
P. Bhatotia, and C. Fetzer, “SecureTF: A secure
TensorFlow framework,” in Proceedings of the 21st
International Middleware Conference, ser. Middleware
’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 44–59. [Online]. Available: https:
//doi.org/10.1145/3423211.3425687

[58] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. E. Lauter,
and F. Koushanfar, “XONN: XNOR-based oblivious deep
neural network inference,” in USENIX Security 2019,
N. Heninger and P. Traynor, Eds. USENIX Association,
Aug. 2019, pp. 1501–1518.

[59] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori,
T. Schneider, and F. Koushanfar, “Chameleon: A hybrid
secure computation framework for machine learning ap-
plications,” in ASIACCS 18, J. Kim, G.-J. Ahn, S. Kim,
Y. Kim, J. López, and T. Kim, Eds. ACM Press, Apr.
2018, pp. 707–721.

[60] B. D. Rouhani, M. S. Riazi, and F. Koushanfar,
“Deepsecure: Scalable provably-secure deep learning,”
in Proceedings of the 55th Annual Design Automation
Conference, ser. DAC ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online].
Available: https://doi.org/10.1145/3195970.3196023

[61] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich, “VC3:
Trustworthy data analytics in the cloud using SGX,” in
2015 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2015, pp. 38–54.

[62] “Microsoft SEAL (release 3.7),” https://github.com/
Microsoft/SEAL, Oct. 2021, microsoft Research, Red-
mond, WA.

[63] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Mem-
bership inference attacks against machine learning mod-
els,” in 2017 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, May 2017, pp. 3–18.

[64] I. S. Singh, “Safe and secure outsourced computing with
fully homomorphic encryption and trusted execution en-
vironments,” Master’s thesis, UiT Norges arktiske univer-
sitet, 2020.

[65] N. P. Smart and F. Vercauteren, “Fully homomorphic
SIMD operations,” Designs, codes and cryptography,
vol. 71, no. 1, pp. 57–81, 2014.

[66] R. Stubbs, “Intel® SGX technology and the im-
pact of processor side-channel attacks,” https:
//fortanix.com/blog/2020/03/intel-sgx-technology-
and-the-impact-of-processor-side-channel-attacks, Mar
2020.

[67] “TFHE: Fast fully homomorphic encryption library,” https:
//github.com/tfhe/tfhe, Aug. 2016.

[68] S. Tople, K. Grover, S. Shinde, R. Bhagwan, and
R. Ramjee, “Privado: Practical and secure DNN
inference,” CoRR, vol. abs/1810.00602, 2018. [Online].
Available: http://arxiv.org/abs/1810.00602

[69] F. Tramer and D. Boneh, “Slalom: Fast, verifiable
and private execution of neural networks in trusted
hardware,” in International Conference on Learning
Representations, 2019. [Online]. Available: https:
//openreview.net/forum?id=rJVorjCcKQ

[70] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Risten-
part, “Stealing machine learning models via prediction
APIs,” in USENIX Security 2016, T. Holz and S. Savage,
Eds. USENIX Association, Aug. 2016, pp. 601–618.

[71] S. Truex, L. Liu, M. E. Gursoy, L. Yu, and W. Wei, “Demys-
tifying membership inference attacks in machine learning
as a service,” IEEE Transactions on Services Computing,
pp. 1–1, 2019.

[72] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx, “Foreshadow: Extracting the keys to the in-
tel SGX kingdom with transient out-of-order execution,”
in USENIX Security 2018, W. Enck and A. P. Felt, Eds.
USENIX Association, Aug. 2018, pp. 991–1008.

[73] A. Viand, P. Jattke, and A. Hithnawi, “Sok: Fully homo-
morphic encryption compilers,” in 2021 2021 IEEE Sym-
posium on Security and Privacy (SP). Los Alamitos, CA,
USA: IEEE Computer Society, may 2021, pp. 1092–1108.
[Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/SP40001.2021.00068

17

https://www.usenix.org/conference/atc18/presentation/oleksenko
https://www.usenix.org/conference/atc18/presentation/oleksenko
https://github.com/openenclave/openenclave
https://github.com/openenclave/openenclave
https://doi.org/10.1145/3423211.3425687
https://doi.org/10.1145/3423211.3425687
https://doi.org/10.1145/3195970.3196023
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://fortanix.com/blog/2020/03/intel-sgx-technology-and-the-impact-of-processor-side-channel-attacks
https://fortanix.com/blog/2020/03/intel-sgx-technology-and-the-impact-of-processor-side-channel-attacks
https://fortanix.com/blog/2020/03/intel-sgx-technology-and-the-impact-of-processor-side-channel-attacks
https://github.com/tfhe/tfhe
https://github.com/tfhe/tfhe
http://arxiv.org/abs/1810.00602
https://openreview.net/forum?id=rJVorjCcKQ
https://openreview.net/forum?id=rJVorjCcKQ
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00068
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00068


[74] D. Vinayagamurthy, A. Gribov, and S. Gorbunov,
“StealthDB: a scalable encrypted database with full SQL
query support,” PoPETs, vol. 2019, no. 3, pp. 370–388,
Jul. 2019.

[75] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-party
secure computation for neural network training,” PoPETs,
vol. 2019, no. 3, pp. 26–49, Jul. 2019.

[76] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mit-
tal, and T. Rabin, “Falcon: Honest-majority maliciously
secure framework for private deep learning,” PoPETs, vol.
2021, no. 1, pp. 188–208, Jan. 2021.

[77] J. R. Wallrabenstein, “Rational multiparty computation,”
https://docs.lib.purdue.edu/dissertations/AAI3702881,
2014.

[78] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bind-
schaedler, H. Tang, and C. A. Gunter, “Leaky cauldron
on the dark land: Understanding memory side-channel
hazards in SGX,” in ACM CCS 2017, B. M. Thuraising-
ham, D. Evans, T. Malkin, and D. Xu, Eds. ACM Press,
Oct. / Nov. 2017, pp. 2421–2434.

[79] W. Wang, Y. Jiang, Q. Shen, W. Huang, H. Chen,
S. Wang, X. Wang, H. Tang, K. Chen, K. E. Lauter,
and D. Lin, “Toward scalable fully homomorphic
encryption through light trusted computing assistance,”
CoRR, vol. abs/1905.07766, 2019. [Online]. Available:
http://arxiv.org/abs/1905.07766

[80] G. Xu, H. Li, H. Ren, J. Sun, S. Xu, J. Ning,
H. Yang, K. Yang, and R. H. Deng, “Secure and
verifiable inference in deep neural networks,” in Annual
Computer Security Applications Conference, ser. ACSAC
’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 784–797. [Online]. Available:
https://doi.org/10.1145/3427228.3427232

A Additional Correctness Guarantees

CHEX-MIX requires M to be rational in order to provide C with
a guarantee of correctness. Here we discuss two additions
to our solution that can provide C with additional correctness
guarantees for more diverse problem settings if desired.

A.1 Client Attestation

If M were malicious instead of rational, C could not assume
M would provide a correct implementation of F, nor could C
be sure that M would not insert a backdoor into IF for exploita-
tion by AM . At first glance, it may seem that this problem can
be solved by having C attest enclave ES . Indeed, assuming

C knew the underlying F, C could, in theory, verify for them-
selves that IF implements F. However, in practice, this places
a high burden on C . Moreover, C would still need to be able
to verify that IF is free from all vulnerabilities that could affect
computational correctness, including any hidden backdoors
inserted by a malicious M .

Instead, C could again apply the rational assumption to
guarantee that M would not insert any backdoors into IF. In
this manner, we can reduce the functionality dependent on
the rational behavior of M and allow C more control over
verifying correct enclave execution. Figures 7 and 8 give the
modifications required to the CHEX-MIX protocol to provide
these additional properties.

Setup (M ) (One time)

1. M verifies that code IF securely implements F.
2. M uploads IF to some public domain accessible by C .
3. M establishes an enclave ES with code IF on a server

hosted by S .
4. M generates a key pair for TLS channel establishment
5. M obtains a certificate CertM for its public key from a

CA trusted by both M and C .
6. M attests and establishes a secure channel σM with

ES for all future communication.
7. M sends W to ES over σM .
8. M issues a certificate CertES for ES ’s public key and

sends (IF,W,CertM ,CertES ,π) to ES over σM .
9. M exits the protocol and goes offline.

Figure 7: CHEX-MIX enhanced correctness verification setup
protocol for M

Setup (C ) (Once per client)

1. C verifies that IF implements the expected functionality.
2. C receives (CertM ,CertES ,π) from ES .
3. C verifies (CertM ,CertES ,π), attests ES , and estab-

lishes a secure channel σC with ES upon successful
verification.

4. C generates HE keys SK and EK based on π.
5. C sends EK to ES over channel σC .

Figure 8: CHEX-MIX enhanced correctness verification setup
protocol for C

A.2 Sensitive Samples

A client may want additional guarantees of computation in-
tegrity, for example, from adversaries outside the scope of our
threat model (e.g., side-channel adversaries). Furthermore,
even the malicious model cannot guarantee that M ’s private

18

https://docs.lib.purdue.edu/dissertations/AAI3702881
http://arxiv.org/abs/1905.07766
https://doi.org/10.1145/3427228.3427232


weights values are not corrupted prior to M ’s participation
in the defined protocol. In such cases, the following integrity
checking mechanism may be helpful: the client C chooses a
value X to encrypt for which C knows the expected output Y.
(In the case where C is not able to know the value of Y ahead
of time for even a single X, this pair can be shared directly by
M if M is trusted to be rational.) C encrypts this value X and
sends it to ES for evaluation. If the decryption of Y matches
what C expected, C can be somewhat more confident that the
data path is free of the types of integrity violations that would
cause the result to be incorrect.

The above method was proposed by Xu et al. in [80] for
providing users with integrity assurance for outsourced HE
computation. The authors further discuss how a set of “sensi-
tive samples” – input-output pairs that would detect integrity
violations of concern with high probability – could be used to
make this technique more robust. We note that this integrity
checking property is unique to techniques such as HE that
maintain the encrypted form of client inputs throughout the
computation, preventing adversaries from simply identifying
when inputs are part of the sample set and changing their
behavior (e.g., malicious to honest) to evade detection.

B Additional Defenses for M

Recent works in privacy-preserving machine learning have
demonstrated attacks mountable by a client adversary to ex-
tract the private weights of the model provider, called model-
stealing attacks [70], or to learn information about the ini-
tial model training data set, including model-inversion or re-
identification/membership inference attacks [63, 71]. These
attacks involve having the client send several queries to the in-
ference server and analyze the results to infer details about the
model. We note that these attacks can be mounted against all
prior works in oblivious inference, including prior MPC, Hybrid-
MPC, TEE-only, HE-only, and MKHE solutions, and are thus
not uniquely applicable to our work. Nevertheless, we follow
the approach taken by XONN (see Appendix B of [58]) and
discuss here how defense mechanisms for these attacks can
be applied on top of our work.

A simple mitigation, suggested by [38,47], involves having
the server rate-limit the prediction requests from any given C .
We note that this approach requires the server to keep track of
the identity of each client, or at least be able to differentiate one
client from another. However, it may still be possible for any
particular client to masquerade as or collude with a separate
client to collect additional query responses. A related but more
difficult approach is to use statistical properties of the network
to guarantee that results do not leak information. Here, a
model provider can analyze a stand-alone network to ensure
that the required number of queries to reverse engineer the
model parameters is larger than is computationally feasible to
analyze by clients. Finally, since the aforementioned attacks
rely on having the server reveal to the client the confidence

scores of the result, another mitigation suggested by prior
works [29, 63] involves having the model provider apply a
rounding filter layer to the result before sharing the result with
the client. This technique ensures that, while the maximum
predicted class remains the same, the result does not leak
additional information about the weights through the precise
confidence score values. We note that, unlike BFV or BGV,
CKKS is particularly adept at removing the LSB values of a
result. Thus, a rounding filter layer can be easily added to our
CKKS-based approach.

C PCL-encrypted ELF File Output

As a small example of the protection provided by the Intel PCL
library, Figures 9a and 9b show the difference in the output
of the readelf command on the enclave binaries, with and
without using the Intel PCL library to encrypt the binaries.

  5     22: 0000000000005650   302 FUNC    LOCAL  DEFAULT   12 sgx_ecall_pointer_string_ 
  4     23: 0000000000005780   416 FUNC    LOCAL  DEFAULT   12 sgx_ecall_pointer_string 
  3     24: 0000000000005920   238 FUNC    LOCAL  DEFAULT   12 sgx_ecall_pointer_in_out 
  2     25: 0000000000005a10   206 FUNC    LOCAL  DEFAULT   12 sgx_ecall_pointer_out 
  1     26: 0000000000005ae0   206 FUNC    LOCAL  DEFAULT   12 sgx_ecall_pointer_in 
  0     27: 0000000000005bb0    70 FUNC    LOCAL  DEFAULT   12 sgx_ecall_pointer_user_ch                                                                                                             
  1     28: 0000000000005c00    70 FUNC    LOCAL  DEFAULT   12 sgx_ecall_type_enum_union 
  2     29: 0000000000005c50    54 FUNC    LOCAL  DEFAULT   12 sgx_ecall_type_wchar_t 
  3     30: 0000000000005c90    70 FUNC    LOCAL  DEFAULT   12 sgx_ecall_type_size_t 
  4     31: 0000000000005ce0    70 FUNC    LOCAL  DEFAULT   12 sgx_ecall_type_double 
  5     32: 0000000000005d30    70 FUNC    LOCAL  DEFAULT   12 sgx_ecall_type_float 
  6     33: 0000000000005d80    54 FUNC    LOCAL  DEFAULT   12 sgx_ecall_type_int 
  7     34: 0000000000005dc0    70 FUNC    LOCAL  DEFAULT   12 sgx_ecall_type_char 
  8     35: 0000000000005e10    54 FUNC    LOCAL  DEFAULT   12 sgx_start_nn_app 
  9     36: 0000000000000000     0 FILE    LOCAL  DEFAULT  ABS rns.cpp 
 10     37: 0000000000003020   140 FUNC    LOCAL  DEFAULT   12 _ZN4seal4util7PointerINS_ 
 11     38: 00000000000030ac   140 FUNC    LOCAL  DEFAULT   12 _ZN4seal4util7PointerINS0 
 12     39: 0000000000003138   140 FUNC    LOCAL  DEFAULT   12 _ZN4seal4util7PointerImvE 
 13     40: 0000000000075bb8    11 OBJECT  LOCAL  DEFAULT   14 _ZZNKSt3__16vectorIN4seal 
 14     41: 00000000000031c4    77 FUNC    LOCAL  DEFAULT   12 _ZN4seal4util7PointerINS0 
 15     42: 0000000000003212    77 FUNC    LOCAL  DEFAULT   12 _ZN4seal4util7PointerINS0 
 16     43: 0000000000000000     0 FILE    LOCAL  DEFAULT  ABS context.cpp 
 17     44: 0000000000003260   140 FUNC    LOCAL  DEFAULT   12 _ZN4seal4util7PointerImvE 
 18     45: 0000000000076288    11 OBJECT  LOCAL  DEFAULT   14 _ZZNKSt3__16vectorIN4seal 
 19     46: 0000000000076278     9 OBJECT  LOCAL  DEFAULT   14 _ZZNSt3__16vectorIN4seal7 
 20     47: 0000000000000000     0 FILE    LOCAL  DEFAULT  ABS evaluator.cpp 
 21     48: 00000000000032ec    58 FUNC    LOCAL  DEFAULT   12 _ZN4seal12_GLOBAL__N_122i 
 22     49: 0000000000003326    78 FUNC    LOCAL  DEFAULT   12 _ZN4seal4util8mul_safeImJ 
 23     50: 0000000000003326    78 FUNC    LOCAL  DEFAULT   12 _ZN4seal4util8mul_safeImJ 
 24     51: 0000000000003374   106 FUNC    LOCAL  DEFAULT   12 _ZNK4seal4util10GaloisToo 
 25     52: 00000000000033de   124 FUNC    LOCAL  DEFAULT   12 _ZN4seal4util15seal_for_e 
 26     53: 000000000000345a    75 FUNC    LOCAL  DEFAULT   12 _ZZN4seal4util34inverse_n 
 27     54: 00000000000034a5   183 FUNC    LOCAL  DEFAULT   12 _ZN4seal4util20negate_pol 
 28     55: 000000000000355c   133 FUNC    LOCAL  DEFAULT   12 _ZN4seal4util17add_poly_c 
 29     56: 00000000000035e1   133 FUNC    LOCAL  DEFAULT   12 _ZN4seal4util23dyadic_pro 
 30     57: 0000000000003666   211 FUNC    LOCAL  DEFAULT   12 _ZZNK4seal9Evaluator10bfv 
 31     58: 000000000000373a   123 FUNC    LOCAL  DEFAULT   12 _ZNK4seal4util10GaloisToo 
 32     59: 00000000000037b6    75 FUNC    LOCAL  DEFAULT   12 _ZZN4seal4util29inverse_n 
 33     60: 0000000000003801   358 FUNC    LOCAL  DEFAULT   12 _ZN4seal4util29multiply_p 
 34     61: 0000000000003968   513 FUNC    LOCAL  DEFAULT   12 _ZZZNK4seal9Evaluator12bf 
 35     62: 0000000000003b69   848 FUNC    LOCAL  DEFAULT   12 _ZN4seal4util38negacyclic 
 36     63: 00000000000763f0    11 OBJECT  LOCAL  DEFAULT   14 _ZZNKSt3__16vectorIN4seal 
 37     64: 00000000000763e8     5 OBJECT  LOCAL  DEFAULT   14 _ZZNKSt3__16vectorIN4seal 
 38     65: 00000000000763c8    11 OBJECT  LOCAL  DEFAULT   14 _ZZNKSt3__16vectorINS0_IN 
 39     66: 00000000000763b8    11 OBJECT  LOCAL  DEFAULT   14 _ZZNKSt3__16vectorIN4seal 
 40     67: 00000000000763a8    11 OBJECT  LOCAL  DEFAULT   14 _ZZNKSt3__16vectorIN4seal 
 41     68: 00000000000763d8    11 OBJECT  LOCAL  DEFAULT   14 _ZZNSt3__16vectorIN4seal1 
 42     69: 00000000000763d3     5 OBJECT  LOCAL  DEFAULT   14 _ZZNSt3__16vectorIN4seal1 
 43     70: 00000000000763e3     5 OBJECT  LOCAL  DEFAULT   14 _ZZNKSt3__16vectorIN4seal 
 44     71: 0000000000000000     0 FILE    LOCAL  DEFAULT  ABS ckks_mnist_layers_ct.cpp 
 45     72: 0000000000003eba    44 FUNC    LOCAL  DEFAULT   12 _ZNSt3__16vectorIN4seal7M 
readelfout_unenc                                                                                                                                                                   630,1           2%
 

(a)

  5     25: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
  4     26: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
  3     27: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND  
  2     28: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
  1     29: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
  0     30: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND                                                                                                                                       
  1     31: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
  2     32: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
  3     33: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
  4     34: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
  5     35: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
  6     36: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
  7     37: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
  8     38: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
  9     39: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 10     40: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 11     41: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 12     42: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 13     43: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 14     44: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 15     45: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 16     46: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 17     47: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 18     48: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 19     49: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 20     50: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 21     51: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 22     52: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 23     53: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 24     54: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 25     55: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 26     56: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 27     57: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 28     58: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 29     59: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 30     60: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 31     61: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 32     62: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 33     63: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 34     64: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 35     65: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 36     66: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 37     67: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 38     68: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 39     69: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 40     70: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 41     71: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 42     72: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 43     73: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 44     74: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
 45     75: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
readelfout                                                                                                                                                                         633,1          27%
                                                                                                                                                                                                   

(b)

Figure 9: Excerpt from symbol table output of running the
readelf command on unencrypted (top) and encrypted (bot-
tom) enclave binaries. The unencrypted symbol table reveals
function calls and file names, while the PCL-encrypted symbol
table does not.

D Neural Network Models of Prior Works

We provide a description of the CNNs used in prior works to
implement the MNIST inference network in Tables 6, 7, and 8.

19



(The CNN used in Eff.-MKHE [12] is the same as used by our
work and is given in Table 3.)

Table 6: Description of the CNN used to benchmark GAZELLE

[39] (based on the description given in [60].)

Layer Description
Convolution 28x28-pixel images, 5×5 windows, (2,2) strides, 5 output

channels
ReLU-1 Applies ReLU activation to each of the 845 inputs

FC-1 Fully connects 845 inputs to 100 outputs
ReLU-2 Applies ReLU activation to each of the 100 inputs

FC-2 Fully connects 100 inputs to 10 outputs

Table 7: Description of CNN used to benchmark XONN [58]

Layer Description
Convolution 28x28-pixel images, 5×5 windows, (2,2) strides, 5 output

channels
BN-BA-1 Binary normalization and binary activation to each of the

845 inputs
FC-1 Fully connects 845 inputs to 100 outputs

BN-BA-2 Binary normalization and binary activation to each of the
100 inputs

FC-2 Fully connects 100 inputs to 10 outputs

Table 8: Description of the CNN used to benchmark DELPHI

[49] and MUSE [43] (based on the description given in [47].).
Adjacent linear layers are listed together since it is customary
to combine them into a single linear layer during homomorphic
inference.

Layer Description
Conv-1 28x28-pixel images, 5×5 windows, (2,2) strides, 16

output channels
Act-1 Applies a truncated ReLU activation to each of the

9216 inputs
Pool-1, Conv-2 Average Pooling, 2x2 windows, 2304 outputs; 5x5 win-

dows, (1,1) strides, 16 output channels
Act-2 Applies a truncated ReLU activation to each of the

1024 inputs
Pool-2, FC-1 Average Pooling; 2x2 windows, 256 outputs; Fully con-

nects 256 inputs to 100 outputs
Act-3 Applies a truncated ReLU activation to each of the 100

inputs
FC-3 Fully connects 100 inputs to 10 outputs

E Benchmarking

Ideally, we would like to demonstrate the efficiency of our so-
lution across a range of neural networks to demonstrate its
scalability. Unfortunately, especially given the relatively recent
introduction of efficient HE schemes such as CKKS, such a
benchmark suite (or even another stand-alone network im-
plementation) is not yet available for homomorphic inference.

While some compilers exist for auto-generating HE evaluation
code, the efficiency of generated output of these compilers
still falls severely short of hand-chosen parameters and imple-
mentations by HE experts, such as the one we utilize in this
work. To the best of our knowledge, EVA [22] (which subsumes
prior work CHET [23]) and nGraph-HE [7] / nGraph-HE2 [6]
are the only compilers that exist for optimizing CKKS ker-
nels. Even using 56 threads, EVA’s compiled implementation
requires 0.6 seconds – nearly double the latency of the single-
threaded implementation we utilize – to evaluate a similarly
sized CNN, and nGraph-HE2 requires 2.05 seconds per query
(a slowdown of nearly 6×) and still requires expert-optimized
parameter selection [73]. Given the currently limited ability of
these compilers to produce efficient neural network inference
code, we do not believe it would be fair to use the output of
these compilers to analyze the efficiency of our solution or
when comparing the efficiency of our solution against prior
works. We note that our solution does not limit the size of HE
evaluation networks and can always increase scalability by
utilizing multiple TEEs.

F Model Architecture Privacy

As discussed in Section 5.2, CHEX-MIX enables model
providers to use Intel PCL to encrypt their inference code
IF, thereby achieving confidentiality of their code IP. Another
reason why M may want to keep IF confidential is that the
details of IF may leak information about the architecture of
the deployed model. Here, we define the model architecture
as the structural details of the model, such as the type of ma-
chine learning computation (e.g., logistic regression vs. neural
network inference), the number of layers used, and the order-
ing, types, and sizes of the layers. This information, which
constitutes knowledge of F, is independent of the values of
the weights and bias W. Prior 2PC/hybrid-2PC works often
naturally reveal the details of a model architecture in their
solution, whether directly through the communication of gar-
bled circuit tables or by exposing the exact ordering of linear
and non-linear layers through correlated transitions between
HE and 2PC protocol evaluation techniques. While earlier
works [39,47] argued that this information leakage is tolerable
since some companies have released details of their model
architectures, this precedent is already beginning to no longer
hold, and model architectures are beginning to be considered
vital pieces of intellectual property that provide companies
with a competitive edge (see, for example, GPT-3 [31]). Fur-
thermore, revealing details about the model architecture could
potentially help adversaries conduct more efficient model steal-
ing or model inversion attacks or help the adversary determine
adversarial examples more efficiently (a so-called gray-box at-
tack [21]). While CHEX-MIX does not guarantee robust model
architecture privacy, it may provide stronger security in this
regard than comparable solutions based on 2PC techniques
and further motivates its value in practical deployments.

20


	Introduction
	Our solution

	Background
	Trusted Execution Environments
	Homomorphic Encryption
	Homomorphic Inference
	Security of HE and CKKS

	Adversary Modeling

	Problem Statement
	Chex-Mix Adversary Model
	Scope
	Assumptions


	Related Work
	Prior Approaches for Oblivious Inference
	TEE-Only
	HE-Only
	Multi-Key HE (MKHE)
	2PC / Hybrid-2PC

	Prior HE-TEE works

	Our Solution: Chex-Mix
	Baseline Protocol
	Setup (M)
	Setup (C)
	Evaluation
	Security Analysis
	Takeaways

	Achieving Privacy of IF IP

	Evaluation
	Implementation Details
	Results and Comparison with Prior Work
	Xonn
	Gazelle, Delphi, and Muse
	Eff.-Mkhe
	HE-only

	Communication Cost

	Discussion
	Circuit Privacy
	Side channels

	Conclusion
	Additional Correctness Guarantees
	Client Attestation
	Sensitive Samples

	Additional Defenses for M
	PCL-encrypted ELF File Output
	Neural Network Models of Prior Works
	Benchmarking
	Model Architecture Privacy

