
CHEX-MIX: Combining Homomorphic Encryption with Trusted Execution
Environments for Oblivious Inference in the Cloud

Deepika Natarajan
University of Michigan

Ann Arbor, MI

Andrew Loveless
University of Michigan

Ann Arbor, MI

Wei Dai
Microsoft Research

Redmond, WA

Ronald Dreslinski
University of Michigan

Ann Arbor, MI

Abstract—Data, when coupled with state-of-the-art machine
learning models, can enable remarkable applications. But,
there exists an underlying tension: users wish to keep their
data private, and model providers wish to protect their
intellectual property. Homomorphic encryption (HE) and
multi-party computation (MPC) techniques have been pro-
posed as solutions to this problem; however, both techniques
require model providers to fully trust the server performing
the machine learning computation. This limits the scale
of inference applications, since it prevents model providers
from leveraging shared public cloud infrastructures.

In this work, we present CHEX-MIX, a solution to the
problem of privacy-preserving machine learning between two
mutually distrustful parties in an untrusted cloud setting.
CHEX-MIX relies on a combination of HE and trusted
execution environments (TEEs), using HE to provide clients
with confidentiality guarantees, and TEEs to provide model
providers with confidentiality guarantees and protect the
integrity of computation from malicious cloud adversaries.
Unlike prior solutions to this problem, such as multi-key HE,
single-key HE, MPC, or TEE-only techniques, our solution
assumes that both the client and the cloud can be malicious,
makes no collusion assumptions, and frees model providers
from needing to maintain private online infrastructures. Our
results show that CHEX-MIX can execute at high efficiency,
with low communication cost, while providing security guar-
antees unaddressed by prior work. Compared to a recent
multi-key HE work that allows partial cloud offload, for
example, CHEX-MIX achieves a 3× lower communication
cost and a 3× faster computation time.

1. Introduction

The rise of machine learning (ML) has enabled a
host of improvements in nearly all aspects of life, from
medical diagnoses [85], [99], to finance [39], personal
assistants [80], and more [34], [104]. Alongside the rise
of cloud computing, these technologies can reach users
across the globe at increasingly large scales. However,
users often incur a high privacy cost when using infer-
ence services since users must reveal their personal data
(e.g., heart rate, sleep patterns, or speech data) to model
providers to obtain inference results. This threat is further
exacerbated by attacks on cloud data centers, allowing
cloud attackers direct access to user data.

A simple solution to this problem is to require model
providers to deploy their models close to users, such
as directly on client devices. However, training robust
and useful models is difficult and monetarily expensive.

Models are thus often considered key intellectual property,
which model owners are reluctant to share [81]. Moreover,
sharing the details of a model can increase the ability
of attackers to perform re-identification or membership
inference attacks [9], [115] that violate the privacy of user
data in the model training set.

This problem of providing privacy to both clients
and model providers during machine learning inference,
known generally as oblivious inference [27], [97], is often
addressed with cryptographic techniques such as multi-
party computation (MPC) [66], [75], [97], homomorphic
encryption (HE) [24], [48], or hybrid HE-MPC tech-
niques [61], [70], [82]. These techniques provide cryp-
tographic guarantees that user data is completely hidden
from model providers. But, these techniques only provide
privacy to model providers when model providers host
their inference services on private servers. This burdens
model providers with the drawbacks of hosting and main-
taining private cloud infrastructures, such as requiring the
model providers to know in advance the maximum number
of instances they would need for their service, purchasing
enough hardware and software support infrastructure (e.g.,
space, physical security) for the full server set, and paying
the full cost of maintaining and upgrading the hardware
and infrastructure.

Instead, model providers could host their service in
the public cloud, freeing the providers from needing to
maintain, scale, and update their own infrastructure, and
allowing them to pay only for the resources in use at
any time. However, as even recent reports have shown
[7], [25], [92], [116], the complexity of cloud computing
stacks often leads to vulnerabilities in infrastructures that
malicious cloud attackers can exploit. Thus, hosting their
services in the public cloud would require model providers
to risk the secrecy of their trained model as well as the
integrity of the computation against cloud attackers.

Prior works have proposed hardware isolation using
trusted execution environments (TEEs) as a solution for
secure machine learning [87], [96], [112], [113] in the
cloud. TEEs allow model providers to host their models
on public clouds with privacy and integrity guarantees
against cloud attackers. But, TEEs provide only marginal
benefits to end users since users must still fully trust
the model provider’s code running inside of the TEE.
Even the attestation property of TEEs, whereby a client
can precisely verify the code running inside of the TEE,
is of little use, as providers are still unwilling to share
their intellectual property (IP) for independent auditing
and inspection [15], [53], [62], [101], [110]. Further,
independent and trustworthy auditing of model provider
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code becomes infeasible as the number of model providers
continues to scale.

What is lacking is a solution that provides scalability,
flexibility, and security to model providers and privacy
to users. We hypothesize that a careful integration of
cryptographic and hardware isolation techniques can en-
able this desired protection for both users and model
providers at scale. In particular, we propose the CHEX-
MIX protocol for oblivious inference in the cloud, based
on a combination of homomorphic encryption and trusted
execution environments. In general, HE and TEEs are
often posed as competing solutions to the problem of
privacy-preserving computation. Thus, our work disrupts
conventional wisdom by underscoring how these tech-
niques need not be competing, and can actually work
together to solve limitations of the other.

The general idea of our solution, illustrated in Fig-
ure 1, is to have model providers run their models inside
TEEs on the servers of their cloud provider of choice, and
clients use HE when sending their data to the cloud for
inference. The privacy of the client’s data is protected by
HE, while the privacy of the model provider’s model is
protected by the TEE. By modeling the model provider as
a rational actor, the combination of HE and TEEs together
can additionally ensure the correctness of computation,
including the integrity of the input and intermediate and
final results.

Despite its simplicity, however, a naive implemen-
tation of a hybrid HE-TEE solution would be self-
contradictory. In particular, requiring clients to attest the
enclave would assume that clients are able to fully trust the
security of the enclave code, eliminating the need for HE.
However, verification of the enclave code is unrealistic for
clients to achieve in practice, since enclave code can be
difficult for clients to fully validate. Yet, simply skipping
attestation would limit the client’s trust in the correctness
of the results.

In this work, we show how the attestation requirement
can be removed through the use of a trust framework
that leverages the privacy properties of HE. This trust
framework, which treats the model provider as a rational
party, is stronger and more realistic than the passive adver-
sary models of prior solutions in this setting. Under this
framework, we show how our solution provides privacy
guarantees to clients and model providers under a strong
adversary model, tolerating malicious clients, malicious
cloud adversaries, and malicious model providers, and cor-
rectness guarantees to clients tolerating malicious cloud
adversaries and rational, actively adversarial ML model
providers, while making no assumptions about collusion
between the parties.

Further, we show how the properties of CHEX-MIX
can be leveraged to additionally offer model providers
confidentiality of their inference code, which can in turn
allow model providers more control over their intellectual
property and even limit certain vulnerabilities [68]. Impor-
tantly, we note that this feature is only possible through
our combined solution that removes the client attestation
requirement altogether. We show how this variant of our
solution is fully compatible with the baseline setup and
discuss how CHEX-MIX can offer this protection essen-
tially for free, with no added performance or privacy cost
over the baseline solution.

Weights

HE 
Evaluation

Eval 
Code

Inputs
< / >

Results

TEE
deployment + 

attestation
1

ML Provider

2

Client

3

5 4

HE 
secret key

HEX-ML Overview

Cloud Service Provider

Private to ML Provider 
(Optional)

Communication over attested TLS Channel
Communication over (non-attested) TLS ChannelPrivate to Client

Private to ML Provider
HE Encryption

Protected Code Loader Encryption (Optional)

Figure 1: Overview of CHEX-MIX. The ML model
provider attests and sends the model parameters to the
cloud TEE. The client homomorphically encrypts and
sends their inputs to the TEE, which homomorphically
computes and returns the inference results.

Finally, we evaluate the feasibility of an HE-TEE hy-
brid approach for oblivious inference in modern cloud in-
frastructures. Modern TEEs are resource-constrained and
difficult to program, while state-of-the-art HE libraries are
(relatively) large and complex. These conflicting charac-
teristics suggest that an implementation of an HE-TEE
hybrid solution would be impractically slow compared to
an HE-only solution. However, we show through our im-
plementation of CHEX-MIX on a commodity cloud server
that not only is an HE-TEE hybrid solution possible, but it
can also significantly improve computation and commu-
nication costs compared to prior solutions for oblivious
inference. Compared to a recent multi-key HE work [27],
for example, that allows (partial) offload to an untrusted
cloud, CHEX-MIX achieves a 3× lower communication
cost and a 3× faster computation time.

To summarize, we make the following contributions:

• Propose CHEX-MIX, a new protocol for two-party
oblivious inference based on a combination of HE
and TEEs.

• Adapt the baseline protocol to further provide the
model provider with confidentiality of their inference
code.

• Present a security analysis of our protocols for a
strong adversary model, tolerating malicious clients,
malicious cloud adversaries, and malicious or rational
actively adversarial model providers, with no collu-
sion assumptions.

• Evaluate the CHEX-MIX protocol for a five-layer
convolutional neural network (CNN) for inference
over the MNIST dataset. Our results show that
CHEX-MIX is more efficient than prior solutions for
two-party oblivious inference over the target work-
load, and provides security guarantees not addressed
by prior works.

• Demonstrate the scalability of our protocol by evalu-
ating CHEX-MIX for a SqueezeNet CNN (the largest
homomorphically evaluated CNN to date, to the best
of our knowledge).
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2. Background

In this section, we provide the background necessary
to understand CHEX-MIX and its security arguments.

2.1. Trusted Execution Environments

The shared nature of cloud environments often results
in cloud computing stacks that are large and difficult to
verify. Hidden vulnerabilities in complex stacks [7], [25],
[92], [116] provide malicious actors more opportunities to
access user data. TEEs help solve this problem through
enclaves, or private regions of memory in which users can
store and operate on sensitive data with added protection.
Several types of TEEs exist to date, including AMD
SEV [1], ARM TrustZone [51], and Intel SGX [79]. We
focus on SGX in this paper, but the principles discussed
can be extended to any TEE of a similar nature.

To utilize an enclave, a user first partitions their appli-
cation code into host and enclave processes and verifies
that the enclave process is trustworthy and free of vulnera-
bilities. The user then loads the trusted enclave component
of the code into the enclave through a series of enclave
setup procedures [36]. The user confirms that the enclave
was created securely and loaded with the expected trusted
code using (remote) attestation, which provides protection
against all attacks assumed by the SGX threat model [2],
[79]. TLS channel establishment can be integrated with
the attestation procedure for protection of data transferred
between a user and an enclave [36], [65].

Principally, SGX is limited in what it can guarantee;
it does not guarantee protection of enclaves containing
code written in an insecure manner (e.g., containing buffer
overflow vulnerabilities or side-channel-producing com-
putation). Prior works have demonstrated how deploying
software with realistic memory safety vulnerabilities to
an enclave can lead to full attacker workload compro-
mise [67], and have even shown how attackers can take
advantage of vulnerabilities in enclave code to completely
bypass detection through attestation [68].

2.2. Homomorphic Encryption

HE schemes enable computation directly on encrypted
data. This property enables users to outsource computation
to untrusted entities without requiring the users to reveal
their personal data. To use HE, users choose encryption
parameters (i.e., the ring degree and coefficient moduli
of certain polynomial quotient rings) to be within the
bounds of the HE Security Standard [26] consistent with
the desired security level and the maximum multiplicative
depth of the target computation circuit. Users generate
a secret key (SK) for encryption/decryption using these
parameters, as well as certain encryptions of the secret key
called evaluation keys (EK) that assist with outsourced
computation evaluation by an untrusted party.

Homomorphic Inference. Prior works [24], [27],
[33], [48], [58] have shown how to use HE for private neu-
ral network inference by interpreting linear network layers
as a series of (homomorphic) additions, multiplications,
and rotations between fixed-length vectors, and modeling
nonlinear network layers, such as ReLU, by low-degree
polynomials. Efficient HE schemes such as BGV [21],

BFV [20], [43], and CKKS [30] represent plaintexts
and ciphertexts as elements in polynomial quotient rings,
and can operate on vectors of input values in a single-
instruction-multiple-data (SIMD) fashion by using special
encoding techniques [107]. Using these methods, prior
works achieved an accuracy of ≥ 98.4% for inference
over the MNIST dataset for HE evaluation of a 5-layer
convolutional neural network [24].

The CKKS scheme allows users to efficiently discard
unwanted precision in the results of HE computation,
essentially preserving an approximate computation on the
input vector. Since machine learning computations are
also approximate in nature, CKKS is widely considered
the scheme of choice for machine learning tasks [27],
[58], [63], [71]. Given our target application of oblivious
inference, we focus on the CKKS scheme in this work.
However, our solution is not limited to the CKKS scheme
and is applicable to other efficient HE schemes such as
BFV and BGV as well.

Security of HE and CKKS. The CKKS scheme is
based on the Ring Learning with Errors (RLWE) assump-
tion and is IND-CPA secure. Though a recent work [71]
demonstrated a passive key-recovery attack on the CKKS
scheme, this attack requires access to a decryption oracle.
A known simple mitigation for this attack, which we apply
in this work, is to have the decryptor (user) not share the
raw decryption results with any untrusted entity [29].1

Importantly, HE schemes are malleable by nature; they
offer no guarantee that an untrusted party computes a
function f() instead of a different function f ′() over an
input during evaluation. Thus, HE alone cannot provide
computational integrity. We note that a lack of compu-
tational integrity in ML inference can be severe. For
example, a manipulation of the result of a medical infer-
ence could lead to an incorrect diagnosis, while incorrect
interpretations of voice commands can lead to attacker
control of voice-controlled infrastructure.

2.3. Adversary Modeling

Next, we motivate the need for a model that more
accurately captures real world adversarial behavior in the
ML-as-a-service paradigm.

Traditionally in the field of multi-party computation
and related works, adversaries are classified into one of
two categories: semi-honest (or honest-but-curious) and
malicious. A semi-honest adversary refers to an adversary
that, given a prescribed protocol, will passively follow
the protocol as described; thus, this adversary may only
infer information about other parties from the protocol
messages it receives. A malicious adversary, by contrast,
may actively and arbitrarily deviate from the protocol
specification.

We argue that these two models do not adequately
reflect the behavior of real-world adversaries in the ML-
as-a-service use case. The semi-honest model assumes that
adversaries can only act passively, though many real-world
adversaries actually possess the means to act actively [11],
[73]. Active deviation includes the ability to inject, alter,
or omit messages, with the intent to break privacy or

1. Note that the general outcome of a decryption, such as the predicted
class in a classification network, is not considered raw decryption.
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correctness. An example of how semi-honest assumptions
can lead to privacy breaches when active deviation is
allowed is shown in the attack of the MUSE work [70].

On the other hand, the malicious adversary model
makes the overly cautious assumption that the adversary
may deviate randomly and arbitrarily from the protocol,
even when the adversary has no incentive to do so.

We need a model that considers the active capabilities
of the adversary but can benefit from realistic assumptions
on the adversarial party. To this end, we consider a third
type of adversary known as a rational adversary that has
capabilities nearly equivalent to that of a malicious adver-
sary (i.e., is actively adversarial), but is bounded by their
incentive to maximize their utility over a set of utility-
providing actions. This adversary is described in several
works at the intersection of multi-party computation and
game theory as a realistic yet powerful assumption [6],
[50], [78], [121]. In later sections, we show how we can
utilize this rational assumption to provide clients with
correctness of results during oblivious inference (without
requiring the rational assumption for privacy of data).

3. Problem Statement

Here we define our problem statement. Table 1 gives a
summary of terms used in this and the remaining sections.

We consider the scenario of two-party oblivious neural
network inference in the cloud. Specifically, we assume
that there exists an ML model provider M with a pre-
trained neural network model with weights and bias val-
ues, and a client C with inputs X. We refer to M’s
weights and bias values collectively as W and M’s model
architecture (i.e., the number, ordering, types, and sizes of
layers) as F. We refer to inputs X and results Y=F(X,
W) collectively as client data.

Importantly, we wish to enable model providers to take
advantage of the benefits of using the public cloud. These
include, for example, the ability to scale a service to a
large number of clients across the globe, as well as the
flexibility and cost-effectiveness of dynamically scaling
a service’s resources as needed based on demand. Thus,
we introduce an additional entity S as the cloud service
provider (e.g., Amazon AWS or Microsoft Azure). We aim
to allow M to host their inference service on a server (or
collection of servers) hosted by S.

Given this setting, our goal is to allow the client
C to submit their inputs to provider M, who may be
hosting their service on S’s servers, to obtain the result
of inference Y=F(X, W) in a manner that preserves the
privacy of C’s data and M’s weights and the correctness
of inference result Y. This satisfies the requirements for
oblivious inference in the cloud.

3.1. Adversary Model

We consider three main types of adversaries in this
setting: a cloud server adversary AS , a client adversary
AC , and an ML model provider adversary AM. The cloud
server adversary AS is an untrusted cloud provider or a
third-party attacker that uses vulnerabilities in the public
cloud infrastructure to access M’s or C’s private data
or tamper with computation execution. We assume AS

TABLE 1: Summary of Terms / Symbols.

C Client / Feature Provider
M ML model provider
S Cloud server / Cloud service provider
ES Enclave established on S
AC Adversary C
AM Adversary M
AS Adversary S
π HE parameters

X, Y C’s neural network feature inputs, outputs
W M’s neural network weights and biases
N Intermediate inference results

X, Y,
N

HE-encrypted X, Y, N

F Neural network inference circuit
IF An implementation / code of F
IF IF encrypted with Intel PCL [55]
σ Communication channel

may have full control of the OS or hypervisor layer of
any public cloud-based servers. Meanwhile, the client
adversary’s goal is to try and learn as much about the
model provider’s weights and bias values as possible. We
assume both AS and AC may be fully malicious.

We employ two separate adversary models for the
model provider adversary AM. First, we assume a ma-
licious AM, representing either a model provider them-
selves or a third-party adversary who is able to take
control of M’s servers.

Then, we consider an adversary model for AM to
match the realistic use case of ML-as-a-service. For this
case, we relax the malicious assumption slightly and treat
AM as a rational adversary that seeks to maximize their
utility under the following objectives: 1) learning the
values of X or Y (i.e., C’s private data) and 2) providing C
with a useful inference service. Here we define “useful” as
a service that will allow M to maintain enough users by
some performance metric (see “best performing”, Section
3.2). This means we can assume that M would like to
provide C with a useful inference service and will in
general not act in a way that counteracts this purpose
unless doing so might help reveal C’s private data. 2.
This constraint closely models real-world service provider
adversaries who are unlikely to compromise the utility of
their service, as this would deter users, but who may still
seek to learn private user data given the high value of such
data today [94], [128].

We make no assumptions about collusion between the
adversaries in any of the above cases (i.e., we assume AM
may collude with AS , and AC may collude with AS ).

2. There may be other model provider adversaries who have different
objective functions, such as targeting the correctness of a service for
users without any goal of disrupting users’ privacy. We do not aim to
provide correctness protection against such model provider adversaries
for our setting, though the technique discussed in Appendix C can also
be used to detect even this behavior, if desired. Our model provider
adversary is still much more powerful and realistic for our setting than
the standard semi-honest adversary used in prior oblivious inference
works (see Section 6).
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3.2. Privacy and Security Goals

Given the aforementioned setting, we target a solution
that provides the following guarantees:
1) Privacy of C’s data X and Y against a malicious AS

and a malicious or rational AM
2) Privacy of M’s data W against a malicious AS and

a malicious AC
3) Correctness of Y (for C) against a malicious AS and

a rational AM
To better reason about Guarantee 3, we introduce some

additional notation:
• Let P represent the service clients are expecting to

interact with (e.g., a handwriting recognition service).
• Let T represent the set of all possible inference appli-

cations M may offer for service P .
• Let θ ∈ T be an inference application with some

specific weights W and code IF implementing a neural
network circuit F. For some input x from a client,
θ(x) := IF(x,W) = yθ is the result this application
provides to the user.

• Denote as θ∗ ∈ T the inference application that is
considered “best-performing”, where best-performing is
determined by what ensures M maintains enough users
(i.e., would provide enough utility to users that they
would want to use the application3). A correct result
should return yθ∗ = θ∗(x) to the user upon receiving
input x.

3.2.1. Scope. Recent works have demonstrated how
clients can infer information about models by analyzing
the plaintext results of input queries (e.g., through model-
inversion [114] or membership inference attacks [105],
[115]). Protection against this class of attacks is not the
focus of our work, and several other works detail mitiga-
tions that model providers can take against such attacks
in practice [47], [60], [75], [105]. We discuss how these
techniques can be implemented on top of our solution in
more detail in Appendix D.

Consistent with the threat model of SGX [59], we do
not consider side-channel attacks as part of our threat
model. However, we give a more detailed consideration
of side channels in Section 8. We also consider denial-of-
service attacks out of scope.

3.2.2. Assumptions. We assume that all parties have
access to standard network protection mechanisms for
transferring private data over an untrusted network. In
this work, we use the TLS protocol for secure channel
establishment.

Additionally, and to the best of our knowledge, all
prior HE works for inference [24], [27], [33], [48] im-
plement any final softmax layers directly on the client
device as part of the client decryption and decoding
process since this layer is expensive to approximate for
HE evaluation [31]. We employ the same approach in our

3. Examples of a “best performing” implementation may be the fastest
implementation of P known by M above a certain accuracy threshold,
or the most accurate implementation of P known by M above a certain
runtime threshold. In reality, there may be several such best-performing
applications for any service P . In this case, θ∗ may be any one of these
applications.

evaluation, and we often refer to the “machine learning
model” as the model without this final layer.

To securely share evaluation keys EK with untrusted
parties, we make the usual circular security assumption
used by prior HE works [21], [27].

Finally, we assume that C and M trust Intel attes-
tation services to correctly identify when an enclave is
malformed. (Though we do not require this assumption
to ensure the privacy of C’s data, we require it to ensure
the privacy of M’s data and the correctness of protocol
execution.)

4. Limitations of a TEE-only Approach

Before we describe our solution, we discuss why a
TEE-only solution would not fulfill our problem state-
ment. In a TEE-only solution, a model provider creates
an implementation of an inference service IF to offer
to clients through the public cloud. The model provider
deploys IF to an enclave in the cloud and releases the
code for IF somewhere accessible to the client. The client
verifies the trustworthiness of IF, verifies that the enclave
is a secure enclave running IF, and sends its private data
to the enclave. When the enclave is done computing the
results, it sends the results to the client.

The above solution seems secure at first. How-
ever, recall that enclaves do not provide protection
against vulnerabilities—including any purposely inserted
backdoors—contained in the enclave code itself. Thus, for
this solution to be secure, both parties must ensure IF does
not contain any vulnerabilities exploitable by AS , and the
client must additionally ensure IF does not contain any
opportunities for AM to access the enclave. It is plausible
that the model provider could possess the ability to do
this verification to a reasonable extent, since software
service providers often employ dedicated security teams
to analyze code for vulnerabilities.

It is less plausible, however, that a client (who may
just be an individual user) could achieve this verification
in practice. Clients could rely on some trusted third-party
service (e.g., the open-source community) to indepen-
dently audit the code. However, this would require model
providers to give up all secrecy of their inference code for
independent auditing, and providers are often unwilling to
give up secrecy of their code for IP protection [15], [53],
[62], [110] or even security reasons [101]. Moreover, as
the number of application settings and model providers
continues to grow at a fast pace4, so too will the number
of ML services, the complexity of inference backends,
and the frequency of algorithmic updates. At this scale,
it becomes infeasible for independent trusted third parties
to fully verify the security of all inference services, even
if their implementations were made publicly available.

Alternatively, providers could use a TEE to secure a
minimal OS acting as a sandbox (e.g., by using a secure
VM technology such as Intel TDX [4] or AMD SEV-
SNP [3]) to try to remove the IF attestation requirement.
If clients could fully trust this OS to maintain the confi-
dentiality of their data in the enclave, then they would not
need to verify the details of IF.

4. By one estimate, the machine learning market is expected to grow
from USD 21 billion in 2022 to USD 210 billion by 2029 (a 10× increase
in less than a decade) [5].
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However, designing and implementing a performant,
sandboxing OS for this purpose is difficult; even a bare-
bones implementation would at a minimum need to sup-
port network communication with potentially malicious
actors, as well as somehow prohibit applications from
storing meaningful data from one client to later share with
another client. This complexity makes it difficult for the
client (or client-trusted third party) to adequately verify
all possible vulnerabilities and code paths in the OS for
all potential confidentiality breaches. Indeed, there are
several examples of recent vulnerabilities in commonly
used sandboxing implementations in practice [14], [22],
[46], [64], [90], [91], [103], [108].

Additionally, limiting the OS functionality in this way
dramatically limits design space flexibility. For emerging
workloads like machine learning, providers desire as much
flexibility in the design space as possible. Thus, inevitably,
the single secure OS would grow to include a multitude
more optional features and appear in many different fla-
vors. This again increases the potential verification space
for the client to an unmanageable point, thus leading back
to the original problem of a vulnerable cloud.

We need a solution that removes the verification re-
quirement from the client altogether. In the next section,
we show how we can achieve this using our solution,
CHEX-MIX.

5. Our Solution: CHEX-MIX

An overview of our solution is as follows: the model
provider deploys their inference service in an enclave in
the public cloud. A client wishing to use the service
homomorphically encrypts their inputs and sends them
to the enclave. The enclave then computes the inference
result and sends the (still HE-encrypted) result to the
client. Finally, the client decrypts the HE-encrypted result
to obtain the result of inference.

5.1. Baseline Protocol

We describe our baseline protocol for two-party obliv-
ious inference below, detailed further in Figure 2.

M begins the setup phase of the protocol by verifying
that IF securely implements F (where IF, along with
weights W, implements service P ). Next, M establishes
an enclave ES with code IF. Before provisioning ES with
W, M establishes an attested TLS channel with ES to en-
sure ES is correctly initialized and that the communication
endpoint is the expected enclave. To later allow clients to
connect to ES without attestation, M establishes a key pair
for the TLS channel establishment, obtains a certificate
from a certificate authority (CA) trusted by both M and
C, and provisions ES with this certificate. M establishes
a certificate chain by further issuing and provisioning ES
with a certificate for ES ’s public key. At the end of this
process, which is only required once across all clients, M
exits the protocol and goes offline.

After M’s setup, C connects to ES to receive the afore-
mentioned certificates and the HE encryption parameters
π to use. After verifying the parameters and certificates,
C establishes a (non-attested) TLS channel with ES . C
generates HE keys SK and EK based on π and sends

Setup (M) (One time)
1) M verifies that code IF securely implements F.
2) M initializes ES with IF on a server hosted by S.
3) M generates a key pair for TLS channel establish-

ment.
4) M obtains a certificate CertM for its public key

from a CA trusted by both M and C.
5) M attests and establishes a secure channel σM with

ES for all future communication.
6) M sends W to ES over σM.
7) M issues a certificate CertES for ES ’s public key

and sends (W,CertM,CertES , π) to ES over σM.
8) M exits the protocol and goes offline.

Setup (C) (Once per client)
1) C receives (CertM,CertES , π) from ES .
2) C verifies (CertM,CertES , π) and establishes a se-

cure channel σC with ES upon successful verification.
3) C generates HE keys SK and EK based on π.
4) C sends EK to ES over channel σC .

Evaluation
1) C encrypts X to X using SK.
2) C sends X to ES over channel σC .
3) ES computes Y = Eval(IF,X,W,EK).
4) ES sends Y to C over channel σC .
5) C decrypts Y using SK to obtain result Y.

Figure 2: CHEX-MIX baseline protocol.

EK to ES over the secure channel. The setup phase for
C is executed once per client.

Following the setup phases, C requests an inference
result from ES based on its inputs X. C encrypts X to X
using SK, sends X to ES over the established network
channel, and waits for ES to compute the neural network
evaluation. C then receives the (still HE encrypted) result
Y from ES and decrypts and decodes Y to Y using SK
to obtain the result.

5.1.1. Protocol Details. All communication between
clients and the enclave and between the model provider
and the enclave must be secured by the TLS protocol.
Once two entities establish a secure communication chan-
nel in the protocol, all further communication between
them occurs over that channel. This is essential to protect
the integrity of all data, keys, and certificates and the
confidentiality and integrity of sensitive metadata/headers
associated with the network packets themselves.

Since evaluation keys EK are types of HE ciphertexts,
they also require integrity protection during and after use.
During evaluation, the enclave ES provides this integrity
protection of EK. After evaluation, ES can store each
client’s EK in an integrity-protected database and retrieve
the client’s EK from the database upon subsequent con-
nections. M may implement this service within the eval-
uation enclave itself, by establishing a separate enclave
or set of enclaves for this purpose (for example, using
an SGX-based database design such as those detailed in
prior works [95], [118]), or by using some other integrity-
protected database scheme.

Finally, unlike inference backends, the client-side HE
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code can be open-sourced, reviewed by trusted experts,
and standardized, while also remaining relatively stable.
It is thus possible for users to trust client-side HE code.

5.1.2. Security Analysis. In claims 1 and 2 below, we
show how CHEX-MIX provides Guarantees (1) and (2)
from Section 3.2 in the presence of malicious adversaries
AS , AC , and AM. Since a malicious adversary can exhibit
any behavior (including acting rationally), this analysis
also holds for a rational AM. Note that these guarantees
also imply that the underlying values N of any inter-
mediate ciphertexts of an HE-inference network should
not be revealed to any entity, since doing so could allow
recovery of private data X, Y, or W through simple
calculations [19] (we omit consideration for the trivial
case of all-zero W). Guarantee (2) also implies that N
should not be revealed to any entity other than M, since
knowledge of this and X or Y could allow an adversary
to compute the values of W.

In claim 3, we show how CHEX-MIX provides Guar-
antee (3) from Section 3.2 in the presence of a malicious
adversary AS and a rational adversary AM. If IF is
an HE inference application, then x = (X, EK) and
y = θ(x) =IF(X, EK, W) =Y. For y to be considered
correct in this case, DecryptSK(y) should return some
final result Y to the client to ensure θ satisfies the “best-
performing” property (implying θ = θ∗). We say Y is
correct if Y= θ∗(x) and Y= DecryptSK(Y).

CLAIM 1. CHEX-MIX ensures privacy of C’s inputs X
and results Y from a malicious AS and a malicious AM.

Security Analysis. C uses HE to encrypt X to X. C only
sends the encrypted result X to ES . By the IND-CPA
property of HE, X does not reveal X, Y, or N to
passive or active adversaries. C performs key generation
and encryption locally in a trusted environment and never
shares SK, X, or Y with untrusted parties. Since X does
not reveal X, Y, or N, and since no party but C has
the secret key SK or direct access to X or Y, CHEX-
MIX guarantees the privacy of X and Y for C against all
malicious adversaries.

CLAIM 2. CHEX-MIX ensures privacy of M’s weights
and biases W from a malicious AS and a malicious AC .

Security Analysis. M verifies that IF contains no vul-
nerabilities exploitable by AC or AS to access (view or
tamper with) enclave data. M uses remote attestation to
guarantee that ES is a valid SGX enclave containing code
IF. Since ES contains IF, and since IF is not exploitable
by AC or AS , AC and AS cannot access W or N through
ES . M securely transfers W to ES via an attested TLS
channel and does not share W or N with any untrusted
parties. Since the TLS channel protects the privacy of
data against active attacks, AC and AS cannot access W
during data transfer. Since AC and AS cannot access W
or N during data transfer or at either endpoint, they cannot
access W or N at any point in the protocol and the privacy
of W for M is guaranteed.

CLAIM 3. CHEX-MIX guarantees the correctness of re-
sults Y for C against a malicious AS and a rational AM.

Security Analysis. To ensure computation correctness, it
is necessary to ensure that M deploys some θ = θ∗ as
the inference service (Requirement 1) and that the result
Y provided to C is the result y of applying this θ∗ to C’s
inputs x (i.e., y = θ∗(x) =Y) (Requirement 2). There are
three possible scenarios for M’s deployments (described
below). Let Ui denote the utility of Scenario i to AM.

First, assume M deploys some θ ̸= θ∗ (Scenario 1).
This directly contradicts objective 2 of a rational AM as
defined in Section 3.1 to provide C with a useful inference
service. Thus, M would only deploy θ ̸= θ∗ to learn
the values of X or Y (objective 1). By claim 1, AM
cannot learn the values of X or Y and thus cannot achieve
objective 1. Since θ ̸= θ∗ would not be considered a useful
service, it would not allow M to achieve objective 2.
Since AM cannot achieve objectives 1 or 2 in Scenario
1, U1 = 0.

Next, assume M deploys no service at all (Scenario
2). Like in Scenario 1, claim 1 ensures AM cannot learn
X or Y (objective 1). Additionally, failing to deploy any
service is not useful to C (objective 2). Therefore, U2 = 0.

Finally, assume M deploys some θ = θ∗ (Scenario
3). Since θ allows M to maintain enough users, it is
considered a useful service and allows AM to achieve
objective 2. Since AM achieves at least objective 2 in
Scenario 3, U3 > 0. Since U3 > U1 and U3 > U2, AM
enacts Scenario 3 and attempts to deploy some θ = θ∗,
satisfying Requirement 1.

In order for M to ensure the deployed θ is the intended
θ∗, M must ensure that the IF constituting θ implements
F using W for the service P , where θ(x) =Y = IF(X,
EK, W) is a useful enough result for service P to
satisfy the “best performing” requirement for θ = θ∗. Any
vulnerability in IF that could lead to AS tampering with
results such that Y is no longer a useful result would lead
to θ ̸= θ∗. Thus, to ensure θ = θ∗, M will verify that IF
is free of vulnerabilities exploitable by AS to corrupt Y.

Standard certificate verification with attestation en-
sures M securely communicates with ES to deploy the
verified IF and corresponding W and ensures AS cannot
tamper with IF or W. Standard certificate verification
ensures C communicates with an entity set up by M.
M verifies this entity is ES to ensure protection against
AS and satisfy θ = θ∗. C securely sends its inputs
x = (X, EK) to ES and receives results y from ES
using the TLS channel. The TEE protects all data and code
execution from AS once in the enclave. Since a rational
AM deploys a useful service, and since the deployed
service computation and execution are protected at all
points from tampering by AS , the deployed service θ is
equal to θ∗. Since θ = θ∗, the result y returned to C is
Y = θ∗(x), satisfying Requirement 2. Since CHEX-MIX
satisfies Requirements 1 and 2, it provides C with correct
results y = Y, which C decrypts to obtain the final correct
result Y.

5.1.3. Takeaways. CHEX-MIX is beneficial to C and M
in several ways. First, it relieves C of the burden of
needing to thoroughly analyze code IF for security vulner-
abilities by removing the client attestation requirement.5

5. Appendix A provides a discussion of the minimal additional pro-
tection that including client attestation in the protocol would provide, if
desired.
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Second, it guarantees privacy of provider data W, privacy
of client data X and Y, and correctness of inference
execution F even while deployed in the public cloud.
Third, it allows M to remain offline after the setup phase
of the protocol and offload all subsequent computation.
Altogether, CHEX-MIX allows ML model providers to
securely utilize the scale made possible by the cloud.

5.2. Achieving Confidentiality of IF

While the baseline protocol protects the implementa-
tion IF from integrity attacks during computation, it does
not natively protect the privacy of the IF binary itself. In
particular, the baseline protocol requires M to send the
IF binary to the cloud server in-the-clear to instantiate
the enclave ES , allowing attackers in the cloud to view
the contents of the IF binary. Several prior works have
shown that it is possible to reverse-engineer binaries to
learn the details of their original application code [13],
[23], [69], [122]. Thus, this setup leaves IF vulnerable to
confidentiality attacks.

However, confidentiality of IF code could be signifi-
cantly beneficial to service providers. Software implemen-
tations of services contain decisions based on a provider’s
expertise, such as algorithm choice or robust coding prac-
tices, and are thus often considered valuable IP [15],
[53], [62], [110]. Therefore, protecting the details of the
software implementation could protect the valuable IP that
allows the provider to maintain a competitive advantage
in the market. Furthermore, prior work has shown that
encrypting binaries in this way can make certain classes of
attacks (e.g., return-oriented programming attacks) more
difficult to mount [68].

To attempt to solve the problem of maintaining soft-
ware IP privacy in the public cloud, Intel released a Pro-
tected Code Loader (PCL) library [55] for SGX to allow
users to treat an enclave binary as private enclave data.
PCL encrypts several sections of the generated shared
object binary of the enclave code (see: Appendix F for
an example of a PCL-encrypted elf file). Intel describes
PCL as a tool that can protect a developer’s private code
IP [57], as long as the provider ensures that the segments
of code which PCL does not encrypt (e.g., the code loader
itself, the BSS segment, and any debugging info, with
the full list given in the PCL documentation [57]) do not
contain sensitive information.

However, a naive TEE-only solution for two-party
computation cannot adequately make use of the PCL tool.
In particular, in a TEE-only solution, the client would need
access to IF code to 1) be able to verify the security of
IF code, and 2) attest that IF is loaded in the enclave.
This precludes M from treating IF as private data.

CHEX-MIX, on the other hand, removes the attestation
requirement from the client altogether, ensuring client
trust in enclave code through its trust framework instead.
Since CHEX-MIX does not require C to have access to IF
code, it allows M to make use of PCL protection. Thus,
CHEX-MIX establishes the prerequisites for achieving IF
code confidentiality.

To utilize Intel PCL as part of our solution, we only
need to make minor modifications to part of M’s setup
phase in the CHEX-MIX baseline protocol. After analyz-
ing the code for vulnerabilities as before, M uses PCL

Setup (M) (One time)
1) M verifies that code IF securely implements F.
2) M generates a symmetric (e.g., AES-GCM) encryp-

tion key k for use with Intel PCL.
3) M uses Intel’s PCL to encrypt the shared binary

object of IF into IF using k.
4) M establishes an enclave ES1

on a server hosted by
S.

5) M generates a key pair for TLS channel establish-
ment.

6) M obtains a certificate CertM for its public key
from a CA trusted by both M and C.

7) M attests and establishes a secure channel σM with
ES1

for all future communication.
8) M sends k to ES1

over σM.
9) ES1

seals k to server storage and terminates.
10) M repeats steps 4-7 with enclave ES2

, where ES2
’s

binary consists of IF and Intel PCL components.
11) ES2 unseals k, decrypts IF to IF using k, and exe-

cutes IF.
12) M sends W to ES2 over σM.
13) M issues a certificate CertES2

for ES2’s public
key and sends (W,CertM,CertES2

, π) to ES2
over

σM.
14) M exits the protocol and goes offline.

Figure 3: CHEX-MIX-PCL protocol for IF IP privacy for
M

to encrypt the shared object file for the code IF
6. M

shares this encrypted file with the enclave ES , which then
decrypts and runs the IF binary from inside the enclave.
We give a revised setup protocol for M incorporating
these modifications in Figure 3 (CHEX-MIX-PCL). Note
that the logical enclave ES is actually split into two en-
claves ES1

and ES2
in the protocol description, consistent

with the actual implementation of the PCL library. ES1

shares data with ES2
by encrypting the desired shared data

using a sealing key that ES1
derives from the identity of

the enclave developer (and that can be obtained only by
enclaves signed by the same developer). Since both ES1

and ES2
are developed and signed by developer M, ES2

can then decrypt the file containing the secret data after
deriving the sealing key in a similar manner. In the above
procedure using PCL, this “secret data” is the key k used
to encrypt IF.

This version of our solution provides the following
guarantee in addition to the baseline protocol guarantees:

CLAIM 4. CHEX-MIX-PCL ensures confidentiality of IF
for M against a malicious AC and a malicious AS .

Security Analysis. M verifies via remote attestation that
ES1 is a secure enclave containing code to receive and seal
a key k from M, and that ES1 contains no vulnerabilities
exploitable by AC or AS to access enclave code or data.
M securely transfers key k to ES via an attested TLS
channel. M verifies that IF fully encrypts the components

6. Since we assume M, with its dedicated security team, can ad-
equately vet the security of their own enclave code, we also assume
M can verify that the sensitive components of its private IP are not
contained in the unencrypted segments.
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of its code that it considers private IP. M verifies via
remote attestation that ES2

is a secure enclave containing
code IF, code to unseal a key k, and PCL code to decrypt
IF into IF. The TEEs ensure AC and AS cannot access
key k. Since M’s private code IP is only decrypted in
enclave ES2 , and since only M and the TEEs possess the
key to decrypt code IF into IF, the confidentiality of M’s
private code IP is guaranteed.

5.2.1. Takeaways. CHEX-MIX provides the baseline pro-
tocol and framework that allows model providers to take
advantage of private code protection. Adding PCL pro-
tection requires only minor modifications to the CHEX-
MIX baseline protocol and requires no changes to the
security model of the solution. Thus, CHEX-MIX provides
model providers with a unique opportunity for greater IP
protection in cloud deployments.

6. Related Work

In this section, we describe alternate approaches pro-
posed by prior works for privacy-preserving inference. We
intentionally leave this section detailed to provide more
context for our evaluation and provide a summary of the
main points discussed in this section in Table 2.

TEE-Only. TEE-only solutions for privacy-preserving
inference [87], [96], [112], [113] heavily rely on remote
attestation to guarantee privacy of client data. Since client
data in these solutions is processed in-the-clear within the
enclaves, any security vulnerabilities in the enclave code,
including any back doors purposely inserted by the model
provider, could expose direct access to enclave data. Ma-
licious security in TEE-only solutions thus requires the
impractical assumption that clients can thoroughly verify
or blindly trust the security of enclave code, and thus
cannot solve the problem of oblivious inference.

HE-Only. In CryptoNets [48] and LoLa [24], clients
encrypt their private inputs and send the resulting cipher-
texts to an untrusted server for homomorphic inference.
These solutions require the model provider to maintain a
private online infrastructure to perform the homomorphic
evaluation since the model must be in-the-clear, prevent-
ing the model provider from making use of the public
cloud. Alternatively, E2DM [58] encrypts both client and
model provider data under the client’s key. This allows an
untrusted cloud to perform the HE evaluation, but requires
a semi-honest cloud and an honest client.

MKHE / Hybrid-MKHE. A multi-key HE (MKHE)
construction [27], [28], [72] enables a client and model
provider to encrypt their private values using separate
secret keys and outsource HE evaluation to an untrusted
cloud server. The result ciphertext is encrypted under the
keys of both parties and must be partially decrypted by the
model provider before the client device decryption. Thus,
this technique still requires the model provider to maintain
a private online infrastructure for partial decryption. More
importantly, this technique is only secure against even
just semi-honest adversaries if the partial decryption is
performed with a secure method such as noise flooding.

To the best of our knowledge, an MKHE-TEE hybrid
solution has not been proposed or evaluated in any prior
work, but our results in Tables 3 and 4 indicate that this

solution would be less efficient than CHEX-MIX since
Eff.-MKHE is already less efficient when not inside a TEE.

2PC / Hybrid-2PC. We use the terms 2PC or MPC
to refer to protocols built with secret sharing, oblivious
transfer, and/or garbled circuits, and the terms hybrid-
2PC or hybrid-MPC to refer to works that use MPC in
conjunction with additional techniques such as HE.

Prior 2PC and hybrid-2PC protocols proposed for the
problem of oblivious inference [16], [52], [54], [61], [70],
[75], [82], [84], [86], [93], [97] assume the model provider
maintains a private infrastructure for protocol execution
and thus do not utilize the public cloud. With the exception
of MUSE [70], these works also make a much weaker
semi-honest adversary assumption for both model provider
and client adversaries, which MUSE demonstrates can lead
to devastating results in the client-malicious setting. While
some works claim that the benefit of 2PC techniques
over HE is their ability to evaluate “unmodified” non-
polynomial activation functions, we note that prior works
nevertheless choose to implement truncated versions of
these activation functions [70], [82] or prefer using square
activations for some or all of the activation layers any-
way [82] to reduce computation and communication costs.

CryptFlow [66] proposed an interesting MPC-TEE
hybrid solution, though unfortunately, without any exper-
imental results for inference in the 2PC setting. Their
protocol also requires the client to possess a TEE for the
model provider to attest, which may not be feasible in
practice, in addition to still requiring the client to attest
the TEE of the model provider.

To the best of our knowledge, no other works have
proposed or evaluated a 2PC-TEE or hybrid 2PC-TEE
solution. Our evaluation suggests that comparable 2PC
solutions and 2PC-HE solutions have a larger communica-
tion cost and runtime than CHEX-MIX, and the runtimes
of these works will further increase if moved to a TEE.
Additionally, naive placement of a semi-honest 2PC solu-
tion inside a TEE would not necessarily guarantee more
than semi-honest security, and it is not clear what such
a solution would provide over a TEE-only solution. Still,
this may be an interesting direction for future work.

3PC. Known 3PC solutions for oblivious infer-
ence [66], [83], [98], [119], [120] require two of the
three parties to act honestly. This requirement is difficult
to set up in practice since it requires either an honest
third-party server or a non-collusion assumption between
public cloud servers. These solutions also include a large
communication cost to share the model with all parties.

Zero-knowledge proofs. Known zero-knowledge
proof solutions for secure machine learning [44], [76],
[126] can only either provide privacy to M or C, but
not both. Therefore, they do not address the problem of
oblivious inference.

Other HE-TEE. Most prior HE-TEE works [35],
[45], [124] propose using TEEs to perform sensitive (e.g.,
requiring access to the client’s secret key) stages of the HE
flow. Thus, they share the drawback of TEE-only solutions
that the enclave code must be thoroughly verified by a
client, who must possess an unrealistic level of expertise
to guarantee that enclave code is free from vulnerabilities
that could lead to compromised data privacy. Further, since
HE evaluation still occurs outside the enclave, they offer
no integrity protections against a malicious server. These
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TABLE 2: Threat and deployment model comparison of prior approaches for privacy-preserving inference. A combined
HE+TEE solution for oblivious inference provides security guarantees unaddressed by prior approaches, while allowing
M to offload computation to the public cloud. (R) refers to a rational adversary type as defined in Section 3.1, and
(M) refers to a malicious adversary type. Dashes (–) indicate that a feature does not apply (e.g., the technique does not
allow offload to an untrusted cloud).

Technique Oblivious
Inference?

M can
fully offload

Privacy of X, Y (for C) Correctness of Y (for C) Privacy of W (for M)
AM (M) AS (M) AM (R) AS (M) AC (M) AS (M)

TEE ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓

HE-Only ✓ ✗ ✓ – ✓ – ✓ –
MKHE ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

2PC ✓ ✗ ✗1 – ✗1 – ✗2 –
HE+2PC ✓ ✗ ✗1 – ✗1 – ✗/✓2 –
HE+TEE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
1 Most prior 2PC or HE-2PC solutions such as [61], [82] assume only a semi-honest/passive model provider.
2 Most prior 2PC and HE-2PC solutions, with the exception of MUSE [70], assume a semi-honest client.

works also target single-party outsourced computation
rather than two-party oblivious inference.

Drucker and Gueron [41], [42] suggest combining HE
and TEEs for outsourced computation. Their evaluation
over a database query uses the significantly less computa-
tionally powerful Pallier HE scheme. Thus, their demon-
stration is only applicable to a small range of problems
and cannot be applied to neural network inference. Singh
evaluates a version of the TFHE HE library [32], [111]
for a “fused” millionaire problem inside an enclave for
a single party [106]. The author does not address pro-
tecting the privacy of two separate parties, nor present an
evaluation of an ML benchmark. Since this work requires
bootstrapping after each Boolean arithmetic operation and
does not use SIMD packing, it is also less communication
and computation efficient for our problem setting. In both
of the above sets of works, the authors do not specify when
TEEs can be trusted to provide integrity but not confiden-
tiality to justify their need for HE. Unlike our solution,
their solutions do not remove the attestation requirement
from TEEs, nor enable provider code encryption.

7. Evaluation

7.1. Experiments Overview

To evaluate the feasibility of our solution, we im-
plement CHEX-MIX across three experiments on a com-
modity cloud server. In all experiments, we use the Mi-
crosoft SEAL library (v3.7.1) [102] to implement the HE-
component of our solution.

Experiment 1: Baseline Protocol. We first demon-
strate a proof of concept of CHEX-MIX for inference
over a convolutional neural network (CNN). We target
the same CNN as used in the Eff.-MKHE [27] work,
which consists of 1 convolutional, 2 fully connected, and
2 square activation layers (see Table 7 for further details).

For this experiment, we use the Open Enclave SDK
(v0.17.6)7 [89] to develop the enclave code. We base
our implementation on the attested_tls sample code
mbedTLS networking library [8], and we disable any

7. We prefer the Open Enclave SDK to other enclave SDKs since
Open Enclave provides extensive documentation on integrating secure
channel establishment (i.e., TLS) with attestation.

optional performance optimization flags in the enclave-
side instance of Microsoft SEAL that are incompatible
with Open Enclave.

We do not integrate an integrity-protected database for
EK into our experiments since it is not the focus of our
work. Any effort required to retrieve the EK for a client
can be done between an initial “client hello” and sub-
sequent client communication. Furthermore, consecutive
requests from the same client would not require additional
database access. Thus, we assume this cost can be hidden
from the effective runtime.

Experiment 2: IF Privacy Protocol We also im-
plement the version of our solution to provide M with
privacy of code IF using Intel PCL [55]. We use a similar
setup in this experiment as in Experiment 1 and target the
same CNN. However, since Open Enclave does not yet
support Intel PCL integration, we instead use the Intel
SGX SDK (v2.15) [56] for this implementation. For sim-
plicity, and since we already implement the baseline proto-
col using full attestation and secure channel establishment
procedures, we do not replicate these components in this
proof of concept and instead fill the HE plaintext and
ciphertext objects with random values. We run this proof
of concept both with and without PCL to understand the
overhead of adding PCL-provided protection.

Experiment 3: Evaluating Scalability Given the rel-
atively recent introduction of efficient HE schemes such
as CKKS, a benchmark suite (or even another efficient
stand-alone network implementation) is not yet available
for homomorphic inference. While some compilers exist
for auto-generating HE evaluation code [17], [18], [37],
[38], the efficiency of their compiled outputs is still much
lower than that of hand-optimized implementations by
HE experts. The state-of-the-art HE compiler EVA [37]
(which subsumes prior work CHET [38]), for example,
does not implement known essential optimizations such as
merging of adjacent linear network layers [48], or using
the baby-step-giant-step algorithm for fully connected lay-
ers [49]. Even using 56 threads, EVA incurs a latency of
0.6 seconds—over triple the latency of the single-threaded
hand-optimized HE neural network implementation we
use in this work—to evaluate a similarly sized network.

Given the currently limited ability of modern HE
compilers to produce efficient inference code, it would
be unfair to use the output of these compilers to analyze
the efficiency of our solution against other (non-HE-only)

10



approaches for oblivious inference. However, we still wish
to evaluate the ability of our solution to scale to larger
efficient HE networks as they are developed. To this end,
we evaluate CHEX-MIX over a version of the SqueezeNet
CNN used to evaluate the CHET homomorphic com-
piler [38] over the CIFAR-10 dataset. To the best of our
knowledge, this is the largest neural network evaluated
using HE to date and contains a total of 10 convolutional
layers. For this experiment, we follow a similar strategy
to Experiment 2 and randomize the values for all inputs
inside the enclave prior to evaluation.

7.2. Experimental Setup

We run Experiments 1 and 2 on a Microsoft Azure
Standard DC8ds_v3 VM with 64 GB of RAM with
a maximum of 32 GB of Enclave Page Cache and Ex-
periment 3 on an Azure Standard DC48ds_v3 VM
with 384 GB of RAM with a maximum of 256 GB of
Enclave Page Cache. All our experiments are compiled
with GNU CC (version 7) on Ubuntu 20.04 and executed
with a single thread at 2.8 GHz.

HE Parameters. Eff.-MKHE uses a degree of 16384
to obtain an optimal SIMD packing strategy for the CNN
in Experiments 1 and 2. We use this as well for a fair
comparison with their work. Since we do not need to
perform as many ciphertext-ciphertext operations as Eff.-
MKHE (as we do not require weights in ciphertext form),
we can use only 5 modulus primes of bit lengths {60, 57,
57, 57, 60} rather than the 8 primes used in Eff.-MKHE
without any change to the underlying HE algorithm, SIMD
packing strategy, or accuracy. We use encoding scales of
253, 234, 227, 230, and 220 for the input, layers 1-3 weights,
and the masking plaintext in the final fully connected
layer, respectively. Both our work and Eff.-MKHE achieve
an accuracy of 97.95% over the MNIST test dataset,
which is the same as the accuracy the model achieves
for evaluation in-the-clear.

The authors of CHET instantiated SqueezeNet with
parameters with < 128-bits of security. We analyzed the
computation and discovered that we could reduce parame-
ter selection from a total modulus bit length of 940 to a bit
length of 840 for a degree of 32768, which does provide
128-bit security. We use these improved parameters and
scales of 210, 220, and 253 for the weights, masking
plaintexts, and initial input, respectively. We evaluate this
version of SqueezeNet over 100 random inputs in the
CIFAR-10 test set and observe an accuracy of 77%, which
is close to the 81.5% accuracy that the initial CHET work
obtained over all test examples for less secure parameters.
We emphasize that the purpose of Experiment 3 is to
demonstrate scalability rather than efficiency or accuracy
of HE, and recent work [77] has already demonstrated
methods to significantly improve both the performance
and accuracy of HE evaluation of this network using even
smaller parameters.

Measurement Methodology. Open Enclave and the
Intel SGX SDK do not provide access to runtime coun-
ters (e.g., via the C++ chrono library) that developers
typically use to measure code performance. Instead, we
opt to call custom functions in the untrusted host through
enclave OCALLs (a term used for function calls that call
the untrusted host process from the enclave), and we

use these host functions to implement the measurement
checkpoints. Since our measurements include the runtime
of executing these OCALL switches, our results may
slightly overestimate the enclave code runtime.

Since communication latencies can vary widely be-
tween network infrastructures, user devices, and appli-
cation types (e.g., high-performance use cases vs. IoT,
cellular vs. ethernet, etc.), we do not include these in our
overall runtime results.

SGX Memory Specification. Two versions of SGX
have been released to date, which differ in their handling
of memory allocation. The first, SGXv1, requires the user
to specify the maximum enclave memory size required for
the workload prior to enclave initialization, while SGXv2
allows the enclave to dynamically allocate memory as
needed. For our experiments, we target the more widely
available SGXv1. We configured Experiments 1 and 2 to
use up to 128 KB of stack and up to 512 MB of heap
enclave memory, and Experiment 3 to use up to 2 GB of
stack and up to 310 GB of heap enclave memory.

We measured the total memory consumption of our
modified SqueezeNet CNN benchmark and found that
it consumes more than 300 GB. This is larger than the
largest Enclave Page Cache offered by Azure VMs, and
additionally causes the OS to terminate the enclave pro-
cess. However, our solution can easily scale to larger
network sizes by dividing the evaluation across multi-
ple enclaves. We therefore evaluate this benchmark by
splitting the computation in half and evaluating each half
separately. We report the results for this experiment as
the sum of these halves. We omit the communication cost
between the enclaves since this cost can be hidden in
parallel with the main evaluation.

7.3. Results

Table 3 shows the results of Experiment 1 for evaluat-
ing the baseline CHEX-MIX protocol over the Eff.-MKHE
CNN benchmark, along with the performance costs of
prior solutions for oblivious inference. Below, we compare
this version of our solution to prior works in more detail.
Appendix B provides additional performance metrics.

For Experiment 2, we found that both the PCL and
non-PCL versions of the benchmarks had the same run-
time8 of 0.38 seconds. Thus, CHEX-MIX can offer this
protection for no added performance cost.

Finally, Table 5 shows the results of Experiment 3
for evaluating CHEX-MIX over our modified SqueezeNet
benchmark. Compared to an HE-only execution of the
same network, CHEX-MIX is only 2.28× slower. Since
this is approximately the same slowdown we observed
compared to HE-only for Experiment 1, these results
suggest that CHEX-MIX maintains its scalability across
a range of network sizes.

7.3.1. Comparison with Prior Work. We emphasize that
it would be misleading to compare solely the performance
of our solution with prior works since prior solutions do
not address the same problem statement and/or assume
a weaker threat model than ours. Nevertheless, we com-
pare our baseline Experiment 1 proof of concept to prior

8. We verified with the developers of the Intel SGX library that this
is the expected behavior.
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TABLE 3: Experiment 1 computation runtime and communication cost of CHEX-MIX compared to prior works for
two-party oblivious inference. CHEX-MIX achieves a competitive runtime and communication cost to prior approaches,
while providing security guarantees not provided by prior work. Measurements below the middle line are from this
work. Dashes (–) indicate that a feature does not apply (e.g., the technique does not allow offload to an untrusted cloud).

Work Technique M can
fully offload

Privacy
(X,Y / AM)

Privacy
(W / AC)

Correctness
(Y / AS ) Runtime (s) Comm. (MB)

XONN3 [97] 2PC ✗ ✗ ✗ – 0.16 38.28
GAZELLE1,2,3 [61] 2PC+HE ✗ ✗ ✗ – 0.15 + 0.05 5.9 + 2.1

MUSE1,3,4 [70] 2PC+HE ✗ ✗ ✓ – 22.67 (1-6) + 0.80 (8) 4270.08 + 10.24
DELPHI1,3,4 [82] 2PC+HE ✗ ✗ ✗ – 7.41 (1-8) + 0.48 (8) 235.52 + 10.24

DELPHI1 [82] 2PC+HE ✗ ✗ ✗ – 1.20 + 0.14 43.65 + 0.15
Eff.-MKHE [27] MKHE ✗ ✓ ✗ ✗ 1.23 2.125

- HE ✗ ✓ ✓ – 0.19 0.75
CHEX-MIX HE+TEE ✓ ✓ ✓ ✓ 0.46 0.75

1 Costs separated into “offline” and “online” components (though both must be repeated per inference). Separation indicated by the (+) symbol.
2 Work did not explicitly mention evaluation thread count.
3 Runtime includes computation and LAN communication latency. Authors did not provide separate runtimes for computation only.
4 Runtime is the sum of multiple parts, each with a different thread count. Thread count listed in parenthesis.

TABLE 4: Experiment 1 computation runtime and com-
munication size breakdown. HE-only and CHEX-MIX so-
lutions enable lower client runtime and communication
costs than DELPHI or Eff.-MKHE.

Work Runtime (s) Comm. (MB)
Client Server C→S S→C

DELPHI [82] 0.20 1.20 41.7 2.06
Eff.-MKHE [27] 0.017 1.22 1.75 0.375

HE-only 0.007 0.20 0.5 0.25
CHEX-MIX 0.45

TABLE 5: Experiment 3 computation runtime and com-
munication size breakdown for HE-Only and CHEX-MIX
evaluation of the modified CHET-SqueezeNet CNN.

Work Runtime (s) Comm. (MB)
Client Server C→S S→C

HE-only 0.21 891 14.25 10
CHEX-MIX 2028

approaches for oblivious inference for inference over the
MNIST dataset for similarly-sized CNNs (see Appendix
E for details of the CNNs) to provide some perspective
of our results. We list a subset of the problem statement
differences between works alongside these results, with
more information below.

XONN. Like other 2PC solutions, XONN does not
allow M to offload computation to the public cloud. Ad-
ditionally, XONN assumes a much weaker passive threat
model and therefore does not provide privacy guarantees
in the presence of a malicious AC or malicious or rational
AM. In spite of this, CHEX-MIX has a 51× smaller
communication cost and is only 3× slower than XONN.

GAZELLE, DELPHI, and MUSE. Similar to XONN,
these solutions do not allow M to offload computation
to the cloud and only assume a semi-honest threat model
(with the exception of MUSE client-malicious protection).

Compared to GAZELLE, CHEX-MIX is only slightly
more than twice as slow but achieves a nearly 11×
smaller communication cost. Compared to DELPHI [82]
and MUSE [70] with multiple threads evaluated over a
CNN that achieves similar accuracy as our network, our
solution with a single thread is 17× and 51× faster

and has a 328× and 5707× smaller communication cost,
respectively. We count the reported so-called “offline” and
“online” costs for this comparison together since both of
these phases need to be repeated for every inference.

For an additional comparison point, we implement our
target CNN benchmark (with square activations) using
the open-source DELPHI code and measure its perfor-
mance using a single thread on the same platform used
to benchmark our first two experiments. We measure the
runtime for computation only (omitting time spent on
communication) and report this runtime along with the
total communication size in Table 3 below the middle
line. Even in this case, our solution is nearly 3× faster
and has a more than 58× smaller communication cost per
inference. Table 4 further shows that DELPHI requires a
29× larger computation time and an 83× larger client
upload communication cost than CHEX-MIX, implying it
would be more burdensome for constrained client devices.

Eff.-MKHE. To ensure as fair a comparison with
Eff.-MKHE [27] as possible, we upgrade the original
Eff.-MKHE implementation to use the latest version of
Microsoft SEAL. Compared to Eff.-MKHE, CHEX-MIX
is nearly 3× faster and achieves a nearly 3× smaller
communication cost. Further, Table 4 shows that Eff.-
MKHE has a 2× larger computation cost and a 3× larger
upload communication cost for the client compared to
CHEX-MIX, making it less ideal for scenarios in which a
client device is constrained.

Eff.-MKHE allows the offload of some computation
to an untrusted cloud; however, it still requires M to
maintain a private online infrastructure to perform partial
decryption of results. Eff.-MKHE is also not secure against
active adversaries, and it is only secure against even a
semi-honest server if the model provider performs the
partial decryption with a secure method such as noise
flooding. The implementation in [27] did not include such
a secure method and is therefore vulnerable to a passive
key-recovery attack on CKKS [71].

HE-only. We measured the runtimes of “HE” and
“HE+TEE” in Table 3 with the same code, executed
outside and inside an enclave, respectively. The HE-only
solution provides no privacy guarantees to M when M
wants to offload computation to the public cloud. To
achieve a comparable threat model to our solution, M
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would need to host a private online infrastructure for HE
evaluation, losing the scalability and flexibility offered
by the public cloud. Thus, while a combined HE+TEE
solution is slightly slower than an HE-only solution, the
technique can scale to many more clients than an HE-only
solution, allowing providers to more than make up for the
slight performance loss.

TEE-only For experiment 1, a TEE-only solution
takes 0.0002 seconds and 0.00076 MB of communication.
However, recall that a TEE-only solution does not provide
privacy to clients (see Sections 4 and 6), and thus does
not solve the problem of oblivious inference.

8. Discussion

Performance. Compared to in-the-clear evaluation of
a neural network, HE-based neural network evaluation is
still slow. However, evidence suggests that, given enough
attention, the runtime of HE-based solutions will continue
to improve rapidly with time. The original CryptoNets
work that proposed using HE for machine learning in
2016 [48], for example, reported a runtime of almost
300 seconds for a similarly-structured CNN used in Ex-
periments 1 and 2 of our work. This demonstrates a
performance improvement of at least 1579× in six years
using algorithmic and software improvements alone. With
the recent DARPA DPRIVE program that invested over 53
million USD into HE accelerator development [10], [125],
we might see this type of rapid orders-of-magnitude per-
formance improvement of HE-based techniques again in
the near future. We believe our work can enable HE to be
applied to more scenarios, further motivating research into
more efficient HE algorithms, benchmarks, and schemes
to bring this comparison even closer.

Circuit Privacy. At a high level, a circuit-private
protocol should ensure that clients learn no more about the
computation than the outputs of their input queries. HE
ciphertexts contain error terms that change during evalu-
ation, potentially leaking information about the plaintext
values applied to an encrypted input. XONN [97] noted
that the implementation in GAZELLE [61] does not satisfy
the circuit privacy property. Indeed, as a hybrid 2PC-
HE protocol, GAZELLE requires client decryption of HE
ciphertexts after every linear layer, making it conceivable
that a client adversary could, in theory, derive model
weights from the decrypted values.

By contrast, our protocol only involves client decryp-
tion after all network layers are evaluated. It is not known
whether, after several layer computations, especially when
including multiple nonlinear layers, an attacker could still
use the final ciphertext error to learn the weights used
in intermediate layers. No prior work has sufficiently
demonstrated how an adversary could extract plaintext
input from noise in the resulting ciphertexts of a nonlinear
circuit in practice. Nonetheless, a simple mitigation for
this problem is to use an HE scheme like BFV or BGV
with increased parameter sizes rather than CKKS [82],
[97]. The defenses listed in Appendix D may also be
helpful to defend against circuit privacy attacks.

Side channels. Although we do not consider side
channels as part of our threat model (consistent with
Intel’s official threat model for SGX [59]), we neverthe-

less wish to devote some discussion to them given their
attention in the literature.

Side-channel attacks on TEEs fall into two main cat-
egories: those that the software (enclave) developer can
mitigate, and those that they cannot. Intel contends that
it is the responsibility of enclave developers to write
their enclave code in a secret-data-independent manner
for protection against the first type of attack [59].

The second type of side-channel attacks appears much
more complicated to defend against, and prior works detail
side channel attacks that are difficult for developers to
properly prevent (e.g., [74], [117], [123], to name just a
few). Intel purports to take these attacks seriously and
continues to actively issue patches to SGX for numerous
side channels as mitigations are developed [59], [109]. It is
therefore critical that SGX users use proper enclave attes-
tation to ensure they are using the most up-to-date version
of the technology. Additionally, several works [12], [40],
[88] propose techniques to mitigate the ability of attackers
to perform side-channel attacks on TEEs, which providers
can add on top of our solution for added protection.

A significant advantage of our solution is that it
natively offers clients privacy protection from malicious
side-channel adversaries. In particular, since client data is
always in encrypted form inside the enclave, any attack
on the enclave cannot view the underlying data of the HE
ciphertexts. Clients can also use the strategy discussed
in Appendix C for added assurance of computational
correctness even against side channel attacks.

Additionally, we ensure that our implementation does
not leak any information about M’s private values W
through timing side channels by verifying that our in-
ference code and the implementation of operations in
Microsoft SEAL do not contain any data-dependent com-
putation, branching, or memory accesses based on M’s
private data. While this is possible for any HE inference
solution (since HE-inference does not require any non-
constant-time operations on M’s private data), we note
that this is not a default property of an HE-TEE hybrid
solution, but rather results from a secure implementation
of both enclave code and SGX technology.

9. Conclusion

In this work, we propose a novel approach for obliv-
ious inference in the public cloud setting. Our solution,
CHEX-MIX, features a hybrid HE-TEE protocol that pro-
vides both clients and model providers with confidentiality
and integrity guarantees under a strong adversary model,
tolerating malicious clients, malicious cloud providers,
and rational, actively adversarial model providers. We
investigate the feasibility of performing homomorphic
evaluation inside TEEs by deploying CHEX-MIX on a
Microsoft Azure confidential computing virtual machine.
Our experiments demonstrate that CHEX-MIX is able to
achieve runtime and communication costs comparable to
or more efficient than prior approaches, while provid-
ing powerful security guarantees not addressed by prior
works. We hope that this work will enable more scenarios
for HE deployments and that this will in turn encourage
the development of more openly available, hand-optimized
HE benchmarks as well as more research into HE perfor-
mance improvements in the future.
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A. Client Attestation

In CHEX-MIX, the rational behavior of the ML
model provider M ensures the correctness of computation
against M when the client C encrypts their data with HE.
However, if M were malicious instead of rational, C could
not assume M would provide a correct implementation of
service P , nor could C be sure that M would not insert
backdoors into IF for exploitation by AM. At first, it
may seem that this problem can be solved by having M
release IF and C attest enclave ES . Indeed, assuming C
knew the underlying F that would provide service P , C
could, in theory, verify for themselves that IF implements
F. However, in practice, this places a high burden on C,
and C would still need to verify that IF is free from all
vulnerabilities that could affect computational correctness,
including any hidden backdoors inserted by a malicious
M (see Sections 4 and 6).

Instead, C could again apply the rational assumption to
guarantee that M would not insert any backdoors into IF
(still assuming C uses HE to encrypt their data) that would
affect computational correctness. Then, C could attest ES
to verify that the enclave is loaded with the expected IF.
While this method does not allow for a fully malicious
M, it reduces the functionality dependent on the rational
behavior of M and allows C more control over verifying
correct enclave execution. However, it limits M from be-
ing able to encrypt IF (e.g., using Intel PCL [55]). Figures
4 and 5 give the modifications required to the CHEX-MIX
protocol to provide these additional properties.

B. Additional Performance Metrics

If ML service providers are adept at resource scaling,
they would be able to scale their service as needed to
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Setup (M) (One time)
1) M verifies that code IF securely implements F.
2) M uploads IF to some public domain accessible

by C.
3) M establishes an enclave ES with code IF on a

server hosted by S.
4) M generates a key pair for TLS channel establish-

ment.
5) M obtains a certificate CertM for its public key

from a CA trusted by both M and C.
6) M attests and establishes a secure channel σM with

ES for all future communication.
7) M sends W to ES over σM.
8) M issues a certificate CertES for ES ’s public key

and sends (IF,W,CertM,CertES , π) to ES over
σM.

9) M exits the protocol and goes offline.

Figure 4: CHEX-MIX enhanced correctness verification
setup protocol for M

Setup (C) (Once per client)
1) C verifies that IF implements the expected func-

tionality.
2) C receives (CertM,CertES , π) from ES .
3) C verifies (CertM,CertES , π), attests ES , and

establishes a secure channel σC with ES upon suc-
cessful verification.

4) C generates HE keys SK and EK based on π.
5) C sends EK to ES over channel σC .

Figure 5: CHEX-MIX enhanced correctness verification
setup protocol for C

accommodate changes in demand. Proper resource scal-
ing will ensure there are slightly more resources readily
available than are being used by clients at any given
moment. Since the setup process would be performed
before clients would be ready to connect, any setup time
would not contribute to the effective workload runtime.
Furthermore, any setup time must only be incurred on
enclave initialization, and does not need to be incurred
again for each connecting client for the lifetime of the
enclave. Nevertheless, for completeness, we provide a few
extra performance measurements for enclave setup time,
including components relevant to attestation. We measure
the time to create the enclave in Experiment 1 using the
Open Enclave framework and generate attestation evi-
dence, the runtime of the verify_callback function
of the Open Enclave attested_tls sample code for
the non-enclave client, and the response time of receiving
a token from the Microsoft Azure Attestation service upon
submitting it a quote for verification as 0.39, 0.018, and
0.0077 seconds, respectively.

Additionally, we can calculate a rough estimate for the
energy consumption of our workload for Experiment 1 as
follows: we run our experiments on an Intel Xeon Scalable
Processor 8370C, which has a thermal design power of
270 Watts for its 32 cores. Since the experiment uses a
single core, we calculate 1

32 × 270 Watts × 0.46 sec ≈
0.001078 Wh ≈ 3.88 J as a rough upper bound for the

timed server portion of the workload.

C. Sensitive Samples

A client may want additional guarantees of compu-
tational integrity from adversaries outside the scope of
our threat model (e.g., side-channel adversaries). In such
cases, the following integrity-checking mechanism may
be helpful and can be used with our solution: the client
C chooses a value X to encrypt for which C knows the
expected output Y. (In the case where C is not able to
know the value of Y ahead of time for even a single X,
this pair can be shared directly by M if M is trusted
to be rational). C encrypts this value X and sends it to
ES for evaluation. If the decryption of Y matches what
C expects, C can be more confident that the data path is
free of the types of integrity violations that would cause
the result to be incorrect.

The above method was proposed by Xu et al. [127]
for providing users with integrity assurance for outsourced
HE computation. The authors further discuss how a set of
“sensitive samples”—input-output pairs that would detect
integrity violations of concern with high probability—
could be used to make this technique more robust. We
note that this integrity-checking property is unique to
techniques such as HE that maintain the encrypted form
of client inputs throughout the computation, preventing
adversaries from simply identifying when inputs are part
of the sample set and changing their behavior (e.g., mali-
cious to honest) to evade detection.

D. Additional Defenses for M

Recent works have demonstrated how a client adver-
sary can extract the private weights of a model provider
through model-stealing attacks [114], or learn informa-
tion about the initial model training data set through
model-inversion or re-identification/membership inference
attacks [105], [115] by analyzing the results of several
queries made to the inference server. We note that these
attacks are possible against all prior works in oblivious
inference, and thus are not uniquely applicable to our
work. Nevertheless, we follow the approach taken by
XONN [97] and discuss how providers can apply defense
mechanisms for these attacks on top of our work.

A simple mitigation, suggested in prior work [60],
[75] involves having the server rate-limit the prediction
requests from any given C. We note that this approach
requires the server to keep track of the identity of each
client, or at least be able to differentiate one client from
another. However, it may still be possible for a client to
masquerade as or collude with another client to collect
additional query responses.

A related but more difficult approach is to use statisti-
cal properties of the network to guarantee that results do
not leak information. Here, a model provider can analyze a
stand-alone network to ensure that the required number of
queries to reverse engineer the model parameters is larger
than is computationally feasible for clients to analyze.

Additionally, since the aforementioned attacks rely
on having the server reveal to the client the confidence
scores of the result, another mitigation suggested by prior
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TABLE 6: Description of the CNN used to benchmark
DELPHI [82] and MUSE [70] (based on the description
given in MiniONN [75]) in the MUSE work. Adjacent
linear layers are listed together since they are typically
combined for homomorphic inference. Measurements re-
ported in MUSE for this network were measured on an
AWS c5.9xlarge instance with 72 GB of RAM on an
Intel Xeon 8000 series CPU at 3.6 GHz.

Layer Description
Conv-1 28x28-pixel images, 5×5 windows, (2,2)

strides, 16 output channels
Act-1 Applies a truncated ReLU activation to

each of the 9216 inputs
Pool-1, Conv-2 Average Pooling, 2x2 windows, 2304 out-

puts; 5x5 windows, (1,1) strides, 16 output
channels

Act-2 Applies a truncated ReLU activation to
each of the 1024 inputs

Pool-2, FC-1 Average Pooling, 2x2 windows, 256 out-
puts; Fully connects 256 inputs to 100
outputs

Act-3 Applies a truncated ReLU activation to
each of the 100 inputs

FC-3 Fully connects 100 inputs to 10 outputs

TABLE 7: Description of the CNN used for Experiments
1 and 2 for our solution and Eff.-MKHE based on the
description given in Eff.-MKHE [27].

Layer Description
Convolution 28x28-pixel images, 4×4 windows, (2,2)

strides, 5 output channels
Square-1 Squares each of the 845 inputs

FC-1 Fully connects 845 inputs to 64 outputs
Square-2 Squares each of the 64 inputs

FC-2 Fully connects 64 inputs to 10 outputs

works [47], [105] involves having the model provider
apply a rounding filter layer to the result before sharing
the result with the client. This technique ensures that,
while the maximum predicted class remains the same,
the result does not leak additional information about the
weights through the precise confidence score values. We
note that, unlike BFV or BGV, CKKS is particularly adept
at removing the least significant bits of a result. Thus, it
is easy to add a rounding filter layer to our CKKS-based
approach.

E. Neural Network Descriptions

We provide a description of the CNNs used in our
work and prior works to implement the MNIST inference
network from Experiment 1 in Tables 6, 7, 8, and 9.

F. PCL-encrypted ELF File Output

As an example of the protection provided by the Intel
PCL library, Figures 6a and 6b show the difference in the
output of the readelf command on the enclave binaries,
with and without using the Intel PCL library to encrypt
the binaries, respectively.

TABLE 8: Description of the CNN used to benchmark
GAZELLE [61] in the original work, as described in
DeepSecure [100]. Measurements reported in GAZELLE
for this network were measured on an AWS c4.xlarge
instance with 7.5 GB of RAM at 2.90 GHz.

Layer Description
Convolution 28x28-pixel images, 5×5 windows, (2,2)

strides, 5 output channels
ReLU-1 Applies a ReLU activation to each of the 845

inputs
FC-1 Fully connects 845 inputs to 100 outputs

ReLU-2 Applies a ReLU activation to each of the 100
inputs

FC-2 Fully connects 100 inputs to 10 outputs

TABLE 9: Description of CNN used to benchmark
XONN [97] in the original work. Measurements reported
in XONN for this network were measured on an Intel Core
i7-7700k at 4.20 GHz with 32 GB of RAM and achieved
an accuracy of 98.4%.

Layer Description
Convolution 28x28-pixel images, 5×5 windows, (2,2)

strides, 5 output channels
BN-BA-1 Applies a binary normalization and binary

activation to each of the 845 inputs
FC-1 Fully connects 845 inputs to 100 outputs

BN-BA-2 Applies a binary normalization and binary
activation to each of the 100 inputs

FC-2 Fully connects 100 inputs to 10 outputs
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(b)

Figure 6: Excerpt from symbol table output of running
the readelf command on unencrypted (a) and PCL-
encrypted (b) enclave binaries. The unencrypted symbol
table reveals function calls and file names, while the PCL-
encrypted symbol table does not.
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