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Abstract

Solving a system of m multivariate quadratic equations in n vari-
ables (the MQ problem) is one of the main challenges of algebraic
cryptanalysis. The XL algorithm (XL for short) is a major approach
for solving the MQ problem with linearization over a coefficient field.
Furthermore, the hybrid approach with XL (h-XL) is a variant of XL
guessing some variables beforehand. In this paper, we present a variant
of h-XL, which we call the polynomial XL (PXL). In PXL, the whole
n variables are divided into k variables to be fixed and the remaining
n − k variables as “main variables”, and we generate the Macaulay
matrix with respect to the n−k main variables over a polynomial ring
of the k variables. By eliminating some columns of the Macaulay ma-
trix over the polynomial ring before guessing k variables, the amount
of manipulations required for each guessed value can be reduced. Our
complexity analysis indicates that PXL is efficient on the system with
n ≈ m. For example, on systems over F28 with n = m = 80, the
number of manipulations required by the hybrid approaches with XL
and Wiedemann XL and PXL is estimated as 2252, 2234, and 2220,
respectively.

1 Introduction

Solving a system over a finite field is one of the most major problems in
the field of computer science. Especially, the problem of solving a quadratic
system (the MQ problem) is used to construct various cryptographic sys-
tems. Multivariate public key cryptography (MPKC), which is based on the
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difficulty of solving the MQ problem, is expected to be secure against quan-
tum computer attacks from the NP-completeness of the MQ problem [18].
Indeed, multivariate signature schemes such as Rainbow [13] and GeMSS [9]
have been selected in the third round of the NIST post-quantum cryptogra-
phy standardization project [23]. The security of MPKCs strongly depends
on how efficiently the MQ problem can be solved.

In this research, given a quadratic polynomial system F = (f1(x), . . . ,
fm(x)) in n variables x = (x1, . . . , xn) over a finite field Fq of q elements,
we aim to find a solution to F(x) = 0 ∈ Fm

q . Furthermore, throughout the
rest of this paper, we deal with only the case of n ≤ m (overdetermined).
Note that algorithms solving the overdetermined MQ problem can be easily
applied to the case of n > m, since, after n − m variables are randomly
specified, the resulting system will have a solution on average.

Among various methods for solving algebraic systems (e.g., resultant
based method [11, Chapter 3] and Wu’s method [29]), Gröbnor basis meth-
ods are main categories solving theMQ problem. Buchberger’s algorithm [8]
is a first major method of computing a Gröbnor basis of the ideal spanned
by a given system. In 1999, Faugère proposed an efficient variant of Buch-
berger’s algorithm which is called F4 algorithm [15], and he published the
even more efficient F5 algorithm in 2002 [16]. F4 and F5 are todays major
algorithms for obtaining a Gröbnor basis, and solutions of a system can be
easily derived from a Gröbnor basis ([12, Chapter 3]).

Another strategy to solve the MQ problem is linearization, and the
most basic linearization-based algorithm is the XL algorithm proposed by
Courtois et al. [10]. The XL algorithm is an extension of Relinearization
algorithm [19], and its idea is very simple; linearizing the given system by
regarding each monomial as one variable. To obtain a solution, we need
to make the number of independent equations close to the total number
of monomials. For this, we multiply every polynomial of the given system
by every monomial with degree smaller than or equal to a certain value.
We then regard the obtained system as a linear system and generate a
matrix each entry of which corresponds to a coefficient in an equation of
the system (this matrix is called Macaulay matrix ). If sufficient number of
equations are prepared, then a univariate equation is obtained by performing
Gaussian elimination on the Macaulay matrix. We then solve the obtained
univariate equation and repeat such processes with respect to the remaining
variables. Note that XL is considered to be a redundant variant of F4
algorithm (see [1, 2] for details). Furthermore, Yang et al. [27] analyzed a
variant of the XL algorithm called Wiedemann XL (WXL), which adopts
Wiedemann’s algorithm [24] instead of the Gaussian elimination in the XL
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framework. WXL provides another complexity estimate which is used to
estimate the security of various MPKCs such as Rainbow [13].

The hybrid approach [5, 26] (first proposed as FXL, in which the “F”
stands for “fix”) is proposed as an approach applying an MQ solver such as
F4, F5, or XL efficiently, which mixes exhaustive search and an MQ solver.
In the hybrid approach, k variables are fixed, and the remaining system in
n − k variables are solved by an MQ solver. These processes are iterated
until a solution is found. In the case of n ≈ m, the hybrid approach may be
effective, since the gain obtained by working on systems with less variables
may overcome the loss due to the exhaustive search on the fixed variables.
In this paper, we call the hybrid approach with XL (resp. WXL) h-XL (resp.
h-WXL).

Our contributions

In this paper, we propose a new variant of the XL algorithm, which we call
the polynomial XL (PXL). PXL is constructed by improving h-XL. For the
MQ system F of m equations in n variables x = (x1, . . . , xn) over Fq, PXL
first sets the number k of guessed variables as in the hybrid approach. We
then regard the given system as a system in n − k variables xk+1, . . . , xn,
whose coefficients belong to the polynomial ring Fq[x1, . . . , xk]. We multiply
every polynomial of F by every monomial in the n−k variables with degree
smaller than or equal to a certain degree and generates the Macaulay matrix
over Fq[x1, . . . , xk]. The main idea of PXL is to partly perform Gaussian
elimination on the matrix over the polynomial ring before fixing the k vari-
ables and complete the elimination after fixing. By doing so, we can reduce
the amount of manipulations for each guessed value compared with h-XL,
since the size of the un-eliminated part of the matrix after the partial Gaus-
sian elimination is much smaller than that of the original one. This enables
us to solve the system more efficiently for some parameters.

We here briefly explain why such an elimination on the Macaulay ma-
trix over the polynomial ring is possible (see Section 3 for details). If the
given system in n variables is seen as the system in n − k variables over
Fq[x1, . . . , xk], then the coefficients of quadratic terms in the n−k variables
can be seen as elements of Fq since the given system is originally quadratic.
For the same reason, in every polynomial obtained by multiplying monomi-
als to polynomials of F , the coefficients of the highest degree part do not
include the k variables x1, . . . , xk. This indicates that some submatrices of
the Macaulay matrix over Fq[x1, . . . , xk] can be seen as matrices over the
finite field Fq. By utilizing this structure, we can partly perform Gaussian

3



elimination on the Macaulay matrix before fixing the k variables.
In this paper, after describing the proposed algorithm, we also discuss

the estimation of the time and space complexities and compare them with
those of h-XL and h-WXL. Comparing the time complexities, we show that
the proposed algorithm is more efficient in the case of n ≈ m. For example,
on the system over F28 with n = m = 80, the number of manipulations in Fq

required by h-WXL and PXL is estimated as 2234 and 2220, respectively. On
the other hand, in terms of the space complexity, the proposed algorithm is
not well compared to h-WXL since the sparsity of the Macaulay matrix is
not maintained through the proposed algorithm. Therefore, the relationship
between PXL and h-WXL can be seen as a trade-off between time and
memory.

Finally, we discuss the relationship between the proposed algorithm and
XFL [10, 25] proposed as a variant of FXL. In XFL, the k variables to
be fixed are chosen firstly, and monomials including only the remaining
n − k variables are eliminated before fixing. XFL is similar to PXL in
the point that the equations are partly eliminated before fixing. However,
PXL eliminates some monomials not only over the field but also over the
polynomial ring of the k variables. Therefore, PXL can be regarded as the
extension of XFL.

Organizations

The rest of this paper is organized as follows: Section 2 reviews the XL
algorithm and the hybrid approach. Section 3 is devoted to describing the
proposed algorithm PXL. We estimate the time complexity and compare it
with those of h-XL and h-WXL in Section 4. Finally, Section 5 is devoted
to the conclusion, where we summarize the key points and suggest possible
future works.

2 Preliminaries

In this section, we recall the definition of the XL algorithm [10], and dis-
cuss its solving degree and its complexity. (The correctness of XL will be
discribed in Appendix B.) We also explain the hybrid approach, wich is a
way of combining an exhaustive search with an MQ solver such as XL.
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2.1 Notation

We first fix the notations that are used in the rest of this section. Let
R[x] = R[x1, . . . , xn] denote the polynomial ring with n variables over a
commutative ring R with unity. For a subset S ⊂ R[x], the ideal of R[x]
generated by S is denoted by ⟨S⟩. In particular, when S is a finite set
{f1, . . . , fm}, we denote it by ⟨f1, . . . , fm⟩. Let [x] denote the set of all
monomials in R[x], say

[x] := {xα1
1 · · ·xαn

n : (α1, . . . , αn) ∈ (Z≥0)
n}.

For each d ≥ 0, we also denote by Td (resp. T≤d) the set of all monomials in
R[x] of degree d (resp. ≤ d), namely we set

Td =

{
xα1
1 · · ·xαn

n ∈ [x] :

n∑
k=1

αk = d

}
, (2.1)

T≤d =

{
xα1
1 · · ·xαn

n ∈ [x] :

n∑
k=1

αk ≤ d

}
. (2.2)

For a subset F ⊂ R[x], we set [x]·F := {t·f : t ∈ [x], f ∈ F}. A finite subset
of [x] · F is called a shift of F . For a polynomial f ∈ R[x] and a monomial
t ∈ [x], we denote by coeff(f, t) the coefficient of t in f . The supporting set
supp(f) of f is defined as the set of monomials whose coefficients in f are
not zero, say

supp(f) := {t ∈ [x] : coeff(f, t) ̸= 0}.

In the following, we fix a monomial order ≻ on [x], and we order elements
of any subset of [x] by ≻. For a non-zero polynomial f ∈ R[x] ∖ {0}, we
denote by LT(f), LM(f), LC(f) and mltdeg(f) the leading term, the leading
monomial, the leading coefficient and the multi-degree of f with respect to
≻, respectively. Note that LT(f) = LC(f) · LM(f). For a subset F ⊂ R[x],
we set LT(F ) := {LT(f) : f ∈ F} and LM(F ) := {LM(f) : f ∈ F}. Recall
that a finite subset G ⊂ R[x] is called a Gröbner basis for an ideal I ⊂ R[x]
with respect to ≻ if it generates I and if ⟨LT(G)⟩ = ⟨LT(I)⟩. It is well-known
that every non-zero ideal of R[x] has a Gröbner basis.

2.2 Macaulay matrices

For a finite subset F = {f1, . . . , fm} ⊂ R[x] of ordered polynomials and
a finite subset T = {t1, . . . , tℓ} ⊂ [x] with t1 ≻ · · · ≻ tℓ, we define the
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Macaulay matrix of F with respect to T by an (m× ℓ)-matrix over R whose
(i, j)-entry is the coefficient of tj in fi, and denote it by Mac(F, T ), say

Mac(F, T ) :=


t1 t2 ··· tℓ

f1 coeff(f1, t1) coeff(f1, t2) · · · coeff(f1, tℓ)
f2 coeff(f2, t1) coeff(f2, t2) · · · coeff(f2, tℓ)
...

...
...

...
fm coeff(fm, t1) coeff(fm, t2) · · · coeff(fm, tℓ)

.

Conversely, for an (m× ℓ)-matrix A over R and T given as above, a unique
list F ′ of polynomials in R[x] such that Mac(F ′, T ) = A is denoted by
Mac−1(A, T ), namely, for

A =


t1 t2 ··· tℓ

1 a1,1 a1,2 · · · a1,ℓ
2 a2,1 a2,2 · · · a2,ℓ
...

...
...

...
m am,1 am,2 · · · am,ℓ


with ai,j ∈ R, we set gi :=

∑m
j=1 ai,jtj for 1 ≤ i ≤ m, and Mac−1(A, T ) :=

{g1, . . . , gm}.

Example 1. Consider the following three quadratic polynomials (over R =
Z) in two variables x1 and x2:

f1 = 5x21 + 6x1x2 + 4x1 + 5x2 + 3,

f2 = 4x21 + 5x1x2 + 3x22 + 6x1 + 2x2 + 2,

f3 = 2x21 + 4x1x2 + 2x22 + 6x1 + x2 + 2.

Put F := {f1, f2, f3}, S := T1 · F = {xifj : 1 ≤ i ≤ 2, 1 ≤ j ≤ 3}, where
T1 is the set of monomials in x1 and x2 of degree one (cf. (2.1)). We order
elements of S as follows: S = {x1f1, x1f2, x1f3, x2f1, x2f2, x2f3}. Let ≻glex

be the graded lex order on [x] with x1 ≻ x2, that is, for xα, xβ ∈ [x] with
α, β ∈ (Z≥0)

2, we say xα ≻glex xβ if |α| > |β|, or |α| = |β| and xα is greater
than xβ with respect to the lexicographical order with x1 ≻ x2. When we
order elements of T≤3 by ≻glex, the Macaulay matrix Mac(S, T≤3) of S with
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respect to T≤3 is given as follows:



x3
1 x2

1x2 x1x2
2 x3

2 x2
1 x1x2 x2

2 x1 x2 1

x1f1 5 6 0 0 4 5 0 3 0 0
x1f2 4 5 3 0 6 2 0 2 0 0
x1f3 2 4 2 0 6 1 0 2 0 0
x2f1 0 5 6 0 0 4 5 0 3 0
x2f2 0 4 5 3 0 6 2 0 2 0
x2f3 0 2 4 2 0 6 1 0 2 0

.

Here, we present an algorithm that is used in the XL algorithm as a sub-
routine. For a given shift S of a finite set F of polynomials, this algorithm
computes another set of generators for the ideal ⟨F ⟩, by constructing a
Macaulay matrix.

Algorithm 2 (Basis conversion via Macaulay matrices). The following se-
quence of procedures corresponds to the Linearize step of the XL algorithm
(Algorithm 3 below):

Input: A shift S of F , that is, a finite subset of [x] · F .

Output: A set G of generators for the ideal ⟨F ⟩.

(1) Taking T ⊂ [x] to be such that
∪

f∈S supp(f) ⊂ T (in fact, it suffices
to put T :=

∪
f∈S supp(f)), construct the Macaulay matrix Mac(S, T )

of S with respect to T .

(2) Compute the reduced row echelon form A of Mac(S, T ).

(3) Obtain a set G of polynomials from A, where G := Mac−1(A, T ), and
output it.

In general, Algorithm 2 outputs not necessarily a Gröbner basis of the
ideal generated by the input polynomials, but Theorem 13 in Appendix
shows that for sufficiently large shifts, the output is a Gröbner basis.

2.3 XL Algorithm

This subsection briefly reviews the XL algorithm (which stands for eXtended
Linearizations, or for multiplication and linearization), which is proposed
in [10] by Courtois et al. to solve a system of multivariate polynomials (over
finite fields). We describe the XL algorithm with Macaulay matrices defined

7



in the previous subsection. The notations are the same as in the previous
subsections, unless otherwise noted.

In Algorithm 3 below, we write down the XL algorithm in a form that
can work for a multivariate system (of arbitrary degree) over a finite field
K. Note that the original paper [10] treats only the case where the input
polynomials are all quadratic, but clearly their idea is applicable to a general
multivariate system of higher degree. For simplicity, we here assume that
the set of zeros over the algebraic closure K of the input system is finite.

Algorithm 3 (XL algorithm, [10], Section 3, Definition 1).

Input: A finite subset F = {f1, . . . , fm} ⊂ K[x], and a degree bound D.

Output: A zero of the ideal ⟨F ⟩.

(1) Multiply: Construct a shift I≤D of F by computing all the products
t · fi with t ∈ [x] and deg(tfi) ≤ D, say

I≤D :=

m∪
i=1

{t · fi : t ∈ [x], deg(tfi) ≤ D}.

(2) Linearize: For S := I≤D above as an input, execute Algorithm 2 for
some elimination monomial order such that all the terms containing
one variable (say xn) are eliminated last. In Step (1) of Algorithm 2,
take T to be {t ∈ [x] : deg(t) ≤ D}. Let G be the output of Algorithm
2.

(3) Solve: If G contains a univarite polynomial in K[xn], compute its
root by e.g., Berlekamp’s algorithm [4].

(4) Repeat: Substituting a root into xn, simplify the equations, and then
repeat the process to find the values of the other variables.

It will be proved in Corollary 16 (in Appendix B) that Algorithm 2 in
Step (2) outputs a Gröbner basis of ⟨F ⟩ with respect to an elimination order,
for D larger than Dube’s degree bound Duben+1,d, where d := max{deg(fi) :
1 ≤ i ≤ m}. This implies that for such D, Algorithm 3 surely finds a zero
of ⟨F ⟩, see Proposition 18.

One considerable variant of Algorithm 3 is: In the Linearize step, com-
pute a Göbner basis G0 for ⟨F ⟩ with respect to an arbitrary monomial order,
by executing Algorithm 2 for sufficiently large D. Then, apply the FGLM
basis conversion algorithm [17] to compute a Gröbner basis G with respect
to the required elimination monomial order.
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2.4 Complexity

As it was noted in the previous subsection, Dubé’s degree bound given in
Appendix B is a bound of the degree at which Linearize-step of XL outputs
a Gröbner basis. However, in practical, XL can find a solution at degree
much smaller than the Dubé’s degree bound: Computing a Gröbner basis
enables us to enumerate all zeros of a given (zero-dimensional) multivariate
system, but it suffices for the motivation of XL to find at least one root.

In this subsection, we first consider the practical bound of the degree
at which XL outputs a solution, under some assumptions. After that, by
using this bound, the complexities of XL and its variant Wiedeman XL are
estimated. In the following, we suppose that systems to be solved are given
as quadratic equations over the finite field Fq with q elements.

We denote by ⟨I≤d⟩Fq the Fq-linear space generated by the set I≤d. To
obtain the dimension of ⟨I≤d⟩Fq , we consider the linear dependency of mul-
tiples of monomials in x1, . . . , xn and fi, fj . When we write

fi(x) =
∑
k≤ℓ

a
(i)
k,ℓxkxℓ +

∑
k

b
(i)
k xk + c(i),

then we have ∑
k≤ℓ

a
(i)
k,ℓ(xkxℓfj) +

∑
k

b
(i)
k (xkfj) + c(i)fj

=
∑
k≤ℓ

a
(j)
k,ℓ(xkxℓfi) +

∑
k

b
(j)
k (xkfi) + c(j)fi. (2.3)

This means that a set of polynomials {t · fℓ | t ∈ T≤2, ℓ ∈ {i, j}} is linearly
dependent over Fq. Furthermore, equations obtained by multiplying mono-
mials in x1, . . . , xn to the both sides of (2.3) indicate the linear dependencies
at degree larger than 2. The following proposition enables us to compute
the dimension of ⟨I≤d⟩Fq assuming no other source of dependencies than the
above:

Proposition 4 ([25], Proposition 1). If all dependencies of ⟨I≤d⟩Fq result
from the dependency of {t · fℓ | t ∈ T≤2, ℓ ∈ {i, j}}, then

|T≤d| − dimFq(⟨I≤d⟩Fq) = coeff
(
(1− t)m−n−1 (1 + t)m , td

)
, (2.4)

for all d < min{q,Dreg}. Here Dreg is the degree of regularity for XL given
by

Dreg = min
{
d | coeff

(
(1− t)m−n−1 (1 + t)m , td

)
≤ 0
}
. (2.5)
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Here, we consider the rank of the Macaulay matrix required to obtain a
univarite equation. Constructing the Macaulay matrix Mac(I≤D, T≤D), we
suppose to use elimination orders such that xD1 , x

D−1
1 , . . . , x1, 1 are listed at

the end. In this case, if rank(Mac(I≤D, T≤D)) ≥ |T≤D| − D, then the last
nonzero row vector of the matrix in the row echelon form yields a univarite
equation of x1. Therefore, from Proposition 4, the minimum D required for
the reliable termination of XL is given by

D = min
{
d | coeff

(
(1− t)m−n−1 (1 + t)m , td

)
≤ d
}
, (2.6)

in the case where q is sufficiently large. We call this degree D the solving
degree of XL. Note that if n and m are determined, then the solving degree
can be computed. One can easily confirm that the solving degree is much
smaller than the Dubé’s degree bound (e.g., the solving degree of XL on
systems with n = 10 and m = 11 is 12, whereas the Dubé’s degree bound
on the same system is approximately 1076).

We here consider the time complexity of XL. The Linearize step is
clearly dominant in terms of the time complexity. In the Linearize step,
Gaussian elimination is performed on a matrix with m ·

(
n+D−2
D−2

)
rows and(

n+D
D

)
columns, where D is the solving degree of XL. Here, following [22],

we use a practical assumption that, if we pick rows at random under the
constraint that we have enough equations at each degree d ≤ D, then usually
we have a linearly independent set. From this assumption, the complexity
of XL is roughly estimated as that of Gaussian elimination on a matrix with(
n+D
D

)
rows and columns, and it is given by

O
((

n+D
D

)ω)
, (2.7)

where 2 ≤ ω < 3 is the constant in the complexity of matrix multiplication.

Wiedemann XL (WXL) We explain a variant of XL using Wiedemann’s
algorithm [24] instead of Gaussian elimination, which was first analyzed
in [27]. Wiedemann’s algorithm generally solves sparse linear systems more
efficiently than Gaussian elimination. According to [13], the complexity of
WXL is estimated by

O
((

n−k
2

)
·
(
n−k+D

D

)2)
, (2.8)

where D is the solving degree of XL. (We remove the constant part from
the complexity in [13], since we focus on asymptotic complexity.) Note that
WXL consumes less memory than the plain XL, since it can deal with the
Macaulay matrix as a sparse matrix.
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2.5 Hybrid Approach

In this subsection, we describe the hybrid approach [5, 26]. This approach
is constructed combining an exhaustive search with an MQ solver, such as
F4, F5, or XL.

In this approach, given the MQ system of m equations in n variables,
k (0 ≤ k ≤ n) variables are randomly guessed before an MQ solver is
applied to the system in the remaining n−k variables; this is repeated until
a solution is obtained. For the case of applying the hybrid approach to the
plain XL, the following step is added into Algorithm 3

(0) Fix: Fix the k variables x1, . . . , xk.

The complexities of the hybrid approaches using the plain XL and WXL
as MQ solvers are estimated as

O
(
qk ·

(
n−k+D

D

)ω)
, (2.9)

O
(
qk ·

(
n−k
2

)
·
(
n−k+D

D

)2)
, (2.10)

respectively. The number k of guessed variables is generally chosen such
that the above complexity takes the minimum value.

3 Main Algorithm

In this section, we propose a new variant of the XL algorithm solving the
MQ problem of m equations in n variables over Fq where n ≤ m. We first
discuss Macaulay matrices over polynomial rings, and second describe the
outline of our proposed algorithm “polynomial XL (PXL)”. After that, the
details of the most technical step will be described in Subsection 3.3, and
the termination and solving degree will be discussed in Subsection 3.4.

3.1 Macaulay Matrices over Polynomial Rings

Given anMQ system F = {f1(x), . . . , fm(x)} in n variables x = (x1, . . . , xn)
over Fq, we discuss Macaulay matrices over polynomial rings. For a posi-
tive integer k ∈ {1, . . . , n}, we divide x1, . . . , xn into k variables x1, . . . , xk
and the remaining n− k variables xk+1, . . . , xn as “main variables”. Then,
f1, . . . , fm can be regarded as elements of the polynomial ring in the n− k
main variables over the polynomial ring in the k variables, that is (Fq[x1, . . .
, xk])[xk+1, . . . , xn].
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Here, we define some notations again over (Fq[x1, . . . , xk])[xk+1, . . . , xn]
as in Subsection 2.1. For each b ≥ a ≥ 0, we define the sets Ta, T≤a, and
Ta;b of monomials in xk+1, . . . , xn as follows:

Ta :=

{
xα1
k+1 · · ·x

αn−k
n :

n−k∑
i=1

αi = a

}
,

T≤a :=

{
xα1
k+1 · · ·x

αn−k
n :

n−k∑
i=1

αi ≤ a

}
,

Ta;b := Ta ∪ Ta+1 ∪ · · · ∪ Tb.

Similarly, for each b ≥ a ≥ 2, we define the sets Ia, I≤a, and Ia;b of polyno-
mials in (Fq[x1, . . . , xk])[xk+1, . . . , xn] as follows:

Ia :=

m∪
i=1

{t · fi : t ∈ Ta−2},

I≤a :=

m∪
i=1

{t · fi : t ∈ T≤a−2},

Ia;b := Ia ∪ Ia+1 ∪ · · · ∪ Ib.

For an integer D ≥ 0, we consider Mac(I≤D, T≤D) over the polyno-
mial ring Fq[x1, . . . , xk] with orders first comparing the degree of monomi-
als and polynomials in both of I≤D and T≤D. In the following, we call
such a Macaulay matrix as the Macaulay matrix of F at degree D over
Fq[x1, . . . , xk].

Example 5. For the system of equations

f1 = 5x21 + 6x1x2 + 4x1x3 + x2x3 + 5x23 + 4x1 + 5x2 + 3,

f2 = 4x21 + 5x1x2 + 4x1x3 + 3x22 + 5x2x3 + x23 + 6x1 + 2x2 + 3x3 + 2,

f3 = 2x21 + 4x1x2 + 2x22 + 6x23 + 6x1 + x2 + 3x3 + 2,

in F7[x1, x2, x3], if we set k = 1, then the Macaulay matrix of F at degree 3
over F7[x1] with monomials in the graded lex order and polynomials ordered
such as {x2f1, x2f2, x2f3, x3f1, x3f2, x3f3, f1, f2, f3} is as follows:



x3
2 x2

2x3 x2x
2
3 x3

3 x2
2 x2x3 x2

3 x2 x3 1

x2f1 0 1 5 0 6x1+5 4x1 0 5x2
1+4x1+3 0 0

x2f2 3 5 1 0 5x1+2 4x1+3 0 4x2
1+6x1+2 0 0

x2f3 2 0 6 0 4x1+1 3 0 2x2
1+6x1+2 0 0

x3f1 0 0 1 5 0 6x1+5 4x1 0 5x2
1+4x1+3 0

x3f2 0 3 5 1 0 5x1+2 4x1+3 0 4x2
1+6x1+2 0

x3f3 0 2 0 6 0 4x1+1 3 0 2x2
1+6x1+2 0

f1 0 0 0 0 0 1 5 6x1+5 4x1 5x2
1+4x1+3

f2 0 0 0 0 3 5 1 5x1+2 4x1+3 4x2
1+6x1+2

f3 0 0 0 0 2 0 6 4x1+1 3 2x2
1+6x1+2


.
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Let PM be a Macaulay matrix of F at degree D over Fq[x1, . . . , xk] and
we discuss the structure of PM in the following. For two integers d1 and
d2 (2 ≤ d1 ≤ D, 0 ≤ d2 ≤ D), we denote by PM[Id1 , Td2 ] the submatrix of
PM corresponding to polynomials of Id1 and monomials of Td2 . Then, PM
is clearly divided by submatrices PM[Id1 , Td2 ] (2 ≤ d1 ≤ D, 0 ≤ d2 ≤ D).

Lemma 6. For an MQ system F and positive integers k ≤ n and D ≥ 2,
let PM be a Macaulay matrix of F at degree D over Fq[x1, . . . , xk]. Then,
for 2 ≤ d ≤ D, every PM[Id, Td′ ] with d′ /∈ {d, d−1, d−2} is a zero matrix,
and all elements of PM[Id, Td] belong to Fq.

This lemma holds due to quadraticity of F . The proposed algorithm
which will be given in the next subsection utilizes this structure.

3.2 Outline

In this subsection, we describe the outline of the proposed algorithm as a
variant of h-XL, which is called polynomial XL (PXL). The main difference
between our PXL and h-XL is the following: While h-XL performs Gaussian
elimination after substituting actual k values to x1, . . . , xk, PXL partly per-
forms Gaussian elimination before fixing k variables. These manipulations
are possible due to the structure of Macaulay matrices over Fq[x1, . . . , xk]
described in Subsection 3.1.

Here, we roughly describe PXL as follows:

Algorithm 7 (Polynomial XL).

Input: An MQ system F = {f1(x), . . . , fm(x)}, the number k of guessed
variables, and a degree D of regularity for XL.

Output: A solution to F(x) = 0 ∈ Fm
q .

(1) Multiply: Generate all the products t · fi (t ∈ T≤D−2)

(2) Linearize(1): Generate a Macaulay matrix over Fq[x1, . . . , xk] and
partly perform Gaussian elimination.

(3) Fix: Fix the k variables in the resulting matrix of step 2.

(4) Linearize(2): Perform Gaussian elimination on the resulting matrix
of step 3.

(5) Solve: Assume that step 4 yields at least one univariate equation.
Solve this equation over the finite field Fq.
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(6) Repeat: Simplify the equations and repeat the process to solve the
other variables.

Note that the last four steps from Fix toRepeat are iterated until a solution
is found.

Recall from Subsection 2.5 that, after k variables are guessed, the hybrid
approach solves the remaining system using F4, F5, or (plain) XL. The Fix
step also guesses values of k variables as in the hybrid approach. For n
variables x1, . . . , xn of the given system, we set the first k variables x1, . . . , xk
as guessed variables.

Before the Fix step, the Multiply and Linearize(1) steps are executed
regarding the given polynomials as those in (Fq[x1, . . . , xk])[xk+1, . . . , xn].
We here recall from Lemma 6 that the Macaulay matrix over Fq[x1, . . . , xk]
constructed in the Linearize(1) step has some submatrices with entries in
Fq. By utilizing this property, the Linearize(1) step repeats to transform
such a block into the row echelon form and to eliminate entries of its upper
and lower blocks. The detail of this step is explained in Subsection 3.3
below.

After the Linearize(1) step, the resulting Macaulay matrix has the
following form

,

with the permutation of rows and columns. (All elements in the white parts
are zero, whereas all elements in the gray parts and on the diagonal line are
nonzero.) Then, for a sufficiently large D, we can solve the system elimi-
nating only the lower-right submatrix in the above figure, since, by doing
so, at least one univariate equation is obtained. Therefore, the Fix step
substitutes values of k variables to x1, . . . , xk only in the lower-right sub-
matrix, and the Linearize(2) step solves the system performing Gaussian
elimination over the finite field. We remark that the Solve and Repeat
steps are executed similarly to the plain XL.

3.3 Details of Linearize(1) Step

In this subsection, we describe the details of the Linearize(1) step in the
proposed algorithm. As in Subsection 3.1, we let PM be a Macaulay matrix
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of F at degree D over Fq[x1, . . . , xk].
The Linearize(1) step is mainly performed on each PM[Id, T(d−2);d]

(2 ≤ d ≤ D) and iterated from d = D to 2. This step at each degree d is
described as follows:

(d)-1. Perform Gaussian elimination on PM[Id, Td].

(d)-2. Perform the same row operations as (d)-1 on PM[Id, T(d−2);(d−1)].

(d)-3. Using the leading coefficients of the resulting PM[Id, Td], eliminate
the corresponding columns of PM. Here, a leading coefficient is the
leftmost nonzero entry in each row of a matrix of the row echelon form.

In the following, we show that the Linearize(1) step described above
works well. We first show that, at the time of executing the (d)-1 step
on PM[Id, Td], the submatrix PM[Id, T≤D] does not change from the first
state. Since PM[Id, T(d+1);D] is a zero matrix, the (d)-3 step of the degree
from D to d + 1 does not affect PM[Id, T≤D]. Therefore, from Lemma 6,
only PM[Id, Td], PM[Id, Td−1], and PM[Id, Td−2] among PM[Id, Td′ ] (0 ≤
d′ ≤ D) are not zero matrices, and PM[Id, Td] can be seen as a matrix
over the finite field Fq. This fact indicates that the manipulations in the
(d)-1 and (d)-2 steps can be performed correctly. Furthermore, the (d)-3
step can be also performed correctly, since the leading coefficients of the
resulting PM[Id, Td] are 1. As a result, we have that all the manipulations
are practicable. In addition, we remark that these manipulations are clearly
regarded as row operations on PM.

After the Linearize(1) step, all manipulations are performed on the
submatrix obtained by concatenating rows and columns including no leading
coefficient of the resulting PM[Id, Td] with 2 ≤ d ≤ D. In the following, we
call this submatrix the resulting matrix of Linearize(1).

3.4 Termination and Solving Degree

This subsection discusses the termination of PXL and the minimum value D
where PXL finds a solution under the same assumption as in Proposition 4,
which is called the solving degree of PXL.

From the discussion in Subsection 3.3, even if the Linearize(1) step is
exchanged with the Fix step, then the Linearize(1) step works well as row
operations on PM. Therefore, for any guessed values, the rank of PM after
the Fix step in PXL is the same as that of the Macaulay matrix after the
Fix step in h-XL. This means that the rank of PM will be sufficiently close
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to the number of columns of PM at sufficiently large D as similar to h-XL.
Namely, PXL outputs a solution at sufficiently large D.

In the following, we discuss the solving degree of PXL. In the plain XL,
the solving degree is obtained by equality (2.6) to yield a univarite (e.g.,
xn) equation including multiples of D + 1 monomials (e.g., 1, xn, . . . , x

D
n ).

However, in PXL, some of such monomials may be eliminated in the Lin-
earize(1) step. Then, the upper bound of the solving degree of PXL clearly
coincides with the degree of regularity for XL in equality (2.5). Hence, we
estimate the solving degree of PXL by the degree of regularity for XL. One
can confirm that this degree is the same as the degree obtained by the solv-
ing degree of XL in most cases. Indeed, for all cases 10 ≤ n ≤ m ≤ 100,
if the solving degree of XL is larger than 2, then it is always equal to the
degree of regularity for XL.

Remark 8. This remark states that PXL does not need to use all row
vectors of Macaulay matrices practically. As in the estimation in Subsec-
tion 2.3, we use the following assumption about the number of rows of
Macaulay matrices: If we pick rows at random under the constraint that
we have enough equations at each degree d ≤ D, then usually we have a
linearly independent set. From this assumption, PXL randomly chooses ap-
proximately |T≤D| independent row vectors from the Macaulay matrix with
|I≤D| rows and executes the Linearize(1) step on the submatrix composed
of chosen row vectors.

4 Complexity

In this section, we first estimate the size of the resulting matrix of Lin-
earize(1). After that, we estimate the time complexity of PXL and compare
it with those of h-XL and h-WXL. Note that we take the input parameter
D of PXL as the degree of regularity for XL.

4.1 Size of Resulting Matrix of Linearize(1)

Let α be the number of columns of the resulting matrix of Linearize(1).
For each d with 2 ≤ d ≤ D, we define the set Īd of polynomials by

Īd := { the degree d part of a | a ∈ Id}.

If we denote by ⟨Īd⟩Fq the Fq-linear space generated by the set Īd, then
the number of columns eliminated in the step (d)-1 of Linearize(1) on
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PM[Id, Td] is equal to dimFq(⟨Īd⟩Fq). Therefore, we have

α = |T≤D| −
D∑

d=2

dimFq(⟨Īd⟩Fq)

=

D∑
d=2

(
|Td| − dimFq(⟨Īd⟩Fq)

)
+ |T1|+ |T0|. (4.1)

Using the same assumption as in Proposition 4, the value of (4.1) can be
estimated by

D∑
d=0

max
{
coeff

(
(1− t)m−(n−k) (1 + t)m , td

)
, 0
}
. (4.2)

Recall from Remark 8 that PXL randomly chooses approximately |T≤D|
rows from the Macaulay matrix. In the following, we suppose that approx-

imately |Td| − coeff
(
(1− t)m−(n−k) (1 + t)m , td

)
rows are chosen from Id

for 2 ≤ d ≤ D − 1. By doing so, we can take the resulting matrix of
Linearize(1) as an approximately α × α matrix. Furthermore, when Ĩd
denotes the subset of Id including polynomials corresponding to randomly
chosen rows, we have

D∑
d=2

(|Ĩd| − |Td|) ≈ α. (4.3)

4.2 Time Complexity

In this subsection, we approximately estimate the time complexity of PXL.

Proposition 9 (Time Complexity of PXL). The time complexity of PXL
is approximately estimated by

C(d)1 + C(d)2 + C(d)3 + Cfix + Cli2. (4.4)

Here, C(d)1 (resp. C(d)2, C(d)3) denotes the sum of the number of manipula-
tions in Fq required for each (d)− 1 (resp. (d)− 2, (d)− 3) with 2 ≤ d ≤ D.
Furthermore, Cfix and Cli2 denote the number of manipulations in Fq required
for the fix and Linearize(2) steps, respectively.

The estimations C(d)1, C(d)2, C(d)3, Cfix, and Cli2 are determined from the
number n of all variables, the number k of guessed variables, the degree D
of regularity for XL, and the size α of the resulting matrix of Linearize(1).
In the following, we will obtain these estimations.
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Time Complexity of (d)-1 Recall that the (d)-1 step performs Gaus-
sian elimination on PM[Ĩd, Td]. Since the complexity of the (d)-1 step is
max{|Ĩd|, |Td|}ω for each 2 ≤ d ≤ D, it follows from equation (4.3) that an
upper bound on the sum of the complexity estimation of the (d)-1 step for
2 ≤ d ≤ D is given by

D∑
d=2

max{|Ĩd|, |Td|}ω ≤

(
D∑

d=2

max{|Ĩd|, |Td|}

)ω

≤ (|TD|+ α)ω

≤ (2 · |TD|)ω = O
((

n−k+D
D

)ω)
, (4.5)

and thus we set C(d)1 as
(
n−k+D

D

)ω
.

Time Complexity of (d)-2 In the case of (d)-2, the matrix PM[Ĩd,
T(d−2);(d−1)] is sparse. Indeed, each row of PM[Ĩd, T(d−2);(d−1)] has at most
n − k + 1 nonzero elements. Furthermore, the degree of every element is
smaller than or equal to 2. By considering these facts, an upper bound on
the sum of the complexity of the (d)-2 step over Fq for 2 ≤ d ≤ D is

D∑
d=2

((
k+2
2

)
· (n− k) · |Ĩd|2

)
≤

(
k+2
2

)
· (n− k) · |Ĩ≤D|2

= O
(
k2 · (n− k) ·

(
n−k+D

D

)2)
, (4.6)

and thus C(d)2 is set to be k2 · (n− k) ·
(
n−k+D

D

)2
.

Time Complexity of (d)-3 Before estimating the time complexity of
(d)-3 with 2 ≤ d ≤ D, we show the following lemma:

Lemma 10. At the time of executing the (d)-3 step with 2 ≤ d ≤ D−1, the
degree of every element of PM[Ĩ(d+1);D, Td] is lower than or equal to D− d.

Proof. By the induction, we prove that, at the time of the (d)-3 step, the
degree of every element of PM[Ĩ(d+1);D, Td] and PM[Ĩ(d+1);D, Td−1] is lower
than or equal toD−d andD−d+1, respectively. In the case where d = D−1,
the above statement clearly holds. In the following, we show that, if the
statement holds when d = d′ with 3 ≤ d′ ≤ D − 1, then it also holds when
d = d′ − 1. Before executing the step (d′)-3, PM[Ĩ(d′+1);D, Td′−2] is a zero
matrix clearly. Then, the (d′)-3 step adds row vectors, which is obtained
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by multiplying a polynomial with the degree D − d′ to rows corresponding
to Ĩd′ , to rows corresponding to Ĩ(d′+1);D. Here, the degree of each entry of

PM[Ĩd′ , Td′−1] and PM[Ĩd′ , Td′−2] are at most 1 and 2, respectively. Hence,
through (d′)-3, the degree of each entry of PM[Ĩ(d′+1);D, Td′−2] becomes at

most D−d′+2 and that of PM[Ĩ(d′+1);D, Td′−1] remains at most D−d′+1,
Therefore, the statement holds in the case where d = d′ − 1, as desired. □

Suppose for the efficiency that the (d)-3 step only eliminates elements of
rows including no leading coefficients in PM[Ĩd′ , Td′ ] (d + 1 ≤ d′ ≤ D). In
this case, the number of the eliminated rows in (d)-3 is at most α from the
discussion in Subsection 4.1. Considering this together with Lemma 10, we
estimate the complexity of the (d)-3 step as

O
((

k+D−d
D−d

)
· k2 · α ·

(
n−k+d−1

d

)2)
.

Note that the (D)-3 step can be omitted since PM[Ĩ≤(D−1), TD] is a zero
matrix. Then, the sum of the complexity of the (d)-3 step for 2 ≤ d ≤ D−1
is estimated by

D−1∑
d=2

((
k+D−d
D−d

)
· k2 · α ·

(
n−k+d−1

d

)2)
≤ k2 · α ·

(
D−1∑
d=2

(
n−k+d−1

d

))
·

(
D−1∑
d=2

((
k+D−d

k

)
·
(
n−k+d−1
n−k−1

)))
≤ O

(
k2 · α ·

(
n−k+D

D

)
·
(
n+D
D

))
, (4.7)

and thus we set C(d)3 as k2 · α ·
(
n−k+D

D

)
·
(
n+D
D

)
.

Time Complexity of Fix The size of the resulting matrix of Linearize(1)
is approximately α×α due to the discussion in Subsection 4.1, and the degree
of every element in the matrix is lower than or equal to D from Lemma 10.
Therefore, the time complexity of Fix is estimated as that of substituting
k values to x1, . . . , xk in α2 polynomials with degree D in Fq[x1, . . . , xk]. If
we use a naive approach, then the complexity of evaluation of a polynomial
with degree d in n variables is estimated by

(
n+d
d

)
. Therefore, Cfix is given

by
Cfix = qk · α2 ·

(
k+D
D

)
, (4.8)

since the Fix step is iterated for any values of x1, . . . , xk.
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Time Complexity of Linearize(2) The Linearize(2) step performs
Gaussian elimination on an α×α matrix over Fq, and thus we estimate Cli2

by
Cli2 = qk · αω, (4.9)

considering qk times iterations.

Rough Estimations of Time Complexity

Here, we present more compact formula for the time complexity of PXL given
by (4.4). Comparing the estimations C(d)2 and C(d)3, we can easily confirm
that the value of C(d)3 is larger than that of C(d)2. Furthermore, comparing
the estimations C(d)1 and C(d)3, we experimentally confirmed that, for the
case where 10 ≤ n ≤ 100, m = n, 1.5n, 2n, and k, D, and α are the values
of minimizing the estimation (4.4), the value of C(d)3 is always much larger
than that of C(d)1 (e.g., C(d)1 and C(d)3 on the case of n = m = 100 with
q = 28 is approximately 2210 and 2259, respectively). These facts indicates
that the complexity of the Linearize(1) step is dominated by C(d)3 for the
practical cases as follows:

O
(
k2 · α ·

(
n−k+D

D

)
·
(
n+D
D

))
. (4.10)

By using this fact, the time complexity of PXL is roughly estimated by
C(d)3 + Cfix + Cli2, say

O
(
k2 · α ·

(
n−k+D

D

)
·
(
n+D
D

)
+ qk ·

(
α2 ·

(
k+D
D

)
+ αω

))
. (4.11)

4.3 Comparison

We compare the complexity of our PXL with those of h-XL and h-WXL.
We recall that the complexities of h-XL, h-WXL, and PXL are estimated
by the estimation (2.9), (2.10), and (4.11), respectively, and, in each of the
three approaches, the number k of guessed variables is chosen such that the
complexity becomes the smallest value. We will see below, PXL is more
efficient than h-XL and h-WXL especially in the case of n = m.

Table 1 compares the bit complexities of PXL, h-XL, and h-WXL on
the MQ system of m equations in n variable over F28 , respectively. Here,
n is set to be 20, 40, 60, and 80 and m is set to be equal to n and ⌊1.5n⌋.
For example, in the case where q = 28 and n = m = 80, the complexities
of h-XL, h-WXL, and PXL are approximately estimated as 2252, 2234, and
2220, respectively. As a result, in the case of m = n, Table 1 shows that PXL
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Table 1: Comparison of complexities approximated by power of 2 between
PXL, h-XL, and h-WXL on the MQ system with m = n (above) and
m = ⌊1.5n⌋ (bellow) over F28

n (m = n) 20 40 60 80

h-XL 275 2134 2194 2252

h-WXL 275 2129 2182 2234

PXL 262 2117 2169 2220

n (m ≈ 1.5n) 20 40 60 80

h-XL 247 279 2115 2146

h-WXL 249 278 2110 2137

PXL 248 286 2118 2154

has the less complexity than those of h-XL and h-WXL. On the other hand,
PXL is not efficient in highly overdetermined cases. This is because, in such
overdetermined cases, k is set to be a very small value for the efficiency. We
confirmed that such behavior of PXL can be seen over other finite fields.

Remark 11 (Spece Complexity). It is known that the space complexities

of h-XL and h-WXL are approximately estimated by O
((

n−k+D
D

)2)
and

O
((

n−k
2

)
·
(
n−k+D

D

))
, respectively. The memory space consumed by PXL is

upper-bounded by O
((

k+D
D

)
·
(
n−k+D

D

)2)
, since the degree of every element

of the Macaulay matrix is at most D through PXL from Lemma 10. These
estimations cannot be directly compared to each other, since the values of
the following two parameters depend on one’s choice of an algorithm: The
solving degree D and the number k of fixed values.

On the other hand, focusing on the sparsity/density of matrices, we
predict that PXL is not efficient compared with h-WXL in terms of the
space complexity: Through the elimination process of Macaulay matrices,
WXL can deal with a Macaulay matrix as a sparse matrix due to Wiede-
mann’s algorithm, whereas PXL holds some dense submatrices. Considering
this together with the time complexities for practical parameters (cf. Sub-
section 4.3), we conclude that the relationship between PXL and h-WXL
would be a trade-off between time and memory.

Remark 12 (Fix over Even Characteristic). In the binary field case, Bouil-
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laguet et al. [7] proposed a faster evaluation algorithm using Gray code. In
this algorithm, a polynomial with degree d in n variables is evaluated for all
values of n variables with O(2n · d) operations using O(nd) bits of memory
after an initialization phase of negligible complexity. In the case of F2r , by
regarding each polynomial in k variables over F2r as r polynomials in k · r
variables over F2 (i.e., if θ1, . . . , θr are basis of F2r over F2, for each variable xi

over F2r , we set r variables x
(i)
1 , . . . , x

(i)
r over F2 satisfying xi =

∑r
j=1 x

(i)
j θj),

we can apply this approach to PXL. Then, the time complexity of the Fix
step over F2r is given by O

(
qk · α2 · r ·D

)
, whereas the memory space con-

sumed by this step is estimated by O
(
α2 · r · kD

)
. This indicates that PXL

with Bouillaguet et al.’s algorithm will be better in terms of time complexity
but worse in terms of space complexity.

5 Conclusion

We presented a new variant of XL, which is a major approach for solving the
MQ problem. Our proposed polynomial XL (PXL) eliminates the linearized
monomials in polynomial rings to solve the system efficiently, and this paper
estimates its complexities.

Given a system of m multivariate quadratic equations in n variables,
the proposed algorithm first regards the given system as the system in
n − k variables xk+1, . . . , xn, whose coefficients belong to the polynomial
ring Fq[x1, . . . , xk]. We then generate a Macaulay matrix over Fq[x1, . . . , xk]
and partly perform Gaussian elimination. Finally, random values are substi-
tuted to the k variables, and the remaining part of the matrix is transformed
into the row echelon form. This construction reduces the amount of manip-
ulations for each guessed value compared to h-XL. This paper presents an
asymptotic estimation of the time complexity, which shows that the pro-
posed algorithm solves the system faster in the case of n ≈ m than both
h-XL and h-WXL. On the other hand, PXL is less efficient than h-WXL with
respect to the space complexity for the following two reasons: Macaulay ma-
trices become denser through PXL and the resulting matrix of Linearize(1)
has elements with degree higher than or equal to 2.

This paper only discusses solving multivariate quadratic systems. How-
ever, as in the plain XL, the proposed algorithm can be also generalized to
higher degree cases. Therefore, one considerable future work is to analyze
the behavior of PXL on higher degree systems. Furthermore, to implement
PXL efficiently is also an important problem. In our experiments given in
Appendix A below, we implemented PXL over Magma, but this can be more
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optimized by using an alternative programming language, e.g., C. Therefore,
to provide such an optimized code for PXL is a challenging task.
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A Experimental Results

Herein, we implemented the proposed algorithm in the Magma algebra sys-
tem (V2.24-82) [6], where this implementation is not optimized. In this
appendix, we mainly discuss the implementation of the Multiply and Lin-
earize(1) steps (in particular, the last four steps from Fix to Repeat can
be more optimized).

Figure 1 compares the execution time of theMultiply and Linearize(1)
steps of our implementation and the number of manipulations estimated
by (4.10) on the system with n = m over F24 . Here, the number k of fixed
variables is chosen so as to minimize the value of (4.11). As a result, Figure 1
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Fig. 1: Comparison between the estimation of complexity by (4.10) and the
execution time of the Multiply and Linearize(1) steps on an MQ system
with n = m over F24

shows that the execution time and our estimation (4.10) from n = 13 to
n = 19 have almost the same behavior, which indicates that the estimation
of (4.10) is reliable.

B Correctness of the XL algorithm

We shall prove the correctness of XL (Algorithm 3): For sufficiently large
D, XL definitely computes one root of the input system. To prove the
correctness, we first discuss when a Gröbner basis is outputted by Algorithm
2, which is used as a main sub-routine of XL (see Step (2) of Algorithm 3).

Theorem 13 ([28], Theorem 2.3.3). Let F = {f1, . . . , fm} ⊂ K[x] be a set
of ordered polynomials, and H a Gröbner basis of the ideal ⟨F ⟩ ⊂ K[x] =
K[x1, . . . , xn]. Let S be a finite subset of [x] · F such that for all h ∈ H,
there exist q1, . . . , qm ∈ K[x] with h =

∑m
i=1 qifi and supp(qi) · {fi} ⊂ S for

all 1 ≤ i ≤ m. Then, the output G of Algorithm 2 is a Gröbner basis of ⟨F ⟩.

Proof. Put H = {h1, . . . , hℓ} with hi ∈ K[x] for 1 ≤ i ≤ ℓ. By our assump-
tion, for each 1 ≤ i ≤ ℓ, there exist qij ∈ K[x] with 1 ≤ j ≤ m such that
hi =

∑m
j=1 qijfj and supp(qij) · {fj} ⊂ S for all 1 ≤ j ≤ m. Thus we have

ℓ∪
i=1

m∪
j=1

supp(qij) · {fj} =
ℓ∪

i=1

m∪
j=1

{t · fj : t ∈ supp(qij)} ⊂ S,
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and hence

hi =
m∑
j=1

∑
t∈supp(qij)

coeff(qij , t) · t · fj ∈
∑
g∈S

K · g,

where
∑

g∈S K · g denotes the set of all K-linear combinations of finite
elements in S. Regarding the Macaulay matrix of {hi} with respect to
T as a row vector in K#T , we have that it belongs to the linear space
generated by row vectors of Mac(S, T ). Thus, putting G = {g1, . . . , gℓ′},
we can write hi =

∑ℓ′

k=1 ai,kgk for some ai,k ∈ K. It follows from the
definition of a reduced row echelon form that LT(g) ̸= LT(g′) for g, g′ ∈ G
with g ̸= g′. This implies that for each 1 ≤ i ≤ ℓ, there exists k such
that LT(hi) = ai,kLM(gk). Therefore LM(H) ⊂ LM(G), by which we have
⟨LT(I)⟩ = ⟨LT(H)⟩ ⊂ ⟨LT(G)⟩. From the construction of G, we also have
⟨LT(G)⟩ ⊂ ⟨LT(I)⟩, and thus ⟨LT(I)⟩ = ⟨LT(G)⟩. □

Here, we define the Dubé’s degree bound of polynomials in a shift in-
putted for Algorithm 2; for positive integers n and d, the function Duben,d(j)
with 0 < j ≤ n− 1 is defined recursively as

Duben,d(n− 1) = 2d,

Duben,d(n− 2) = d2 + 2d,

Duben,d(j) = 2 +
(Duben,d(j+1)

2

)
+

n−1∑
i=j+3

(Duben,d(i)
i−j+1

)
.

Theorem 14 ([21], Section 5, Theorem 5 and cf. [14], Theorem 8.2). Let
F ⊂ K[x] be a finite set of polynomials, and put d := max{deg(f) : f ∈ F}.
Then, for every monomial order ≻, there exists the reduced Gröbner basis H
of ⟨F ⟩ with respect to ≻ such that every h ∈ H satisfies deg(h) ≤ Duben,d.

Corollary 15 ([21], Section 5, Corollary 2 and cf. [3], Corollary 5.4). Let
F = {f1, . . . , fm} ⊂ K[x] be a finite set of polynomials, and put d :=
max{deg(fi) : 1 ≤ i ≤ m}. Then, for every monomial order ≻, there
exists a Gröbner basis H of ⟨F ⟩ with respect to ≻ such that:

• For every h ∈ H, there exist q1, . . . , qm ∈ K[x] with h =
∑m

i=1 qifi,
and deg(qifi) ≤ Duben+1,d for all 1 ≤ i ≤ m.

Corollary 16. With the same notation as in Theorem 15, let S be a finite
subset of [x] · F such that

m∪
i=1

{t · fi : t ∈ supp(qi), deg(t · fi) ≤ Duben+1,d} ⊂ S.
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Then, the output G of Algorithm 2 is a Gröbner basis of ⟨F ⟩.
For example, it suffices to take S to be

S1 :=

m∪
i=1

{t · fi : t ∈ [x], deg(t) ≤ Duben+1,d − deg(fi)}.

Proof. Let h ∈ H, and q1, . . . , qm ∈ K[x] with h =
∑m

i=1 qifi, and deg(qifi) ≤
Duben+1,d for all 1 ≤ i ≤ m. By Theorem 13, it suffices to show that
supp(qi) · {fi} ⊂ S for all 1 ≤ i ≤ m. Let t · fi be an arbitrary element in
supp(qi) · {fi}, where t ∈ supp(qi). It follows from the choice of H that we
have deg(t · fi) ≤ deg(qi · fi) ≤ Duben+1,d, so that t · fi ∈ S as desired. □

Example 17. When input polynomials are all quadratic, say deg(fi) = 2
for all 1 ≤ i ≤ m, it suffices for computing a Gröbner basis by Algorithm 2
to take S to be

S1 = {t ∈ [x] : deg(t) ≤ D − 2} · F,

where we set D = Duben+1,2.

Proposition 18 (Correctness of the XL algorithm). If the ideal ⟨F ⟩ is
zero-dimensional, i.e., V (F ) is finite, then the XL algorithm (Algorithm 3)
outputs a root of the input system for sufficiently large D.

Proof. Put d := max{deg(f) : f ∈ F}, and chooseD so thatD ≥ Duben+1,d.
By Corollary 16, the Linearize step computes a Gröbner basis with re-
spect to an elimination monomial order such that all the terms containing
one variable (say xn) are eliminated last. Since ⟨F ⟩ is zero-dimensional, it
follows from [20, Lemma 2.3.2] that G contains a univarite polynomial in
K[xn]∖ {0}. □

28


