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Abstract. Adaptor signature is becoming an increasingly important
tool in solving the scalability and interoperability issues of blockchain
application. It has many useful properties, such as reducing the on-chain
communication cost, increasing the fungibility of transactions and cir-
cumventing the limitation of the blockchain’s scripting language.
In this paper, we propose the first generic construction of adaptor sig-
natures from Type-T canonical identification, which includes discrete-
logarithm-based, RSA-based and lattice-based constructions. Our generic
construction can be used as a general framework to combine with dif-
ferent privacy-preserving cryptosystems. We propose blind adaptor sig-
nature and linkable ring adaptor signature, which are useful in different
blockchain applications.

1 Introduction

Blockchains are decentralized platforms run by miners, where each transaction
on the blockchain can be seen as an application formed of some script(s). The
scripting language of a blockchain defines potential functionalities that can be
implemented on blockchain. Bitcoin, for example, consists of very few scripts,
which restricts its use mainly in coin transactions. Ethereum, on the other hand,
has a Turing-complete scripting language that enables users to run more ad-
vanced and complicated applications known as the smart contracts.

A user who wants to deploy and execute a transaction needs to pay a fee
to the miners. The fee is determined by the storage and computational costs
of running each script of the transaction. Thus, it is beneficial to handle some
operations off-chain to reduce the on-chain fee paid to the miners. In this manner,
Poelstra introduced the notion of scriptless scripts [16], which is later named as
adaptor signatures [3, 9].

Adaptor signatures can be seen as an extension over a digital signature. The
rough idea is that a “pre-signature” is firstly generated, but still an uncompleted
one yet. After being completed a witness of the statement embedded in the pre-
signature will be revealed. The verification of the completed adaptor signature
is done in the same way as the normal signature, for which the adapting trace
is hidden.

Atomic swap is a kind of technique that allows fair exchange of two differ-
ent cryptocurrencies on distinct blockchains. In other words, an atomic swap
protocol ensures either the coins are swapped or the balances are untouched.
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A well-known protocol for atomic swaps is the one described in [6] that lever-
ages the Hash Time Locked Contract (HTLC) to perform the swap. Adaptor
signatures can be used to support atomic swap, without using smart contract.

There are some papers that instantiate adaptor signatures based on Schnorr
and ECDSA digital signatures [3, 14]. However, their constructions are limited
to Schnorr and ECDSA signature schemes and therefore is not generic.

1.1 Our Contribution

In this paper, we give a generic construction of adaptor signature. The main
contribution of our generic adaptor signature is that it can be applied to var-
ious signature schemes used in different cryptocurrencies, making atomic swap
between different cryptocurrencies feasible. Our generic adaptor signature can
be applied to discrete-logarithm(DL)-based, RSA-based and lattice-based signa-
tures.

Technically, our generic adaptor signature is constructed from a new type of
identification scheme called Type-TA. It is derived from a three-move canonical
identification with some special properties. Roughly speaking, it requires (1) the
commitment algorithm to be (additive/multiplicative) homomorphic (in order
to combine the commitment with the statement); (2) the response algorithm is
homomorphic with respect to commitment randomness (in order to facilitate the
conversion to normal signature); (3) the verification algorithm is composed of
running the commitment algorithm on the response (in order to complete the se-
curity proof of witness extractability). The Schnorr identification, the RSA-based
GQ identification and the lattice-based identification in [8] are some examples
of Type-TA identification.

From the application point of view, different types of signature are used in
blockchain. For example, linkable ring signature is used in privacy-preserving
cryptocurrencies such as Monero [15], in order to hide the public key of the
signer. Blind ECDSA signature is recently proposed in [19] to provide anonymity
of the recipient address in Bitcoin transaction. In order to provide compatibility
with these two variants of signature schemes, we propose the notion of blind
adaptor signature and linkable ring adaptor signature and their security models.
We give the generic construction for blind adaptor signature and linkable ring
adaptor signature. We believe they can be important tools to increase atomicity
and privacy for cryptocurrency.

2 Related Work

2.1 Comparison with Lockable Signature

One work that is related to our work is lockable signature [18]. Similar to adaptor
signature, lockable signature allows one to compute a lock, which is the analogue
of the pre-signature. However, the difference between them is that in adaptor
signature, the pre-signature can be computed without knowing the witness of
the given relation, while in lockable signature, computing a lock requires the
signer’s secret key.
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2.2 Comparison with a Recent Work [7]

A very recent work by Erwig et al. [7] proposes “Two-Party Adaptor Signatures
From Identification Schemes”, which shares a very similar idea with ours. We
both provide a generic approach to transform three-move type signature schemes
to adaptor signature. There are two main differences:

– Our generic construction additionally includes an extra checking step during
the verification. It is useful for the lattice-based instantiation (especially for
those schemes following the “Fiat-Shamir with abort” paradigm, e.g., [8]).
On the other hand, [7] does not consider any lattice-based instantiation.

– We additionally provide a bridge between adaptor signature and other cryp-
tographic building blocks. Concretely, we propose adaptor blind signature
and linkable ring adaptor signature. They can be used in many applications,
such as increasing atomicity and privacy for cryptocurrency. [7] worked on
another notion called two-party signature.

3 Preliminaries

In this paper, we use λ as the security parameter, negl(λ) to represent a negligible
function with respect to λ and∆ to represent an appropriate space of randomness
defined by the algorithm.

3.1 Type-T Signature and Canonical Identification

Type-T signature is defined in [2], as shown in Algorithm 1.

– The Sign algorithm uses the algorithm A to generate a commitment R using
a randomness r (chosen from a randomness domain ∆r). Then, the message
and R are inputted to a function H to obtain a challenge c (within the
challenge space ∆c). Finally, the algorithm uses the function Z to generate
the signature using the secret key sk, r and c.

– The Verify algorithm allows the reconstruction of R′ from the public key
pk, z and c using the function V . The signature is validated by using H on
the message and R′.

Schnorr signature [17], Guillou-Quisquater signature [11], Katz-Wang signa-
ture [12] and EdDSA [5] are examples of Type-T signatures.

Type-T Canonical Identification. Canonical identification [1] is a three-move
public-key authentication protocol of a specific form. We first define Type-T
canonical identification in Algorithm 2, based on the definition of Type-T sig-
nature in [2]. We add the additional checking in line 17 of Algorithm 2, which
is useful for lattice-based construction. It is straightforward that after applying
the Fiat-Shamir transformation to Type-T canonical identification, we obtain a
Type-T signature.

We define the security of impersonation under key only attack for Type-T
canonical identification.
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Algorithm 1: Type-T Signature

1 Procedure Setup(λ):
2 return param;

3 Procedure Sign(sk,M):
4 r ← ∆r;
5 R = A(r);
6 c = H(M,R);
7 z = Z(sk, r, c);
8 return σ = (z, c);

9 Procedure KeyGen():
10 return (pk, sk);

11 Procedure Verify(pk, σ,M):
12 parse σ = (z, c);
13 R′ = V (pk, z, c);
14 if c 6= H(M,R′) then
15 return 0;

16 return 1;

Algorithm 2: Type-T Canonical Identification

1 Procedure Setup(λ):
2 return param;

3 Procedure KeyGen():
4 return (pk, sk);

5 Procedure Proof1(sk):
6 r ←s ∆r;
7 R = A(r);
8 return (R, r);

9 Procedure Ch(R):
10 return c;

11 Procedure Proof2(sk, r, c):
12 return z = Z(sk, r, c);

13 Procedure Verify(pk, z, c):
14 R′ = V (pk, c, z);
15 if c 6= Ch(R′) then
16 return 0;

17 auxiliary checking with R′, c, z;
18 return 1;

Definition 1. A Type-T canonical identification is secure against impersonation
under key only attack if there is no PPT adversary A such that Advimp

A (λ) is
non-negligible, where:

Advimp
A (λ) := Pr[Verify(pk, z∗, ci∗) = 1|param← Setup(λ),

(pk, sk)← KeyGen(), (ci∗ , z
∗)← ACH(·)(param, pk)].

For the i-th query CH(Ri), the oracle returns ci to A, and i∗ ∈ [1, qc], qc is the
number of query to CH.

3.2 Adaptor Signature

A relation R with a language LR := {Y |∃y : (Y, y) ∈ R} is said to be hard if
(i) a probabilistic polynomial time (PPT) generator LockGen(λ) that outputs
(Y, y) ∈ R, (ii) for every PPT algorithm A, given Y ∈ LR, the probability of A
outputting y is negligible.

According to [3], an adaptor signature
∏
R,Σ is defined with respect to a hard

relation R and a signature scheme Σ = (Setup,KeyGen,Sign,Verify).

Definition 2 (Adaptor Signature Scheme). An adaptor signature AS scheme∏
R,Σ consists of four algorithms (PreSign,PreVerify,Adapt,Ext) defined below.
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Algorithm 3: Experiment aSignForgeA,
∏
R,Σ

1 Procedure aSignForgeA,∏R,Σ (λ):

2 Q := ∅;
3 (pk, sk)← KeyGen(1λ);

4 M∗ ← AOS,OpS (pk) ;
5 (Y, y)← LockGen(λ);
6 σ̂ ← PreSign((pk, sk), Y,M∗);

7 σ∗ ← AOS,OpS (σ̂, Y );
8 return

((M∗ /∈ Q)∧Verify(pk, σ∗,M∗) = 1);

9 Procedure OS(M):
10 σ ← Sign(sk,M);
11 Q := Q∪ {M};
12 return σ;

13 Procedure OpS(M,Y ):
14 σ̂ ← PreSign((pk, sk), Y,M);
15 Q := Q∪ {M};
16 return σ̂;

– PreSign((pk, sk), Y,M): on input a key pair (pk, sk), a statement Y ∈ LR and
a message M ∈ {0, 1}∗, outputs a pre-signature σ̂.

– PreVerify(Y, pk, σ̂,M): on input a statement Y ∈ LR, a pre-signature σ̂, a
public key pk and a message M , outputs a bit b.

– Adapt((Y, y), pk, σ̂,M): on input a statement-witness pair (Y, y), a public key
pk, a pre-signature σ̂ and a message M , outputs a signature σ.

– Ext(Y, σ, σ̂): on input a statement Y ∈ LR, a signature σ and a pre-signature
σ̂, outputs a witness y such that (Y, y) ∈ R, or ⊥.

Definition 3 (Pre-signature Adaptability). An adaptor signature scheme∏
R,Σ satisfies pre-signature adaptability if for every message M in the message

space, every statement/witness pair (Y, y) ∈ R and for all pre-signature σ̂, the
following holds:

Pr

Verify(pk, σ,M) = 1

∣∣∣∣∣∣
(pk, sk)← KeyGen(1λ),
PreVerify(Y, pk, σ̂,M) = 1,
σ ← Adapt((Y, y), pk, σ̂,M).

 = 1.

Definition 4 (Unforgeability). An adaptor signature scheme
∏
R,Σ is aEUF–CMA

secure if for every PPT adversary A runing the experiment aSignForgeA,
∏
R,Σ

defined in Algorithm 3, Pr[aSignForgeA,
∏
R,Σ

(λ) = 1] ≤ negl(λ).

Definition 5 (Witness Extractability). An adaptor signature scheme
∏
R,Σ

is witness extractable if for every PPT adversary A running the experiment
aWitExtA,

∏
R,Σ

defined in Algorithm 4, Pr[aWitExtA,
∏
R,Σ

(λ) = 1] ≤ negl(λ).

4 Generic Adaptor Signature

In this section, we give a generic construction of adaptor signature, which is built
from a new security notion called Type-TA canonical identification.
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Algorithm 4: Experiment aWitExtA,
∏
R,Σ

1 Procedure aWitExtA,∏R,Σ (λ):

2 Q := ∅;
3 (pk, sk)← KeyGen(1λ);

4 (M∗, Y )← AOS,OpS (pk) /* OS, OpS are the same as Algorithm 3 */

5 σ̂ ← PreSign((pk, sk), Y );

6 σ∗ ← AOS,OpS (σ̂);
7 y∗ ← Ext(Y, σ∗, σ̂);
8 return ((M∗ /∈ Q) ∧ (Y, y∗) /∈ R ∧ Verify(pk, σ∗,M∗) = 1);

4.1 Building Block: Type-TA Canonical Identification

We define a new security notion called Type-TA canonical identification, which
is a special case of a Type-T canonical identification.

Definition 6. A Type-TA canonical identification is a Type-T canonical identi-
fication with some additional properties:

1. For all y ∈ ∆r, (A(y), y) belongs to some hard relation R.
2. For all r1, r2 ∈ ∆r,

A(r1)⊕R A(r2) = A(r1 ⊕ r2), A(r−11 ) = (A(r1))−1.

where ⊕ is a group operation in ∆r, ⊕R is a group operation in the domain
of R. The inverse functions are defined in the corresponding group operations
(⊕ and ⊕R).

3. For all r1, r2 ∈ ∆r, c ∈ ∆c and secret key sk,

Z(sk, r1, c)⊕ r2 = Z(sk, r1 ⊕ r2, c).

It implies that ⊕ is also a group operation in the domain of z.
4. For all z, c and public key pk, there is a PPT algorithm V ′ such that:

V (pk, z, c) = A(z)⊕R V ′(pk, c).

Looking ahead, the first property is to define the hard relation for an adaptor
signature. The second property is to combine the commitment and the statement
A(y) and form a new commitment. The third property is for the correctness of the
Adapt algorithm. The fourth property is for the proof of witness extractability.

Schnorr Identification [17]. In Schnorr identification, A(r) = gr is a hard
relation if the DL assumption holds. Consider ⊕R as a multiplication in a cyclic
group and ⊕ as a modular addition, we have A(r1) ·A(r2) := gr1 ·gr2 = gr1+r2 =
A(r1 + r2) and A(−r) = g−r = A(r)−1. Also Z(sk, r1, c) + r2 := r1 + c · sk+ r2 =
(r1+r2)+c·sk = Z(sk, r1+r2, c). Finally, V (pk, z, c) := gz ·pkc = A(z)·V ′(pk, c).
Hence, Schnorr identification is a Type-TA identification.
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GQ Identification [11]. In GQ identification, A(r) = rv is a hard relation if
the standard RSA assumption holds. Consider both ⊕R and ⊕ as multiplication
in a cyclic group. Then we have A(r1) · A(r2) := rv1 · rv2 = (r1 · r2)v = A(r1 · r2)
and A(r−1) = r−v = A(r)−1. Also Z(sk, r1, c) · r2 := r1sk

c · r2 = (r1 · r2) · skc =
Z(sk, r1 · r2, c). Finally, V (pk, z, c) := zv · pkc = A(z) · V ′(pk, c). Hence, GQ
identification is a Type-TA identification.

Lattice-based Identification [8]. In lattice-based identification [8], A(y) =
Ay is a hard relation where |y | ≤ βSIS, if the Module-SIS assumption holds.
Consider both ⊕R and ⊕ as modular addition. Next we have A(y1) +A(y2) :=
Ay1 + Ay2 = A(y1 + y2) = A(y1 + y2) where |y1 + y2| ≤ βSIS and A(−y) =
A(−y) = −Ay = −A(y). Also Z(sk,y1, c) + y2 := y1 + c · sk + y2 = (y1 +
y2) + c · sk = Z(sk,y1 + y2, c) where |y1 + y2| ≤ βSIS. Finally, V (pk, z , c) :=
Az−c·pk = A(z )+V ′(pk, c). Although we add an additional condition to bound
the |y | ≤ βSIS/2, if we see it as a inherent requirement of lattice cryptography,
lattice-based identification in [8] is also a Type-TA identification.

Algorithm 5: Generic adaptor signature (AS) from a Type-TA identi-
fication scheme ID for the language L := {Y : ∃y ∈ ∆r : Y = A(y)}.

1 Procedure Setup(λ):
2 define hash H : {0, 1}∗ → ∆c;
3 paramI ← ID.Setup(λ);
4 return (paramI , H);

5 Procedure KeyGen():
6 return ID.KeyGen();

7 Procedure PreSign((pk, sk), Y,M):
8 r ← ∆r;
9 R = A(r)⊕R Y ;

10 c = H(M,R);
11 ẑ = Z(sk, r, c);
12 return σ̂ = (ẑ, c);

13 Procedure PreVerify(Y, pk, σ̂,M):
14 parse σ̂ = (ẑ, c);
15 R′ = V (pk, ẑ, c)⊕R Y ;
16 if c 6= H(M,R′) then
17 return 0;

18 auxiliary checking with R′, c, z;
19 return 1;

20 Procedure Adapt((Y, y), pk, σ̂,M):
21 parse σ̂ = (ẑ, c);
22 z = ẑ ⊕ y;
23 return σ = (z, c);

24 Procedure Ext(Y, σ̂, σ):
25 parse σ̂ = (ẑ, ĉ) and σ = (z, c);
26 if ĉ = c then
27 return y = (ẑ)−1 ⊕ z;
28 return ⊥;

4.2 Our Construction

Then we give the generic adaptor signature in Algorithm 5.

Security Proof. The correctness of the generic adaptor signature is straight-
forward.
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Theorem 1. Our generic adaptor signature has pre-signature adaptability.

Proof. Next we show that it has pre-signature adaptability. For a pre-signature
σ̂ = (ẑ, c) which passes the PreVerify algorithm, we have R = V (pk, ẑ, c) ⊕R Y
and c = H(M,R). By the Adapt algorithm, we have σ = (z = ẑ ⊕ y, c). We
further have

c = H(M,R)

= H(M,V (pk, ẑ, c)⊕R Y )

= H(M,A(ẑ)⊕R V ′(pk, c)⊕R Y )

= H(M,A(z 	 y)⊕R V ′(pk, c)⊕R Y )

= H(M,A(z)	R A(y)⊕R V ′(pk, c)⊕R Y )

= H(M,A(z)	R Y ⊕R V ′(pk, c)⊕R Y )

= H(M,A(z)⊕R V ′(pk, c))
= H(M,V (pk, z, c))

(1)

It follows that σ is valid, i.e., Verify(pk, σ,M) = 1.

Theorem 2. Our generic adaptor signature is aEUF-CMA secure in the ran-
dom oracle model if the identification scheme ID is secure against impersonation
under key only attack.

Proof. Suppose that there is a PPT adversary A breaking the aEUF-CMA se-
curity of our generic adaptor signature. We build an algorithm B to break the
security of ID. First, the challenger C of ID gives param and pk to B. B forwards
param and pk to A.

For all signing oracle queries from A on a message M , B picks a random z
and c from their corresponding domain and computes R = V (pk, z, c). B sets
c = H(M,R) in the random oracle H. B returns (z, c) to A.

For the pre-signing oracle queries from A with input (M,Y ), B picks a ran-
dom ẑ and c from their corresponding domain and computes R = V (pk, ẑ, c)⊕R
Y . B sets c = H(M,R) in the random oracle H. B returns (ẑ, c) to A.

For all random oracle queries H(M,R), B queries the oracle CH(R) from C
and obtains c. B returns c to A.

If A outputs a valid forgery (z∗, c∗) on a message M∗, we have R∗ =
V (pk, z∗, c∗), c∗ = H(M∗, R∗). Then B returns (c∗, z∗) as the attack to C. ut

Theorem 3. Our generic adaptor signature is witness extractable.

Proof. Suppose that there is a PPT adversaryA breaking the witness extractabil-
ity of our generic adaptor signature. All oracle queries can be simulated by using
the secret key.

In the challenge phase, A is given a pre-signature σ̂ = (ẑ, c) for a message M∗

and a statement Y , where ẑ = Z(sk, r, c) and c = H(M∗, R). Then A outputs a
full signature σ∗ = (z∗, c∗), where R∗ = V (pk, z∗, c∗). If A wins, it implies that
Ext(Y, σ∗, σ̂) did not output ⊥. Hence c = c∗. By the collision resistant property
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of H, then R∗ = R. It implies V (pk, z∗, c∗) = A(r)⊕R Y . By the Ext algorithm,
we can compute y = (ẑ)−1 ⊕ z∗. Hence we have:

V (pk, ẑ ⊕ y, c∗) = A(r)⊕R Y = V (pk, ẑ, c∗)⊕R Y.

Also by the property 2 and 4 of the Type-TA identification, we have:

V (pk, ẑ ⊕ y, c∗) = A(ẑ)⊕R A(y)⊕R V ′(pk, c∗) = V (pk, ẑ, c∗)⊕R A(y).

Hence we can extract y such that A(y) = Y . ut

4.3 Discussion on ECDSA Adaptor Signature

ECDSA is the most commonly used signature scheme in cryptocurrency. ECDSA
does not fall into the category of Type-TA signature and hence cannot be used
with our generic construction. In particular, the inverse computation in ECDSA
makes it difficult to compute an adaptor signature. The first provably secure
ECDSA adaptor signature is given in [14]. Nevertheless, the language L := {Y :
∃y : Y = gy} used in the ECDSA adaptor signature is the same as the language
used in our Schnorr-based instantiation.

5 Blind Adaptor Signature

In this section, we propose the notion of blind adaptor signature. In a blind sig-
nature scheme, a user can obtain a signature from a signer on a message M such
that: (1) the signer cannot recognize the signature later (blindness, which implies
that the message M is unknown to the signer) and (2) the user can compute a
single signature per interaction with the signer (one-more unforgeability). Blind
signature is used to provide private fiat-to-cryptocurrency swap in [19].

5.1 Security Notions

A blind signature scheme BS consists of the following algorithms:

– Setup(λ): It takes the security parameter 1λ and returns public parameters
param.

– KeyGen(param): It takes the public parameters param and returns a se-
cret/public key pair (sk, pk).

– Sign(sk),User(pk,M): an interactive protocol is run between the signer with
private input a secret key sk and the user with private input a public key
pk and a message M . The signer outputs b = 1 if the interaction completes
successfully and b = 0 otherwise, while the user outputs a signature σ if it
ends correctly, and ⊥ otherwise.

– Verify(pk,M, σ): it takes a public key pk, a message M , and a signature σ,
and returns 1 if σ is valid on M under pk and returns 0 otherwise.
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Definition 7 (Blind Adaptor Signature Scheme). A blind adaptor signa-
ture (BAS) scheme

∏
R,BS with respect to a hard relation R with a language

LR := {Y |∃y : (Y, y) ∈ R} and a blind signature scheme BS consists of four
algorithms (PreSign,PreVerify,Adapt,Ext) defined below.

– PreSign(sk, Y ),User(pk,M, Y ) an interactive protocol is run between the signer
with private input a secret key sk and the user with private input a public key
pk and a message M . A statement Y ∈ LR is the public input. The signer
outputs b = 1 if the interaction completes successfully and b = 0 otherwise,
while the user outputs a pre-signature σ̂ if it ends correctly, and ⊥ otherwise.

– PreVerify, Adapt and Ext are the same as the adaptor signature.

5.2 Security Models

For the security models of BAS, we follow the security requirements of blind
signature in [10] to define one-more unforgeability and blindness. We also define
pre-signature adaptability and witness extractability as the adaptor signature.

In other to define the security model for BAS, suppose that there are Ns (resp.
Np) interactions by the signer in the Sign(sk) (resp. PreSign(sk, Y )) algorithm.
We use (m′, st1) ← Sign1(sk,m) (resp. (m′, st1) ← PreSign1(sk, Y,m)) to repre-
sent the first interaction, where m is the message received by the signer, m′ is the
message output and st1 is the internal state. We use (m′, sti)← Signi(sti−1,m)
(resp. (m′, st1) ← PreSigni(sti−1,m)) to represent the i-th interaction, for i ∈
[2, Ns − 1] (resp. i ∈ [2, Np − 1] ). We use (m′, b) ← SignNs(stNs−1,m) (resp.
(m′, b) ← PreSignNp(stNp−1,m)) to represent the last interaction, where b is a
bit.

One-more Unforgeability. The unforgeability model is defined to capture the
attack that the adversary returns n distinct message-signature pairs when he is
only given k2 < n pairs during the oracle queries. It is commonly known as the
one-more unforgeability in blind signature [10].

Definition 8 (One-more Unforgeability). A BAS scheme ΞR,Σ is omaEUF–CMA
secure if for every PPT adversary A running the experiment omaSignForgeA,ΞR,Σ
defined in Algorithm 16, Pr[omaSignForgeA,ΞR,Σ (λ) = 1] ≤ negl(λ).

Blindness. The blindness security model of BAS is the same as that of blind
signature in [10], except that the algorithm User takes an extra input Y . It is
because BAS mainly modifies the algorithms in the signer side.
Pre-signature Adaptability. The pre-signature adaptability of BAS is the
same as that of an adaptor signature. It is because the PreSign algorithm is not
involved in the model.
Witness extractability. The witness extractability of BAS is different from
that of the adaptor signature. It is because the message signed by the oracles OS

and OpS is unknown to the challenger. Hence, we have to change the definition
of the oracles to avoid giving a full signature to the adversary.
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Definition 9 (Witness Extractability). A BAS scheme
∏
R,Σ is witness ex-

tractable if for every PPT adversary A running the experiment baWitExtA,
∏
R,Σ

defined in Algorithm 17, Pr[baWitExtA,
∏
R,Σ

(λ) = 1] ≤ negl(λ).

Algorithm 16 and Algorithm 17 can be found in Appendix C.

5.3 Clause Blind Schnorr Adaptor Signature

The clause blind Schnorr signature [10] can be viewed as the Schnorr identifica-
tion with a crafted challenge, such that the message to be signed is hidden from
the signer and the signer eventually signs one out of the two commitments. It is
secure against the recent attack on the ROS problem [4]. Following our generic
construction of adaptor signature in the last section, the clause blind Schnorr
adaptor signature can be constructed as in Algorithm 11 in appendix A.

The clause blind Schnorr adaptor signature is omaEUF-CMA secure, has
perfect blindness and pre-signature adaptability.

5.4 Security Proofs of Clause Blind Schnorr Adaptor Signature

Theorem 4. The clause blind Schnorr adaptor signature is omaEUF-CMA se-
cure if the clause blind Schnorr signature is omEUF-CMA secure.

Proof. Suppose that there is a PPT adversary A breaking the aEUF-CMA secu-
rity of the clause blind Schnorr adaptor signature. We build an algorithm B to
break the security of the clause blind Schnorr signature. First, the challenger C
of the clause blind Schnorr signature gives param and pk to B. B forwards param
and pk to A.

For all signing oracle queries from A on a message M , B forwards them to
the signing oracle of C to get the answer.

For the pre-signing oracle queries from A with input Y and session ID k, B
asks the signing oracle of C and obtains (R0, R1). B returns R̂0 = R0 · Y and
R̂1 = R1 · Y to A. After that when A sends ĉ0, ĉ1 to B with the session ID k, B
forwards the query to C and obtains (z, b). B answers A by (z, b).

After running n− 1 queries to the signing oracle or the pre-signing oracle, A
outputs n distinct message-signature pairs (Mj , σj
= (zj , cj)) for j ∈ [1, n] such that Rj = gzj · pkcj , cj = H(Mj , Rj). Then B
forwards them as the attack to C.

Theorem 5. The clause blind Schnorr adaptor signature has prefect blindness.

Proof. (Sketch) Observe that the blinding step of the user during the PreSign al-
gorithm is the same as the Sign algorithm in the original blind signature scheme.
Hence, the clause blind Schnorr adaptor signature has the same level of blindness
as the clause blind Schnorr signature, i.e., prefect blindness.

Theorem 6. The clause blind Schnorr adaptor signature has pre-signature adapt-
ability.



12 Xianrui Qin, Handong Cui, and Tsz Hon Yuen

Proof. If a pre-signature σ̂ = (ẑ, c) passes PreVerify, we have:

R′ = gẑY pkc = gẑ+ypkc, c = H(M,R′).

After Adapt, we have the full signature σ = (z = ẑ+y, c). Then σ can pass Verify
since gzpkc = gẑ+ypkc = R′.

Theorem 7. The clause blind Schnorr adaptor signature has witness extractabil-
ity.

Proof. Suppose that there is a PPT adversaryA breaking the witness extractabil-
ity of our clause blind Schnorr adaptor signature. All oracle queries can be sim-
ulated by using the secret key.

In the challenge phase, A is given a pre-signature σ̂ = (ẑ, c) for a message
M∗ and a statement Y , where ẑ = r − ĉ · sk + α and c = H(M∗, R′) + β. Then

A outputs a full signature σ∗ = (z∗, c∗), where R∗ = gz
∗
pkc

∗
. If A wins, then

Ext(Y, σ, σ̂) did not output ⊥. It implies c∗ = c − β. By the collision resistant

property of H, then R∗ = R′. It implies gz
∗
pkc

∗
= gr ·Y · gα · pk−β . By the Ext

function, B computes y = z∗ − ẑ. Hence we have:

gz
∗
pkc

∗
= gy+ẑpkc = gy+r−ĉ·sk+αpkĉ−β = gr · gy · gα · pk−β .

Hence B can extract y such that A(y) = Y .

5.5 Discussion on Blind ECDSA Signature

ECDSA is commonly used in cryptocurrencies such as Bitcoin and Ethereum. Re-
cently, blind ECDSA signature is proposed in [19] to provide recipient anonymity.
However, there is no discussion about one-more unforgeability in [19]. It is not
clear if any additional model is needed (e.g., the generic group model). Further-
more, the security proof for unforgeability in [19] is not rigorous: it is not clear
how the signing oracle can be simulated without knowing the secret key. There-
fore, we left the construction of blind ECDSA (adaptor) signature secure against
one-more unforgeability as an interesting open problem.

6 Linkable Ring Adaptor Signature

In a linkable ring signature scheme [13], a signer has anonymity by hiding himself
among a set of verification keys. However, if he signed twice, the two signatures
are linked. It is useful in privacy-preserving cryptocurrency (e.g., Monero) to
provide sender anonymity, while detecting double spending is feasible.

We will show that our generic adaptor signature can be applied to the linkable
ring signature. In particular, we introduce the notion of Linkable Ring Adaptor
Signature and define the corresponding security model. We will give a concrete
construction based on the recent RingCT3.0 protocol [20].
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6.1 Security Notions

A linkable ring adaptor signature (LRAS) scheme with respect to a hard relation
R with a language LR := {Y |∃y : (Y, y) ∈ R} and a linkable ring signature
scheme Σ = (Setup,KGen,Sign,Verify, Link) consists of four algorithms ΞR,Σ =
(PreSign, PreVerify, Adapt, Ext) defined as:

– PreSign(sk,m, ~vk, Y ) : On input a secret key sk, a message m, a set of ver-

ification keys ~vk = (vk1, . . . , vkn) and a statement Y ∈ LR, outputs a pre-
signature σ̂.

– PreVerify(m, ~vk, Y, σ̂) : On input a message m ∈ {0, 1}∗, a set of verification

keys ~vk = (vk1, . . . , vkn), a statement Y ∈ LR and a pre-signature σ̂, outputs
1 for valid pre-signature or 0 otherwise.

– Adapt((Y, y), ~vk, σ̂,m) : On input (Y, y) ∈ R, a set of verification keys ~vk, a
pre-signature σ̂ and a message m, outputs a signature σ.

– Ext(Y, σ̂, σ) : on input a statement Y ∈ LR, a signature σ and a pre-signature
σ̂, outputs a witness y such that (Y, y) ∈ R, or ⊥.

Algorithm 6: Experiment aSignForgeA,ΞR,Σ

1 Procedure aSignForgeA,ΞR,Σ (λ):

2 Q := ∅ , F := ∅, T := ∅;
3 (vki, ski)← KeyGen(1λ), for i∈[1, N ];

4 ~vk = {vk1, vk2, ..., vkN};
5 (m∗, vki∗ , v̂k)← AOS(·),OpS(·,·),OCorrupt(·)(~vk), where vki∗ ∈ v̂k ⊆ ~vk ;
6 (Y, y)← LockGen(λ);

7 σ̂ ← PreSign(ski∗ ,m
∗, v̂k,Y);

8 (ṽk, σ∗)← AOS(·),OpS(·,·),OCorrupt(·)(σ̂,Y);

9 return ((ṽk ⊆ ~vk\F) ∧ ((?,m∗, ṽk) /∈ Q) ∧ Verify(m∗, ṽk, σ∗) = 1);

10 Procedure OCorrupt(j):
11 F := F ∪ {vkj};
12 return skj ;

13 Procedure OS(m, i, ~vk):

14 σ ← Sign(ski,m, ~vk) /* Require that vki ∈ ~vk */

15 Q := Q∪ {i,m, ~vk} ;
16 return σ;

17 Procedure OpS(m, i, ~vk, Y ):

18 σ̂ ← PreSign(ski,m, ~vk, Y ) /* Require that vki ∈ ~vk and Y ∈ LR
*/

19 Q := Q∪ {i,m, ~vk} ;
20 return σ̂;



14 Xianrui Qin, Handong Cui, and Tsz Hon Yuen

Algorithm 7: Experiment aAnonA,ΞR,Σ

1 Procedure aAnonA,ΞR,Σ (λ):
2 Q := ∅;
3 (vki, ski)← KeyGen(1λ), for i∈[1, N ];
4 vk = {vk1, vk2, ..., vkN};
5 (m∗, i0, i1, ṽk, Y )← AOS(·),OpS(·,·)(vk), where vki0 , vki1 ∈ ṽk ∪ vk

/* OS, OpS are the same as Algorithm 6 */

6 b
$←− {0, 1};

7 σ̂ ← PreSign(skib ,m
∗, ṽk, Y );

8 b′ ← AOS,OpS (σ̂, Y );
9 if (b = b′ ∧ {i0, ?, ?} /∈ Q ∧ {i1, ?, ?} /∈ Q) then

10 return 1;

11 return 0;

6.2 Security Models

The security models for LRAScombines the security requirements from both
linkable ring signatures (unforgeability, linkable anonymity, non-slanderability)
and adaptor signatures (unforgeability, pre-signature adaptability, witness ex-
tractability). They are formally given in the following definitions.

Definition 10 (aEUF–CMA security). A LRAS scheme ΞR,Σ is aEUF–CMA
secure if for every PPT adversary A runing the experiment aSignForgeA,ΞR,Σ
defined in Algorithm 6, Pr[aSignForgeA,ΞR,Σ (λ) = 1] ≤ negl(λ).

Definition 11 (Pre-signature anonymity). A LRAS scheme ΞR,Σ achieves
linkable anonymity if for any PPT adversary A running the experiment aAnonA,ΞR,Σ

defined in Algorithm 7,
∣∣∣Pr[aAnonA,ΞR,Σ (λ) = 1]− 1

2

∣∣∣ ≤negl(λ).

Definition 12 (Linkability). A LRAS scheme ΞR,Σ satisfies pre-signature link-
ability w.r.t. insider corruption if for any PPT adversary A running the experi-

ment aLinkA,ΞR,Σ defined in Algorithm 8,
∣∣∣Pr[aLinkA,ΞR,Σ (λ) = 1]− 1

2

∣∣∣ ≤negl(λ).

Definition 13 (Non-Slanderability). A LRAS scheme ΞR,Σ satisfies non-
slanderability if for any PPT adversary A running the experiment aSlanA,ΞR,Σ

defined in Algorithm 9,
∣∣∣Pr[aNSlanA,ΞR,Σ (λ) = 1]− 1

2

∣∣∣ ≤negl(λ).
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Algorithm 8: Experiment aLinkA,ΞR,Σ

1 Procedure aLinkA,ΞR,Σ (λ):
2 Q := ∅, F := ∅;
3 (vki, ski)← KeyGen(1λ), for i∈[1, N ];
4 vk = {vk1, vk2, ..., vkN};
5 (mi, ṽki, σi)i=1,2 ← AOS,OpS,OCorrupt (vk) /* OS, OpS, OCorrupt are the same

as Algorithm 6 */

6 b1 := Verify(mi, ṽki, σi)i=1,2;

7 b2 := Link((m1, ṽk1, σ1), (m2, ṽk2, σ2));

8 b3 := {?,mi, ṽki}i=1,2 /∈ Q;

9 b4 :=

∣∣∣∣((ṽk1 ∪ ṽk2) ∩ F) ∪ ((ṽk1 ∪ ṽk2)\vk)

∣∣∣∣;
10 return(b1 = 1 ∧ b2 = 0 ∧ b3 = 1 ∧ b4 ≤ 1);

Algorithm 9: Experiment aNSlanA,ΞR,Σ

1 Procedure aNSlanA,ΞR,Σ (λ):
2 Q = ∅, F = ∅;
3 (vki, ski)← KeyGen(1λ), for i∈[1, N ] ;
4 vk = {vk1, vk2, ..., vkN};
5 (m, ṽk, σ)← AOS,OpS,OCorrupt(vk) /* OS, OpS, OCorrupt are the same

as Algorithm 6 */

6 b1 := Verify(m, ṽk, σ);
7 b2 := {?, ?, σ} /∈ Q;

8 b3 := Link((m, ṽk, σ), (m̂, v̂k, σ̂)) = 1,∃{m̂, v̂k, σ̂} ∈ Q;

9 b4 := (vk ∩ v̂k ∩ (ṽk\F)) 6= ∅;
10 return (b1 = 1 ∧ b2 = 1 ∧ b3 = 1 ∧ b4 = 1);

Definition 14 (Pre-signature adaptability). A LRAS scheme ΞR,Σ satis-
fies pre-signature adaptability if for any n ∈ N, any message m ∈ {0, 1}∗, any

statement/witness pair (T, t) ∈ R, any key pair (vk, sk)
$←− KeyGen(1λ), any set

of verification keys vk = {vk1, ..., vkN} and any pre-signature σ̂ ← {0, 1}∗ with
PreVerify(m, vk, T, σ̂) = 1, we have Pr[Verify(m, vk,Adapt((T, t), vk, σ̂,M)) =
1] = 1.

Definition 15 (Witness extractability). A linkable ring adaptor signature
scheme ΞR,Σ is witness extractable if for every PPT adversary A running the
experiment aWitExtA,ΞR,Σ defined in Algorithm 10, Pr[aWitExtA,ΞR,Σ (λ) = 1] ≤
negl(λ).
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Algorithm 10: Experiment aWitExtA,ΞR,Σ

1 Procedure aWitExtA,ΞR,Σ (λ):
2 Q = ∅;
3 (vki, ski)← KeyGen(1λ), for i∈[1, N ] ;
4 vk = {vk1, vk2, ..., vkN};
5 (m∗, i∗, Y ∗, ṽk)← AOS,OpS(vk) /* OS, OpS are the same as

Algorithm 6 */

6 σ̂ ← PreSign(ski∗ ,m
∗, ṽk, Y ∗);

7 σ ← AOS,OpS(σ̂);
8 t′ := Ext(Y ∗, σ, σ̂);

9 return (m∗ /∈ Q ∧ (Y ∗, y′) /∈ R ∧ Verify(m∗, ṽk, σ) = 1);

6.3 Generic Construction of LRAS

We first give a definition of Type-T Linkable Ring Canonical Identification in Al-
gorithm 12. Then Type-TA Linkable Ring Canonical Identification can be defined
in the same way as the previous section.

Then, we can build a generic construction of LRAS in Algorithm 15. The
security of the generic construction of LRAS can be reduced to the underlying
Type-TA linkable ring identification scheme or the generic adaptor signature.
The security proofs are almost the same as the proofs of the generic adaptor
signature, and hence they are omitted.

Observe that the linkable ring signature schemes in RingCT [15] and RingCT3.0
[20] are both Type-TA linkable ring canonical identification. Hence we can con-
struct a concrete linkable ring adaptor signature similarly. Details are given in
the Appendix B.

7 Conclusion

Adaptor signatures are a novel cryptographic primitive with important appli-
cations for cryptocurrencies. In this paper, we propose the first generic con-
struction of adaptor signature. It can be combined with a number of different
cryptographic protocols, such as blind adaptor signature and linkable ring adap-
tor signature. An interesting open question is that whether we can give a more
generalized version of adaptor signature that can include non-Type-T signatures
such as ECDSA. We leave it as the future work.
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A Details of Clause Blind Schnorr Signature

Algorithm 11: Clause Blind Schnorr adaptor signature for the lan-
guage L := {Y |∃y : Y = gy}.

1 Procedure Setup(λ):
2 return param = (G, g);

3 Procedure KeyGen(param):

4 sk
$←− Zp, pk = gsk;

5 return (sk, pk);

6 Procedure PreSign(sk, Y )↔
User(pk,M, Y ):

7 PreSign: For i ∈ [0, 1], ri
$←− Zp,

Ri = gri · Y , send R0, R1 to user;

8 User: For i ∈ [0, 1], αi, βi
$←− ∆r,

R′i = Ri · gαi · pk−βi ,
ci = H(M,R′i), ĉi = ci + βi, send
ĉ0, ĉ1 to signer;

9 PreSign: Pick a bit b
$←− {0, 1},

send z = rb − ĉb · sk and b to user;

10 User: If Rb 6= gz · Y · pkĉb , return
⊥, else return σ̂ = (ẑ = z + αb, cb);

11 Procedure PreVerify(Y, pk, σ̂,M):
12 parse σ̂ = (ẑ, c);

13 R′ = gẑ · Y · pkc;
14 if c 6= H(M,R′) then
15 return 0;

16 return 1;

17 Procedure Adapt((Y, y), pk, σ̂,M):
18 parse σ̂ = (ẑ, c);
19 z = ẑ + y;
20 return σ = (z, c);

21 Procedure Ext(Y, σ̂, σ):
22 parse σ̂ = (ẑ, ĉ) and σ = (z, c);
23 if ĉ = c then
24 return y = z − ẑ;
25 return ⊥;

26 Procedure Verify(pk,M, σ):
27 parse σ = (z, c);
28 R′ = gz · pkc;
29 if c 6= H(M,R′) then
30 return 0;

31 return 1;

B Details of Linkable Ring Adaptor Signatures

We give the linkable ring adaptor signature in Algorithm 13 and 14. It is based
on the ring signature in [20]. The Verify protocol is the same as that in [20],
which is very similar to the PreVerify and hence it is omitted. Note that ~yn =
(1, y, y2, . . . , yn−1) for some integer y.
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Security.

Lemma 1 (aEUF-CMA security). Assuming that DL assumption holds and
LR is a hard relation, the linkable ring adaptor signature scheme ΞR,Σ is aEUF-
CMA secure in the random oracle model.

Proof. Let B be a PPT adversary who wins the aEUF-CMA security game with
non-negligible probability. We will build an adversary A that breaks the DL as-
sumption or the hardness of LR. Assume A wants to solve DL w.r.t. (g, ga).
Oracle simulation. For the KeyGen query, A picks some random ski and re-
turns pki = gski . Except for the i∗th query, the A returns ga. For the Corrupt
oracle, the A declares failure and exits if secret key of pki∗ is requested. For the
PreSign oracle, if the queried key is not the i∗th one, A runs honestly as the
PreSign algorithm. Otherwise, A generates the pre-signature for pki∗ as follows:
everything is the same as the PreSign algorithm, except the following: the A
chooses zα, z′sk and x at random and let S1 = hzα−αx(gz

′
sk/pkxi∗)T . Then A com-

putes y,z,w as that in the PreSign algorithm and finally programs the random
oracle such that x = Ĥ(4||y||z||w||T1||T2||m). If this input of Ĥ is queried before,
A aborts. Otherwise, the A returns σ̂. For the Sign oracle, if the w in the input
is NULL, the A chooses zα, z′sk and x at random and let S1 = hzα−αx(gz

′
sk/pkxi∗).

Then A computes y, z, w as the PreSign algorithm and finally programs the ran-
dom oracle such that x = Ĥ(4||y||z||w||T1||T2||m). If this input of Ĥ is queried
before, A aborts. Otherwise, the A returns σ. If the w in the input is (T,t), the
A firstly runs the PreSign simulation procedure as above and get the σ̂. Then
it runs the Adapt algorithm and gets the σ. If the same input of Ĥ is queried
before, A aborts. Otherwise, the A returns σ.
Consider that B makes at mostQKeyGen, QPreSign, QSign andQH queries to KeyGen,
PreSign,Sign and random oracle respectively.

Forgery. B returns the target message (m∗, vki∗ , v̂k
∗
) to A. A chooses a (T∗, t∗)

from LockGen that is not been used before and computes a pre-signature σ̂∗ us-
ing the simulation method above. Then A sends (σ̂∗,T ∗) to B. Finally, B returns

a forged linkable ring adaptor signature (ṽk
∗
, σ̃) on m∗ for ((ṽk

∗
⊆ vk\F) ∧

((?,m∗, ṽk
∗
) /∈ Q)∧Verify(m∗, ṽk

∗
, σ̃)) = 1, where the F ,Q are the same as that

in the aSignForge experiment. σ̃ is denoted as (B̃, Ã, S̃1, S̃2, T̃1, T̃2, τ̃ , µ̃, z̃α, z̃sk, ζ̃, π̃).

Case 1 : ṽk
∗

= vk and all the elements of σ̃ and σ∗ = Adapt(t∗, σ̂∗) are the
same. This means B gets the t∗, which breaks the hardness of LR.
Case 2 : Case 1 has not happened. The A computes the corresponding y,z,w
as in the PreSign algorithm first and rewinds Ĥ on input (4||y||z||w||T̃1||T̃2) for
three times. For each transcript, denote the challenge as xi and the responses
as (τx,i, µi, zα,i, zsk,i, zδ,i, li, ri, ti) for i ∈ [1, 3]. Denote li = (li,1, . . . , li,n) and
ri = (ri,1, . . . , ri,n).
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- To extract BAw, it picks some ηi ∈ Zp such that
∑2
i=1 ηi = 1,

∑2
i=1 ηixi = 0.

Then we have:

BAw = h
∑2
i=1 ηiµivk

∑2
i=1 ηi·li+z·1

n ~H ′
∑2
i=1 ηiri−z

2·1n ~H−wz

:= hγ
′
vk

~bL
′
~Hw ~bR

′ (2)

for some γ′, ~bL
′
, ~bR
′
.

- To extract S2, it picks some η′i ∈ Zp such that
∑2
i=1 η

′
i = 0,

∑2
i=1 η

′
ixi = 1.

Then we have:

S2 = h
∑2
i=1 η

′
iµivk

∑2
i=1 η

′
ili ~H ′

∑2
i=1 η

′
iri := hρ

′
Y ~sL

′ ~H · ~sR
′

(3)

for some γ′, ~sL
′, ~sR

′.

Putting back the extracted values BAw and S2 into P = BAwSx2vk−z·
~1n ~Hwz ~H ′

z2·~1n
h−µ,

we have:

vk
~l ~H ′

~r
= (hγ

′
vk

~bL
′
~Hw ~bR

′
) · (hρ

′
Y ~sL

′ ~H · ~sR
′
)x · vk−z·1

n

· ~Hwz ~H ′
z2·~1n

h−µ

The mutual discrete logarithm between vk is not known if the discrete logarithm
assumption holds by lemma 1. Since ~H and the elements in h are randomly
chosen from the group, the mutual discrete logarithm between h, the elements
in ~H and vk is not known.
Then we have: ~l = ~bL

′
−z ·1n+ ~sL

′ ·x,~r = yn ◦ (w · ~bR
′
+wz ·1n+ ~sR

′ ·x)+z2 ·1n
By the same set of 3 rewinding transcripts, we can also extract the commit-

ments T1,T2 as follows.

- To extract T1, it picks some δi ∈ Zp such that
∑3
i=1 δi = 0,

∑3
i=1 δixi =

1,
∑3
i=1 δix

2
i = 0. Then we have:

T1 = g
∑3
i=1 δitih

∑3
i=1 δiτx,i := gt

′
1hr

′
1

for some t′1, r
′
1.

- To extract T2, it picks some δ′i ∈ Zp such that
∑3
i=1 δ

′
i = 0,

∑3
i=1 δ

′
ixi =

1,
∑3
i=1 δ

′
ix

2
i = 0. Then we have:

T2 = g
∑3
i=1 δ

′
itih

∑3
i=1 δ

′
iτx,i := gt

′
2hr

′
2

for some t′2, r
′
2.

Putting back the extracted values T1 and T2 into equation gζhτ = gz
2+wz(1−z)

∑n
i=1 y

i−1−nz3T x1 T
x2

2 ,

we have: gζhτ = gz
2+w(z−z2)〈1n,yn〉−z3〈1n,1n〉 · (gt′1hr′1)x · (gt′2hr′2)x

2

. Since h is a
random group element by the simulation of ĤG , we have:

ζ = z2 + w(z − z2)〈1n, yn〉 − z3〈1n, 1n〉+ t′1x+ t′2x
2
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Denote t′0 = z2 + w(z − z2)〈1n, yn〉 − z3〈1n, 1n〉.
Observe that we already extracted ~l, ~r as:

〈~l, ~r〉 = ( ~bL
′
− z · 1n + ~sL

′ · x) · (yn ◦ (w · ~bR
′
+ wz · 1n + ~sR

′ · x) + z2 · 1n)

= w〈 ~bL
′
, ~bR
′
◦ yn〉+ wz〈 ~bL

′
− ~bR

′
, yn〉+ z2〈 ~bL

′
, 1n〉 − wz2〈1n, yn〉 − z3〈1n, 1n〉+ t′′1x+ t′′2x

2

for some t′′1 , t
′′
2 ∈ Zp. Since the above holds for all w, x, y, z, we have:

~bL
′
◦ ~bR

′
= 0n, ~bL

′
− ~bR

′
= 1n, 〈 ~bL

′
, 1n〉 = 1

Therefore, it implies that ~bL
′

is a binary vector with one bit equal to 1. Putting

back ~bL
′

in equation 2, we have: BAw = hγ
′
p̃k ~Hw ~bR

′
. Since the above is true for

all w, then we have B = hα
′
p̃k for some α′ ∈ Zp.

By the same set of rewinding transcripts, we can also extract from hzαgzskT =

S1B
x: B = h

zα,1−zα,2
x1−x2 g

zsk,1−zsk,2
x1−x2 := hα

′′
gsk′ . Since the above is true for all h,

then we have p̃k = gsk′ . Hence if p̃k = pki∗ , then the A returns sk′ as the solution
to the DL problem. It happens with probability for at least 1/QKeyGen.

Lemma 2 (Pre-signature anonymity). If DDH assumption is hard, then the
linkable ring adaptor signature scheme ΞR,Σ is anonymous in the random oracle
model.

Proof. Suppose the simulator is given the DDH problem instance (g, ga, gb, c)
and wants to decide if c = gab. The simulator computes u = gb as part of the
system parameters.
Oracle simulation. For the KeyGen query, A picks some random ski and re-
turns pki = gski . Except for the i∗th query, the A picks some random ski∗ and
returns pki∗ = (ga)ski∗ . Here the secret key is a·ski∗ . For the Corrupt oracle, the A
declares failure and exits if secret key of pki∗ is requested. For the PreSign oracle,
everything is the same as that in the algorithm except the following: to compute
S1, S3, A picks some random zα, z

′
sk, x,B, U and let S1 = hzαgz

′
skT/Bx, S3 =

uz
′
sk/Ux. Then A computes y,z,w as that in the PreSign algorithm and finally

programs the random oracle such that x = Ĥ(4||y||z||w||T1||T2||m). For the
Sign oracle, A simulates in the same way as the PreSign oracle except that T is
dropped.
Forgery. In the challenge phase, the adversary gives (m∗, i0, i1, ṽk, T ) to the
simulator. If i∗ /∈ {i0, i1}, the simulator declares failure and exits. Without loss of
generality, assume pki0 = pki∗ . The simulator sets U = cski∗ . The rest of σ̂ is sim-
ulated as follows: everything is the same as the PreSign algorithm, except the fol-
lowing: the A chooses zα, z′sk and x at random and let S1 = hzα−αx(gz

′
sk/pkxi∗)T .

Then A computes y,z,w as that in the PreSign algorithm and finally programs
the random oracle such that x = Ĥ(4||y||z||w||T1||T2||m). If this input of Ĥ is
queried before, A aborts. Otherwise, the A returns σ̂. Then the (σ̂, T, U) is sent
to the adversary.
Finally the adversary outputs b′. If the adversary sucessfully guesses b′ = 0, then
the simulator outputs c = gab as the solution to the DDH problem.
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Lemma 3 (Linkability). Assuming that DL assumption is hard, then the link-
able ring adaptor signature ΞR,Σ is linkable w.r.t. insider corruption in the ran-
dom oracle model.

Proof. Let B be a PPT adversary who wins the aLink security game with non-
negligible probability. We will build an adversary A that breaks the DL assump-
tion. Assume A wants to solve DL w.r.t. (g, ga).
Oracle simulation. For the KeyGen query, A picks some random ski and re-
turns pki = gski . Except for the i∗th query, the A returns ga. For the Corrupt
oracle, the A declares failure and exits if secret key of pki∗ is requested. For the
PreSign oracle, if the queried key is not the i∗th one, A runs honestly as the
PreSign algorithm. Otherwise, A generates the pre-signature for pki∗ as follows:
everything is the same as the PreSign algorithm, except the following: the A
chooses zα, z′sk and x at random and let S1 = hzα−αx(gz

′
sk/pkxi∗)T . Then A com-

putes y,z,w as that in the PreSign algorithm and finally programs the random
oracle such that x = Ĥ(4||y||z||w||T1||T2||m). If this input of Ĥ is queried before,
A aborts. Otherwise, the A returns σ̂. For the Sign oracle, if the w in the input
is NULL, the A chooses zα, z′sk and x at random and let S1 = hzα−αx(gz

′
sk/pkxi∗).

Then A computes y, z, w as the PreSign algorithm and finally programs the ran-
dom oracle such that x = Ĥ(4||y||z||w||T1||T2||m). If this input of Ĥ is queried
before, A aborts. Otherwise, the A returns σ. If the w in the input is (T,t), the
A firstly runs the PreSign simulation procedure as above and get the σ̂. Then
it runs the Adapt algorithm and gets the σ. If the same input of Ĥ is queried
before, A aborts. Otherwise, the A returns σ.
Forgery. Finally, the adversary A output (m∗i ,vk∗i , σ

∗
i ) for i =1,2, such that

all U in vk∗1 and vk∗2 are distinct. From the proof of unforgeability, the A can
rewinds x and from equation B:

B = h
zα,1−zα,2
x1−x2 g

zsk,1−zsk,2
x1−x2 := hα

′′
gsk′

which implies sk′ =
zsk,1−zsk,2

x1−x2
. Combined with Uzsk = S3u

x, we have U = u
1

sk′

and gsk′ ∈ vk∗1 ∪ vk∗2. There are two different values of U.

If A wins, then

∣∣∣∣(vk∗1 ∪ vk∗2)∩F)∪ ((vk∗1 ∪ vk∗2)\vk)

∣∣∣∣ ≤ 1. It means that there

exists at least one U corresponding to one public key gsk′ . With probability at
least 1

|vk|−qc
, gsk′ = ga, where qc is the number of oracle queries to the Corrupt

oracles. Then the A returns sk′ as the solution to the DL problem.

Lemma 4 (Non-slanderability). Assuming that DL assumption is hard, then
the linkable ring adaptor signature ΞR,Σ is non-slanderable w.r.t. insider cor-
ruption in the random oracle model.

Proof. Let B be a PPT adversary who wins the aNSlan security game with
non-negligible probability. We will build an adversary A that breaks the DL as-
sumption. Assume A wants to solve DL w.r.t. (g, ga).
Oracle simulation. For the KeyGen query, A picks some random ski and re-
turns pki = gski . Except for the i∗th query, the A returns ga. For the Corrupt
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oracle, the A declares failure and exits if secret key of pki∗ is requested. For the
PreSign oracle, if the queried key is not the i∗th one, A runs honestly as the
PreSign algorithm. Otherwise, A generates the pre-signature for pki∗ as follows:
everything is the same as the PreSign algorithm, except the following: the A
chooses zα, z′sk and x at random and let S1 = hzα−αx(gz

′
sk/pkxi∗)T . Then A com-

putes y,z,w as that in the PreSign algorithm and finally programs the random
oracle such that x = Ĥ(4||y||z||w||T1||T2||m). If this input of Ĥ is queried before,
A aborts. Otherwise, the A returns σ̂. For the Sign oracle, if the w in the input
is NULL, the A chooses zα, z′sk and x at random and let S1 = hzα−αx(gz

′
sk/pkxi∗).

Then A computes y, z, w as the PreSign algorithm and finally programs the ran-
dom oracle such that x = Ĥ(4||y||z||w||T1||T2||m). If this input of Ĥ is queried
before, A aborts. Otherwise, the A returns σ. If the w in the input is (T,t), the
A firstly runs the PreSign simulation procedure as above and get the σ̂. Then
it runs the Adapt algorithm and gets the σ. If the same input of Ĥ is queried
before, A aborts. Otherwise, the A returns σ.

Forgery. Finally, the adversary A outputs (m∗, ṽk
∗
, σ∗). If pk∗ /∈ ṽk

∗
, the A

declares failure and exits. By the winning condition, there exists some U cor-

responding to one public key gsk′ ∈ (vk ∩ ṽk
∗
∩ (v̂k\F)). Following the proof

of linkability, the A can extract sk′ such that U = u
1

sk′ and gsk′ ∈ vk. With
probability 1

|vk|−QCorrupt
, gsk′ = pk∗, where QCorrupt is the number of the query to

Corrupt oracle. Then the A return sk′ as the solution to the DL problem.

Lemma 5 (Pre-signature adaptability). The linkable ring adaptor signature
ΞR,Σ satisfies pre-signature adaptability w.r.t. the relation LR.

Proof. Let σ̂ be a valid pre-signature with pVerify(m,vk, T, σ̂) = 1, t ∈ Zp be a
witness corresponding to T and zsk = z′sk + t mod p. We have hzαgzsk = S1B

x.
which implies Verify(m,vk,Adapt(t, σ̂)) = 1.

Lemma 6 (Witness extractability). Assuming that DL assumption is hard,
then the linkable ring adaptor signature ΞR,Σ is witness extractable in the ran-
dom oracle model.

Proof. We only investigate the case that the signature output by the adversary
shares the same challenge with the pre-signature. The other case that two chal-
lenges are distinct can be proven exactly as in Case 2 of the proof of Lemma 1.
Let σ̂ = (B,A, S1, S2, S3, T1, T2, τ, µ, zα, z

′
sk, ζ, π) and σ = (B,A, S1, S2, S3, T1,

T2, τ, µ, zα, zsk, ζ, π) be a valid pre-signature and a valid signature respectively.
Then, from the corresponding verification algorithms, we have hzαgz

′
skT = S1B

x =
hzαgzsk . Since DL assumption is hard, we have that gzsk−z′sk = T . Therefore,
(T, zsk − z′sk) = (T, t) ∈ LR.

Let B be a PPT adversary who wins the aEUF-CMA security game with
non-negligible probability. We will build an adversary A that breaks the DL as-
sumption or the hardness of LR. Assume A wants to solve DL w.r.t. (g, ga).
Oracle simulation. For the KeyGen query, A picks some random ski and re-
turns pki = gski . Except for the i∗th query, the A returns ga. For the Corrupt
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oracle, the A declares failure and exits if secret key of pki∗ is requested. For the
PreSign oracle, if the queried key is not the i∗th one, A runs honestly as the
PreSign algorithm. Otherwise, A generates the pre-signature for pki∗ as follows:
everything is the same as the PreSign algorithm, except the following: the A
chooses zα, z′sk and x at random and let S1 = hzα−αx(gz

′
sk/pkxi∗)T . Then A com-

putes y,z,w as that in the PreSign algorithm and finally programs the random
oracle such that x = Ĥ(4||y||z||w||T1||T2||m). If this input of Ĥ is queried before,
A aborts. Otherwise, the A returns σ̂. For the Sign oracle, if the w in the input
is NULL, the A chooses zα, z′sk and x at random and let S1 = hzα−αx(gz

′
sk/pkxi∗).

Then A computes y, z, w as the PreSign algorithm and finally programs the ran-
dom oracle such that x = Ĥ(4||y||z||w||T1||T2||m). If this input of Ĥ is queried
before, A aborts. Otherwise, the A returns σ. If the w in the input is (T,t), the
A firstly runs the PreSign simulation procedure as above and get the σ̂. Then
it runs the Adapt algorithm and gets the σ. If the same input of Ĥ is queried
before, A aborts. Otherwise, the A returns σ.
Consider that B makes at mostQKeyGen, QPreSign, QSign andQH queries to KeyGen,
PreSign,Sign and random oracle respectively.

Forgery. B returns the target message (m∗, i∗, T ∗, ṽk
∗
) to A. A computes

a pre-signature σ̂∗ using the simulation method above. Then A sends σ̂∗ to
B. Finally, B returns a forged linkable ring adaptor signature σ̃ on m∗ for

(m∗ /∈ Q∧(T ∗, t′) /∈ R∧Verify(m∗, ṽk
∗
, σ)) = 1, where theQ are the same as that

in the aWitExt experiment. σ̃ is denoted as (B̃, Ã, S̃1, S̃2, T̃1, T̃2, τ̃ , µ̃, z̃α, z̃sk, ζ̃, π̃).
Since (T ∗, t′) /∈ R, σ∗ = Adapt(t∗, σ̂∗) are different. This means the challenge
x = Ĥ(||4y||z||w||T1||T2‖m) of them are different. The A computes the cor-
responding y,z,w as in the PreSign algorithm first and rewinds Ĥ on input
(4||y||z||w||T̃1||T̃2) for three times. For each transcript, denote the challenge
as xi and the responses as (τx,i, µi, zα,i, zsk,i, zδ,i, li, ri, ti) for i ∈ [1, 3]. Denote
li = (li,1, . . . , li,n) and ri = (ri,1, . . . , ri,n).

- To extract BAw, it picks some ηi ∈ Zp such that
∑2
i=1 ηi = 1,

∑2
i=1 ηixi = 0.

Then we have:

BAw = h
∑2
i=1 ηiµivk

∑2
i=1 ηi·li+z·1

n ~H ′
∑2
i=1 ηiri−z

2·1n ~H−wz

:= hγ
′
vk

~bL
′
~Hw ~bR

′ (4)

for some γ′, ~bL
′
, ~bR
′
.

- To extract S2, it picks some η′i ∈ Zp such that
∑2
i=1 η

′
i = 0,

∑2
i=1 η

′
ixi = 1.

Then we have:

S2 = h
∑2
i=1 η

′
iµivk

∑2
i=1 η

′
ili ~H ′

∑2
i=1 η

′
iri := hρ

′
Y ~sL

′ ~H · ~sR
′

(5)

for some γ′, ~sL
′, ~sR

′.

Putting back the extracted values BAw and S2 into P = BAwSx2vk−z·
~1n ~Hwz ~H ′

z2·~1n
h−µ,

we have: vk
~l ~H ′

~r
= (hγ

′
vk

~bL
′
~Hw ~bR

′
) ·(hρ′Y ~sL

′ ~H · ~sR
′
)x ·vk−z·1

n

· ~Hwz ~H ′
z2·~1n

h−µ.
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The mutual discrete logarithm between vk is not known if the discrete logarithm
assumption holds by lemma 1. Since ~H and the elements in h are randomly cho-
sen from the group, the mutual discrete logarithm between h, the elements in ~H
and vk is not known.
Then we have: ~l = ~bL

′
−z ·1n+ ~sL

′ ·x,~r = yn ◦ (w · ~bR
′
+wz ·1n+ ~sR

′ ·x)+z2 ·1n.
By the same set of 3 rewinding transcripts, we can also extract the commit-

ments T1,T2 as follows.

- To extract T1, it picks some δi ∈ Zp such that
∑3
i=1 δi = 0,

∑3
i=1 δixi =

1,
∑3
i=1 δix

2
i = 0. Then we have:

T1 = g
∑3
i=1 δitih

∑3
i=1 δiτx,i := gt

′
1hr

′
1

for some t′1, r
′
1.

- To extract T2, it picks some δ′i ∈ Zp such that
∑3
i=1 δ

′
i = 0,

∑3
i=1 δ

′
ixi =

1,
∑3
i=1 δ

′
ix

2
i = 0. Then we have:

T2 = g
∑3
i=1 δ

′
itih

∑3
i=1 δ

′
iτx,i := gt

′
2hr

′
2

for some t′2, r
′
2.

Putting back the extracted values T1 and T2 into equation gζhτ = gz
2+wz(1−z)

∑n
i=1 y

i−1−nz3T x1 T
x2

2 ,
we have:

gζhτ = gz
2+w(z−z2)〈1n,yn〉−z3〈1n,1n〉 · (gt

′
1hr

′
1)x · (gt

′
2hr

′
2)x

2

Since h is a random group element by the simulation of ĤG , we have:

ζ = z2 + w(z − z2)〈1n, yn〉 − z3〈1n, 1n〉+ t′1x+ t′2x
2

Denote t′0 = z2 + w(z − z2)〈1n, yn〉 − z3〈1n, 1n〉.
Observe that we already extracted ~l, ~r as:

〈~l, ~r〉 = ( ~bL
′
− z · 1n + ~sL

′ · x) · (yn ◦ (w · ~bR
′
+ wz · 1n + ~sR

′ · x) + z2 · 1n)

= w〈 ~bL
′
, ~bR
′
◦ yn〉+ wz〈 ~bL

′
− ~bR

′
, yn〉+ z2〈 ~bL

′
, 1n〉 − wz2〈1n, yn〉 − z3〈1n, 1n〉+ t′′1x+ t′′2x

2

for some t′′1 , t
′′
2 ∈ Zp. Since the above holds for all w, x, y, z, we have:

~bL
′
◦ ~bR

′
= 0n, ~bL

′
− ~bR

′
= 1n, 〈 ~bL

′
, 1n〉 = 1

Therefore, it implies that ~bL
′

is a binary vector with one bit equal to 1. Putting

back ~bL
′

in equation 4, we have: BAw = hγ
′
p̃k ~Hw ~bR

′
. Since the above is true for

all w, then we have B = hα
′
p̃k for some α′ ∈ Zp.

By the same set of rewinding transcripts, we can also extract from hzαgzskT =

S1B
x: B = h

zα,1−zα,2
x1−x2 g

zsk,1−zsk,2
x1−x2 := hα

′′
gsk′ . Since the above is true for all h,

then we have p̃k = gsk′ . Hence if p̃k = pki∗ , then the A returns sk′ as the solution
to the DL problem. It happens with probability for at least 1/QKeyGen.
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Algorithm 12: Type-T Linkable Ring Canonical Identification

1 Procedure Setup(λ):
2 return param;

3 Procedure KeyGen():
4 return (pk, sk);

5 Procedure Proof1(sk, {pk1, . . . , pkn}):
6 r ←s ∆r;
7 R = A(r, {pk1, . . . , pkn});
8 return (R, r);

9 Procedure Ch(R):
10 return c;

11 Procedure
Proof2(sk, {pk1, . . . , pkn}, r, c):

12 return z = Z(sk, {pk1, . . . , pkn}, r, c);

13 Procedure Verify({pk1, . . . , pkn}, z, c):
14 R′ = V ({pk1, . . . , pkn}, c, z);
15 if c 6= Ch(R′) then
16 return 0;

17 auxiliary checking with
R′, {pk1, . . . , pkn}, c, z;

18 return 1;

19 Procedure
Link({pk1, . . . , pkn}, (R1, c1, z1), (R2, c2, z2)):

20 return 1 for linked, 0 for unlinked, or
⊥ for any invalid transcript;

Algorithm 13: Linkable Ring Adaptor Signature

1 Procedure Setup(λ):
2 pick random generators g, u,G,H1, . . . ,Hn, G

′ ∈ G of prime order p,

denote ~H = [H1, . . . ,Hn];

3 Ĥ is a hash function {0, 1}∗ → Zp, ĤG is a hash function
{0, 1}∗ → G;

4 return param = (G, p, g,G, ~H, Ĥ, ĤG);

5 Procedure KGen(param):
6 pick sk ∈ Zp;
7 vk = gsk;
8 return (vk, sk);

9 Procedure PreSign(skj ,m,vk = {vk1, . . . , vkn}, Y ):

10 set ~bL = [0, 0, . . . , 1, . . . , 0] /* "1" is at the j-th pos */

11 set ~bR = [−1,−1, . . . , 0, . . . ,−1] /* "0" is at the j-th pos */

12 U = usk, h = ĤG(vk);
13 pick a random α, β, ρ, rα, rsk,∈ Zp and random vectors ~sL, ~sR ∈ Znp ;

14 B = hαvk
~bL , A = hβ ~H

~bR , S1 = hrαgrskY , S2 = hρvk~sL ~H~sR ,
S3 = ursk ;

15 str = h||B||A||S1||S2||S3, y = Ĥ(1||str), z = Ĥ(2||str), w = Ĥ(3||str);
16 ~cL = ~bL − z ·~1n, ~cR = ~yn ◦ (w ·~bR + wz ·~1n) + z2 ·~1n;
17 ~s′R = ~sR ◦ ~yn, t1 = 〈~sL,~cR〉+ 〈~cL, ~s′R〉 mod p, t2 = 〈~sL, ~s′R〉 mod p;
18 pick a random τ1, τ2 ∈ Zp;
19 T1 = gt1hτ1 , T2 = gt2hτ2 ;

20 x = Ĥ(4||y||z||w||T1||T2||m);
21 τ = τ1x+ τ2x

2 mod p, µ = α+ βw + ρx mod p;
22 zα = rα + αx mod p, z′sk = rsk + skjx mod p;

23 ~l = ~c′L + ~sL · x, ~r = ~c′R + ~s′R · x, ζ = 〈~l, ~r〉;
24 Set ~H ′ = [H1, H

y−1

2 , . . . ,Hy−n+1

n ];

25 P = vk
~l ~H ′

~r
;

26 π ←NIPA.Proof(vk, ~H ′, P, ζ;~l, ~r);
27 return σ̂ = (B,A, S1, S2, S3, T1, T2, τ, µ, zα, z

′
sk, ζ, π, U);
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Algorithm 14: Linkable Ring Adaptor Signature (cont.)

1 Procedure PreVerify(m,vk = {vk1, . . . , vkn}, Y, σ̂):
2 parse σ̂ = (B,A, S1, S2, S3, T1, T2, τ, µ, zα, z

′
sk, ζ, π, U);

3 h = ĤG(vk);

4 str = h||B||A||S1||S2||S3, y = Ĥ(1||str), z = Ĥ(2||str), w = Ĥ(3||str);
5 x = Ĥ(4||y||z||w||T1||T2||m);

6 ~H ′ = [H1, H
y−1

2 , . . . ,Hy−n+1

n ];

7 P = BAwSx2vk−z·
~1n ~Hwz ~H ′

z2·~1n
h−µ;

8 if NIPA.Verify(vk, ~H ′, P, ζ, π) = 1 and uz
′
sk = S3U

x and

gζhτ = gz
2+wz(1−z)

∑n
i=1 y

i−1−nz3T x1 T
x2

2 and hzαgz
′
skY = S1B

x then
9 return 1;

10 return 0;

11 Procedure Verify(m,vk = {vk1, . . . , vkn}, σ):
12 parse σ = (B,A, S1, S2, S3, T1, T2, τ, µ, zα, zsk, ζ, π, U);

13 Compute h, y, z, w, c, ~H ′, P as PreVerify;

14 if NIPA.Verify(vk, ~H ′, P, ζ, π) = 1 and uzsk = S3U
x and

gζhτ = gz
2+wz(1−z)

∑n
i=1 y

i−1−nz3T x1 T
x2

2 and hzαgzsk = S1B
x then

15 return 1;

16 return 0;

17 Procedure Link((m1, ṽk1, σ1), (m2, ṽk2, σ2)):
18 parse σ1 = (. . . , U1) and σ2 = (. . . , U2);
19 return 1 if U1 = U2 or 0 otherwise;

20 Procedure Adapt((Y, y),vk, σ̂,m):
21 parse σ̂ = (B,A, S1, S2, S3, T1, T2, τ, µ, zα, z

′
sk, ζ, π, U);

22 zsk = z′sk + t mod p;
23 return σ = (B,A, S1, S2, S3, T1, T2, τ, µ, zα, zsk, ζ, π, U);

24 Procedure Ext(T, σ, σ̂):
25 retrieve zsk from σ and z′sk from σ̂;
26 t = zsk − z′sk mod p;
27 if T = gt then
28 return t;

29 return ⊥;
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Algorithm 15: Generic linkable ring adaptor signature from a Type-
TA linkable ring identification scheme LRID for the language L := {Y :
∃y ∈ ∆r : Y = A(y)}.

1 Procedure Setup(λ):
2 define hash H : {0, 1}∗ → ∆c;
3 paramI ← LRID.Setup(λ);
4 return (paramI , H);

5 Procedure KeyGen():
6 return LRID.KeyGen();

7 Procedure PreSign(sk,m, ~vk, Y ):
8 r ← ∆r;

9 R = A(r, ~vk)⊕R Y ;

10 c = H(m,R, ~vk);

11 ẑ = Z(sk, ~vk, r, c);
12 return σ̂ = (ẑ, c);

13 Procedure PreVerify(m, ~vk, Y, σ̂):
14 parse σ̂ = (ẑ, c);

15 R′ = V (~vk, c, ẑ)⊕R Y ;

16 if c 6= H(M,R′, ~vk) then
17 return 0;

18 return 1;

19 Procedure Adapt((Y, y), ~vk, σ̂,m)
and Ext(Y, σ̂, σ):

20 Same as Algorithm 5
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C Blind Adaptor Signature

Algorithm 16: Experiment omaSignForgeA,
∏
R,Σ

1 Procedure omaSignForgeA,ΞR,Σ (λ):

2 Ss := ∅, Sp := ∅, ks1 := 0,
kp1 := 0, k2 := 0;

3 (pk, sk)← KeyGen(1λ);

4 (M∗1 , . . . ,M
∗
n)← AOS,OpS(pk) ;

5 (Y, y)← LockGen(λ);
6 σ̂i ← PreSign((pk, sk), Y,M∗i )

∀i ∈ [1, n] ;
7 (σ∗1 , . . . , σ

∗
n)←

AOS,OpS(σ̂1, . . . , σ̂n, Y );
8 return

(k2 < n ∧ (M∗i , σ
∗
i ) 6= (M∗j , σ

∗
j )

∀i 6= j ∈ [1, n]
∧Verify(pk,M∗i , σ

∗
i ) = 1 ∀i ∈ [1, n]

);

9 Procedure OS(M, i, j):
10 if i = 1 then
11 ks1 = ks1 + 1;
12 (M ′, stks1,1)← Sign1(sk,M);
13 Ss = Ss ∪ {ks1};
14 return (ks1,M

′);

15 if i = Ns then
16 if j /∈ Ss then
17 return ⊥;

18 (M ′, b)← SignNs(stj,Ns ,M);
19 if b = 1 then
20 Ss = Ss \ {j};
21 k2 = k2 + 1;

22 return M ′;

23 if i ∈ [2, Ns − 1] then
24 if j /∈ Ss then
25 return ⊥;

26 (M ′, stj,i)← Signi(stj,i−1,M);
27 return M ′;

28 return ⊥;

29 Procedure OpS(M,Y, i, j):
30 if i = 1 then
31 kp1 = kp1 + 1;
32 (M ′, stkp1,1)←

PreSign1(sk, Y,M);
33 Sp = Sp ∪ {kp1};
34 return (kp1,M

′);

35 if i = Np then
36 if j /∈ Sp then
37 return ⊥;

38 (M ′, b)←
PreSignNp(stj,Ns ,M);

39 if b = 1 then
40 Sp = Sp \ {j};
41 k2 = k2 + 1;

42 return M ′;

43 if i ∈ [2, Ns − 1] then
44 if j /∈ Sp then
45 return ⊥;

46 (M ′, stj,i)←
PreSigni(stj,i−1,M);

47 return M ′;

48 return ⊥;
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Algorithm 17: Experiment baWitExtA,
∏
R,Σ

1 Procedure baWitExtA,
∏
R,Σ

(λ):

2 (pk, sk)← KeyGen(1λ);

3 (M∗, Y )← AO
′
S,O
′
pS(pk) /* O′S, O

′
pS are the same as OS, OpS in

Algorithm 16 except that OS(·, Ns, ·), OpS(·, ·, Np, ·) are not

allowed. */

4 σ̂ ← PreSign(sk, Y )↔ User(pk,M∗, Y );

5 σ∗ ← AOS,OpS(σ̂, Y );
6 y∗ ← Ext(Y, σ∗, σ̂);
7 return ((Y, y∗) /∈ R ∧ Verify(pk, σ∗,M∗) = 1);


