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Abstract. In this paper we study and relate several invariants connected to the solving
degree of a polynomial system. This provides a rigorous framework for estimating the
complexity of solving a system of polynomial equations via Gröbner bases methods. Our
main results include a connection between the solving degree and the last fall degree and
one between the degree of regularity and the Castelnuovo–Mumford regularity.

Introduction

As computational problems can often be modelled via polynomial equations, several
security estimates in cryptography depend on the complexity of polynomial system solv-
ing. Within public key cryptography, polynomial system solving plays a crucial role in
index-calculus on Abelian varieties [12] as well as in multivariate cryptography [7]. The
relation-collection phase of index calculus algorithms on elliptic and hyperelliptic curves
relies on the ability to solve multivariate polynomial systems over a finite field. Being
able to accurately predict the complexity of solving these systems has an impact on the
balancing of complexities between the relation-collection and the linear-algebra phase,
and consequently on the complexity of the whole algorithm. Multivariate cryptography
is one of the current proposals for post-quantum cryptography and it offers short digi-
tal signatures which are believed to be quantum-resistant. Forging a signature requires
finding a solution to a system of multivariate polynomial equations. Therefore, security
estimates in multivariate cryptography rely on estimates for the complexity of solving
certain polynomial systems.

The solutions of a system of polynomial equations over a finite field can be computed
in polynomial time from a lexicographic Gröbner basis of the system. Nowadays, the most
efficient algorithms to compute Gröbner bases belong to the family of linear-algebra-
based algorithms, including F4/F5 and the family of XL Algorithms [10, 11, 5, 6]. The
complexity of these algorithms is bounded from above by a known function of the solving
degree. Therefore, an estimate on the solving degree of a system of equations directly
translates into an upper bound on the complexity of solving the system.

Computer experiments are often used to provide an indication on how the solving
degree scales with the parameters of the system. In multivariate cryptography, however,
the complexity of solving the polynomial system is huge by design and there is a large
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gap between the size of the parameters for which we can compute the solving degree ex-
perimentally and the proposed system parameters. Because of this large gap, the security
estimates obtained from the experimental results by extrapolation have limited reliability.
In such a scenario, proven security estimate become essential.

Unfortunately however, finding the solving degree of a system without computing
its Gröbner basis is often hard. This motivated the introduction of several algebraic
invariants related to the solving degree. The main ones are the first [9, 8] and last fall
degrees [15], the degree of regularity [2, 1], and the Castelnuovo–Mumford regularity
[4]. These invariants are routinely used within the cryptographic community in order to
estimate the solving degree. Relating them with the solving degree and with each other
is therefore essential for producing accurate and provable security estimates.

Several connections between these invariants, both heuristic and proven, are known.
In [4] we have shown that, under suitable assumptions, the Castelnuovo–Mumford regu-
larity of the homogenization of a system is an upper bound for its solving degree. In [14]
the authors outlined an algorithm to compute the solution of a polynomial system and
provided an upper bound on its complexity in terms of its last fall degree. Later in [13] it
was shown that the last fall degree is a lower bound for the solving degree. Only recently
in [18, 19] it was shown that, under suitable assumptions, the solving degree is bounded
from above by twice the degree of regularity. Finally, while the first fall degree is widely
used as a proxy for the solving degree, their relation is only heuristic. Several authors
in fact assume that the solving degree and the first fall degree are not far apart. This is
usually referred to as first fall degree assumption. The intuition behind this assumption
is that, once some degree falls appear, new polynomials are added to the computation
and this makes the computation terminate soon after. There are examples for which this
assumption does not hold, see e.g. [8], however many authors believe that it is satisfied
with high probability, see e.g. [16].

In this paper, we explore the relations between these invariants. We compare two
equivalent definitions for the last fall degree and provide a new one, which we prove being
equivalent to the previous ones.

Our main theorem, Theorem 3.1, shows that, for any degree-compatible term order,
the solving degree of a system is the maximum between its last fall degree and the largest
degree of an element in a reduced Gröbner basis of the system. This provides a proof
for the intuitive fact that the two key ingredients in determining the solving degree of a
system are the degrees of the elements in its reduced Gröbner basis and the degree falls.
Notice that, while it is clear that these two ingredients play a role in determining the
solving degree, until now it was not known that these are the only two relevant factors.
We also look at the first fall degree and show by means of examples that it may be
arbitrarily larger or smaller than either of the other invariants.

Another main result, Theorem 5.3, relates the degree of regularity of a system with
the Castelnuovo–Mumford regularity of its homogenization. While for a homogeneous
system the degree of regularity, the Castelnuovo–Mumford regularity, and the solving
degree of the system often coincide, the relation between these invariants is much more
complicated for a non-homogeneous system. If the system is not homogeneous, both the
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degree of regularity and the Castelnuovo–Mumford regularity are algebraic invariants of
associated homogeneous systems. Their relation, however, depends on a number of factors
and was until now unclear. In this paper, we show that the degree or regularity is smaller
than or equal than the Castelnuovo–Mumford regularity. This is consistent with the
known fact that the solving degree is bounded from above by the Castelnuovo–Mumford
regularity [4] and by twice the degree of regularity [18, 19].

The paper is structured as follows. In Section 1 we introduce all the invariants that
we discuss in the paper. In Section 2 we compare two equivalent definitions of last fall
degree. In Definition 2.6 we formalize the concept of degree falls and in Theorem 2.8 we
prove that the last fall degree is the largest degree in which a degree fall occurs. Finally,
in Theorem 2.9 we show that, for any degree-compatible term order, the last fall degree
is equal to the largest degree of an element in a Gröbner basis, for which a degree fall
occurs. Section 3 contains the main result of this paper. In Theorem 3.1 we prove that
the solving degree of a system is the maximum between its last fall degree and the degrees
of the elements in its reduced Gröbner basis, under the assumption that the term order
is degree-compatible. Section 4 focuses on the first fall degree. We show by means of
examples that the difference between the first fall degree and any other of the invariants
that we have mentioned can be either positive or negative and arbitrarily large in absolute
value.

Finally, in Section 5 we discuss the relation between the degree of regularity and
the Castelnuovo–Mumford regularity. In Theorem 5.3 we show that the degree of regu-
larity of a system is smaller than or equal to the Castelnuovo–Mumford regularity of its
homogenization.

1. Preliminaries

Throughout the paper, we let k be a field and denote by R = k[x1, . . . , xn] the
polynomial ring in n variables with coefficients in k. We let F = {f1, . . . , fr} ⊆ R be
a system of polynomial equations and let (F) = (f1, . . . , fr) ⊆ R be the ideal generated
by the equations of F . For f ∈ R, let f top denote the homogeneous component of f of

largest degree, i.e., if f =
∑

a1,...,an≥0

αa1,...,anx
a1
1 · · ·xann with αa1,...,an ∈ k, then

f top =
∑

a1+...+an=deg(f)

αa1,...,anx
a1
1 · · ·xann .

We denote by F top the system {f top
1 , . . . , f top

r } ⊆ R. Let t be a new variable and denote
by fh the homogenization of a polynomial f with respect to t. Let Fh be the system
{fh1 , . . . , fhr } ⊆ R[t].

For an i ∈ N, we denote by Ri the k-vector space generated by the monomials of
degree i of R. For an ideal I ⊆ R, let Ii = I ∩ Ri. Denote by R≤i =

∑
j≤iRj and by

I≤i = I ∩R≤i.

In this paper we study several invariants, which are used to estimate the complexity
of solving a polynomial system via Gröbner bases methods. The main such invariants is
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the solving degree, which by definition measures the complexity of computing a Gröbner
basis using a linear algebra algorithm that follows the strategy proposed by Lazard in [17].
We now briefly recall what such an algorithm does.

Fix a term order σ on R and a degree d ≥ 1. Let

M≤d = {a ∈ {0, . . . , d}n | a1 + . . .+ an ≤ d}.
The elements of M≤d correspond to the monomials in R≤d via

a = (a1, . . . , an)←→ xa11 · · ·xann .

Build a matrix M whose columns are indexed by the elements ofM≤d in decreasing
order from left to right with respect to σ. The rows correspond to polynomials of the
form uf where u ∈ R is a monomial, f ∈ F , and deg(uf) ≤ d. Notice that this includes
the possibility that u = 1. In order to associate a row `(g) to a polynomial g, write

g =
∑

a=(a1,...,an)∈M≤d

αax
a1
1 · · ·xann ,

then `(g)a = αa. The matrix M is called Macaulay matrix of F in degree d.

Perform Gaussian elimination on M to obtain a matrix in reduced row echelon form
(RREF). Any row ` = (`a | a ∈M≤d) in the RREF of M corresponds to a polynomial

f` =
∑

a∈M≤d

`ax
a1
1 · · ·xann .

If deg(f`) < d, we add new rows to M corresponding to the polynomials uf` where u is
a monomial, deg(uf`) ≤ d and uf` 6∈ rowsp(M). Here rowsp(M) denotes the rowspace of
M . Repeat the computation of the RREF and the operation of adding new rows, until
there are no new rows to add. Denote by Md the matrix in RREF computed via this
algorithm.

It is clear that rowsp(Md) ⊆ (F)≤d. For a given d, one may have rowsp(Md) 6=
(F)≤d. However, it is well-known that rowsp(Md) contains a Gröbner basis of F with
respect to σ for d� 0. For any such d, one also has that rowsp(Md) = (F)≤d.

Definition 1.1. Let F ⊆ R be a polynomial system. The solving degree of F with
respect to a term order σ is the least d such that rowsp(Md) contains a Gröbner basis of
(F) with respect to σ. We denote it by sdσ(F).

Definition 1.2. Let F ⊆ R be a polynomial system and let σ be a term order. We
denote by max.GB. degσ(F) the largest degree of an element of a reduced Gröbner basis
of (F) with respect to σ.

Since computing the solving degree without computing a Gröbner basis is hard,
several authors have introduced other invariants which they use to estimate the solving
degree. The main ones are the first and the last fall degree, the degree of regularity, and
the Castelnuovo–Mumford regularity.

The first fall degree was introduced by Dubois and Gama in [9]. Here we use
a modified definition from [8]. We consider a finite field Fq and we work over B =
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Fq[x1, . . . , xn]/(xq1, . . . , x
q
n). Let f1, . . . , fr ∈ B be homogeneous polynomials. If f1, . . . , fr

are not homogeneous, use f top
1 , . . . , f top

r instead of f1, . . . , fr. We define a B-module
homomorphism ϕ by letting ϕ(b1, . . . , br) =

∑r
i=1 bifi for any (b1, . . . , br) ∈ Br. We

denote by Syz(f1, . . . , fr) the syzygy module of f1, . . . , fr, that is, the kernel of ϕ. An
element of Syz(f1, . . . , fr) is called a syzygy of f1, . . . , fr. In other words, a syzygy is a
vector (b1, . . . , br) ∈ Br such that

∑r
i=1 bifi = 0. The degree of the syzygy (b1, . . . , br) is

deg(b1, . . . , br) = max{deg(bi) + deg(fi) | 1 ≤ i ≤ r}.
For any d ∈ N we define the vector space Syz(F)d of homogeneous syzygies of degree d,
i.e., syzygies (b1, . . . , br) such that deg(bi) + deg(fi) = d for all 1 ≤ i ≤ r.

An example of syzygy is given by the Koszul syzygies fiej−fjei, where i 6= j or by the

syzygies coming from the quotient structure of B, that is f q−1
i ei. Here ei denotes the i-th

element of the canonical basis of B. These syzygies are called trivial syzygies, because
they are always present and do not depend on the structure of f1, . . . , fr, but rather on the
ring structure of B. We define the module Triv(f1, . . . , fr) of trivial syzygies of f1, . . . , fr
as the submodule of Syz(f1, . . . , fr) generated by

{fiej − fjei : 1 ≤ i < j ≤ r} ∪ {f q−1
i ei : 1 ≤ i ≤ r}.

We define the vector subspace of trivial syzygies of degree d as Triv(F)d = Triv(F) ∩
Syz(F)d.

Definition 1.3. Let F ⊆ B be a polynomial system. The first fall degree of F is

dff(F) = min{d ∈ N : Syz(F top)d/Triv(F top)d 6= 0}.

The definition of Castelnuovo–Mumford regularity is the most technical and it
requires concepts from commutative algebra that we have not defined here. Therefore, we
refer the reader to [4, Section 3.4] for the definition of Castelnuovo–Mumford regularity
and a discussion of its relation with the solving degree.

The degree of regularity was introduced by Bardet, Faugère, and Salvy in [1, 2].
Let I be a homogeneous ideal of R = k[x1, . . . , xn], we recall that for an integer d ≥ 0
we denote by Id = I ∩ Rd the k-vector space of homogeneous polynomials of degree d of
I. The function HFI(−) : N → N, HFI(d) = dimk Id is called Hilbert function of I. It is
well-known that, for large d, the Hilbert function of I is a polynomial in d called Hilbert
polynomial and denoted by HPI(d). The index of regularity of I is the smallest integer
ireg(I) ≥ 0 such that HFI(d) = HPI(d) for all d ≥ ireg(I). If F is a system of generators
for I, we set ireg(F) = ireg(I).

Definition 1.4. Let F ⊆ R be a polynomial system. The degree of regularity of F is

dreg(F) = ireg(F top).

Notice that, if (F top)d = Rd for d� 0, then

dreg(F) = min{d ≥ 0 | HF(Ftop)(d) = HFR(d)} = min{d ≥ 0 | (F top)d = Rd}.

The last fall degree was introduced by Huang, Kosters, and Yeo in [15]. In [14,
Proposition 2.3 and Proposition 2.8] the authors outline a linear-algebra-based algorithm



6 ALESSIO CAMINATA AND ELISA GORLA

which computes the solutions of a non-homogeneous polynomial system F and show that
its complexity is controlled by the last fall degree of the system F .

Definition 1.5. Let F ⊆ R be a polynomial system. Let i ∈ N and let VF ,i be the
smallest k-vector space such that:

• F ∩R≤i ⊆ VF ,i,
• if f ∈ VF ,i and g ∈ R≤i−deg(f), then fg ∈ VF ,i.

We set also VF ,∞ = (F) and VF ,−1 = ∅.

The last fall degree of F is

dF = min{d ∈ N ∪ {∞} | f ∈ VF ,max{d,deg(f)} for all f ∈ (F)}.

A direct consequence of the existence of a Gröbner basis for (F) is that the last fall
degree is an integer, i.e. dF ∈ N, see also [14, Proposition 2.6 i].

These concepts also allow us to show that the rowspace of a Macaulay matrix after
applying the algorithm described at the beginning of this section does not depend on the
choice of the term order, provided that it is degree-compatible. In fact, it follows from
Definition 1.5 that

VF ,d ⊇ rowsp(Md)

for all d. In the proof of [14, Proposition 2.3] it is stated that, if σ is degree-compatible,
then

(1) VF ,d = rowsp(Md)

for all d ∈ Z≥0. A proof of (1) is given in [13, Theorem 1].

Corollary 1.6. rowsp(Md) does not depend on the choice of σ, if σ is degree-compatible.

The next example shows that, in general, equality (1) and Corollary 1.6 do not hold
for a term order which is not degree-compatible.

Example 1.7. Let d ≥ 3 be an integer. Let F = {x − yd−1, x − yd} and let σ be the
lexicographic order on k[x, y] with x > y. Let

f = xy − x = y(x− yd−1)− (x− yd) ∈ VF ,d.
By the definition of last fall degree, one also has that xf ∈ VF ,d. The rows of the matrix
Md correspond to the polynomials x− yd−1, x(x− yd−1), y(x− yd−1), and x− yd. All the
rows of the RREF of Md correspond to polynomials of degree d, therefore

rowsp(Md) = 〈x− yd−1, x(x− yd−1), y(x− yd−1), x− yd〉.
In particular, xf 6∈ rowsp(Md) since it contains the monomial x2y in its support.

2. Equivalent definitions for the last fall degree

In this section, we explore some properties of the last fall degree and use them to
give different definitions for this and compare them to each other. We start by observing
that, by Definition 1.5, one has

VF ,d = (F)≤d
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for any polynomial system F ⊆ R and any d ≥ dF .

Proposition 2.1. One has

VF ,dF−1 6= (F)≤dF−1.

In particular

dF = min{d | VF ,e = (F)≤e for all e ≥ d}.

Proof. By Definition 1.5 there exists f ∈ (F) such that f 6∈ VF ,max{dF−1,deg(f)}. If deg(f) ≥
dF , then f ∈ VF ,deg(f) by Definition 1.5. This contradicts the assumption that f 6∈
VF ,max{dF−1,deg(f)} = VF ,deg(f). Therefore deg(f) ≤ dF − 1. Then f ∈ (F)≤dF−1 and
f 6∈ VF ,dF−1, in particular VF ,dF−1 6= (F)≤dF−1. �

Remark 2.2. The same polynomial f as in the proof of Proposition 2.1 satisfies f 6∈ VF ,d
for any d ≤ dF − 1, since VF ,d ⊆ VF ,dF−1. Therefore, for any deg(f) ≤ d ≤ dF − 1 one has

VF ,d 6= (F)≤d.

Notice that the definition of last fall degree from Proposition 2.1 is not computa-
tionally more efficient than Definition 1.5. In fact, the standard way of computing (F)≤d
is by computing a (part of a) Gröbner basis of F .

We now discuss another equivalent definition of last fall degree, coming from [14].
In [14, Proposition 2.6] it is shown that

dF = min{d ∈ N | VF ,e = VF ,e+1 ∩R≤e for all e ≥ d}.

We now study the set of d’s such that VF ,d = VF ,d+1 ∩R≤d.

Proposition 2.3. Let d ∈ N. If VF ,d = (F)≤d, then VF ,d = VF ,d+1 ∩R≤d. In other words,

(2) {d ∈ N | VF ,d = (F)≤d} ⊆ {d ∈ N | VF ,d = VF ,d+1 ∩R≤d}.

Proof. If VF ,d = (F)≤d, then

VF ,d = (F) ∩R≤d = ((F) ∩R≤d+1) ∩R≤d ⊇ VF ,d+1 ∩R≤d ⊇ VF ,d

where the last inclusion holds for all d by Definition 1.5. �

Since the equality VF ,d = VF ,d+1 ∩ R≤d can be checked for any given d by checking
whether rowsp(Md+1) ∩ R≤d = rowsp(Md), one may think that the definition from [14,
Proposition 2.6] is more computationally friendly than that from Proposition 2.1. Unfor-
tunately, one cannot hope to compute dF by progressively increasing the value of d until
one finds a d for which VF ,d = VF ,d+1 ∩ R≤d. In fact, in Example 2.4 we show that there
are values of d for which VF ,d−1 = VF ,d ∩R≤d−1 but VF ,d 6= VF ,d+1 ∩R≤d.

Notice moreover that, while the definition from Proposition 2.1 and that from [14,
Proposition 2.6] are equivalent, the inclusion in (2) may be strict. Even if [dF ,+∞) is the
largest right-unbounded interval contained in either of the sets from (2), each of the two
sets can contain smaller values of d ∈ N. The next example shows that this can indeed
occur.
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Example 2.4. Let F = {x2 − x, xy − 1, w6 − w,w5z5 − 1} ⊆ R = k[w, x, y, z] with
char k = 0 or char k � 0. It is easy to check that (F) = (x − 1, y − 1, w5 − 1, z5 − 1).
Since F contains no elements of degree 0 or 1, then

VF ,0 = VF ,1 = 0.

Moreover

VF ,2 = 〈x2 − x, xy − 1〉,
since the Macaulay matrix associated to F in degree 2 with respect to a degree-compatible
term order is in RREF and contains only rows of degree 2. By repeatedly performing
Gaussian elimination and adding rows whenever the matrix contains new rows of degree
smaller than 3, one can check that x− 1, y − 1 ∈ VF ,3, hence

VF ,3 ⊇ (x− 1)R≤2 + (y − 1)R≤2 = (F)≤3.

Therefore

VF ,d = VF ,d+1 ∩R≤d
for d = 0, 1, but

x− 1, y − 1 ∈ (VF ,3 ∩R≤2) \ VF ,2.
Since (F)≤4 = (x− 1, y − 1)≤4, then

VF ,3 = VF ,4 ∩R≤3.

One can also check that VF ,5 = VF ,4 ·R≤1, hence

VF ,4 = VF ,5 ∩R≤4.

Notice moreover that, for 0 ≤ d ≤ 5 one has

VF ,d = (F)≤d if and only if d 6= 1, 2, 5.

Now VF ,6 = VF ,5 + 〈w6 − w〉 and VF ,d = VF ,6 · R≤d−6 for 6 ≤ d ≤ 9. Finally,
VF ,10 = VF ,9 + 〈w5z5 − 1〉. Therefore

VF ,d = VF ,d+1 ∩R≤d
for 5 ≤ d ≤ 9. Moreover, one can check that w5 − 1 6∈ VF ,d for d ≤ 10, hence

VF ,d 6= (F)≤d for 6 ≤ d ≤ 10.

One can verify by direct computation that w5 − 1, z5 − 1 ∈ VF11 . Therefore

VF ,10 6= VF ,11 ∩R≤10.

Moreover,

VF ,d = (F)≤d for d ≥ 11,

therefore also

VF ,d = VF ,d+1 ∩R≤d for d ≥ 11.

In fact, this shows that dF = 11. In the next table, we summarize for which values of d
each equality holds.
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d 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

VF ,d = VF ,d+1 ∩R≤d 3 3 7 3 3 3 3 3 3 3 7 3 3 . . .

VF ,d = (F)≤d 3 7 7 3 3 7 7 7 7 7 7 3 3 . . .

2.1. Degree falls and last fall degree. In this subsection, we give a mathematical
formulation for the notion of degree falls. This allows us to prove that the last fall degree
is the largest degree in which a degree fall occurs. This is also the largest degree for which
a degree fall occurs for an element of a Gröbner basis. We start by defining degree falls.

Definition 2.5. Let F ⊆ R be a polynomial system. For any f ∈ (F) let

df = min{d ∈ N : f ∈ VF ,d}.

We always have that df ≥ deg(f).

Definition 2.6. If df > deg(f), then we say that f has a degree fall in degree df . We
say that F has a degree fall if there is an f ∈ (F) such that f has a degree fall. Else
we say that F has no degree falls.

For example, a homogeneous system has no degree falls. Moreover, its last fall
degree is zero. More in general, one can prove the following.

Lemma 2.7. Let F ⊆ R be a polynomial system. Then F has no degree falls if and only
if dF = 0.

Proof. If dF = 0, then for all f ∈ (F) we have f ∈ VF ,deg(f). Therefore F has no degree
falls. Conversely, assume that F has no degree falls. Let σ be a degree-compatible term
order and let {g1, . . . , gs} be a Gröbner basis of (F) with respect to σ. Let f ∈ (F). Since
σ is degree-compatible, f can be written as

f =
s∑
i=1

higi

for some hi ∈ R with deg(higi) ≤ deg(f). For any gi such that hi 6= 0, we have the
following: Since gi ∈ VF ,deg(gi) ⊆ VF ,deg(f) and hi ∈ R≤deg(f)−deg(gi), then higi ∈ VF ,deg(f).
It follows that f ∈ VF ,deg(f), hence dF = 0. �

We now can prove that the last fall degree is the largest degree in which a degree
fall occurs.

Theorem 2.8. Let F ⊆ R be a polynomial system. If F has a degree fall, then

dF = max{df : f ∈ (F), df > deg(f)}.

Proof. Let f ∈ F . If df > deg(f), then f 6∈ VF ,d for any d < df . In particular, dF > df−1
by the definition of last fall degree. This implies that

dF ≥ sup{df : f ∈ (F), df > deg(f)}.



10 ALESSIO CAMINATA AND ELISA GORLA

Notice that, by the finiteness of the last fall degree, the supremum of the set {df : f ∈
(F), df > deg(f)} is in fact a maximum.

We now prove the reverse inequality. Let µ = max{df : f ∈ (F), df > deg(f)} and
fix f ∈ (F). If df > deg(f) we have f ∈ VF ,df ⊆ VF ,µ and µ = max{µ, deg(f)} since
µ ≥ df > deg(f). If df = deg(f), then f ∈ VF ,deg(f) ⊆ VF ,max{µ,deg(f)}. Therefore, for all
f ∈ (F), f ∈ VF ,max{µ,deg(f)}, so µ ∈ {d ∈ N ∪ {∞} | f ∈ VF ,max{d,deg(f)} for all f ∈ (F)}.
It follows that dF ≤ µ. �

It is worth noticing that the last fall degree is the largest degree of a degree fall
occuring for an element of a Gröbner basis of F with respect to a degree-compatible term
order.

Theorem 2.9. Let F ⊆ R be a polynomial system, and let {g1, . . . , gs} be a Gröbner
basis of F with respect to a degree compatible term order. If F has a degree fall, then

dF = max{dgi : deg(gi) < dgi}.

Proof. Up to reordering, we may assume without loss of generality that {g1, . . . , gt} are a
minimal Gröbner basis of F for some t ≤ s. Let δF = max{dgi : dgi > deg(gi), 1 ≤ i ≤ t}.
Then

dF = max{df : f ∈ (F), df > deg(f)}
≥ max{dgi : dgi > deg(gi), 1 ≤ i ≤ s} ≥ δF ,

where the first equality follows from Theorem 2.8. Therefore, it suffices to show that the
statement holds for {g1, . . . , gt} a minimal Gröbner basis.

To prove the reverse inequality, let f ∈ (F) and write

f =
∑
i∈J

higi

with J ⊆ {1, . . . , t}, deg(hi) ≤ deg(f)−deg(gi) and hi 6= 0 for all i ∈ J . Fix i ∈ J and let
ui = max{deg(f), dgi}. Then gi ∈ VF ,dgi ⊆ VF ,ui and hi ∈ R≤deg(f)−deg(gi) ⊆ R≤ui−deg(gi).
It follows that higi ∈ VF ,ui . Therefore f ∈ VF ,max{deg(f),dgi : i∈J}. Notice that if i ∈ J and
deg(gi) = dgi , then dgi ≤ deg(f). Therefore

max{deg(f), dgi : i ∈ J} ≤ max{deg(f), δF} and f ∈ VF ,max{deg(f),δF}.

This shows that dF ≤ δF . �

Remark 2.10. Theorem 2.9 implies that the largest degree of a degree fall occuring for
an element of a Gröbner basis of F with respect to a degree-compatible term order σ is
independent of the choice of σ and of the Gröbner basis.

3. Solving degree and last fall degree

It is clear by definition that the solving degree of a system with respect to a fixed
term order is bounded from below by the largest degree of an element of a Gröbner basis
with respect to that term order. In addition, in [13, Theorem 1] it was proved that the
solving degree with respect to a degree-compatible term order is bounded from below by
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the last fall degree. The next theorem clarifies the relation between the last fall degree
and the solving degree, by providing a direct comparison. From a computational point
of view, the theorem allows us to split estimates for the solving degree in two parts: an
estimate on the degrees of the elements in a reduced Gröbner basis and an estimate on
the last fall degree. Notice that, while the degrees of the elements in a Gröbner basis
depend on the choice of the order and on the system of coordinates, the last fall degree
does not.

Theorem 3.1. Let F ⊆ R be a polynomial system. Let σ be a degree-compatible term
order. Then

sdσ(F) = max{dF ,max.GB. degσ(F)}.

Proof. If F is homogeneous, then dF = 0. The thesis follows from observing that sdσ(F) =
max.GB. degσ(F), whenever F is homogeneous.

Suppose now that F is not homogeneous. The inequality sdσ(F) ≥ dF follows
from [13, Theorem 1]. From the definition of solving degree, sdσ(F) ≥ max.GB. degσ(F).
Therefore, it suffices to show that sdσ(F) ≤ max{dF ,max.GB. degσ(F)}. Let rowsp(Md)
be the vector space generated by the rows of the matrix obtained from the Macaulay ma-
trix M in degree d after applying the algorithm described in Section 1. By [13, Theorem 1],
rowsp(Md) = VF ,d for every d ∈ N.

Let D = max{dF ,max.GB. degσ(F)}. Then

rowsp(MD) = VF ,D = (F) ∩R≤D,

where the second equality follows from the definition of last fall degree, since D ≥ dF . Let
g be an element of the reduced Gröbner basis of F with respect to σ. Then g ∈ rowsp(MD),
therefore g is a linear combination of the rows of the matrix MD obtained from the
Macaulay matrix in degree D after applying the algorithm from Section 1. Since MD is
in reduced row-echelon form, the leading terms of the rows of MD are pairwise distinct.

We claim that, up to scalar multiples, g is a row of MD. In fact, if g is a combination
of more than one row, since MD is in reduced row-echelon form, then g contains in its
support one or more monomials that appear as leading term of a row of MD, beyond its
leading term. However this is impossible, since g is an element of a reduced Gröbner basis
and each row of MD corresponds to an element of (F), hence its leading term is divisible
by a leading term of an elements of the reduced Gröbner basis. Hence a scalar multiple
of g appears among the rows of MD, so sdσ(F) ≤ D. �

Remark 3.2. Notice that while sdσ(F) and max.GB. degσ(F) depend in general on the
term order σ and on the system of coordinates, the last fall degree of F does not depend
on either of them.

The next example shows that the conclusion of Theorem 3.1 is in general false for
term orders which are not degree-compatible.

Example 3.3 ([13], Example 2). Let d ≥ 2 be an integer. Let F = {x0−x0x
d−1
2 , x1−xd2}

and let σ be the lexicographic order on k[x0, x1, x2] with x0 > x1 > x2. The elements of
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F are a Gröbner basis of the ideal that they generate and sdσ(F) = d. Let

f = x0x2 − x0x1 = x2(x0 − x0x
d−1
2 )− x0(x1 − xd2) ∈ VF ,d+1.

Since f 6∈ VF ,d = 〈x0 − x0x
d−1
2 , x1 − xd2〉, then dF ≥ d+ 1. Therefore

sdσ(F) = d < max{dF ,max.GB. degσ(F)}.

4. How does the first fall degree relate to the other invariants?

The first fall degree is used by many authors as an estimate for the solving degree.
While this is justified by a heuristic argument, this does not always provide a reliable
estimate. In fact, it is easy to produce examples where the first fall degree and the
solving degree are far apart, see [8]. In this section, we explore further the relation of
the first fall degree with the other algebraic invariants related to the solving degree. We
provide examples that show that the following are possible:

• dff(F) > sd(F) or dff(F) < sd(F),
• dff(F) < dF or dff(F) > dF ,
• dff(F) > dreg(F) or dff(F) < dreg(F),
• dff(F) > reg(Fh) or dff(F) < reg(Fh),

In addition, our examples show that the difference between the first fall degree and each
of the other invariants can be positive or negative and arbitrarily large in absolute value.

Example 4.1. Let q > 3 be odd. Fix any degree-compatible term order. Then F =
{x1x2 + x2, x

2
2 − 1, xq−1

1 − 1} ⊆ Fq[x1, x2] has Gröbner basis {x1 + 1, x2
2 − 1}. One can

compute

F top = {x1x2, x
2
2, x

q−1
1 },

with non-trivial syzygies (x2,−x1, 0), (xq−2
1 , 0,−x2), (0, xq−2

2 , 0), (0, 0, x1). Since F top has
no syzygies in degree smaller than 3, then dff(F). One can show by direct computation
that sd(F) = 3. Then dF = 3 by Theorem 3.1.

Let x0 be the homogenizing variable and consider S = Fq[x0, x1, x2]. The regularity
of Fh can be obtained from its minimal free resolution

0→ S(−q − 2)→

S(−q − 1)
⊕

S(−q)
⊕

S(−4)

→
S(−q + 1)
⊕

S(−2)2
→ (Fh)→ 0

where {x1x2 + x2x0, x
2
2 − x2

0, x
q−1
1 − xq−1

0 , x1x
2
0 + x3

0} is a Gröbner basis with respect to
the degree reverse lexicographic term order with x1 > x2 > x0. A minimal system of
generators of the first syzygy module of xq−1

1 − xq−1
0 , x1x2 + x2x0, x

2
2 − x2

0 is{(
x2,

q−3∑
j=0

(−1)j+1xj0x
q−2−j
1 , 0

)
, (−x2

2 + x2
0, 0, x

q−1
1 − xq−1

0 ), (0,−x2
2 + x2

0, x1x2 + x2x0)

}
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and the second syzygy module is 〈(−x2
2 + x2

0,−x2,
∑q−3

j=0(−1)j+1xj0x
q−2−j
1 )〉. Therefore we

have shown that

dff(F) = sd(F) = dF = 3 < q − 1 = dreg(F) < q = reg(Fh).

Example 4.2. Let q > 3 be odd. Fix any degree-compatible term order. Then F =
{x1x2 + x2, x

2
2 − 1, xq−1

3 − 1} ⊆ Fq[x1, x2, x3] has Gröbner basis {x1 + 1, x2
2 − 1, xq−1

3 − 1}.
One can compute

F top = {x1x2, x
2
2, x

q−1
3 },

with non-trivial syzygies (x2,−x1, 0), (0, xq−2
2 , 0), (0, 0, x3). Since F top has no syzygies in

degree smaller than 3, then dtop(F) = 3. The Macaulay matrix of F in degree 2 is
already in RREF, therefore x1 + 1 6∈ VF ,2. Hence there is a degree fall in degree 3, as

x1 + 1 = x2(x1x2 + x2) − (1 + x1)(x2
2 − 1) ∈ VF ,3. Since {x1 + 1, x2

2 − 1, xq−1
3 − 1} are a

Gröbner basis of (F), then this is the only degree fall. It follows from Theorem 2.8 that
dF = 3. Moreover, the solving degree is q − 1 by Theorem 3.1.

Let x0 be the homogenizing variable and consider the degree reverse lexicographic
order on S = Fq[x0, x1, x2, x3] with x3 > x1 > x0 > x2. The three polynomials in Fh have
pairwise coprime leading terms, hence they are a regular sequence and reg(Fh) = q + 1.
The degree of regularity of F can be computed directly from the Hilbert series of F top.
Therefore we have

dff(F) = dF = 3 < q − 1 = sd(F) < q = dreg(F) < q + 1 = reg(Fh).

Example 4.3. Let q ≥ 3 be a prime power, let F = {(x1 + x2)2, x1x2 + x2
3 + x4} ⊆ R =

Fq[x1, . . . , x4]. Since (x1 + x2)2, x1x2 − x2
3 are a regular sequence, F top has only trivial

syzygies in R. Therefore, every non-trivial syzygy of F top in B = R/(xq1, . . . , x
q
4) has

degree at least q. Since ((x1 + x2)q−2, 0) is a non-trivial syzygy of degree q of F top in B,
then dff(F) = q.

The elements g1, g2 of F are a Gröbner basis with respect to DRL with x3 >
x1, x2, x4, since their leading terms are a regular sequence. Therefore, any f ∈ (F) can
be written as f = h1g1 + h2g2 for some h1, h2 ∈ R with deg(h1g1), deg(h2g2) ≤ deg(f).
It follows that f ∈ VF ,deg(f) for every f ∈ (F), hence dF = 0 by Lemma 2.7. Since
max.GB. deg(F) = 2, then sd(F) = 2 by Theorem 3.1.

The degree of regularity of F may be computed by observing that x0 - 0 modulo
(Fh), where x0 is the homogenizing variable. Hence dreg(F) = reg(Fh) = 3, since F top is
a regular sequence. Therefore

dF = 0 < 2 = sd(F) < reg(Fh) = dreg(F) = 3 < q = dff(F).

Example 4.4. Let F = {x2 − x, xy − 1, wq − w,wq−1zq−1 − 1} ⊆ R = Fq[w, x, y, z],
q 6= 2. It is easy to check that {x − 1, y − 1, wq−1 − 1, zq−1 − 1} is a Gröbner basis of
(F) with respect to any term order. The element (y,−x, 0, 0) is a non-trivial syzygy of
F top = {x2, xy, wq, wq−1zq−1} of degree 3. Since F top has no syzygy in degree smaller
than 3, then dff(F) = 3.

One can verify by direct computation that wq−1 − 1, zq−1 − 1 ∈ VF ,2q−1 \ VF ,2q−2,
see also Example 2.4. Therefore sd(F) = 2q− 1, hence also dF = 2q− 1 by Theorem 3.1.
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Hence we have

dff(F) = 3 < 2q − 1 = sd(F) = dF .

5. Degree of regularity and Castelnuovo–Mumford regularity

Both the degree of regularity and the Castelnuovo–Mumford regularity provide up-
per bounds on the solving degree of a system of polynomial equations. The main result
of this section is an inequality between the degree of regularity and the Castelnuovo–
Mumford regularity.

The following relation between the solving degree of a system F of polynomial
equations and the Castelnuovo–Mumford regularity of the system Fh obtained from F
by homogenizing its equations with respect to a new variable was proved in [4]. In case
F is homogeneous, then Fh = F .

Theorem 5.1 ([4], Theorem 9, Theorem 10, and Theorem 11). Let F ⊆ Fq[x1, . . . , xn]
be a polynomial system which contains the field equations. Then

sd(F) ≤ reg(Fh).

The next result was proved by Semaev and Tenti. To the extent of our knowledge,
this is the first proven upper bound for the solving degree of a system in terms of its
degree of regularity. Notice however that the solving degree considered by Semaev and
Tenti may be different from the one considered in this paper, as Semaev and Tenti work
in the quotient ring Fq[x1, . . . , xn]/(xq1−x1, . . . , x

q
n−xn). For more details see the doctoral

thesis of Tenti [19], in particular the discussion above [18, Theorem 2.1] and [19, Corollary
3.67].

Theorem 5.2 ([18], Theorem 2.1). Let F = {f1, . . . , fr, x
q
1−x1, . . . , x

q
n−xn} ⊆ Fq[x1, . . . , xn]

be a polynomial system. If dreg(F) ≥ max{q, deg(f1), . . . , deg(fr)}, then

sd(F) ≤ 2dreg(F)− 2.

Because of Theorem 5.1 and Theorem 5.2, both the degree of regularity of F and
the Castelnuovo–Mumford regularity of Fh produce estimates for the solving degree of
F . Hence it is interesting to relate these invariants to each other.

Theorem 5.3. Let F ⊆ R = k[x1, . . . , xn] be a polynomial system. One has

dreg(F) ≤ reg(Fh).

Proof. Since dreg(F) ≤ regR(F top) for any F by [4, (4) pg. 26], it suffices to show that
regR(F top) ≤ regS(Fh). Write (Fh) = J+tH where t - 0 modulo J . Then (Fh) : t = J+H
and S/(Fh) + (t) = S/(F top) + (t) ∼= R/(F top). Therefore

regR(F top) = regS((F top) + (t)).

Moreover, one has the short exact sequence

0→ S/J +H(−1)→ S/(Fh)→ S/(F top) + (t)→ 0.
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By the Mapping Cone Construction one has that

(3) regS((F top) + (t)) ≤ max{regS(Fh), regS(J +H)}.
Moreover, by [3, Theorem 3.1]

regS(Fh) ∈ {regS((F top) + (t)), regS(H + J) + 1}.
If regS(Fh) = regS(H+J)+1, then by (3) regS((F top)+(t)) ≤ regS(H+J)+1 = regS(Fh).
If regS(Fh) 6= regS(H + J) + 1, then by (3) regS((F top) + (t)) = regS(Fh). �

The first inequality in the next corollary was already observed in [19, Section 3.3.2].

Corollary 5.4. Assume that F contains the field equations and that dff(F) 6= +∞. Then

dff(F) ≤ dreg(F) + 1 ≤ reg(Fh) + 1.

Proof. The first fall degree is the minimum degree of a syzygy of F top which does not
belong to the submodule of trivial syzygies. Therefore, it is a minimal generator of the
syzygy module of F top. This proves that dff(F) ≤ reg(F top)+1. Moreover, reg(F top)+1 ≤
reg(Fh) + 1 by the previous theorem. �
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cryptographie, Ph.D. thesis, Université Paris 6, 2004.
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