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Abstract The main protection against side-channel attacks consists in computing every function
with multiple shares via the masking countermeasure. For IND-CCA secure lattice-based encryp-
tion schemes, the masking of the decryption algorithm requires the high-order computation of a
polynomial comparison. In this paper, we describe and evaluate a number of different techniques
for such high-order comparison, always with a security proof in the ISW probing model. As an
application, we describe the full high-order masking of the NIST finalists Kyber and Saber, with a
concrete implementation.

1 Introduction

Post-quantum cryptography. The most widely used public-key cryptosystems today are
based on RSA and ECC, but they are breakable in polynomial time using a quantum computer.
While it is currently unknown whether building a scalable quantum computer is feasible or
not, the goal of post-quantum cryptography is to design alternatives to RSA and ECC with
resistance against quantum attacks. Initiated in 2016, the NIST post-quantum standardization
has now entered its third round, which includes the evaluation of the implementation results
of the remaining candidates. In this paper, we consider the two lattice-based finalists Kyber
[BDK+18,ABD+21] and Saber [BMD+21], whose security is based on the hardness of the mod-
ule learning-with-errors (M-LWE) and the module learning-with-rounding (M-LWR) problems,
respectively. Those problems are conjectured to remain hard even with a full-scale quantum
computer.

Side-channel attacks and the masking countermeasure. Lattice-based public-key encryp-
tion schemes are as vulnerable to side-channel attacks as any other cryptosystems, see for exam-
ple [PPM17,HCY20,XPRO20]. Resistance against side-channel attacks is therefore an explicit
criteria for standardization by NIST [MAA+20]. The main countermeasure against side-channel
attacks is masking. It consists in splitting every variable x into n shares with x = x1 + · · ·+ xn,
and processing the shares separately, so that an adversary with a limited number of probes
cannot learn more than an adversary without probes. The study of protecting circuits against
high-order attacks was initiated by Ishai, Sahai and Wagner in [ISW03]. They considered an ad-
versary who can probe at most t wires in a circuit. They showed how to transform any Boolean
circuit C into a circuit of size O(|C| · t2) secure against such adversary, using n = 2t+ 1 shares.
This was later improved by Barthe et al. to n = t+1 shares only [BBD+16], who introduced the
notions of (Strong) Non-Interference (NI/SNI) to facilitate the writing of security proofs with
the composition of gadgets.



The masking countermeasure was initially developed for securing block-ciphers against side-
channel attacks, for example AES in [RP10]. It appears that securing lattice-based schemes
against high-order attacks offers quite new and interesting challenges, thanks to the rich algo-
rithmic diversity of post-quantum cryptography. While in principle any algorithm can be written
as a Boolean circuit C and then secured by applying [ISW03] with complexity O(|C| · n2) for
n shares, very often that would be too inefficient. For example, lattice-based schemes usually
combine Boolean and arithmetic operations, so for efficiency reasons one must repeatedly con-
vert between arithmetic and Boolean masking. Such high-order conversions were previously
considered for power-of-two moduli [CGV14], and have been recently extended to prime moduli
in [BBE+18] for the high-order masking of the GLP lattice-based signature scheme. Therefore
post-quantum cryptography is an opportunity to enrich the tool set of high-order masking.

High-order masking of lattice-based schemes. In this paper, we consider the high-order
masking of the IND-CCA decryption of lattice-based schemes. The Fujisaki-Okamoto (FO) trans-
formation [FO99] starts from an IND-CPA secure public-key encryption scheme, and transforms
it into an IND-CCA-secure PKE generically. Informally, for IND-CCA encryption, a hash of
the message m is used to generate the random coins in the basic IND-CPA encrypt procedure.
During IND-CCA decryption, this is verified via re-encryption. More precisely, the IND-CCA
decryption of lattice-based schemes such as Kyber and Saber comprises the following steps:

1. IND-CPA decryption of the ciphertext c to obtain a message m

2. Re-encryption of m into a ciphertext c′; this includes the binomial sampling of the error
polynomials computed from the hash of m

3. Polynomial comparison between c and c′.

To obtain a fully masked implementation, all three steps must be masked, otherwise this can
lead to a CCA attack. For example, if the plaintext m is not masked at Step 2, an attacker could
submit closely related ciphertexts c′ and detect when it decrypts into some m′ 6= m, which would
reveal information about the secret key. Similarly, the polynomial comparison at Step 3 should
be correctly masked, otherwise this can also lead to a CCA attack. For example, in [BDH+21]
the authors show that the first-order ciphertext comparison from [OSPG18] is insecure, because
the comparison is performed iteratively on different parts of the ciphertext: the result of the
first comparison leaks information to the attacker and leads to a CCA attack. The authors of
[BDH+21] also considered a similar attack against the high-order polynomial comparison from
[BPO+20], which processed successive blocks of ` bits, and the pass/fail bit was computed in the
clear for each block, which also led to a CCA attack. The authors of [BDH+21] also proposed a
correction of the flaw in [BPO+20], based on computing linear combinations over all coefficients
of the polynomial (instead of partial subsets of the coefficients); however, they do not provide a
complete description of the high-order comparison between two polynomials.

The above attacks show that the polynomial comparison must be an atomic operation that
does not leak partial comparison results on a subset of the coefficients. This is actually required
to get any hope of a security proof: namely in the simulation-based approach, the simulator
only gets the final bit b of the ciphertext comparison (since the attacker eventually learns the
result of the comparison, this bit b can be given for free to the simulator), but cannot possibly
simulate intermediate pass/fail bits, since that would require the knowledge of the secret key.

In [BGR+21], the authors described the first completely masked implementation of Kyber,
secure against first-order and higher-order attacks. For the IND-CPA decryption (Step 1), the
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authors consider the threshold function th(x) outputting 0 if x < q/2 and 1 otherwise. They
show that th(x) = x11 ⊕ (¬x11 · x10 · x9 · (x8 ⊕ (¬x8 · x7))), where xi is the i-th bit of x;
namely this corresponds to a binary comparison with the threshold bq/2c. This implies that the
high-order computation of th(x) can be performed by first converting the masking of x from
arithmetic modulo q to Boolean, using [BBE+18]; then th(x) can be computed with high-order
secure implementations of the And and Xor gadgets. For the high-order polynomial comparison
(Step 3), the technique of [BGR+21] consists in performing the comparison with uncompressed
ciphertexts. The advantage of this approach is that the ciphertext compression from Kyber does
not need to be explicitly masked. Given the masked uncompressed polynomials obtained from
re-encryption, the ciphertext comparison requires to check that every coefficient belongs to a
certain public range modulo q, instead of checking for equality.

In [SPOG19], the authors described an efficient technique for high-order masking the bino-
mial sampling in the re-encryption of m at Step 2 above, based on a 1-bit Boolean to arithmetic
conversion modulo q with complexity O(n2); their technique is an extension of a first-order al-
gorithm from [OSPG18]. In [CGMZ21], the authors described high-order table-based conversion
algorithms between arithmetic and Boolean masking, based on the randomized table coun-
termeasure from [Cor14]. For converting from Boolean to arithmetic masking, as required for
binomial sampling in the re-encryption of Kyber and Saber (Step 2), this provides a slightly sim-
pler alternative to [SPOG19], but with the same O(n2) complexity. For the high-order masking
of IND-CPA decryption (Step 1), the authors described a modulus switching technique com-
bined with a fast table-based arithmetic to Boolean conversion, that offers significant efficiency
improvement compared to previous techniques.

Our contributions. In this paper, we focus on the high-order polynomial comparison (Step
3). We consider four techniques, firstly for zero testing a single coefficient, and then zero testing
a set of polynomials at once. The first two techniques are part of the state of the art, while
the last two are new. We refer to Table 1 for a summary, with the corresponding asymptotic
complexities. The first technique is straightforward: it starts from a Boolean masked ciphertext
and consists in performing the comparison via a high-order masked Boolean circuit. Similarly,
the second technique starts from an arithmetic masking modulo 2k or a prime q, and performs an
arithmetic to Boolean conversion so that the comparison can be performed over Boolean shares
as previously. Our third technique is based on masked exponentiation modulo a prime q, using
Fermat’s little theorem. Finally, our fourth technique is based on converting from arithmetic
masking modulo q to multiplicative masking, which enables to perform a zero-test of x without
revealing more information about x.

zero-testing Multi coef. Masking Complexity

PolyZeroTestBool Secure And SecAnd Boolean O(`n2 + n2 log k)

PolyZeroTestAB A → B conv. SecAnd mod q, 2k O(`n2 log k)

PolyZeroTestExpo Exponentiation SecMult mod q O(`κn+ κn2 log q)

PolyZeroTestMult Mult. masking Linear comb. mod q O(`κn+ κ2n2)

Table 1. Complexities of polynomial comparison, with ` coefficients and n shares, and a modulus
2k or a k-bit prime q. We write κ = dλ/ log2 qe, where λ is the security parameter.
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As an application, we consider the high-order polynomial comparison in Kyber for IND-CCA
decryption. Recall that in Kyber the ciphertext coefficients are compressed from modulo q to
d bits by computing Compressq,d(x) :=

⌊
(2d/q) · x

⌉
mod 2d. We first consider an alternative

approach to [BGR+21], where we explicitly high-order mask the Compress function during the
encryption process. For this we extend the modulus switching technique from [FBR+21] which
was first-order only. To our knowledge, this is the first proposal for high-order masking the
Compress function of Kyber1. We also consider the high-order ciphertext comparison without the
Compress function as in [BGR+21], and we provide an alternative, faster technique when the
output size of Compress is close to the bitsize of q, which is the case for 3/4 of the ciphertext
coefficients. Finally, we show that the best strategy for polynomial comparison in Kyber is
hybrid: for the first part of the ciphertext, we do not apply the Compress function and perform
the comparison over uncompressed ciphertexts (as in [BGR+21], but with our faster algorithm),
while for the second part of the ciphertext, we high-order compute the Compress function and
perform the comparison over Boolean shares.

Finally, we provide a detailed description of the masking of the full IND-CCA decryption
of the Kyber and Saber schemes at any order. We also describe the practical results of a C
implementation of the full high-order masking of Kyber and Saber. The source code is public
and can be found at

https://github.com/fragerar/HOTableConv/tree/main/Masked_KEMs

2 Notations and security definitions

For any positive integer q, we define r′ = r mod q to be the unique element r′ in the range [0, q[
such that r′ = r (mod q). For an even (resp. odd) positive integer q, we define r′ = r mod± q to
be the unique element r′ in the range −q/2 < r′ ≤ q/2 (resp. −(q − 1)/2 ≤ r′ ≤ (q − 1)/2) such
that r′ = r (mod q). For x ∈ Q, we denote by bxe the rounding of x to the nearest integer, with
ties being rounded up. We denote by x� k the shifting of an integer x with k positions to the
right, that is bx/2kc.

We recall below the NI/SNI definitions introduced in [BBD+16]. Those definitions are quite
convenient as they allow the easy composition of gadgets. One can then focus on proving the
NI/SNI property for individual gadgets, and the security of the full circuit will follow by com-
position. The SNI definition is stronger than NI in that the number of input shares required for
the simulation only depends on the number of internal probes, and not on the number of output
shares that must be simulated. If a gadget only satisfies the NI definition, usually this is not a
problem as we can apply some SNI mask refreshing as output and the resulting gadget becomes
SNI (see [BBD+16]). In this paper all our gadgets will be proven either NI or SNI.

Definition 1 (t-NI security). Let G be a gadget taking as input (xi)1≤i≤n and outputting the
vector (yi)1≤i≤n. The gadget G is said t-NI secure if for any set of t1 ≤ t intermediate variables,
there exists a subset I of input indices with |I| ≤ t1, such that the t1 intermediate variables can
be perfectly simulated from x|I .

Definition 2 (t-SNI security). Let G be a gadget taking as input n shares (xi)1≤i≤n, and
outputting n shares (zi)1≤i≤n. The gadget G is said to be t-SNI secure if for any set of t1 probed

1 In [BGR+21] and [CGMZ21], the masking of the Compress function was considered only for d = 1 bit as output,
as used in IND-CPA decryption.
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intermediate variables and any subset O of output indices, such that t1 + |O| ≤ t, there exists a
subset I of input indices that satisfies |I| ≤ t1, such that the t1 intermediate variables and the
output variables z|O can be perfectly simulated from x|I .

However, in our paper, even the SNI definition is not quite sufficient to prove the security
of our constructions. Namely, in the context of IND-CCA decryption, when performing the
comparison between two ciphertexts c and c′, the output bit b of the comparison must eventually
be computed in the clear, which means that the n shares bi of b must eventually be recombined.
Clearly that would break the SNI definition, since for (n− 1)-SNI security, at most n− 1 output
shares bi can be simulated. Instead, we can assume that the output bit b of the comparison is
given for free to the simulator, since that bit b is known by the adversary. In that case, using an
extension of the SNI definition, we show that all n output shares bi can be perfectly simulated,
which in turn enables to properly simulate the recombination of the bi’s into b.

More precisely, we use the following extension of the t-SNI security notion recently introduced
in [CS21], which was used to prove the security of the ISW construction in the stateful model.
Under this definition called free-SNI, all output variables except one can always be perfectly
simulated (which is not necessarily the case in the original SNI definition). Moreover it was
shown in [CS21] that the RefreshMasks algorithm (which we recall in Appendix B.2) satisfies the
extended notion.

Definition 3 (Free-t-SNI security). Let G be a gadget taking as input n shares (ai)1≤i≤n and
outputting n shares (bi)1≤i≤n. The gadget G is said to be free t-SNI secure if for any set of t1 ≤ t
probed intermediate variables, there exists a subset I of input indices with |I| ≤ t1, such that the
t1 intermediate variables and the output variables b|I can be perfectly simulated from a|I , while
for any O ( [1, n] \ I the output variables in b|O are uniformly and independently distributed,
conditioned on the probed variables and b|I .

Lemma 1 ([CS21]). The RefreshMasks algorithm is free-(n− 1)-SNI.

Thanks to the free-SNI definition, we can now simulate all output variables, if the simulator
is given the value encoded by those output variables, that is b = b1 + · · · + bn. We can then
recombine the output shares of the gadget, and all intermediate variables in the recombination
can be perfectly simulated. This shows that the resulting gadget satisfies the NI property.2

Lemma 2. Let G be a gadget taking as input n shares (ai)1≤i≤n and outputting n shares
(bi)1≤i≤n. Assume that G satisfies the free-t-SNI property. Then for any set of t1 ≤ t inter-
mediate variables, there exists a subset I of input indices with |I| ≤ t1, such that the t1 in-
termediate variables and all output variables (bi)1≤i≤n can be perfectly simulated from a|I and
b = b1 + · · ·+ bn.

Proof. We use the set I obtained from Definition 3. If |I| = n, we can simulate all output
variables. Otherwise, let i? /∈ I. We let O such that I ∪ O = [1, n] \ {i?}. From the free-t-SNI
definition, we can simulate all variables in bI∪O. The remaining variable bi? is simulated from
the knowledge of b as bi? = b−

∑
i 6=i? bi. ut

Corollary 1 (NI security). Let G be a gadget taking as input n shares (ai)1≤i≤n and out-
putting n shares (bi)1≤i≤n, and let G′ be the same as G but outputting b = b1 + · · ·+ bn. Assume

2 The SNI property would not really be applicable in that case, since by assumption the gadget outputs a single
bit b and not a n-sharing of b.
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that G satisfies the free-t-SNI property. Then for any set of t1 ≤ t intermediate variables of
gadget G′, there exists a subset I of input indices with |I| ≤ t1, such that the t1 intermediate
variables can be perfectly simulated from a|I and b.

3 High-order zero testing

In the IND-CCA decryption of lattice-based schemes, according to the Fujisaki-Okamoto trans-
form, we must perform a comparison between the input ciphertext c̃, and the re-encrypted
ciphertext c. In the context of the masking countermeasure, the re-encrypted ciphertext c is
masked with n shares, so we must perform this comparison over arithmetic or Boolean shares.
Moreover, the coefficients of the polynomials c̃ and c must be compared all at once. Otherwise the
leaking of partial comparison results can leak information about the secret key, as demonstrated
in [BDH+21].

In this section, for simplicity, we consider the zero-testing of a single coefficient. We will then
show in Section 4 how to test multiple coefficients at once. With arithmetic shares, comparing
two individual coefficients x and y in Zq is equivalent to zero testing x− y ∈ Zq. Similarly, with
Boolean shares, comparing two coefficients x, y ∈ {0, 1}k is equivalent to zero testing x ⊕ y.
Therefore, in the rest of this section, we focus on zero-testing.

For a single coefficient x, we are therefore given as input the n Boolean shares of x =
x1 ⊕ · · · ⊕ xn ∈ {0, 1}k, or the n arithmetic shares of x = x1 + · · · + xn mod q, and we must
output a bit b, with b = 1 if x = 0 and b = 0 if x 6= 0, without revealing more information
about x. This means that an adversary with at most t = n− 1 probes will learn nothing about
x, except if x = 0 or not. For the security proof, the simulation technique is the same as for
security proofs in the ISW probing model, except that the output bit b is additionally given to
the simulator (see Section 2).

From Boolean shares over {0, 1}k, one can perform a zero-test with complexity O(n2 · log k);
we recall the technique in Section 3.1 (ZeroTestBoolLog algorithm). From arithmetic shares
modulo q, the simplest technique is to first perform an arithmetic to Boolean conversion, and then
apply the zero-testing on the Boolean shares; we recall the technique in Section 3.2 (ZeroTestAB
algorithm). For arithmetic shares modulo a prime q, we describe two new zero-testing algorithms.
The first technique (ZeroTestExpo in Section 3.3) is based on Fermat’s theorem and consists in
high-order computing b = 1 − xq−1 mod q, which gives b = 1 if x = 0, and b = 0 if x 6= 0,
as required. The second technique (ZeroTestMult in Section 3.4) is based on converting from
arithmetic masking to multiplicative masking, so that one can distinguish between x = 0 and
x 6= 0 without revealing more information about x. We will see in Section 4 that for zero testing
` coefficients at once, these two techniques are much more efficient than arithmetic to Boolean
conversion. We refer to Table 2 for a summary.

For the ciphertext comparison in Kyber, we will describe in Section 5 a hybrid approach
in which the first part of the re-encrypted ciphertext is arithmetically masked modulo q, while
the remaining part is Boolean masked. Therefore, we will use the ZeroTestBoolLog algorithm
for the second part, and for the first part either ZeroTestExpo or ZeroTestMult, which offer
similar performances on Kyber. For Saber, the re-encrypted ciphertext is completely Boolean
shared, so we will use ZeroTestBoolLog. Finally, the ZeroTestAB algorithm will not be used in
our constructions, but we keep this algorithm anyway for comparison with the (much faster)
ZeroTestExpo and ZeroTestMult algorithms.
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Technique Masking Complexity

ZeroTestBoolLog Secure And Boolean O(n2 · log k)

ZeroTestAB A → B conversion mod q, 2k O(n2 · log k)

ZeroTestExpo Exponentiation mod q O(n2 · log q)

ZeroTestMult Mult. masking mod q O(n2)

Table 2. Complexities of zero testing a single value with n arithmetic shares, and a modulus
2k or a k-bit prime q.

3.1 Boolean zero testing in {0, 1}k

We first consider the zero-testing of x ∈ {0, 1}k from its Boolean shares. We consider the k bits
of x = x(k−1) · · ·x(0). The zero-testing of x computes a bit b with b = 1 if x = 0, and b = 0
otherwise; therefore:

b = x(k−1) ∨ · · · ∨ x(0) = x(k−1) ∧ · · · ∧ x(0)

Starting from the n Boolean shares of x = x1 ⊕ · · · ⊕ xn, the right-hand side of the above
equation can be computed by a sequence of k − 1 secure And; we recall in Appendix B.1 the
SecAnd algorithm. For simplicity we actually perform k iterations of SecAnd, the first one being
a SecAnd with encoded input 1, to avoid an explicit mask refreshing at the beginning. The
shares b1, . . . , bn are eventually recombined after a mask refreshing; we refer to Appendix B.2
for a description of RefreshMasks. We obtain Algorithm 1 below.

Algorithm 1 ZeroTestBool

Input: k ∈ N and x1, . . . , xn ∈ {0, 1}k
Output: b ∈ {0, 1} such that b = 1 if ⊕xi = 0, and b = 0 otherwise.
1: (y1, . . . , yn)← (x1, x2, . . . , xn)
2: (b1, . . . , bn)← (1, 0, . . . , 0)
3: for j = 0 to k − 1 do
4: (b1, . . . , bn)← SecAnd(1, (b1, . . . , bn), ((y1 � j) & 1, . . . , (yn � j) & 1))
5: end for
6: (b1, . . . , bn)← RefreshMasks(b1, . . . , bn)
7: return b1 ⊕ · · · ⊕ bn

Theorem 1. The ZeroTestBool is (n− 1)-NI, when b is given to the simulator.

Proof. The ZeroTestBool algorithm up to Line 5 is (n − 1)-SNI since it is the composition of
SecAnd operations, which are (n − 1)-SNI. Thanks to the final RefreshMasks, the ZeroTestBool
algorithm up to Line 6 is free-(n−1)-SNI. From Corollary 1, this implies that the full ZeroTestBool
is (n− 1)-NI, when b is given to the simulator. ut

Improved O(n2 · log k) complexity. For a k-bit input x, the above algorithm has complexity
O(n2 ·k). In Appendix B.3, we describe an improved algorithm ZeroTestBoolLog with complexity
O(n2 · log k), by taking advantage of the And operations on k-bit registers, instead of single bits.
We also provide a more precise operation count.
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3.2 Zero testing modulo q via arithmetic to Boolean conversion

We now consider the zero-testing of an element x ∈ Zq from its arithmetic shares. Given as input
the n arithmetic shares of x = x1 + · · ·+ xn mod q, we must output a bit b, with b = 1 if x = 0
and b = 0 if x 6= 0, without revealing more information about x. For q ≤ 2k, we first perform
an arithmetic to Boolean conversion, which gives the Boolean shares y1, . . . , yn ∈ {0, 1}k, with
x = y1 ⊕ · · · ⊕ yn. We then apply the Boolean zero-testing algorithm from the previous section.
We obtain the pseudo-code below.

Algorithm 2 ZeroTestAB

Input: q ∈ Z, k ∈ Z with q ≤ 2k, and x1, . . . , xn ∈ Zq
Output: b ∈ {0, 1} with b = 1 if

∑
i xi = 0 (mod q) and b = 0 otherwise

1: (y1, . . . , yn)← ArithmeticToBoolean(q, (x1, . . . , xn))
2: return ZeroTestBoolLog(k, (y1, . . . , yn))

The arithmetic to Boolean conversion step has complexity O(n2 · k) for q = 2k, using
[CGV14] or the table recomputation approach from [CGMZ21]. We can also obtain an improved
O(n2 · log k) complexity using the improved arithmetic to Boolean conversion from [CGTV15].
The technique actually works for arithmetic masking modulo any integer q, since we can use
[BBE+18,SPOG19] to convert from arithmetic modulo q to Boolean masking, with complexity
O(n2 · log log q). In the second step, one can use the improved algorithm ZeroTestBoolLog from
Appendix B.3 with complexity O(n2 · log k). Therefore the overall complexity is O(n2 · log k),
where k = dlog2 qe, with a number of operations:

TZeroTestAB(k, n) = TAB(k, n) + TZeroTestBoolLog(k, n)

where TAB(k, n) is the complexity of the arithmetic to Boolean conversion for a k-bit modulus
q.

Theorem 2. The ZeroTestAB algorithm is (n− 1)-NI, when b is given to the simulator.

Proof. The result follows from Theorem 1, with the ArithmeticToBoolean algorithm which is
assumed to be (n− 1)-NI. ut

In Appendix B.4, we describe an alternative zero-testing from arithmetic masking based on
the generic table recomputation approach from [CGMZ21]. Moreover, for q = 2k and small k,
we can use the register optimization from [CGMZ21]. In that case the countermeasure has com-
plexity O(n2) only, assuming that we have access to 2k-bit registers. Therefore this optimization
can only work for small k, say up to k = 8.

3.3 Zero testing modulo a prime q via exponentiation

Our new technique works for prime q only. It consists in computing

b = 1− xq−1 (mod q) (1)

By Fermat’s little theorem, we obtain b = 1 if x = 0 (mod q) and b = 0 otherwise, as required.
Given as input the shares xi of x = x1 + · · · + xn (mod q), the exponentiation xq−1 mod q in
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(1) can be computed with a square-and-multiply, using a sequence of high-order multiplications
modulo q. Eventually we obtain an arithmetic sharing of b = b1 + · · · + bn (mod q), and we
recombine the shares to get the bit b. The complexity of each high-order multiplication modulo
q is O(n2) for n shares. Hence the complexity is O(n2 ·log q), assuming that arithmetic operations
modulo q take unit time.

We recall in Appendix B.5 the secure multiplication algorithm SecMult, already considered
in [SPOG19]. We then provide in Appendix B.6 the pseudo-code of the ZeroTestExpo algorithm
computing the bit b as in (1). We provide the proof of the following theorem in Appendix B.7.

Theorem 3. The ZeroTestExpo algorithm is (n − 1)-NI, when the output b is given to the
simulator.

3.4 Zero testing modulo a prime q via multiplicative masking

Our second technique also works for prime q only. It is based on converting from arithmetic
masking modulo q to multiplicative masking. When the secret value x is 0, the multiplicatively
masked value remains 0, whereas for x 6= 0, we obtain a random non-zero masked value. This
enables to distinguish the two cases, without leaking more information about x.

More precisely, given as input the shares xi of x = x1 + · · · + xn (mod q), we convert the
arithmetic masking into a multiplicative masking. For this we generate a random u1 ∈ Z∗q and
we compute:

u1 · x = u1 · x1 + · · ·+ u1 · xn (mod q)

by computing the corresponding shares x′i = u1 · xi mod q for all 1 ≤ i ≤ n. We then perform a
linear mask refreshing of the arithmetic shares x′i. Such linear mask refreshing is not SNI, but it
is NI and its property is that any subset of n− 1 output shares is uniformly and independently
distributed, as in the mask refreshing from [RP10].

We proceed similarly with the multiplicative shares u2, . . . , un ∈ Z∗q . Eventually we obtain
an arithmetic sharing (Bi)1≤i≤n satisfying:

u1 · · ·un · x = B1 + · · ·+Bn (mod q)

Thanks to the n multiplicative shares ui, we can now safely decode the arithmetic sharing
(Bi)1≤i≤n without revealing more information about x. More precisely, we compute B = B1 +
. . .+Bn (mod q), and we obtain:

u1 · · ·un · x = B (mod q)

Recall that ui ∈ Z∗q for all 1 ≤ i ≤ n. Therefore if x 6= 0, we must have B 6= 0, and if x = 0, we
have B = 0. This gives a zero-test of x.

We provide below a pseudocode description of the ZeroTestMult algorithm taking as input
the shares xi of x = x1 + · · ·+ xn (mod q) and outputting a bit b with b = 1 if x = 0 and b = 0
otherwise. We provide the pseudocode of the LinearRefreshMasks algorithm in Appendix B.8.

Note that as opposed to the techniques described in the previous sections, we obtain a bit
b directly in the clear. This means that when zero testing multiple coefficients at once, we can
not keep an n-shared bit b and high-order combine the results of individual zero-testing, as with
the previous ZeroTestBool, ZeroTestAB and ZeroTestExpo algorithms. Therefore, to test multiple
coefficients at once, we will have to proceed differently (see Section 4).
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Algorithm 3 ZeroTestMult

Input: x1, . . . , xn ∈ Zq for prime q.
Output: b ∈ {0, 1} with b = 1 if

∑
i xi = 0 (mod q) and b = 0 otherwise

1: (B1, . . . , Bn)← (x1, . . . , xn)
2: for j = 1 to n do
3: uj ← Z∗q
4: (B1, . . . , Bn)← (uj ·B1 mod q, . . . , uj ·Bn mod q)
5: (B1, . . . , Bn)← LinearRefreshMasks(q,B1, . . . , Bn)
6: end for
7: B ← B1 + · · ·+Bn mod q
8: if B = 0 then return 1
9: else return 0

Complexity. For simplicity we ignore the reductions modulo q in the operation count. The
complexity of LinearRefreshMask is 3(n− 1) operations. We obtain:

TZeroTestMult(n) = n · (1 + n+ 3(n− 1)) + n = n · (4n− 1) ' 4n2

The technique has therefore complexity O(n2) for a single coefficient. That is, as opposed to the
previous techniques, the complexity is independent from the size of the modulus q, assuming
that arithmetic operations in Zq take unit time. We will see in Section 3.5 that for zero testing
a single coefficient, the technique is much faster than the other techniques.

Security. The following theorem shows that the adversary does not get more information than
whether x = 0 or not. The argument is as follows: if the adversary has at most n − 1 probes,
then at least one multiplication by ui ∈ Z∗q and subsequent mask refreshing has not been probed.
In that case, all output shares of the corresponding mask refreshing can be perfectly simulated,
knowing the output bit b. Namely if x 6= 0, the output shares must encode a random element
in Z∗q (thanks to the multiplication by the random ui ∈ Z∗q which has not been probed), and
if x = 0, the output shares are an encoding of 0. In both cases, since by assumption the mask
refreshing has not been probed, we can provide a perfect simulation of all output shares of the
mask refreshing, which is easily propagated to the end of the algorithm, and eventually the
recombination of the shares and the bit b. We provide the proof in Appendix B.9.

Theorem 4 ((n−1)-NI of ZeroTestMult). The ZeroTestMult takes as input n arithmetic shares
xi for 1 ≤ i ≤ n and outputs a bit b with b = 1 if

∑n
i=1 xi = 0 (mod q) and b = 0 otherwise.

Any t probes can be perfectly simulated from x|I and b, with |I| ≤ t.

3.5 Comparison of zero-test algorithms

We provide a comparison of the 3 zero-test algorithms that work modulo q, with q = 3329 as in
Kyber. We see in Table 3 that for testing a single value, ZeroTestMult is more than one order of
magnitude faster than ZeroTestAB and ZeroTestExpo.
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zero-testing mod q
Security order t

1 2 3 4 5 6 8 10 12

ZeroTestAB 439 1 393 2 593 4 514 6 681 9 289 15 913 24 386 34 428

ZeroTestExpo 182 474 900 1 460 2 154 2 982 5 040 7 634 10 764

ZeroTestMult 14 33 60 95 138 189 315 473 663

Table 3. Operation count for zero testing with arithmetic masking modulo q, with n = t + 1
shares and q = 3329.

4 High-order polynomial comparison

In this section we consider the zero-testing of multiple coefficients at once. For this we extend
the zero-testing techniques from Section 3 to multiple coefficients. We refer to Table 1 in Section
1 for a summary of the resulting algorithms.

For Boolean masked coefficients (PolyZeroTestBool) the extension is straightforward: we can
simply keep the results of individual zero-testing in n-shared form (instead of recombining the
shares), and high-order compute an iterated And between those results; only at the end do
we recombine the shares to output a bit b. The approach is the same for zero testing multi-
ple coefficients arithmetically masked modulo 2k, when using arithmetic to Boolean conversion
(PolyZeroTestAB).

When working modulo a prime q, it is very advantageous to first apply the technique from
[BDH+21] that reduces the zero-testing of ` coefficients to the zero-testing of κ� ` coefficients,
with κ = dλ/ log2 qe, where λ is the security parameter, via random linear combinations. Namely
the coefficients of the linear combinations can be computed in the clear, and the complexity of
this first step is only O(n) instead of O(n2).

The remaining κ coefficients must then be zero tested all at once. For this one can use
either the zero-testing based on exponentiation (ZeroTestExpo), or the zero-testing based on
multiplicative masking (ZeroTestMult). When using the ZeroTestExpo algorithm, as previously we
keep the resulting bit of each individual zero test in shared form. The only difference is that these
bits are arithmetically masked modulo q, so we can combine them by high-order multiplication
with the SecMult algorithm (instead of SecAnd as with Boolean shares). Eventually we recombine
the shares to get the result of the global zero test.

However, when the zero-testing is based on multiplicative masking (ZeroTestMult), we obtain
the bit b of an individual zero-testing in the clear, so we must proceed differently. Before applying
the zero-testing, we first compute random linear combinations as in [BDH+21], but this time the
coefficients of the linear combination must be masked with n shares. For each linear combination,
we perform a zero-test of the result. If all coefficients are 0, the linear combination will be 0,
and the algorithm will return b = 1 as required. If at least one of the coefficients is non-zero,
the linear combination will be non-zero and the algorithm will return b = 0, except with error
probability 1/q. As previously, by repeating the procedure κ times, we can decrease the error
probability to 2−λ with κ = dλ/ log2 qe.

These last two methods (PolyZeroTestExpo and PolyZeroTestMult) both work modulo a prime
q only, so it is interesting to compare their complexities (see Table 1). We see that the exponen-
tiation method is faster for small q, when log2 q �

√
λ. Otherwise, the multiplicative masking

method is faster. For the Kyber scheme, with q = 3329 and targeting λ = 128 bits of security,
we expect the two methods to have a similar level of efficiency, and in practice their running
time is surprisingly close.

11



4.1 Polynomial comparison of Boolean masked coefficients

We are given as input a set of ` · n shares (x(j))i ∈ {0, 1}k for 1 ≤ j ≤ ` and 1 ≤ i ≤ n,
corresponding to ` coefficients:

x(j) = x
(j)
1 ⊕ · · · ⊕ x

(j)
n

and we must output a single bit b such that b = 1 if x(j) = 0 for all 1 ≤ j ≤ `, and b = 0 otherwise.
The simplest approach is to perform a Boolean zero-test of each x(j) as in Section 3.1, keeping
each resulting bit b(j) in Boolean n-shared form, and then to perform a sequence of SecAnds
between the bits b(j), and to eventually recombine the shares into a bit b. The complexity of this
approach is then O(` · n2 · log k). A slightly better approach is to high-order compute:

y =
∧`

j=1
x(j) ∈ {0, 1}k

Then y = 0 iff x(j) = 0 for all 1 ≤ j ≤ `, so we eventually perform a single zero-test of y. In this
approach we take advantage of computing the SecAnds over k bits instead of a single bit. The
complexity is then O(` · n2 + n2 · log k). We obtain the pseudo-code below.

Algorithm 4 PolyZeroTestBool

Input: k ∈ Z, and (x
(j)
i ) ∈ {0, 1}k for 1 ≤ i ≤ n and 1 ≤ j ≤ `.

Output: b ∈ {0, 1} with b = 1 if ⊕ix(j)i = 0 for all 1 ≤ j ≤ `, and b = 0 otherwise

1: for j = 1 to ` do x
(j)
1 ← x

(j)
1

2: (y1, . . . , yn)← (1, 0, . . . , 0)
3: for j = 1 to ` do (y1, . . . , yn)← SecAnd(k, (y1, . . . , yn), (x1, . . . , xn))
4: y1 ← y1
5: Return ZeroTestBoolLog(k, y1, . . . , yn)

The number of operations is:

TPolyZeroTestBool(k, `, n) = ` · (1 + TSecAnd(n)) + 1 + TZeroTestBoolLog(k, n)

The following theorem shows that the adversary does not learn more than the output bit b of
the comparison. The proof is straightforward and therefore omitted.

Theorem 5. The PolyZeroTestBool algorithm is (n− 1)-NI, when b is given to the simulator.

4.2 Polynomial comparison modulo 2k via arithmetic to Boolean conversion

We are given as input a set of ` · n shares (x(j))i for 1 ≤ j ≤ ` and 1 ≤ i ≤ n, corresponding to
` coefficients:

x(j) = x
(j)
1 + · · ·+ x(j)n (mod q)

and we must output a single bit b such that b = 1 if x(j) = 0 for all 1 ≤ j ≤ `, and b = 0 otherwise.
For this we simply perform an arithmetic to Boolean conversion of each coefficient x(j) separately
and then apply the previous PolyZeroTestBool algorithm. The complexity of each Boolean to
arithmetic conversion is O(n2 · log k) for k = dlog2 qe. Therefore the total complexity is O(` ·n2 ·
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log k). We provide the pseudocode of the corresponding algorithm PolyZeroTestAB in Appendix
C.1, with a more precise operation count. The following theorem shows that the adversary
does not learn more than the output bit b of the comparison. The proof is straightforward and
therefore omitted.

Theorem 6. The PolyZeroTestAB algorithm is (n− 1)-NI, when b is given to the simulator.

4.3 Polynomial comparison modulo prime q: reduction step

When working modulo a prime q, we can first apply the technique from [BDH+21] that efficiently
reduces the zero-testing of ` coefficients to the zero-testing of κ � ` coefficients, with κ =
dλ/ log2 qe, where λ is the security parameter. Given as input ` coefficients x(j) ∈ Zq with

arithmetic shares x
(j)
i , the technique consists in computing κ linear combinations:

y(k) =
∑̀
j=1

akj · x(j) mod q (2)

for 1 ≤ k ≤ κ, with randomly distributed coefficients akj ∈ Zq. The above equation is actually

high-order computed using the arithmetic shares x
(j)
i of each x(j), and we obtain the arithmetic

shares y
(k)
i of each coefficient y(k). We obtain the pseudo-code below.

Algorithm 5 PolyZeroTestRed [BDH+21]

Input: q ∈ Z, a parameter κ and (x
(j)
i ) ∈ Zq for 1 ≤ i ≤ n and 1 ≤ j ≤ `.

Output: (y
(k)
i ) ∈ Zq for 1 ≤ i ≤ n and 1 ≤ k ≤ κ.

1: for k = 1 to κ do
2: for i = 1 to n do y

(k)
i ← 0

3: for j = 1 to ` do
4: akj ← Zq
5: for i = 1 to n do y

(k)
i ← y

(k)
i + akj · x

(j)
i

6: end for
7: end for
8: return (y

(k)
i )1≤k≤κ, 1≤i≤n

Now if x(j) = 0 for all 1 ≤ j ≤ `, then y(k) = 0 for all 1 ≤ k ≤ κ. If x(j) 6= 0 for some
1 ≤ j ≤ `, then for each 1 ≤ k ≤ κ, we have y(k) 6= 0, except with probability 1/q. Therefore we
must have y(k) 6= 0 for some 1 ≤ k ≤ κ, except with error probability q−κ. We have therefore
reduced the zero-testing of ` coefficients to the zero-testing of κ � ` coefficients. To reach an
error probability ≤ 2−λ for security parameter λ, one must take κ = dλ/ log2 qe.

We stress that after this reduction step we cannot zero-test the coefficients y(k) separately.
Otherwise, since the coefficients akj in (2) are computed in the clear, knowing that y(k) = 0 for
some k would leak an equation over the coefficients x(j), which would leak information about
the x(j) with fewer than n probes. Instead, the remaining κ coefficients y(k) must be zero-tested
all at once. For this we describe in the next sections two efficient techniques.
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This reduction technique is quite efficient because the random coefficients akj in (2) are
non-masked, which implies that each multiplication akj · x(j) can be computed in time O(n) for
n shares, instead of O(n2) for a fully masked multiplication. The total complexity of this first
step is therefore O(` · κ · n), with a number of operations:

TPolyZeroTestRed(κ, `, n) = κ · ` · (2n+ 1)

Theorem 7 ([BDH+21]). The PolyZeroTestRed algorithm is (n− 1)-NI.

4.4 Polynomial comparison modulo q via exponentiation

The technique works modulo a prime q. As previously, we are given as input ` coefficients

x(j) ∈ Zq with arithmetic shares x
(j)
i modulo q, and we must output a bit b = 1 if x(j) = 0

for all 1 ≤ j ≤ `, and b = 0 otherwise. We first apply the reduction algorithm PolyZeroTestRed
described in the previous section, so there remains only κ coefficients y(j) to be zero-tested, from

their arithmetic shares y
(j)
i modulo q, that is y(j) = y

(j)
1 + · · ·+ y

(j)
n (mod q) for all 1 ≤ j ≤ κ.

To perform a zero test of all coefficients y(j) at once, we high-order compute:

b =
∏̀
j=1

(
1− (y(j))q−1

)
(mod q) (3)

and we obtain b = 1 if y(j) = 0 for all 1 ≤ j ≤ `, and b = 0 otherwise, as required. As previously,
Equation (3) can be securely computed by a sequence of high-order multiplication SecMult, using

as input the arithmetic shares y
(j)
i modulo q. The shares of b are only recombined at the end, so

that an adversary with at most t = n− 1 probes does not learn more than the bit b. Since the
complexity of a single SecMult is O(n2), the complexity for κ coefficients is O(κn2 log q), and
the total complexity is therefore O(`κn+ κn2 log q).

We provide in Appendix C.2 a pseudocode description of the corresponding PolyZeroTestExpo
algorithm. The proof of the following theorem is straightforward and is therefore omitted.

Theorem 8. The PolyZeroTestExpo algorithm is (n− 1)-NI, when b is given to the simulator.

4.5 Polynomial comparison modulo q via multiplicative masking

As explained previously, when zero testing a value x modulo q using the multiplicative masking
technique (Section 3.4), we obtain the resulting bit b in the clear, so we cannot zero-test the
coefficients iteratively as in the previous techniques. Instead, we first compute a random linear
combination of the individual coefficients modulo q, and we then perform a zero-test of the result.
This approach is similar to [BDH+21], except that we must compute the coefficients a(j) in the
linear combination in n-shared form, as otherwise this can leak information on the coefficients
x(j) and then a CCA attack.

As previously, we consider as input an arithmetic masking of ` coefficients x(j), that is

x(j) = x
(j)
1 + · · · + x

(j)
n (mod q) for all 1 ≤ j ≤ `. We first apply the reduction algorithm

PolyZeroTestRed described previously. In the second step, we must therefore zero-test the set of

coefficients y(j) with arithmetic shares y
(j)
i modulo q, that is y(j) = y

(j)
1 + · · ·+ y

(j)
n (mod q) for

all 1 ≤ j ≤ κ.

14



For this, we generate random coefficients a(j) ∈ Zq, and we high-order compute the linear
combination:

z =
κ∑
j=1

a(j) · y(j) mod q (4)

If y(j) = 0 for all 1 ≤ j ≤ κ, then z = 0. If y(j) 6= 0 for some 1 ≤ j ≤ κ, then we have
z 6= 0, except with probability 1/q. We can therefore perform a zero-test of z. The procedure
can be repeated a small number of times to have a negligible probability of error. Namely, for κ
repetitions with randomly generated a(j), the error probability becomes q−κ.

Equation (4) is high-order computed using the arithmetic shares y
(j)
i of the coefficients y(j).

Similarly the random coefficients a(j) are generated via n random shares a
(j)
i in Zq. This is the

main difference with the linear combination used in Section 4.3 for the reduction step, in which
the coefficients akj in (2) were computed in the clear. We stress that this time, the coefficients
a(j) must be computed in n-shared form, and the multiplication a(j) ·y(j) computed with SecMult,
since otherwise an equation over the x(j) could be leaked with fewer than n probes. From the
high-order computation of (4), we obtain the n shares zi of the linear combination z. We then
apply the zero-test procedure from Section 3.4 on the shares zi, which outputs a bit b such that
b = 1 if z = 0 and b = 0 otherwise. The procedure is repeated κ times, and if we always obtain
b = 1 from the zero-test, we output 1, otherwise we output 0. We provide in Appendix C.3 a
pseudocode description of the corresponding algorithm PolyZeroTestMult.

For security level λ, the error probability must satisfy q−κ ≤ 2−λ, so we can take κ =
dλ/ log2 qe repetitions. Therefore, the complexity of the second step is O(κ2n2). The total com-
plexity is therefore O(κ`n + κ2n2); see Appendix C.3 for a more precise operation count. The-
orems 9 and 10 below prove the soundness and security of the algorithm respectively; we refer
to Appendix C.4 and C.5 for the proofs.

Theorem 9 (Soundness). The PolyZeroTestMult outputs the correct answer, except with prob-
ability at most q−κ.

Theorem 10. The PolyZeroTestMult algorithm is (n− 1)-NI, when b is given to the simulator.

4.6 Comparison of polynomial zero-testing

We compare in Table 4 below the operation count between three polynomial comparison tech-
niques. For PolyZeroTestAB we work modulo 2k with k = 13, while for PolyZeroTestExpo and
PolyZeroTestMult we work modulo q = 3329. We see that both PolyZeroTestExpo and PolyZe-
roTestMult are much faster than PolyZeroTestAB. This is because for a large number of coefficients
`, the asymptotic complexity of PolyZeroTestExpo and PolyZeroTestMult is O(` · n), instead of
O(` · n2) for PolyZeroTestAB. We have also performed a C implementation that confirms these
results, see Table 5 below.
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zero-testing mod q
Security order t

1 2 3 4 5 6 7 8 9

PolyZeroTestAB 61 378 692 1 329 2 045 2 826 3 685 4 934 6 262

PolyZeroTestExpo 44 64 86 109 134 160 188 217 248

PolyZeroTestMult 43 63 83 104 126 149 172 197 223

Table 4. Operation count for polynomial zero testing with arithmetic masking modulo q, with
n = t+1 shares, ` = 768 coefficients, in thousands of operation, with q = 213 for PolyZeroTestAB
and q = 3329 for PolyZeroTestExpo and PolyZeroTestMult. We use κ = 11, in order to reach 128
bits of security.

zero-testing mod q
Security order t

1 2 3 4 5 6 7 8 9

PolyZeroTestAB 221 358 503 991 1 517 1 972 2 425 3 211 4 125

PolyZeroTestExpo 79 96 116 153 185 224 254 280 345

PolyZeroTestMult 83 97 121 164 194 242 268 317 403

Table 5. Running time in thousands of cycles for a C implementation on Intel(R) Core(TM)
i7-1065G7, for the same parameters as in Table 4.

zero-testing Security order t

mod q 1 2 3 4 5 6 7 8 9

PolyZeroTestAB 12 297 34 587 69 174 143 706 230 535 327 357 436 476 593 988 763 797

PolyZeroTestExpo 8 856 9 119 9 429 9 826 10 408 10 936 11 555 12 215 13 601

PolyZeroTestMult 8 734 9 020 9 310 9 881 10 739 11 599 12 461 13 601 15 033

Table 6. Number of calls to the rand() function (outputting a 32-bit value), for the same
parameters as in Table 4.

5 Polynomial comparison for Kyber

In this section, we focus on the polynomial comparison in Kyber [BDK+18]. We will recall in
Section 6 the full Kyber algorithm, and then describe a complete high-order masking of Kyber.

Recall that computations in Kyber are performed in the ring Rq = Zq[X]/(XN + 1) with
N = 256 and q = 3329. To reduce the ciphertext size, the coefficients of the ciphertext are
compressed from modulo q to d bits using the function:

Compressq,d(x) :=
⌊
(2d/q) · x

⌉
mod 2d

and are decompressed using the function Decompressq,d(c) :=
⌊
(q/2d) · c

⌉
, with d = du = 10 for

the first part of the ciphertext, and d = dv = 4 for the second part, according to the Kyber768
parameters (see Table 7 below).
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In the IND-CCA decryption based on the Fujisaki-Okamoto transform [FO99], we must
perform a polynomial comparison between two compressed ciphertexts: the input ciphertext c̃,
and the re-encrypted ciphertext c. The Compressq,d function is applied coefficient-wise, so for
simplicity we first consider a single coefficient. Let x be the re-encrypted coefficient modulo q
before compression, and let c be the resulting compressed coefficient, that is c = Compressq,d(x).

We must therefore perform the comparison with the input ciphertext c̃ modulo 2d:

c̃
?
= Compressq,d(x) (mod 2d) (5)

There are two possible approaches to perform this comparison. The first approach consists in
performing the comparison as in (5). Since the re-encrypted coefficient x is arithmetically masked
modulo q, we show how to high-order compute Compressq,d(x) with arithmetically masked input

modulo q, and Boolean masked output in {0, 1}d. We can then perform the high-order polynomial
comparison over Boolean shares, using the technique from Section 4.1. We describe in Section
5.1 the high-order computation of the Compress function.

A second approach is to avoid the computation of the Compress function, as already used
in [BGR+21]. Namely instead of performing the comparison over {0, 1}d as in (5), one can
equivalently compute the set of candidates x̃i such that c̃ = Compressq,d(x̃i). One must then
determine whether the re-encrypted coefficient x is equal to one of the (public) candidates x̃i,
using the n arithmetic shares of x modulo q. Our contribution compared to [BGR+21] is to
describe an alternative, faster technique when the number of candidates x̃i is small, which is the
case for d = du = 10 (see Section 5.4).

Finally, we argue that the best approach is hybrid: for the first `1 = 768 coefficients of
the ciphertext with du = 10, we do not compute the Compress function and apply our faster
technique with the small number of candidates x̃i, and for the remaining `2 = 256 coefficients
with dv = 4, we high-order compute the Compress function. We describe this hybrid approach
in Section 5.6.

N k q η1 η2 (du, dv) δ

Kyber512 256 2 3329 3 2 (10,4) 2−139

Kyber768 256 3 3329 2 2 (10,4) 2−164

Kyber1024 256 4 3329 2 2 (11,5) 2−174

Table 7. Parameter sets for Kyber.

5.1 High-order computation of the Compress function

We provide the first description of the high-order computation of the Compress function of Kyber.
Our technique can be seen as a generalization of the first-order technique of [FBR+21], based
on modulus switching: it consists in first using more precision, so that the error induced by the
modulus switching can be completely eliminated, after a logical shift.

The Compress function is defined as:

Compressq,d(x) =

⌊
2d · x
q

⌉
mod 2d

We are given as input an arithmetic sharing of x = x1 + . . . + xn (mod q) and we want to
compute a Boolean sharing of y = Compressq,d(x) = y1 ⊕ · · · ⊕ yn ∈ {0, 1}d. We stress that in

17



[BGR+21], the authors only described the high-order masking of the Compress function with
1-bit output, which corresponds to the IND-CPA decryption function of Kyber. Here we high-
order mask Compress for any number of output bits d (for example d = du = 10 or d = dv = 4
in Kyber768). For the special case d = 1 there are more efficient techniques, see for example
[BGR+21] and [CGMZ21].

We proceed as follows. We first perform a modulus switching of the input coefficients xi but
with more precision; that is we work modulo 2d+α for some parameter α > 0 and compute:

z1 =

⌊
x1 · 2d+α

q

⌉
+ 2α−1 mod 2d+α, zi =

⌊
xi · 2d+α

q

⌉
mod 2d+α for 2 ≤ i ≤ n

The rounding can be computed by writing:⌊
xi · 2d+α

q

⌉
=

⌊
xi · 2d+α

q
+

1

2

⌋
=

⌊
xi · 2d+α+1 + q

2q

⌋
which is the quotient of the Euclidean division of xi · 2d+α+1 + q by 2q.

We then perform an arithmetic to Boolean conversion of the arithmetic shares z1, . . . , zn,
followed by a logical shift by α bits. This can be done with complexity O((d + α) · n2) using
[CGV14]. By definition we obtain:

y1 ⊕ · · · ⊕ yn =

⌊(
n∑
i=1

zi

)
/2α

⌋
(mod 2d) (6)

and eventually we output the Boolean shares y1, . . . , yn. We show below that we indeed have
Compressq,d(x) = y1 ⊕ · · · ⊕ yn as required, under the condition 2α > q · n. This condition
determines the number α of bits of precision as a function of the number of shares n. We
provide the pseudocode in Algorithm 6 below.

Algorithm 6 HOCompress

Input: x1, . . . , xn ∈ Zq
Output: y1, . . . , yn ∈ {0, 1}d such that y1 ⊕ · · · ⊕ yn = Compressq,d(x1 + · · ·+ xn)
1: α← dlog2 (q · n)e
2: z1 ← b(x1 · 2d+α+1 + q)/(2q)c+ 2α−1 mod 2d+α

3: for i = 2 to n do zi ← b(xi · 2d+α+1 + q)/(2q)c mod 2d+α

4: (c1, . . . , cn)← ArithmeticToBoolean(d+ α, (z1, . . . , zn))
5: for i = 1 to n do yi ← ci � α
6: return y1, . . . , yn

Theorem 11 (Soundness). Given x1, . . . , xn ∈ Zq as input for odd q ∈ N, the algorithm
HOCompress computes y1, . . . , yn ∈ {0, 1}d such that y1 ⊕ · · · ⊕ yn = f(x1 + · · · + xn) where
f(x) = bx · 2d/qe mod 2d.

Proof. Given x ∈ Zq, we have:

f(x) =

⌊
x · 2d

q

⌉
mod 2d =

⌊
x · 2d

q
+

1

2

⌋
mod 2d =

⌊
x · 2d+1 + q

2q

⌋
mod 2d
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We write the Euclidean division x ·2d+1+q = y ·(2q)+δ with y, δ ∈ Z and 0 ≤ δ < 2q. Therefore
f(x) = y (mod 2d). Moreover we must have δ 6= 0, since otherwise x = 0 (mod q), which gives
y = 1/2, a contradiction. Therefore 0 < δ < 2q.

In the following we compute the modular reduction over Q. We have for some |e| ≤ n/2:

n∑
i=1

zi =
n∑
i=1

⌊
xi · 2d+α

q

⌉
+ 2α−1 =

n∑
i=1

xi · 2d+α

q
+ 2α−1 + e (mod 2d+α)

=
x · 2d+α

q
+ 2α−1 + e = 2α · x · 2

d+1 + q

2q
+ e (mod 2d+α)

= 2α ·
(
y +

δ

2q

)
+ e = 2α · y + 2α

(
δ

2q
+ e · 2−α

)
(mod 2d+α)

From (6), if we ensure that 0 ≤ δ/(2q) + e · 2−α < 1, then we must have y = f(x) = y1⊕· · ·⊕ yn
as required. Since 0 < δ < 2q, it is sufficient to ensure that e · 2−α < 1/(2q), and therefore a
sufficient condition is n · 2−α < 1/q. Therefore it is sufficient to ensure 2α > q · n. ut

Complexity of HOCompress. The number of operations of the HOCompress algorithm above
is:

THOComp(n, d, q) = 5n+ 1 + TAB(d+ α, n)

We refer to [CGV14] for the operation count of arithmetic to Boolean conversion, with TAB(d+
α, n) = O((d+α)·n2). With d < log2 q and α = dlog2(q ·n)e, the total complexity of HOCompress
is therefore O(n2 · (log q + log n)).

Security. The following theorem shows that the HOCompress achieves the (n− 1)-NI property.
The proof follows from the (n − 1)-NI property of the ArithmeticToBoolean algorithm, and the
fact that the perfect simulation of zi requires the knowledge of the input xi only.

Theorem 12 ((n−1)-NI security). The HOCompress algorithm achieves the (n−1)-NI prop-
erty.

Polynomial comparison with Compress. Recall that we must perform the comparison c̃
?
=

Compressq,d(x), where for simplicity we consider a single coefficient c̃. By applying the HOCom-
press algorithm, we obtain n Boolean shares such that c = c1 ⊕ · · · ⊕ cn. We must therefore
zero-test the value (c1 ⊕ c̃)⊕ c2 ⊕ · · · ⊕ cn, which can be done using the ZeroTestBool algorithm
from Section 3.1.

For multiple coefficients, we apply the HOCompress algorithm separately on each coefficient
x(j) of the re-encrypted uncompressed ciphertext. We obtain the compressed ciphertext c masked
with n Boolean shares. As previously, we xor each coefficient of the input ciphertext c̃ with the
first share of the corresponding coefficient in c, and we apply the PolyZeroTestBool algorithm
from Section 4.1 to perform the comparison.

5.2 Polynomial comparison for Kyber without Compress

In this section we describe an alternative technique for ciphertext comparison, already used in
[BGR+21], that performs the comparison on uncompressed ciphertexts, and avoids the high-
order computation of the Compressq,d(x) function. As previously, we first consider for simplicity
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a single polynomial coefficient. Given a compressed input ciphertext c̃ and an uncompressed
re-encrypted ciphertext x, we must check that c̃ = Compressq,d(x), where x is arithmetically
masked with n shares modulo q. For this we use the equivalence:

c̃ = Compressq,d(x)⇐⇒ x ∈ Compress−1q,d(c̃)

Given c̃ as input, we must therefore compute the list of candidates Compress−1q,d(c̃), and check
whether x belongs to the set of candidates. Given 0 ≤ a < b < q, we denote by [a, b]q the
discrete interval {a, a + 1, . . . , b}; similarly given 0 ≤ b < a < q, we denote by [a, b]q the
discrete interval {a, a + 1, . . . , q − 1, 0, 1, . . . , b}. In the following, we show that we always have
Compress−1q,d(c̃) = [a, b]q for some a, b.

We can then distinguish two cases. If the number of candidates is small, we can perform
individual comparisons. More precisely, letting {x̃1, . . . , x̃m} = Compress−1q,d(c̃) be the list of
candidates, we must test that x = x̃i for some 1 ≤ i ≤ m. Recall that x is arithmetically masked
with n shares modulo q. Therefore we can high-order compute z =

∏m
i=1(x− x̃i) mod q and then

apply a high-order zero-test of z modulo q. Alternatively, for a large number of candidates, the
authors of [BGR+21] describe a high-order algorithm checking that x ∈ [a, b]q by performing two
high-order comparisons. We describe the two methods in more details in the next subsections.

5.3 Computing the set of candidates

Given a compressed coefficient c̃, we must compute the list of candidates Compress−1q,d(c̃). From

[BDK+18], we know that for any x ∈ Zq such that c̃ = Compressq,d(x), letting the value y =
Decompressq,d(c̃) we must have:

|y − x mod± q| ≤ Bq,d :=
⌊ q

2d+1

⌉
Therefore the number of candidates is upper-bounded by 2Bq,d + 1. The following lemma shows
that there are always at least 2Bq,d − 1 candidates around the decompressed value y, with
possibly 2 additional candidates to test with Compress. We provide the proof in Appendix D.1.

Lemma 3. Assume d < dlog2 qe. Let c̃ ∈ Z2d and let y = Decompressq,d(c̃). We have [y−Bq,d+

1, y +Bq,d − 1]q ⊂ Compress−1q,d(c̃) ⊂ [y −Bq,d, y +Bq,d]q.

Generating the list of candidates. From the above lemma, to generate the list of candidates
Compress−1q,d(c̃), it suffices to consider the set [a, b]q with a = y − Bq,d and b = y + Bq,d and
to test whether the two elements at the border belong to the set, that is we check whether
Compressq,d(a) = c and Compressq,d(b) = c. We provide the pseudocode in Algorithm 7 below.

Algorithm 7 CompressInv

Input: c̃ ∈ Z2k

Output: a, b ∈ Z such that Compress−1q,d(c̃) = [a, b]q.

1: Bq,d ←
⌊ q
2d+1

⌉
2: y ← Decompressq,d(c̃)
3: a← y −Bq,d mod q, b← y +Bq,d mod q
4: if Compressq,d(a) 6= c̃ then a← a+ 1 mod q
5: if Compressq,d(b) 6= c̃ then b← b− 1 mod q
6: return a, b
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Number of candidates. We provide in Table 8 the value of the upper-bound 2Bq,d + 1 on the
number of candidates, and the maximum number of candidates Nmax, for q = 3329. We see that
individual comparisons are feasible only for d = 10, 11, while we must use range comparison for
d = 4, 5. We describe the two techniques in the next section.

d = 4 d = 5 d = 10 d = 11

2 ·Bq,d + 1 209 105 5 3

Nmax 209 105 4 2

Table 8. Upper-bound on the number of candidates, for q = 3329.

5.4 Individual comparison

Letting {x̃1, . . . , x̃m} = Compress−1q,d(c̃) be the list of candidates, we must test whether x = x̃i for
some 1 ≤ i ≤ m. For this, given an arithmetically masked x with n shares with x = x1 + · · ·+xn
(mod q), we high-order compute the value

z =

m∏
i=1

(x− x̃i) mod q (7)

and we have that z = 0 (mod q) if and only if x = x̃i for some 1 ≤ i ≤ m. We provide in
Appendix D.2 the pseudocode description of the SecMultList algorithm, computing the n shares
of z in (7), from the input shares xi of x. For m candidates, the number of operations for
high-order computing z is therefore at most:

TSecMultList(d, n) = (2 ·Bq,d + 1) · TSecMult(n)

As a second step, one can apply a high-order zero-test of z modulo q, either the ZeroTestExpo
algorithm from Section 3.3, or the ZeroTestMult algorithm from Section 3.4.

The above applies for a single coefficient x. In reality we must compare ` coefficients, so
for each coefficient x(j) whose compressed value must be compared to the coefficient c̃j of the
input ciphertext c̃, we compute the corresponding list of candidates from c̃j , and then the
corresponding arithmetically masked z(j). Then a polynomial zero-test is applied to the set of
arithmetically masked z(j)’s modulo q, either the PolyZeroTestExpo algorithm from Section 4.4,
or the PolyZeroTestMult algorithm from Section 4.5.

5.5 Polynomial comparison with range test [BGR+21]

When the number of candidates in Compress−1q,d(c̃) is too large (which is the case for d = 4, 5), we
cannot perform individual comparisons as in the previous section. Instead, we must test whether
x ∈ [a, b]q = Compress−1q,d(c̃) by performing two high-order comparisons with the interval bounds

a and b. We recall the technique from [BGR+21] in Appendix D.3, with the pseudo-code of the
RangeTestShares algorithm and the operation count.

5.6 Ciphertext comparison in Kyber: hybrid approach

We first compare in Table 9 the efficiency of the approaches with and without Compress. For the
coefficients with compression to du = 10 bits, without using the Compress function, since the
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number of candidates is small, we can use either the RangeTestShares algorithm from [BGR+21],
or our SecMultList algorithm. We see in Table 9 that the latter is significantly faster. It is also
faster than applying the Compress function with our HOCompress algorithm. On the other hand,
for the coefficients with compression to dv = 4 bits, without using the Compress function, one
must use the RangeTestShares algorithm from [BGR+21]. But we see that our HOCompress is
nevertheless faster. Namely, it uses only a single arithmetic to Boolean conversion with a power-
of-two modulus, whereas RangeTestShares uses two arithmetic to Boolean conversions modulo
q, which is more costly than with a power-of-two modulus.

In summary, from Table 9, we deduce that for d = du = 10, our SecMultList approach
without Compress is faster, while for d = dv = 4, our HOCompress algorithm is faster. Therefore,
to perform the ciphertext comparison in Kyber, we use a hybrid approach, applying the Compress
function only for the last `2 = 256 coefficients of the ciphertext, for which d = dv = 4.

Security order t

1 2 3 4 5 6 7 8 9

du = 10

RangeTestShares [BGR+21] 707 2 318 4 314 7 577 11 225 15 620 20 400 26 809 33 603

SecMultList 45 120 230 375 555 770 1 020 1 305 1 625

HOCompress 131 868 1 579 3 181 4 898 6 764 8 809 11 823 15 611

dv = 4
RangeTestShares [BGR+21] 707 2 318 4 314 7 577 11 225 15 620 20 400 26 809 33 603

HOCompress 101 658 1 195 2 431 3 740 5 162 6 721 9 015 12 041

Table 9. Comparison of the RangeTestShares, SecMultList and HOCompress algorithms, in num-
ber of operations, for q = 3329 and d = du = 10 or d = dv = 4.

Procedure for ciphertext comparison. Recall that for masking the IND-CCA decryption of
Kyber, we must perform a comparison between the unmasked input ciphertext c̃, and the masked
re-encrypted ciphertext c. Moreover, with the Kyber768 parameters, a ciphertext consists of 4
polynomials with 256 coefficients each. The coefficients of the first 3 polynomials are compressed
with du = 10 bits, while the coefficients of the last polynomial are compressed with dv = 4 bits.
Starting from the re-encrypted uncompressed ciphertext cu which is masked modulo q, and given
the input ciphertext c̃, we proceed as follows:

1. For each of the first `1 = 768 coefficients of cu, with compression parameter du = 10, we use
the individual comparison technique from Section 5.4 (Algorithm SecMultList). We obtain a
set of values z(j) arithmetically masked modulo q, that must all be equal to 0, for 1 ≤ j ≤ `1.

2. For each of the last `2 = 256 coefficients of cu, we apply the HOCompress algorithm with
dv = 4 bits. We obtain a set of `2 coefficients c(j) for 1 ≤ j ≤ `2, which are Boolean masked
with n shares.

3. We xor each of the last `2 coefficients of the input ciphertext c̃ to the first Boolean share
of each of the corresponding `2 coefficients c(j). This gives a vector of `2 coefficients x(j) for
1 ≤ j ≤ `, which are Boolean masked with n shares, and that must all be equal to 0.

4. We apply the PolyZeroTestBool algorithm (Alg. 4) to the set of `2 coefficients x(j), but
without recombining the shares at the end of the ZeroTestBoolLog algorithm. That is, we
obtain Boolean shares bi for 1 ≤ i ≤ n, with b′ = b1⊕ · · ·⊕ bn and b′ = 1 if the `2 coefficients
x(j) are zero, and b′ = 0 otherwise.
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5. We take the complement of b′ by taking the complement of b1, and convert the result from
Boolean to arithmetic masking modulo q. We obtain an additional coefficient z(`1+1) arith-
metically masked modulo q, and that must be equal to 0.

6. Finally, we perform a zero-test of the `1 + 1 coefficients z(i) for 1 ≤ i ≤ `1 + 1, using either
the PolyZeroTestExpo or the PolyZeroTestMult algorithm. We obtain a bit b = 1 if the two
ciphertexts are equal, and b = 0 otherwise, as required.

The number of operations is then:

T = `1 · TSecMultList(du, n) + `2 · THOComp(dv, n) + `2 + TPolyZeroTestBool(13, `2, n)+

TBA(1, n) + TpolyZT(q, `1 + 1, n)

5.7 Operation count and concrete running time

We provide in Table 10 a comparison of the operation count for the ciphertext comparison in
Kyber, first using the approach from [BGR+21] without Compress, and then our hybrid approach
with the PolyZeroTestExpo and the PolyZeroTestMult methods. We see that the hybrid approach
is significantly faster, especially for high security orders. We have also performed a C implemen-
tation that confirms these results, see Table 11 below. We also provide in Table 12 the number
of 32-bit random values.

Polynomial comparison Security order t

in Kyber 1 2 3 4 5 6 7 8 9

Without Compress [BGR+21] 786 2 574 4 792 8 413 12 465 17 346 22 657 29 770 37 313

Hybrid, with PolyZeroTestExpo 121 351 606 1 071 1 584 2 156 2 794 3 650 4 724

Hybrid, with PolyZeroTestMult 121 350 603 1 065 1 575 2 144 2 778 3 629 4 697

Table 10. Operation count for the three proposed methods to perform ciphertext comparison
(with Compress and without Compress using PolyZeroTestExpo or PolyZeroTestMult), in thou-
sands of operations.

Polynomial comparison Security order t

in Kyber 1 2 3 4 5 6 7 8

Without Compress [BGR+21] 1 395 3 722 6 230 9 619 14 517 19 206 24 783 33 675

Hybrid, with PolyZeroTestExpo 191 415 563 914 1 641 2 249 2 745 3 758

Hybrid, with PolyZeroTestMult 185 410 562 966 1 731 2 046 2 829 3 842

Table 11. Running time in thousands of cycles for a C implementation on Intel(R) Core(TM)
i7-1065G7, for the three methods considered in Table 10.
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Polynomial comparison in Kyber
Security order t

1 2 3 4 5 6 7 8

Without Compress [BGR+21] 79 309 618 1 146 1 755 2 512 3 350 4 476

Hybrid, with PolyZeroTestExpo 12 31 50 94 145 202 265 356

Hybrid, with PolyZeroTestMult 12 31 50 94 145 202 264 354

Table 12. Number of calls to the rand() function (outputting a 32-bit value), in thousands of
calls, rounded down to the closest thousand, for the three methods considered in Table 10.

6 Fully masked implementation of Kyber

Kyber is a lattice-based encryption scheme and a finalist of the third round of the NIST competi-
tion [BDK+18,ABD+21]. Its security is based on the hardness of the module learning-with-errors
(M-LWE) problem. The IND-CCA secure key establishment mechanism (KEM) is obtained by
applying the Fujisaki-Okamoto transform [FO99,HHK17]. The Kyber submission provides three
parameters sets Kyber512, Kyber768 and Kyber1024, with claimed security level equivalent to
AES-128, AES-192 and AES-256 respectively. The three parameter sets share the common pa-
rameters N = 256, q = 3329 and η2 = 2, while the security level is defined by setting the module
rank k = 2, 3, 4, and the parameters η1, dt, du and dv (see Table 7).

In the following, we start with an overview of ring-LWE encryption [LPR10], and then recall
the definition of the Kyber scheme. We then describe the evaluation of the Kyber decapsulation
mechanism, secure at any order, using the techniques from the previous sections.

6.1 The Kyber Key Encapsulation Mechanism (KEM)

Ring-LWE IND-CPA encryption. Let R and Rq denote the rings Z[X]/(XN + 1) and
Zq[X]/(XN + 1) respectively, for some N ∈ Z and an integer q. Let a ∈ Rq be a public random
polynomial. Let χ be a distribution outputting “small” elements in R, and let s, e ← χ. The
public-key is t = as+ e ∈ Rq, while the secret key is s. To CPA-encrypt a message m ∈ R with
binary coefficients, one computes the ciphertext (c1, c2) where

c1 = a · e1 + e2

c2 = t · e1 + e3 + bq/2e ·m
(8)

with e1, e2, e3 ← χ. To decrypt a ciphertext (c1, c2), one first computes u = c2 − s · c1, which
gives:

u = (a · s+ e) · e1 + e3 + bq/2e ·m− s · a · e1 − s · e2
= bq/2e ·m+ e · e1 + e3 − s · e2

Since the ring elements e, e1, e2, e3 and s are small, and the message m ∈ R has binary
coefficients, we can recover m by rounding. Namely, for each coefficient of the above polynomial
u, we decode to 0 if the coefficient is closer to 0 than bq/2e, and to 1 otherwise. More precisely,
we decode the message m as m = th(c2 − s · c1), where th applies coefficient-wise the threshold
function th : Zq → {0, 1}:

th(x) =

{
0 if x ∈ (0, q/4) ∪ (3q/4, q)
1 if x ∈ (q/4, 3q/4)

(9)
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The Kyber IND-CPA encryption. The Kyber scheme is based on the module learning-with-
errors problem (M-LWE) in module lattices [LS15]. For a modulo rank k, we use a public random
k × k matrix A with elements in Rq. We set χη as the centered binomial distribution with
support {−η, . . . , η}, and extended to the distribution of polynomials of degree N with entries
independently sampled from χη. The public-key is t = A·s+e ∈ Rkq and the secret key is s, where

s, e ← χkη1 for some parameter η1. To CPA-encrypt a message m ∈ R with binary coefficients,

one computes (c1, c2) ∈ Rkq × Rq such that c1 = AT · r + e1 and c2 = tT · r + e2 + bq/2e ·m,

where r← χkη1 , e1 ← χkη2 and e2 ← χη2 , for some parameter η2. To decrypt a ciphertext (c1, c2),
one computes as previously:

u = c2 − sT · c1 = eT · r + e2 − sT · e1 + bq/2e ·m ≈ bq/2e ·m

Kyber instantiates the M-LWE-based encryption scheme above with N = 256 and a prime
q = 3329; see Table 7 for the other parameters. We recall the pseudo-code from [BDK+18]
below. For simplicity we omit the NTT transform for fast polynomial multiplication. The NTT
is indeed a linear operation, so it is easily masked with arithmetic masking modulo q.

Algorithm 8 Kyber.CPA.KeyGen()

1: ρ, σ ← {0, 1}256
2: A← Rk×kq := Sam(ρ)

3: s, e← χkη1 × χ
k
η1 := Sam(σ)

4: t := Compressq,dt(As + e)
5: return pk := (t, ρ), sk := s

Algorithm 9 Kyber.CPA.Dec(sk, c = (u, v))

1: u := Decompressq,du(u)
2: v := Decompressq,dv(v)

3: return Compressq,1(v − sTu)

Algorithm 10 Kyber.CPA.Enc(pk,m)

1: r ← {0, 1}256
2: t := Decompressq,dt(t)

3: A← Rk×kq := Sam(ρ)

4: r, e1, e2 ← χkη1 × χ
k
η2 × χη2 := Sam(r)

5: u := Compressq,du(AT r + e1)

6: v := Compressq,dv(tT r + e2 + bq/2e ·m)
7: return c := (u, v)

The Kyber CCA-secure KEM. The Kyber scheme provides a CCA-secure key encapsulation
mechanism, based on the Fujisaki-Okamoto transform [FO99]. We recall the pseudo-code from
[BDK+18] below. It requires two different hash functions H and G. The main principle of the
Fujisaki-Okamoto transform is to check the validity of a ciphertext by performing a re-encryption
with the same randomness (see the variable r′ at Line 3 of Algorithm 12 below), and a comparison
with the original ciphertext.

Note that the Kyber.Decaps algorithm does not output ⊥ for invalid ciphertexts, as originally
in the FO transform. Instead, it outputs a pseudo-random value from the hash of a secret seed z
and the ciphertext c. This variant of the FO transform was proven secure in [HHK17]. However,
the variant remains secure even if the adversary is given the result of the ciphertext compari-
son, under the condition that the IND-CPA scheme is γ-spread, which essentially means that
ciphertexts have sufficiently large entropy (see [HHK17]), which is the case in Kyber. Therefore,
in the high-order masking of Kyber, the bit b of the comparison can be computed in the clear
(as in [BGR+21]), because for the simulation of the probes the bit b can be given for free to the
simulator.

25



Algorithm 11 Kyber.Encaps(pk)

1: m← {0, 1}256
2: (K̂, r) := G(H(pk),m)
3: c := Kyber.CPA.Enc(pk,m; r)
4: K = H(K̂,H(c))
5: return c,K

Algorithm 12 Kyber.Decaps(sk =
(s, z, t, ρ), c = (u, v))

1: m′ := Kyber.CPA.Dec(s, c)
2: (K̂ ′, r′) := G(H(pk),m′)
3: (u′, v′) := Kyber.CPA.Enc((t, ρ),m′; r′)
4: if (u′, v′) = (u, v) then

return K := H(K̂ ′, H(c))
5: else return K := H(z,H(c))

6.2 High-order masking of Kyber

We describe the high-order masking of the Kyber.Decaps algorithm recalled above (Algorithm
12), using the techniques from the previous sections.

1. We consider Line 1 of Algorithm 12, with the IND-CPA decryption as the first step. We
assume that the secret key s ∈ Rk is initially masked with n shares, with s = s1 + · · · + sn
(mod q), where si ∈ (Rq)k for all 1 ≤ i ≤ n. Therefore, at Line 3 of the Kyber.CPA.Dec algo-
rithm, we obtain a value v−sTu that is arithmetically n-shared modulo q. We must therefore
compute the Compressq,1 function on this value, which is the same as the threshold function
th from (9). For this we use the modulus switching and table recomputation technique from
[CGMZ21], which outputs a Boolean masked message m′ = m1 ⊕ · · · ⊕mn = th(v − sTu).

2. At Line 2 of Algorithm 12, starting from the Boolean masked m′, we use an n-shared Boolean
implementation of the hash function G, and obtain as output the Boolean n-shared values
K̂ ′ and r′.

3. At Line 3 of Algorithm 12, we start with Line 4 of Algorithm 10 which is the masked
binomial sampling. Starting from the Boolean n-shared r′, we must obtain values r, e1
and e2 which are arithmetically n-shared modulo q. For this we use the n-shared binomial
sampling from [CGMZ21], based on Boolean to arithmetic modulo q conversion (based on
table recomputation). We use the random generation modulo q described in Appendix A.

4. We proceed with lines 5 and 6 of Algorithm 10. We obtain the values AT · r + e1 and
tT · r + e2 + bq/2e ·m arithmetically n-shared modulo q. In particular, the n-shared value
bq/2e ·m is obtained using the table-based Boolean to arithmetic modulo q conversion from
[CGMZ21].

5. At Line 6 of Algorithm 10, the n-shared value tT ·r+e2 + bq/2e ·m is high-order compressed
into v′ using the HOCompress algorithm from Section 5.1. The value v′ is therefore Boolean
n-shared in {0, 1}dv . On the other hand, the vector u′ at Line 5 is left uncompressed.

6. For the ciphertext comparison at Line 4 of Algorithm 12, we use the hybrid technique
from Section 5.6 with the arithmetically masked modulo q uncompressed vector u′, and
the Boolean masked compressed value v′. We obtain a bit b in the clear.

7. Finally, if b = 1, we use the Boolean n-shared K̂ ′ to obtain a Boolean n-shared session key
K, using an n-shared implementation of H. Similarly, if b = 0, we use the Boolean n-shared
secret z to obtain the Boolean n-shared session key K.

We describe in Section 8 the implementation results of the fully masked Kyber.Decaps.
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7 Fully masked implementation of Saber

7.1 The Saber Key Encapsulation Mechanism (KEM)

Saber [BMD+21] is based on the hardness on the module learning-with-rounding (M-LWR)
problem. The difference with Kyber is that instead of explicitly adding error terms e, e1, e2 from
a “small” distribution, the errors are deterministically added by applying a rounding function
mapping Zq to Zp with p < q. For Saber, both p and q are powers of two; therefore the rounding
function is a shift extracting the log2(p) most significant bits of its input.

The Saber submission provides three parameters sets LightSaber, Saber and FireSaber with
claimed security level equivalent to AES-128, AES-192 and AES-256 respectively; see Table 13.
We recall the pseudocode below. The constants h1, h2 and h are needed to center the errors
introduced by rounding around 0. We write q = 2εq and p = 2εp .

Algorithm 13 Saber.CPA.KeyGen()

1: ρ, σ ← {0, 1}256
2: A← Rk×kq := Sam(ρ)

3: s← χkµ := Sam(σ)

4: t := (AT s + h mod q)� (εq − εp) ∈ Rkp
5: return pk := (t, ρ), sk := s

N k q p T µ

LightSaber 256 2 213 210 23 5

Saber 256 3 213 210 24 4

FireSaber 256 4 213 210 26 3

Table 13. Parameter set for Saber.

Algorithm 14 Saber.CPA.Enc(pk,m)

1: r ← {0, 1}256
2: A← Rk×kq := Sam(ρ)

3: r← χkµ := Sam(r)

4: u := (Ar + h mod q)� (εq − εp) ∈ Rkp
5: v′ := tT (r mod p) ∈ Rp
6: cm := (v′ + h1 − 2εp−1m mod p) � (εp −
εT ) ∈ RT

7: return c := (u, cm)

Algorithm 15 Saber.CPA.Dec(sk, c = (u, cm))

1: v := uT (s mod p) ∈ Rp
2: m := (v−2εp−εT cm+h2 mod p)� (εp−1) ∈
R2

3: return m

The Saber CCA-secure key encapsulation mechanism is similar to that of Kyber. We recall
the pseudocode below.

Algorithm 16 Saber.Encaps(pk)

1: m← {0, 1}256
2: (K̂, r) := G(H(pk),m)
3: c := Saber.CPA.Enc(pk,m; r)
4: K = H(K̂, c)
5: return c,K

Alg. 17 Saber.Decaps(sk = (s, z, t, ρ), c)

1: m′ := Saber.CPA.Dec(s, c)
2: (K̂ ′, r′) := G(H(pk),m′)
3: c′ :=Saber.CPA.Enc((t, ρ),m′; r′)
4: if c = c′ then return K := H(K̂ ′, c)
5: else return K := H(z, c)

7.2 High-order masking of Saber

The high-order masking of Saber is quite similar to that of Kyber. The main difference is that
we work with power-of-two moduli. We describe the high-order masking of the Saber.Decaps
algorithm recalled above (Algorithm 17), using the techniques from the previous sections.
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1. We consider Line 1 of Algorithm 17. As previously, we assume that the secret key s ∈ Rkq
is initially arithmetically masked with n shares. By modular reduction, we obtain n shares
in Rkp. Therefore, at Line 1 of the Saber.CPA.Dec algorithm, we obtain a value v that is
arithmetically n-shared modulo p. At Line 2, we obtain n Boolean shares of the message m
by arithmetic to Boolean conversion modulo p = 2εp using [CGV14], and taking the MSB of
each share.

2. At Line 2 of Algorithm 17, starting from the Boolean masked m′, we use an n-shared Boolean
implementation of the hash function G, and obtain as output the Boolean n-shared values
K̂ ′ and r′.

3. At Line 3 of Algorithm 17, we start with Line 3 of Algorithm 14 which is the masked binomial
sampling. Starting from the Boolean n-shared r′, we must obtain a value r which is arithmeti-
cally n-shared modulo q. For this we use the n-masked binomial sampling from [CGMZ21],
based on Boolean to arithmetic modulo q conversion (based on table recomputation).

4. We proceed with Line 4 of Algorithm 14. The vector Ar + h mod q is n-shared modulo q.
We convert from arithmetic to Boolean masking using [CGV14], and then perform a right
shift of all Boolean shares by εq − εp. The vector u′ as output of Line 4 of Algorithm 14 is
therefore Boolean masked with n shares.

5. At Line 5, the value r is arithmetically masked modulo p by modular reduction modulo
p of the shares modulo q. The value v′ is therefore arithmetically masked modulo p. This
enables to compute the value v′ + h1 − 2εp−1m mod p at Line 6 with n shares modulo p. As
previously the shift by εp − εT bits is computed via arithmetic to Boolean conversion. At
Line 3 of Algorithm 17, the vector u′ and the value c′m of the ciphertext c′ = (u′, c′m) are
therefore both in Boolean masked form.

6. For the ciphertext comparison at Line 4, we use the same technique as in Section 5.6 for
the ciphertext comparison of Kyber, for the second part of the ciphertext with the Compress
function (lines 3 and 4). Eventually we recombine the shares and we obtain a bit b in the
clear, with b = 1 if the two ciphertexts match.

7. Finally, as in Kyber, if b = 1, we use the Boolean n-shared K̂ ′ to obtain a Boolean n-shared
session key K, using an n-shared implementation of H. Similarly, if b = 0, we use the Boolean
n-shared secret z to obtain the Boolean n-shared session key K.

8 Practical implementation

We have implemented in C a high-order version of the Kyber.Decaps and Saber.Decaps algorithms,
following the description of sections 6.2 and 7.2 respectively. For both schemes, we have targeted
the parameter set corresponding to NIST security category 3 (parameters Kyber768 and Saber,
see tables 7 and 13). We have run our implementation on a laptop. We provide the source code
of the laptop implementation at:

https://github.com/fragerar/HOTableConv/tree/main/Masked_KEMs

We see that for both Kyber and Saber the performance gap between the unmasked and
the order 1 versions is fairly large. This is because we have used generic gadgets only, with
no optimization at order 1. In practice, for first-order security, a significantly lower penalty
factor could be obtained via some optimizations. In particular, all techniques based on table
recomputation are much more efficient at order 1, since in that case the table can be randomized
once and read multiple times.
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8.1 Kyber

Our high-order implementation of Kyber.Decaps follows the description from Section 6.2. To gen-
erate random integers modulo q, we use the technique described in Algorithm 18 (see Appendix
A), starting from a 32-bit random number generator. The timings are summarized in Table 14.

Security order t

0 1 2 3 4 5 6 7

Intel i7 133 1 164 2 225 4 723 6 613 11 177 14 174 19 806

Table 14. Kyber.Decaps cycles counts on Intel(R) Core(TM) i7-1065G7, in thousands of cycles.

8.2 Saber

Our high-order implementation of Saber.Decaps follows the description from Section 7.2. The
timings are summarized in Table 15.

Security order t

0 1 2 3 4 5 6 7

Intel i7 100 352 933 1 585 2 828 4 208 5 621 7 251

Table 15. Saber.Decaps cycles counts on Intel(R) Core(TM) i7-1065G7, in thousands of cycles.

9 Conclusion

In this paper, we have described efficient techniques for high-order polynomial comparison, as
used in lattice-based schemes with the Fujisaki-Okamoto transform. As an application, we have
considered the high-order polynomial comparison in Kyber. We have provided the first high-
order description of the Compress function in Kyber, in order to perform the comparison on
compressed ciphertexts. We have shown that the best approach is actually hybrid, with the
Compress function being applied only on the last part of the ciphertext, while the rest is left
uncompressed for the comparison. Finally, we have provided a complete description of the high-
order masking of the IND-CCA decryption of the Kyber and Saber schemes at any order, with
the practical results of a C implementation.
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A Random generation modulo q

To generate a random integer in Zq, one can generate a random k-bit integer where the gap
2k− i ·q is small for some i. By rejection sampling, one obtains a uniformly distributed integer in
[0, i·q[, from which we obtain a uniformly distributed integer modulo q, with rejection probability
1−i·q/2k. For example, with q = 3329, one can take k = 16 and i = 19, with rejection probability
0.035.

We can also use the trick described in [Lum13, Section 3]. It consists in generating a random
integer modulo q2, which enables to extract two random integers modulo q; we can of course use
higher powers of q. As previously, we generate a random k-bit integer such that the gap 2k− i ·q2
is small. The rejection probability is then 1− i · q2/2k. For example, with q = 3329, we can use
k = 25 and i = 3, and the rejection probability is 0.009, so we are using 12.5 bits per random
integer modulo q, with rejection probability 0.0046 per random integer. We can also use k = 32
and i = 387, which gives 16 bits per random integer as previously, but with rejection probability
0.0007 per random integer (instead of 0.035, so a factor 50 improvement in rejection rate). We
describe the pseudo-code below, to be run with parameters (i, k, q) = (387, 32, 3329).

Algorithm 18 randomModq

Input: Parameters i, k, q such that i · q2 < 2k.
Output: r1, r2 uniformly distributed in Zq.
1: r := 2k

2: while r ≥ i · q2 do
3: r ← {0, 1}k
4: end while
5: r := r mod q2

6: return (r mod q, br/qc)
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B Zero testing a single value

B.1 The SecAnd algorithm

We first recall the SecAnd algorithm that enables to compute the And between two Boolean
masked values with n shares. The algorithm is a variant with k-bit words of the original ISW
algorithm.

Algorithm 19 SecAnd

Input: k ∈ N, x1, . . . , xn ∈ {0, 1}k, y1, . . . , yn ∈ {0, 1}k

Output: z1, . . . , zn ∈ {0, 1}k, with
n⊕
i=1

zi = (
n⊕
i=1

xi) ∧ (
n⊕
i=1

yi)

1: for i = 1 to n do zi ← xi ∧ yi
2: for i = 1 to n do
3: for j = i+ 1 to n do
4: r ← {0, 1}k
5: r′ ← (r ⊕ (xi ∧ yj))⊕ (xj ∧ yi)
6: zi ← zi ⊕ r
7: zj ← zj ⊕ r′
8: end for
9: end for

10: return z1, . . . , zn

The algorithm has complexity O(n2), with a number of operations :

TSecAnd(n) = n(7n− 5)/2

Lemma 4 ([BBD+16]). The SecAnd algorithm is (n− 1)-SNI.

B.2 Mask refreshing

We recall the RefreshMasks algorithm, where the operations are performed in any finite field F,
including Zq for prime q.

Algorithm 20 RefreshMasks

Input: a1, . . . , an
Output: c1, . . . , cn such that

∑n
i=1 ci =

∑n
i=1 ai

1: For i = 1 to n do ci ← ai
2: for i = 1 to n do
3: for j = i+ 1 to n do
4: r ← F, ci ← ci + r, cj ← cj − r
5: end for
6: end for
7: return c1, . . . , cn
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The algorithm has complexity O(n2), with a number of operations

Trefresh(n) = 3n(n− 1)/2

Lemma 5 ([BBD+16]). The RefreshMasks algorithm is (n− 1)-SNI.

B.3 Boolean zero-test with complexity O(n2 · log k)

Let x ∈ {0, 1}k and let x = x1 ⊕ · · · ⊕ xn a Boolean sharing of x. We describe a procedure to
zero-test x in O(n2 · log k) operations on k-bit registers, instead of O(n2 · k) with the previous
approach. The technique is as follows. We write

x = x(k−1) · · ·x(0)

the k bits of x. Let m = dlog2 ke. If k is not a power of two, then we set the most significant bits
of x to 1 until the next power of two, which is 2m. Let fi(x) = x ∧ (x � 2i). We prove below
that we have:

x(k−1) ∧ · · · ∧ x(0) = LSB ((fm−1 ◦ · · · ◦ f0)(x)) (10)

Therefore to zero-test x, we can compute:

x(k−1) ∨ · · · ∨ x(0) = LSB ((fm−1 ◦ · · · ◦ f0)(x̄))

We describe in Algorithm 21 below the high-order computation of the previous equation with n
shares, using the SecAnd and RefreshMasks algorithms from sections B.1 and B.2.

Algorithm 21 ZeroTestBoolLog

Input: k ∈ Z and x1, . . . , xn ∈ {0, 1}k
Output: b ∈ {0, 1} with b = 1 if ⊕ni=1xi = 0 and b = 0 otherwise
1: m← dlog2 ke
2: y1 ← x1 or (22

m − 2k)
3: for i = 2 to n do yi ← xi
4: for i = 0 to m− 1 do
5: (z1, . . . , zn)← RefreshMasks(y1 � 2i, . . . , yn � 2i)
6: (y1, . . . , yn)← SecAnd(m, (y1, . . . , yn), (z1, . . . , zn))
7: end for
8: (b1, . . . , bn)← RefreshMasks(y1 & 1, . . . , yn & 1)
9: return b1 ⊕ · · · ⊕ bn

Theorem 13 (Soundness). Given as input x1, . . . , xn ∈ {0, 1}k, the ZeroTestBoolLog algo-
rithm outputs b = 1 if ⊕ni=1xi = 0 and b = 0 otherwise.

Proof. We first consider the case where n = 1, that is x = x1 and y = y1 = x. For simplicity,
we first assume that k is a power of two, that is k = 2m. At Step 6 of the ZeroTestBoolLog
algorithm, we compute (fm−1 ◦ · · · ◦ f0)(y) where fi(y) = y ∧ (y � 2i). To ease reading, we
denote by Fi(y) the value (fi ◦ · · · ◦f0)(y). In the following we prove by recurrence on i for i < m
that the j-th bit of Fi(y) is

(Fi(y))(j) = y(j+2i+1−1) ∧ · · · ∧ y(j) , (11)
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for j ≤ 2m − 2i+1. For the base case i = 0, we have

(F0(y))(j) = (f0(y))(j) = ((y � 1) ∧ y)(j) = (y � 1)(j) ∧ y(j) = y(j+1) ∧ y(j)

which satisfies the recurrence hypothesis. Now we show that

(Fi+1(y))(j) = y(j+2i+2−1) ∧ · · · ∧ y(j) .

Indeed, we have

(Fi+1(y))(j) = (fi+1(Fi(y)))(j) = (Fi(y) ∧ ((Fi(y)� 2i+1)))(j) = (Fi(y))(j) ∧ (Fi(y))(j+2i+1) .

By using the recurrence hypothesis in Equation (11), we get

(Fi+1(y))(j) = (y(j+2i+1−1) ∧ · · · ∧ y(j)) ∧ (y((j+2i+1)+2i+1−1) ∧ · · · ∧ y(j+2i+1))

= y(j+2i+2−1) ∧ · · · ∧ y(j) ,

which terminates the recursive proof.

In particular, for i = m − 1, we can use Equation (11) for j ≤ 2m − 2i+1 = 0. Thus, by
keeping only the LSB part (that is j = 0) as done in Step 8 of Algorithm ZeroTestBoolLog, we
have:

(Fm−1(y))(0) = LSB ((fm−1 ◦ · · · ◦ f0)(y)) = y(2
m−1) ∧ · · · ∧ y(0) = y(k−1) ∧ · · · ∧ y(0) ,

as specified in equation (10). Note that this is also true in the case where k is not a power of
two since in this case, the most significant bits of y are initially set to 1. From y = x, we obtain
as required:

LSB ((fm−1 ◦ · · · ◦ f0)(x̄)) = y(k−1) ∨ · · · ∨ y(0) = x(k−1) ∨ · · · ∨ x(0) .

Eventually, the result also holds for x = x1 ⊕ · · · ⊕ xn with n > 1, since the same operations
are performed on all shares, which proves the theorem. ut

Complexity. We have using Trefresh(n) = 3n(n− 1)/2 and TSecAnd(n) = n(7n− 5)/2

TZeroTestBoolLog(k, n) = 2 + dlog2 ke · (n+ Trefresh(n) + TSecAnd(n)) + n+ Trefresh(n) + n− 1

' 5n2dlog2 ke

Theorem 14. The ZeroTestBoolLog algorithm is (n− 1)-NI, when b is given to the simulator.

Proof. It is easy to see that the composition of steps 5 and 6 is (n − 1)-SNI secure, from the
(n−1)-SNI security of SecAnd and RefreshMasks. Therefore, the ZeroTestBoolLog algorithm up to
Line 7 satisfies the (n− 1)-SNI property, and thanks to the last RefreshMasks, the full algorithm
is (n− 1)-NI when b is given to the simulator.

ut
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B.4 Zero testing modulo 2k for small k via table recomputation

The technique is a direct application of the table-based conversion algorithm from [CGMZ21].
Namely the table recomputation from [CGMZ21] can high-order compute any function f : G→
H, for any groups G and H. So it suffices to take G = Zq and H = {0, 1}, with f(x) = 1 if
x = 0 (mod q) and f(x) = 0 otherwise. The technique has complexity O(q · n2), which can
be prohibitive for large q. For q = 2k and small k, we can use the register optimization from
[CGMZ21]. In that case the countermeasure has complexity O(n2) only, assuming that we have
access to 2k-bit registers. Therefore this optimization can only work for small k, say up to k = 8.

More precisely, the technique first initializes a table T with q rows, where for 0 ≤ i < q the
i-th row contains a n-shared Boolean encoding of 1 for i = 0, and 0 otherwise:

T (0) = (1, 0, . . . , 0)

T (1) = (0, 0, . . . , 0)

...

T (q − 1) = (0, 0, . . . , 0)

Given as input the shares xi with x = x1 + · · ·+ xn (mod q), one progressively shifts the rows
of the table by successive shares xi, up to the xn−1 share. The encodings are refreshed between
each successive shift. Eventually the table has been shifted by x1+ · · ·+xn−1 mod q, so it suffices
to read the table at row xn to obtain an encoding of 1 if x = 0, and 0 otherwise. The register
optimization consists in putting each column of the table in a register, so that the shifting of
the table by each xi corresponds to a rotation by xi of each of the n registers, which is much
faster. We provide the pseudocode below. We denote by Rj [u] the u-th bit of register Rj and we
denote by ROR[a](R) the cyclic rotation of a register R by a bits to the right.

Algorithm 22 ZeroTestTable

Input: x1, . . . , xn ∈ Z2k

Output: b ∈ {0, 1}, with b = 1 if x1 + · · ·+ xn = 0 (mod 2k), and 0 otherwise.

1: R1[0]← 1
2: for all 1 ≤ u < 2k do R1[u]← 0
3: for all 2 ≤ j ≤ n do Rj ← 0.
4: for i = 1 to n− 1 do
5: for j = 1 to n do Rj ← ROR[xi](Rj)
6: for j = 1 to n− 1 do
7: r ← {0, 1}2k , Rj ← Rj ⊕ r, Rn ← Rn ⊕ r
8: end for
9: end for

10: (b1, . . . , bn)← RefreshMasks{0,1}(R1[xn], . . . , Rn[xn])
11: return b1 ⊕ · · · ⊕ bn

Theorem 15. The ZeroTestTable algorithm is (n− 1)-NI, when b is given to the simulator.

Proof. From [CGMZ21], the ZeroTestTable algorithm up to Line 10 is (n− 1)− SNI. Thanks to
the last RefreshMasks, it is actually free-(n−1)−SNI. Therefore the full algorithm is (n−1)−NI
when the output b is given to the simulator. ut
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B.5 Secure Multiplication modulo q

We recall hereafter the SecMult algorithm as already considered in [SPOG19]. Note that the
number of operations of SecMult is n · (7n − 5)/2 by considering random generation in Zq,
addition and multiplication modulo q as a single operation.

Algorithm 23 SecMult

Input: x1, . . . , xn ∈ Zq, y1, . . . , yn ∈ Zq
Output: z1, . . . , zn ∈ Zq such that

∑
i zi = (

∑
i xi) · (

∑
i yi) mod q.

1: for i = 1 to n do zi ← xi · yi mod q
2: for i = 1 to n do
3: for j = i+ 1 to n do
4: r ← Zq
5: r′ ← (r + xi · yj mod q) + xj · yi mod q
6: zi ← zi − r mod q
7: zj ← zj + r′ mod q
8: end for
9: end for

B.6 Zero testing modulo a prime q via exponentiation

Algorithm 24 SecExpo

Input: A1, . . . , An ∈ Zq with
∑

iAi = x (mod q) for prime q, an exponent e.
Output: B1, . . . , Bn ∈ Zq with

∑
iBi = xe (mod q)

1: (B1, . . . , Bn)← (1, 0, . . . , 0)
2: for i = dlog2 ee to 0 do
3: (C1, . . . , Cn)← RefreshMasks(B1, . . . , Bn)
4: (B1, . . . , Bn)← SecMult((B1, . . . , Bn), (C1, . . . , Cn))
5: if (e& 2i) = 2i then (B1, . . . , Bn)← SecMult((B1, . . . , Bn), (A1, . . . , An))
6: end for
7: return (B1, . . . , Bn)

Algorithm 25 ZeroTestExpoShares

Input: A1, . . . , An ∈ Zq for prime q.
Output: B1, . . . , Bn with

∑
iBi = 1 (mod q) if

∑
iAi = 0 (mod q) and

∑
iBi = 0 (mod q)

otherwise
1: (B1, . . . , Bn)← SecExpo((A1, . . . , An), q − 1)
2: (B1, . . . , Bn)← (1−B1 mod q,−B2 mod q, . . . ,−Bn mod q)
3: return (B1, . . . , Bn)
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Algorithm 26 ZeroTestExpo

Input: A1, . . . , An ∈ Zq for prime q.
Output: b ∈ {0, 1} with b = 1 if

∑
iAi = 0 (mod q) and b = 0 otherwise

1: (B1, . . . , Bn)← ZeroTestExpoShares(A1, . . . , An)
2: (C1, . . . , Cn)← RefreshMasks(B1, . . . , Bn)
3: return C1 + · · ·+ Cn mod q

Complexity. The complexity of the SecExpo algorithm with e = q−1 is O(n2 · log q), assuming
that a multiplication modulo q takes unit time. More precisely, the number of operations of
SecMult is n ·(7n−5)/2. The number of operation of RefreshMasks is n ·(3n−1)/2. For q = 3329,
the algorithm requires 13 squares and 4 multiplies. This means 4 RefreshMasks and 17 SecMult.
The total number of operations for SecExpo is therefore n·(131n−89)/2. Eventually, the number
of operations for ZeroTestExpoShares is:

TZeroTestExpoShares(n) = n · (131n− 87)/2

and is finally n · (67n− 43) for ZeroTestExpo.

B.7 Proof of Theorem 3

The SecExpo algorithm is (n − 1)-SNI since it is the composition of several iterations of the
SecMult algorithm which is (n − 1)-SNI, with some RefreshMasks operations which are also
(n − 1)-SNI. The ZeroTestExpoShares algorithm is (n − 1)-SNI since it is essentially composed
by the SecExpo algorithm which is (n− 1)-SNI, where the output variables are simply modified
with some known constants.

The ZeroTestExpo algorithm is composed by the ZeroTestExpoShares algorithm which is (n−
1)-SNI, followed by a RefreshMasks performed at Step 2 which is free-(n − 1)-SNI from Lemma
1. Therefore, steps 1 and 2, that is, the whole ZeroTestExpo before combining the output shares
(C1, . . . , Cn), is free-(n− 1)-SNI. One can then use Corollary 1 to deduce that the ZeroTestExpo
algorithm is (n− 1)-NI when the output b = C1 + · · ·+ Cn mod q is given to the simulator.

B.8 The LinearRefreshMasks algorithm

Algorithm 27 LinearRefreshMasks

Input: q ∈ Z and x1, . . . , xn ∈ Zq
Output: y1, . . . , yn ∈ Zq such that y1 + · · ·+ yn = x1 + · · ·+ xn (mod q)
1: yn ← xn
2: for j = 1 to n− 1 do
3: rj ← Zq
4: yj ← xj + rj mod q
5: yn ← yn − rj mod q
6: end for
7: return y1, . . . , yn
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B.9 Proof of Theorem 4

We describe hereafter the construction of the set I ⊂ [1, n] of indices. Initially, I is empty. For
every probed input variable xi and for any probed intermediate variable Bi at Loop j between
Steps 3 and 5, for 1 ≤ i ≤ n, we add index i to I. By construction of the set I, we have |I| ≤ t
as required.

We now show that any t probes of Algorithm ZeroTestMult can be perfectly simulated from
x|I and b. Since the number of probes t is such that t < n, we deduce that at least one entire loop
(Steps 3 to 5) has not been probed. Let j? be the index of this non-probed loop. For all probed
variables Bi between Steps 3 and 5 in loop indices j < j?, we have i ∈ I and the simulation is
straightforward from the input shares x|I .

It remains to simulate all probed variables between Steps 3 and 5 in loop indices j ≥ j?, and
all probed variables at Step 7. To this aim, we consider two cases whether the output b = 0 or
b = 1 (recall that b is given to the simulator).

If b = 1, then we know that
∑n

i=1Bi = 0 (mod q) at the end of each for loop. At the end
of loop j?, since LinearRefreshMasks has not been proved, we can perfectly simulate all variables
Bi, by generating random Bi’s for 1 ≤ i ≤ n such that

∑n
i=1Bi = 0 (mod q).

Similarly, if b = 0, we use the fact that uj? has not been probed and acts as a multiplicative
one-time pad in Z∗q . This implies that the value encoded by the Bi’s is randomly distributed in
Z∗q . We can therefore perfectly simulate all shares Bi for 1 ≤ i ≤ n at the end of loop j? by
generating random Bi’s under the condition

∑n
i=1Bi 6= 0 (mod q).

In both cases, one can propagate the simulation until the end of the for loop, that is until
j = n, and from the knowledge of the Bi shares at the end of the for loop, one can compute all
probed intermediate variables at Step 7 as in the real algorithm. We therefore conclude that the
ZeroTestMult algorithm is (n− 1)-NI, when b is given to the simulator.

C Polynomial comparison

C.1 Polynomial comparison modulo 2k via A. to B. conversion

Algorithm 28 PolyZeroTestAB

Input: q ∈ Z, k ∈ Z with q ≤ 2k, and (x
(j)
i ) ∈ Zq for 1 ≤ i ≤ n and 1 ≤ j ≤ `.

Output: b ∈ {0, 1} with b = 1 if
∑

i x
(j)
i = 0 (mod q) for all 1 ≤ j ≤ `, and b = 0 otherwise

1: for j = 1 to ` do

2: (y
(j)
i )1≤i≤n ← ArithmeticToBoolean(q, (x

(j)
i )1≤i≤n)

3: end for
4: return PolyZeroTestBool(k, (y

(j)
i ))

The number of operations is

TPolyZeroTestAB(k, n) = ` · TAB(k, n) + TPolyZeroTestBool(k, n)
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C.2 Polynomial comparison modulo q via exponentiation

Algorithm 29 PolyZeroTestExpo

Input: q ∈ Z, κ ∈ Z, and (x
(j)
i ) ∈ Zq for 1 ≤ i ≤ n and 1 ≤ j ≤ `.

Output: b ∈ {0, 1} with b = 1 if
∑

i x
(j)
i = 0 (mod q) for all 1 ≤ j ≤ ` and b = 0 otherwise

1: (y
(k)
i )1≤k≤κ, 1≤i≤n ← PolyZeroTestRed((x

(j)
i )1≤j≤`, 1≤i≤n)

2: (B1, . . . , Bn)← ZeroTestExpoShares(y
(1)
1 , . . . , y

(1)
n )

3: for j = 2 to κ do

4: (C1, . . . , Cn)← ZeroTestExpoShares(y
(j)
1 , . . . , y

(j)
n )

5: (B1, . . . , Bn)← SecMult((B1, . . . , Bn), (C1, . . . , Cn))
6: end for
7: (C1, . . . , Cn)← RefreshMasks(B1, . . . , Bn)
8: B ← C1 + · · ·+ Cn mod q
9: if B = 1 then return 1

10: else return 0

The number of operations is:

TPolyZeroTestExpo(q, κ, `, n) = TPolyZeroTestRed(κ, `, n) + κ · TZeroTestExpoShares(q, n)+

(κ− 1) · TSecMult(n) + TRefreshMasks(n) + n

C.3 Polynomial comparison modulo q via multiplicative masking

Algorithm 30 PolyZeroTestMult

Input: q ∈ Z, a parameter κ and (x
(j)
i ) ∈ Zq for 1 ≤ i ≤ n and 1 ≤ j ≤ `.

Output: b ∈ {0, 1} with b = 1 if
∑

i x
(j)
i = 0 (mod q) for all 1 ≤ j ≤ ` and b = 0 otherwise

1: (y
(k)
i )1≤k≤κ, 1≤i≤n ← PolyZeroTestRed((x

(j)
i )1≤j≤`, 1≤i≤n)

2: b← 0
3: for k = 1 to κ do
4: for i = 1 to n do zi ← 0
5: for j = 1 to ` do

6: for i = 1 to n do a
(j)
i ← Zq

7: (z
(j)
1 , . . . , z

(j)
n )← SecMult((a

(j)
1 , . . . , a

(j)
n ), (y

(j)
1 , . . . , y

(j)
n ))

8: for i = 1 to n do zi ← zi + z
(j)
i mod q

9: end for
10: bk ← ZeroTestMult(z1, . . . , zn)
11: b← b+ bk
12: end for
13: if b = κ then b← 1 else b← 0
14: return b
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The complexity of the PolyZeroTestMult algorithm is

TPolyZeroTestMult(q, κ, `, n) = TPolyZeroTestRed(κ, `, n)+

κ · (κ · (TSecMult(n) + 2n) + TZeroTestMult(n)))

C.4 Proof of Theorem 9

We denote by PolyZeroTestMultLoop, one loop iteration on k of the PolyZeroTestMult algorithm,
namely, going from line 4 to 11. We start by showing that PolyZeroTestMultLoop computes the
correct answer bk, except with probability at most 1/q. Indeed, in PolyZeroTestMultLoop, one
securely computes the value z =

∑`
j=1 a

(j) · y(j) (mod q) where the random values a(j) are

uniformly distributed in Zq. Thus, if z 6= 0, then at least one coefficient y(j) is not zero and the
output bk = 0 is always correct.

However, if z = 0, two cases arise: either all coefficients y(j) are null in which case the
algorithm outputs bk = 1 which is correct, or at least one coefficient y(j) is such that y(j) 6= 0
but with

∑`
j=1 a

(j) · y(j) = 0 (mod q) and the output bk = 1 in this case is incorrect. Since the

a(j) values are uniformly distributed in Zq, the result of the linear combination of the y(j) 6= 0

with the values a(j) is also uniform in Zq. Therefore the probability that
∑`

j=1 a
(j) · y(j) = 0

(mod q) is 1/q for each iteration of PolyZeroTestMultLoop.

Hence by iterating PolyZeroTestMultLoop κ times with fresh random values a
(j)
κ as done in

PolyZeroTestMult, the probability that
∑κ

j=1 a
(j)
κ · y(j) (mod q) = 0 for all κ iterations, with at

least one coefficient y(j) 6= 0, is (1/q)κ = q−κ.

C.5 Proof of Theorem 10

As before, we denote by PolyZeroTestMultLoop, one loop iteration on k of the PolyZeroTestMult

algorithm (line 4 to 11). We write y(j) =
∑n

i=1 y
(j)
i mod q. We distinguish two cases: either

y(j) = 0 for all 1 ≤ j ≤ `, or y(j) 6= 0 for some j. We show that the simulator can perform a
perfect simulation in both cases. Moreover, by assumption the simulator eventually receives the
bit b. This means that the simulator can distinguish the two cases, except with error probability
at most q−κ. Therefore the error probability of the simulator will be at most q−κ.

y(j) = 0 for all 1 ≤ j ≤ `. This is the easy case. Namely in that case, we know that bk = 1
for all k. The computation of the shares zi at Line 8 is (n− 1)-SNI. Knowing bk, the algorithm
ZeroTestMult at Step 10 is (n−1)-NI from Theorem 4. Therefore the global PolyZeroTestMultLoop
algorithm remains (n− 1)-NI.

y(j) 6= 0 for some 1 ≤ j ≤ `. We consider a sequence of games.

Game0: we generate all variables as in the algorithm. We assume that we know all input shares

y
(j)
i . We can therefore perform a perfect simulation of all probes. Moreover, we have that Pr[bk =

1] = 1/q for all 1 ≤ k ≤ κ, and the variables bk are independently distributed.

Game1: we modify the way the variables are generated. Instead of generating all variables a
(j)
i

uniformly and independently, we first generate the bits bk independently with Pr[bk = 1] = 1/q.

Then for each 1 ≤ k ≤ κ, if bk = 1 then we generate the shares a
(j)
i such that

∑`
j=1 a

(j)y(j) =
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0 (mod q), where a(j) =
∑n

i=1 a
(j)
i mod q. Otherwise, we generate the shares a

(j)
i such that∑`

j=1 a
(j)y(j) 6= 0 (mod q). The distribution of the variables is the same as in the previous

game. Therefore, we can still perform a perfect simulation of all probed variables.

Game2: we show that we can still perform a perfect simulation as in Game1, but only with the

input shares y
(j)
|I for a subset |I| ≤ t. This will prove that the algorithm is (n− 1)-NI.

Firstly, from the (n−1)-SNI property of SecMult and the (n−1)-NI property of ZeroTestMult

knowing bk, the simulation of all probes can be performed from the knowledge of a subset y
(j)
|I of

the input shares for |I| ≤ t, and a subset a
(j)
|J of the shares of the values a(j), for |J | ≤ t ≤ n− 1.

Secondly, the constraints on
∑`

j=1 a
(j)y(j) from Game2 can be satisfied by generating all shares

a
(j)
i for i 6= i? uniformly at random, and by fixing a

(j)
i? , without changing the distribution of the

shares a
(j)
i , for some i? /∈ J . Finally, since the knowledge of a

(j)
i? is not needed for the simulation,

we can perform a perfect simulation of all probes from y
(j)
|I . This concludes the proof.

Note that a n-sharing of the coefficients a(j) is required for the simulation. If the coefficients
a(j) were computed in the clear, one could not satisfy the constraints on the linear sums, without
knowing the coefficients y(j).

D Polynomial comparison for Kyber

D.1 Proof of Lemma 3

We first show that if x ∈ Compress−1q,d(c̃), then we must have |x − y mod± q| ≤ Bq,d, where

y = Decompressq,d(c̃). This will imply Compress−1q,d(c̃) ⊂ [y−Bq, . . . , y+Bq]q. Namely in this case
we have c̃ = Compressq,d(x), and therefore we have

y = Decompressq,d(Compressq,d(x)) =

⌊
q

2d
·
(⌊

2d

q
· x
⌉

mod 2d
)⌉

We write
⌊
(2d/q) · x

⌉
= (2d/q) · x+ ε for some |ε| ≤ 1/2. We obtain:

∣∣x− y mod± q
∣∣ =

∣∣∣∣x− ⌊ q2d ·
(⌊

2d

q
· x
⌉

mod 2d
)⌉

mod± q

∣∣∣∣
=

∣∣∣∣x− ⌊ q2d ·
(

2d

q
· x+ ε mod 2d

)⌉
mod± q

∣∣∣∣
=
∣∣∣x− ⌊x+

q

2d
· ε mod q

⌉
mod± q

∣∣∣ =
∣∣∣⌊ q

2d
· ε
⌉∣∣∣ ≤ Bq,d

Conversely, we show that if |x−y mod± q| ≤ Bq,d−1, then we must have x ∈ Compress−1q,d(c̃).

This will imply [y−Bq+1, . . . , y+Bq−1]q ⊂ Compress−1q,d(c̃). Namely we write again
⌊
(2d/q) · x

⌉
=

41



(2d/q) · x+ ε for some |ε| ≤ 1/2, and we can write:∣∣∣c̃− Compressq,d(x) mod± 2d
∣∣∣ =

∣∣∣∣c̃− (⌊2d

q
· x
⌉

mod 2d
)

mod± 2d
∣∣∣∣

=

∣∣∣∣c̃− (2d

q
· x+ ε

)
mod± 2d

∣∣∣∣
=

2d

q
·
∣∣∣ q
2d
· c̃− x− q

2d
· ε mod± q

∣∣∣
We write y =

⌊
(q/2d) · c̃

⌉
= (q/2d) · c̃+ ε′ for some |ε′| ≤ 1/2, which gives:∣∣∣c̃− Compressq,d(x) mod± 2d

∣∣∣ =
2d

q
·
∣∣∣y − ε′ − x− q

2d
· ε mod± q

∣∣∣
≤ 2d

q
·
(
Bq,d − 1 +

q

2d+1
+

1

2

)
< 1

For the last inequality we use Bq,d < q/(2d+1) + 1/2 for odd q. This implies c̃ = Compressq,d(x),
which proves the lemma.

D.2 The SecMultList algorithm

Algorithm 31 SecMultList

Input: x1, . . . , xn ∈ Zq s.t.
∑

i xi (mod q) = x, a prime q, an index m and a1, . . . am ∈ Zq
Output: z1, . . . , zn ∈ Zq such that

∑n
i=1 zi =

∏m
i=1(x− ai) (mod q)

1: (z1, z2, . . . , zn)← (1, 0, . . . 0)
2: for i = 1 to m do
3: (z1, z2, . . . , zn)← SecMult((z1, . . . , zn), (x1 − ai mod q, x2, . . . , xn))
4: end for
5: return (z1, . . . , zn)

Theorem 16. The SecMultList algorithm is (n− 1)-SNI.

Proof. The SecMultList algorithm is (n−1)-SNI since it is the composition of m iterations of the
(n− 1)-SNI secMult algorithm. We stress that the first multiplication by 1 (initialized in line 1)
is here on purpose since it is equivalent to an (n − 1)-SNI masks refreshing, which ensures the
independence between both subsequent inputs. ut

D.3 Polynomial comparison with range test [BGR+21]

When the number of candidates in Compress−1q,d(c̃) is too large, we cannot perform individual

comparisons as in the previous section. Instead, we must test whether x ∈ [a, b]q = Compress−1q,d(c̃)
by performing two high-order comparisons with the interval bounds a and b. We recall the
technique from [BGR+21].
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We let k = blog2 qc, so that 2k < q < 2k+1. We write ∆ := q − 2k − 1. For Kyber with
q = 3329, we get k = 11 and ∆ = 1280. We assume that the bounds of the interval [a, b]q
satisfy b − a mod± q ≤ ∆. Recall that we have the upper-bound b − a mod± q ≤ 2 · Bq,d + 1 =
2 ·
⌊
q/2d+1

⌉
+ 1. Therefore the assumption is satisfied for Kyber for d ≥ 2.

Taking as input the shares xi of x = x1 + · · · + xn (mod q), we want to output a n-shared
bit u such that u = 1 if x ∈ [a, b]q and u = 0 otherwise. For this we use:

x ∈ [a, b]q ⇐⇒ ((2k + x− a mod q) ≥ 2k) ∧ ((x− b− 1 mod q) ≥ 2k) (12)

Namely we have using ∆ = q − 2k − 1:

((2k + x− a mod q) ≥ 2k)⇐⇒ x ∈ [a, a+∆]q

((x− b− 1 mod q) ≥ 2k)⇐⇒ x ∈ [b−∆, b]q

Since by assumption b − a mod± q ≤ ∆, we have [a, b]q ⊂ [a, a + ∆]q and similarly [a, b]q ⊂
[b − ∆, b]q. Moreover from 2∆ < q we must have [b, a + ∆]q ∩ [b − ∆, a]q = ∅. This implies
[a, b]q = [a, a+∆]q ∩ [b−∆, b]q, which proves (12).

From (12), we perform a high-order arithmetic modulo q to Boolean conversion of the two
values 2k+x−a and x−b−1 modulo q using [BBE+18], and we perform a high-order And (with
SecAnd) of the most significant bit of the two results (using the Boolean shares). The number
of operations is therefore:

Trange(k, n) = 2 · TAB(k + 1, n) + TSecAnd(n)

Algorithm 32 RangeTestShares

Input: x1, . . . , xn ∈ Zq for prime q with
∑

i xi = x (mod q), k = blog2 qc, bounds a and b s.t.
b− a mod± q ≤ q − 2k − 1.

Output: u1, . . . , un ∈ Zq with
∑

i ui = 1 (mod q) if x ∈ [a, b]q and
∑

i ui = 0 (mod q) otherwise
1: (A1, . . . , An)← (x1 + 2k − a mod q, x2, . . . , xn)
2: (B1, . . . , Bn)← (x1 − b− 1 mod q, x2, . . . , xn)
3: (y1, . . . , yn)← ArithmeticToBoolean(q, (A1, . . . , An))
4: (z1, . . . , zn)← ArithmeticToBoolean(q, (B1, . . . , Bn))
5: (u1, . . . , un)← SecAnd(1, (MSB(y1), . . . ,MSB(yn)), (MSB(z1), . . . ,MSB(zn)))
6: return (u1, . . . , un)
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