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Abstract. We initiate the study of verifiable capacity-bound function (VCBF). The main VCBF prop-
erty imposes a strict lower bound on the number of bits read from memory during evaluation (referred
to as minimum capacity). No adversary, even with unbounded computational resources, should produce
an output without spending this minimum memory capacity. Moreover, a VCBF allows for an efficient
public verification process: Given a proof of correctness, checking the validity of the output takes
significantly fewer memory resources, sublinear in the target minimum capacity. Finally, it achieves
soundness, i.e., no computationally bounded adversary can produce a proof that passes verification
for a false output. With these properties, we believe a VCBF can be viewed as a “space” analog of a
verifiable delay function. We then propose the first VCBF construction relying on evaluating a degree-d
polynomial f from Fp[x] at a random point. We leverage ideas from Kolmogorov complexity to prove
that sampling f from a large set (i.e., for high-enough d) ensures that evaluation must entail reading
a number of bits proportional to the size of its coefficients. Moreover, our construction benefits from
existing verifiable polynomial evaluation schemes to realize our efficient verification requirements. In
practice, for a field of order O(2λ) our VCBF achieves O((d+ 1)λ) minimum capacity, whereas verifi-
cation requires just O(λ). The minimum capacity of our VCBF construction holds against adversaries
that perform a constant number of random memory accesses during evaluation. This poses the nat-
ural question of whether a VCBF with high minimum capacity guarantees exists when dealing with
adversaries that perform non-constant (e.g., polynomial) number of random accesses.
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1 Introduction

Time and space complexity are functions that measure the efficiency of algorithms. These two
functions are related (sometimes appear in the same setting) but distinct. For instance, “time”
may refer to the number of memory accesses performed by an algorithm, while “space” refers to
the amount of memory needed. In general, we try to minimize these functions, i.e., an ideal algorithm
is one that is fast and tight. However, in cryptography, we are also interested in algorithms that
are deliberately slow or capacious with the idea that, if the adversary must run them, the attack
will be slow and costly. This has found numerous applications, e.g., in the context of proof-of-
work for distributed consensus [49], and anti-spam mechanisms [28,9]; and password hashing or key
derivations to be used against offline brute-force [55,41].

The most prominent definitions for “space-demanding” functions proposed in the literature
are memory-hardness [52,6,2,19,5,3,21,4], and bandwidth-hardness [58,15]. While they share the
same initial motivation, these notions vary in their formalization and achieved security guarantees.
Memory-hardness, as originally defined [52], guarantees a lower bound in the memory/time product
required to compute the function. Informally, a function is memory-hard if the product of the
evaluation memory cost m and time t for any adversary cannot be less than mt ∈ Ω(n2), where
O(n) is the time for an honest party. This has been widely proposed as a countermeasure against
attackers that aim to gain an unfair advantage by using customized hardware, such as an ASIC, as
it forces one to dedicate a significant area of memory to avoid being too slow. Thus, the cost of ASIC
manufacturing would grow proportionally. Bandwidth-hardness guarantees that the energy cost for
evaluating the function does not differ much across different platforms with variable computing
energy costs (e.g., CPU vs. ASIC). In practice, this is based on the observation that although
ASICs may have superior energy consumption for specific tasks, off-chip memory accesses incur
comparable energy costs on ASICs and CPUs. Thus, energy consumption is enforced by ensuring
a substantial amount of off-chip memory accesses.

None of these provides a strict bound on the amount of distinct bits read: The former allows
for a trade-off between memory block accesses and computing, whereas the latter bounds the ratio
of energy consumption benefits for ASIC adversaries. A different notion, predating memory and
bandwidth-hardness, is that of memory-bound functions [27,29,1] that do impose an expected lower
bound on the number of memory accesses, expressed as cache misses.

All these notions have “symmetric” hardness in the following sense. Given a candidate input-
output pair (x, y) for function f , verifying whether f(x) = y is, at best, achieved by evaluating f . In
that sense, evaluation and checking require the same amount of resources. In many applications, it
would be desirable to have an efficient public verification algorithm that can check the correctness
of an evaluation using significantly fewer resources, after the party that evaluates f provides a
proof of correctness π for y. In practice, considering a cryptographic puzzle application [28,39,46],
a challenger receiving multiple candidate puzzle solutions from different parties should be able
to verify their correctness with much less effort than it took to compute them. Even considering
egalitarian proofs of work [12], checking the validity of a proposed evaluation with considerably
smaller memory requirements allows for easy validation by numerous lightweight clients.

In the context of time-demanding functions, verifiable delay functions (VDFs) introduced by
Boneh et al. [18] achieve such a property: any observer can verify that the computation of the
function was performed correctly and can do so efficiently. The scope of this paper is to introduce
an analogous function but for capacious/space-hungry algorithms. However, “space” or memory
functions appear to be more intricate. Indeed, space-hardness does cover the memory needed by
an algorithm for instructions, data, and inputs. Still, as discussed above, hardness often involves a
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Space-unit per execution Security analysis Publicly verifiable

Code-hard functions [13] Memory Ideal cipher ✗

Memory-hard functions [52,6,4]
Time/Memory

trade-off
ROM & Pebbling ✗

Bandwidth-hard functions [58]
Time/Cache-miss

trade-off
ROM & Pebbling ✗

VCBF (this work) Bits read Standard ✓

Table 1: Comparison summary between VCBF and existing space-demanding functions. We ex-
clude from the comparison any primitive that deviates from our objectives: (i) primitives based
on heuristics or enforce memory/space usage on expectation, i.e., no strict lower bound on the
memory/space usage (e.g., [1] and puzzle-based constructions [27,29]) or, (ii) primitives that re-
quire interaction (e.g., [7,30,57]). Publicly verifiable means that the correctness of the function’s
output can be publicly verified with significantly fewer space-units than evaluating the function.
We use the term ”memory” to denote the total space required to evaluate the function (this does
not guarantee a lower bound on the number of bits read).

trade-off between space and time, i.e., an algorithm is allowed to use more time to make up for a
smaller memory footprint.

This work: Verifiable capacity-bound functions. In this work, we initiate the study of verifi-
able capacity-bound functions (VCBF). At a high level, a VCBF guarantees: (a) a strict lower bound
m in the necessary number of distinct bits read from memory in order to evaluate the function each
time (referred to as minimum capacity complexity), (b) a public verification process that given a
proof π can check the correctness of an evaluation by reading only o(m) bits, and (c) soundness,
i.e., no computationally-bounded adversary should be able to produce a convincing proof for an
incorrect evaluation. The space notion of VCBF differs significantly from other space-related func-
tions: It provides a strict lower bound on the number of distinct bits read at each evaluation of the
function (minimum capacity) even if an adversary adaptively chooses its strategy after the func-
tion is instatiated. In addition, it does not present any time/space trade-off on evaluation, i.e., the
only way to compute the VCBF’s output is to satisfy its minimum capacity complexity unless the
VCBF is heavily precomputed. Note that every function inevitably presents a time/space trade-off
under heavy precomputation, e.g., evaluate the function on all inputs and store the outputs into an
ordered dictionary. This differs from other space functions [29,1,58,6,4] in which an evaluator can
tune the memory usage at the price of computing the function in more time, even if the function
has not been preprocessed.

Also, unlike the notion of asymmetric hardness [13] which allows parties with access to a secret
trapdoor to evaluate f quickly, we aim for public verifiability. Hence, a VCBF is a publicly verifiable
function that does not present a time/space trade-off on evaluation. In that sense, it can be viewed
as a space-analog of a VDF.

Comparison between VCBF and other “space-demanding” functions. We provide a more
detailed discussion of the relation between VCBFs and other primitives that attempt to bound the
resources used when evaluating a function. See Table 1 for a comparison summary between VCBF
and the most prominent functions and the corresponding space flavors.
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Minimum number of computation steps. Such primitives provide a lower bound on the minimum
number of sequential steps necessary. Notable examples include classic time-locked puzzles [59], key-
derivation function PBKDF2 [41], and the recently proposed verifiable delay functions mentioned
above [18,64,53]. Another related notion is proof-of-sequential-work (PoSW) [45,23,26], which is
similar to VDF except PoSW is not a function. Typically, these enforce a repeated operation
(hashing or squaring in the group with an unknown order). As discussed, our VCBF shares the
same spirit as VDF but for space/energy consumption.

Minimum number of memory access. As explained above, memory-bound functions provide an ex-
pectation of the lower bound on the number of cache misses for any polynomial-time bounded
adversary. In [1,27] a subset of a large random table (thus incompressible) is accessed during evalu-
ation. However, they do not meet our requirement of the strict capacity lower bound on the number
of bits read for each evaluation (like VDF for the time setting) since their lower bound is only a
statistical expectation.

Follow-up work [29] suggests a construction with a time/space trade-off for the process of
constructing the table from a representation, but this permits us to easily trade memory accesses
for computation workload. We stress that [27,29] leverage a puzzle-based approach: They reach the
desired number of cache misses by evaluating the function multiple times. Hence, they cannot be
considered functions due to their puzzle-based nature (similarly to the analogy between VDF and
PoW in the time setting). Lastly, [1] leverages an inner function f whose inverse f−1 cannot be
evaluated in less time than accessing the memory. Hence, their construction presents a time/space
trade-off: A malicious adversary may choose to involve more time to reduce the number of memory
accesses.

Code-hard functions. Code-hard algorithms [13] require that a minimum amount of memory is used
in order to store the code (generated using block ciphers). This has found different applications,
e.g., white box encryption [11,16,17,35] or big-key encryption [10]. The key difference between a
code-hard function and VCBF is that while a large amount of memory space must be dedicated for
storing the code-hard function, it is possible that only a small fraction of those stored bits must be
retrieved during evaluation (i.e., using memory does not imply reading bits). A VCBF imposes a
non-trivial strict lower bound on bits read from memory during each evaluation.

Memory and Bandwidth-hard functions. These functions adaptively read/write from/in the mem-
ory to achieve two different objectives: Memory-hard functions require evaluators to use a large
amount of memory while bandwidth-hard functions produce a high number of cache misses.1 These
functions [52,6,58,4] allow adversaries to dynamically trade additional computation for reduced
memory usage on evaluation (even without precomputation); thus, they do not meet our strict
lower bound guarantee.2 Moreover, the existing formalizations are highly reliant on the random
oracle model, e.g., [58] for bandwidth hardness and [52,6,4] for memory hardness (in the parallel
random oracle model). This comes naturally, as many of these works use variations of a graph-
pebbling game to model their computation, heuristically estimating the energy cost for each unit
computation and memory access operations. On the other hand, our VCBF definition does not rely
on the random oracle model (this does not preclude the possibility of specific VCBFs operating in

1 We stress that, in the setting of memory-hard functions, the term “memory” is used to denote the number of
memory blocks required to correctly evaluate (in a given time) the function. This differs from the VCBF objective
of forcing the evaluator to read a fixed number of distinct bits (requiring n memory blocks of size w on evaluation
does not imply reading nw distinct bits since multiple memory blocks may present a redundant pattern that may
be compressed).

2 We stress that memory-hard functions present a time/space trade-off on evaluation that varies according to the
notion of memory hardness considered (e.g., time-space complexity [52], cumulative space complexity [6], sustained
space complexity [4]).
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this model). Another impact of relying on the random oracle model is that it makes it harder to
design an efficient verification algorithm as it “destroys” any algebraic structures between inputs
and outputs.

We stress that a VCBF’s lower bound in memory bits accessed can be used to infer a lower
bound in energy consumption, analogous to the motivation behind bandwidth-hard functions. E.g.,
considering an ASIC-based adversary with on-chip memory of size s bits (such as a hardware
cache) a VCBF that guarantees to access m bits from main memory imposes a u(m − s) lower
energy consumption, where u is the atomic cost for reading one bit from memory.

In a recent work [32], the first memory-hard VDF construction was proposed by combining
a SNARK with a parallelizable prover with a memory-hard “sequential” function. Although this
result is close in spirit with what a VCBF tries to achieve, we do not aim for an explicit time
lower bound, whereas the memory-bound we achieve is strict without leaving room for time/space
trade-offs, as explained above.

Proof of space (PoSpace). PoSpace [7,30,57] extends memory-hard functions with efficient verifica-
tion and adopts the graph pebbling framework and the random oracle model. The prover convinces
a verifier that it consumed its space capacity to store data while allowing for efficient verification in
both space and time. Like memory-hard functions, the PoSpace constructions can only guarantee a
time/space trade-off, thus cannot enforce a space lower bound. Also, the security analysis is based
on the heuristic (parallel) random oracle model.

Symmetric key primitives against memory-bounded adversaries. A relatively recent series of works
studies symmetric key primitives against memory-bounded adversaries [62,39,37,25,36]. These re-
sults mainly focus on asymptotic adversaries with time/space trade-off without enforcing a resource
lower bound. Moreover, VCBF (and the previously mentioned primitives) only require constructions
with moderate hardness.

Overview of Techniques. The main challenge in building a VCBF is finding a function that has
a natural strict lower bound on the space necessary for evaluation while still allowing for efficient
verification. Past works [58,15,6,2,19,5,3,21] achieve the first property only on expectation (i.e.,
expected lower bound) by relying on assumptions such as the random oracle or ideal cipher. Hence,
this approach fails to achieve a strict lower bound and makes it harder to achieve the second
property as it dismantles structured relations between the function’s inputs and outputs that could
be used for efficient verification.

In this work, we deviate from previous techniques significantly. To model the inability of an
adaptive space-based adversary to compute an output without reading enough data from memory,
we turn our attention to Kolmogorov complexity [43], which measures the complexity (in an absolute
sense) of an object in terms of the minimum number of bits necessary to represent it. Kolmogorov
complexity is viewed as a fundamental theory of computer science and has been shown connected
with multiple areas in cryptography [44,48,60]. (The most recent work of Liu and Pass [44] proves the
equivalence of a computational bounded version of the Kolmogorov complexity and the existence
of one-way functions.) Somewhat more formally, the Kolmogorov complexity of object x is the
minimum number of bits needed to represent any description (T, α) where T is a Turing machine
and α is a string such that T(α) outputs x. One can view T as an adaptive decompressing algorithm
and α as a “compression” computed adaptively from x. Based on this, our first observation is that
if an algorithm depends on an object x (e.g., x could be the description of the algorithm itself or
the algorithm’s input), then its execution cannot require reading fewer bits than the Kolmogorov
complexity of x. In that sense, Kolmogorov complexity is the right tool for us; choosing a function
with high Kolmogorov complexity readily provides an arguably loose bound for the minimum
capacity of a VCBF even in the presence of an adaptive adversary that chooses its strategy (that
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determines how memory is read and organized) after the function is instatiated (see Section 1.1 for
a discussion about adaptive security in the space setting).

On the other hand, when building our VCBF we need to identify a function that is amenable to
verification; ideally, it should preserve an efficiently checkable (algebraic) relation between inputs
and outputs. One candidate function is polynomial evaluation for single-variable polynomial f(X) ∈
Fp[x] of degree d of the form f(X) =

∑d
i=0 ai · xi. The good news is that there exist numerous

works in the literature for verifiable polynomial evaluation (e.g., [33,51,66,31]). In order to use
such a scheme for a VCBF we need to ensure it is publicly verifiable (anyone can verify it using
public parameters) and publicly delegatable (anyone can query it on an evaluation point). In our
construction, we use the lightweight scheme of Elkhiyaoui et al. [31]. Its verification process requires
a constant number of operations among a constant number of elliptic curve elements. This is
important for us since we want VCBF to have verification capacity complexity sublinear in its
evaluation’s minimum capacity. Using [31], the latter is O((d + 1)λ) whereas the former is O(λ)
(where λ is the security parameter), i.e., the gap is linear in the degree of the polynomial.

The “honest” way of evaluating polynomial f(X) is by reading its coefficients ai, so by fixing
|(a0, . . . , ad)| ≥ m (where |x| denotes the bit length of x) one would hope to get a VCBF with
minimum capacity m. However, this is not the case as every polynomial has multiple alternative
representations that an adversary may try to exploit in order to bypass the memory capacity
bound. For example, all lists of the form (x0, . . . , xd), (f(x0), . . . , f(xd)), for any choice of d + 1
distinct xi, completely determine the coefficients (a0, . . . , ad) of f(X) (by interpolating the points).
Here is where Kolmogorov complexity comes in handy: The above evaluations and points together
with a Turing machine that performs polynomial interpolation are a valid description, in terms of
Kolmogorov complexity, of the coefficients (a0, . . . , ad). As a consequence, it cannot be significantly
shorter than the Kolmogorov complexity C(a0, . . . , ad) of the coefficients of the polynomial f(X)
(Theorem 5).

What remains is to find a way to sample a polynomial f(X) with high Kolmogorov complexity.
For any large-enough set, most of its elements have sufficiently high Kolmogorov complexity. Since
this holds for arbitrary sets, sampling at random from a large-enough set of polynomials guarantees
that the chosen polynomial is of high Kolmogorov complexity with high-enough probability.

As discussed above, many previous works inherently adopt non-standard models in their defi-
nitions to capture the fact that a function is memory-heavy (e.g., random-oracle, ideal cipher, or
heuristic assumptions about graph pebbling). Instead, we want to base our security definition in
the standard setting, and we regard our paper on VCBF as a foundational one. Our approach is
to model adversaries as Turing machines that read (at most) a fixed number of distinct bits m
(whose value is estimated using the Kolmogorov complexity) from a precomputed memory τ of
size n ≥ m (Section 4). We stress that it is crucial to consider the memory of size n larger than
m since an adversary can leverage a large memory to increase its advantage ϵ while, at the same
time, minimizing the number m of distinct bits it must read to answer a particular challenge (for
example, it can store a large dictionary containing several evaluations of the polynomial f(X)).
However, this introduces the new challenge of estimating the adversary’s advantage ϵ with respect
to the memory size n: A particularly challenging task when working in the standard model with
black-box access to the adversary. In more detail, it is hard to provide a strict bound on the num-
ber of (partial) information that can be stored in a memory of size n since their space requirement
highly depends on the precomputation strategy (e.g., the entropy of the precomputed values) and
the encoding (e.g., memory organization, memory access patterns) that can be adaptively chosen
by an adversary after some parameters are revealed (e.g., the object to compress). Still, we show
that it is possible to give a positive, meaningful estimation of ϵ and n when considering adversaries
that perform a constant number v ∈ O(1) of random accesses (e.g., conditional jumps) in order to
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read discontinuous bits from memory. We discuss the formulation of our definition and our results
in Section 4 and Section 5.1, respectively.

Summary of our contributions. Our contributions in this work can be summarized as follows:

1. We build a cryptographic framework that combines the notion of Kolmogorov complexity and
randomized Turing machines and use it to bound the minimum amount of bits required in order
to evaluate a polynomial (Section 3).

2. We propose a formal definition of verifiable capacity-bound functions VCBFs that captures (a)
a lower bound m on the number of bits read from memory (of bounded size) for evaluation
(minimum capacity), (b) efficient verification of outputs with minimum capacity that is sublin-
ear in m with respect to any malicious evaluator, and (c) soundness, i.e., no computationally
bounded adversary can produce an incorrect output that passes verification (Section 4). We
stress that the minimum capacity definition of VCBF (Section 4) significantly changes the per-
spective about how adversaries are usually modeled in cryptography. In our setting, the power
of an adversary is solely dependent on the space it uses, i.e., the adversary has unbounded
computational power, but it has limitations in the space it uses.3 In a nutshell, an adversary is
only limited to the size of available (precomputed) memory and the number of bits it reads from
it. Considering space-only adversaries requires rethinking the meaning of adaptive security. As
we will discuss next, adaptiveness refers to the ability of choosing the precomputation strategy
(that sets the memory of the adversary) and the evaluation strategy (that sets the reading
strategy during evaluation) after the VCBF’s public parameters (i.e., the coefficients of the
polynomial) are revealed. To work with such a space adaptive setting, Kolmogorov Complexity
is essential and succeeds where any other standard entropy measure fails (see Section 1.1 for a
detailed discussion).

3. We propose the first VCBF construction that satisfies our definition, based on single-variable
polynomial evaluation for polynomial f(X) ∈ Fp[x] of degree d. To achieve efficient verification,
we employ the publicly verifiable and publicly delegatable verifiable computation scheme of [31].
For a target minimum capacity m ∈ O((d+ 1)λ), it suffices to set the size of the polynomial to
(d+ 1)λ, where λ is the security parameter. Hence, to achieve large capacity bounds, we need
to set d≫ λ, e.g., d ∈ Ω(λc) for c > 1 constant. On the other hand the capacity complexity of
the verification is O(λ), i.e., independent of d hence verification remains efficient (Section 5).

4. We provide an estimation of the concrete parameters for our construction in Table 2 (Sec-
tion 5.2). For an elliptic curve group of order p of size 1024 bits, a polynomial of size 1GB
(d = 78.20 · 105 ≈ λ2.29) guarantees a minimum capacity m of 0.82GB, even with respect to an
unbounded adversary that can spend an exponential amount of computational resources.

We stress that a target minimum capacity m of a VCBF is guaranteed only in the presence of
adversaries with a limited memory size n. As explained, the estimation of n is a major challenge
when working in the standard setting (this work). Along this line, we initiate a fine-grained study
on the memory size n estimation according to the number v of adaptive random accesses performed
by the adversary (denoted by the set Av-access). In particular, we prove (in the concrete setting) that
the evaluation of a polynomial f(X) ∈ Fp[x] guarantees a target capacity m ∈ O((d+ 1)λ) even if
an adversary A ∈ A1-access has access to a memory whose size n is proportional to the cardinality
of the input space of the polynomial f(X), i.e., super-polynomial (Theorem 8). Our results can
be extended to the asymptotic setting for the class AO(1)-access (Corollary 2). This result implies

3 Considering unbounded adversaries is fundamental in order to capture the (concrete) strict lower bound on the
number of distinct bits read that a VCBF must guarantee (i.e., a VCBF does not present any time/bits read
trade-off). We provide a more detailed discussion in Section 4 and Remark 3.
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the security of our construction against adversarial strategies primarily used in practice (e.g., pre-
computed dictionaries) or strategies executed on limited devices that have a bound on the number
of random accesses (e.g., for energy efficiency) that they can perform. In Section 4 and Section 5.1,
we discuss our results in more detail.

Regarding the larger class of adversaries Aω(1)-access, the minimum capacity of our polynomial-
based VCBF construction deteriorates when n gets closer to d1+δλ1+o(1) for a constant δ > 0. This
is due to the work of Kedlaya and Umans [42]: They shows how to build a data structure D of
size at most d1+δλ1+o(1) (only from the coefficients of f(X) ∈ Fp[x]) that allows them to evaluate
f(X) over any of the points. This evaluation requires reading a non-constant number of elements
from D (using ω(1) random accesses) whose total size is at most O(log(d)s1λs2) for some positive
s1, s2 ∈ O(1). Hence, the plain evaluation of a polynomial of degree d can not guarantee a minimum
capacity of m ∈ ω(log(d)s1λs2) when an adversary A ∈ Aω(1)-access has access to a memory of size
n, close to or greater than d1+δλ1+o(1) (see Section 5.1 for more details).

1.1 Adaptive security and Kolmogorov complexity (vs. selective security and other
entropy measures)

Here, we provide an answer to two natural questions about the meaning of adaptive security (in the
space setting) and Kolmogorov complexity. These points significantly differentiate the techniques
used in this work from previous ones.

Adaptive security in the space setting. In the standard computational time cryptographic
setting, adaptive security refers to the ability of an adversary of changing its behavior according
to the scheme’s parameters with the objective of increasing its advantage in breaking the scheme’s
security. An example is the adaptive CCA security of public encryption in which an adversary wants
to increase its advantage in distinguishing between two encryptions by adaptively choosing both the
two challenge messages and the next query for the decryption oracle after seeing the public key and
the answers received from previous decryption queries. The natural question we pose is “What does
adaptive security mean for the minimum capacity definition of VCBF?”. To give a concrete answer
to this question, it is necessary to rethink the meaning of adaptive security against adversaries
whose power is measured by solely considering the memory used/read (as done in this work).
Jumping ahead, the minimum capacity of VCBF (Section 4) guarantees that an adversary needs
to read at least m bits from its memory τ (of size n) when asked to correctly evaluate the function
on a random point. This must hold even if the adversary is computationally unbounded, and it is
allowed to generate/organize its memory τ by precomputing the VCBF according to its parameters
(i.e., polynomial). In such a setting, the objective of an adversary is to break the security of VCBF
by minimizing the number of distinct bits m read from the precomputed memory. To achieve this,
an adversary may think of changing its compression/precomputation strategy after the VCBF’s
parameters (i.e., the polynomial coefficients) are revealed.4 This is analogous to the CCA public
key encryption example in which an adversary changes its two challenge messages after seeing the
public key and the answers of the decryption oracle. To formally define the intuitive security of
VCBF (i.e., a strict lower bound on the number m of distinct bits read), it is fundamental to
cover adaptive space-based adversaries (as described above). Indeed, if an adversary can change its
precomputation/compression strategy after seeing the VCBF’s parameters and reduce, for example,
m by log(λ) bits then the strict lower bound is not strict anymore. For this reason, the natural
definition of minimum capacity (Definition 8) requires that the function remains secure for any

4 For example, a particular (hard to guess) compressible pattern may be revealed after the polynomial coefficients
are chosen. Note that this may happen (with a certain probability) even if the polynomial is sampled at random.
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possible space-based adversary sampled after the instantiation of VCBF, i.e., the precomputation
and evaluation strategy (i.e., the memory and the bits read) of the adversary can depend on the
VCBF itself. Such a model of adaptive security requires the usage of Kolmogorov complexity (see
next).

Why Kolmogorov complexity? Conventional entropy measures (including Yao entropy that
leverages the notion of compression and Shannon) consider the incompressibility of objects only
on expectation. It implicitly means that the compression strategy does not depend on the object
(i.e., our polynomial of our VCBF construction) sampled from a distribution. The typical example
is on [38, Page 10] (quoting): “Consider the ensemble consisting of all binary strings of length
9999999999999999. By Shannon’s measure, we require 9999999999999999 bits on the average to
encode a string in such an ensemble. However, the string consisting of 9999999999999999 1’s can be
encoded in about 55 bits by expressing 9999999999999999 in binary and adding the repeated pattern
1”. Note that the above argument applies also to the Rényi family of entropies (e.g., min-entropy).5

The Kolmogorov complexity overcomes these limitations by considering the worst-case scenario: It
measures incompressibility in an absolute sense, i.e., the compression strategy can depend on the
object. Hence, lower-bounds derived through Kolmogorov complexity are universal, and they do
not hold only on expectation. Also, quoting [63]: “The Kolmogorov complexity of an object is a
form of absolute information of the individual object. This is not possible to do by C.E. Shannon’s
information theory. Unlike Kolmogorov complexity, information theory is only concerned with the
average information of a random source”.

In the VCBF setting, these concepts translate into adaptive vs. selective security. Kolmogorov
complexity allows us to bound the minimum capacity of VCBF in the adaptive setting in which
the adversarial compression/precomputation strategy can depend on the VCBF’s parameters (this
mimic the adversarial behavior of changing strategy after the parameters are revealed). As already
discussed, this is fundamental in order to have strict (universal) lower bound on the number of
bits m that an adversary needs to read to evaluate a VCBF. Adaptive security remains unachiev-
able if we consider standard entropy measures: This is because Information Theory studies the
average information in objects, i.e., compression/precomputation strategies are fixed before the ob-
ject (i.e., polynomial) is revealed/sampled. Hence, Kolmogorov complexity remains a fundamental
tool in order to deal with space-based adaptive security and, in turn, to prove the security of our
polynomial-based VCBF.

1.2 Applications of VCBF

Since VCBF can be seen as a space-analog of VDF, replacing minimum sequential steps with a
minimum number of bits retrieved from memory, we believe they can find applications in various
settings where memory usage needs to be enforced. In this direction, we describe how VCBF can be
used as an energy-consumption function to achieve fairness among ASIC and CPU participants. We
then briefly discuss other promising VCBF applications. We emphasize that the objective of this
work is to lay the foundation for VCBFs, providing an initial study about publicly verifiable asym-
metric memory/space hardness in the standard model. Naturally, depending on the application,
ad-hoc properties and/or slightly different flavors of VCBF may be required, opening interesting
directions for subsequent works (see Section 6).

5 This can also be seen by observing that the Rényi family of entropies is equivalent to Shannon entropy when
considering uniform distributions (as considered in this work, e.g., polynomial’s coefficients are sampled at random).
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Energy-consumption function. Juels and Brainard [40] proposed client-puzzles as a solution
to mitigate denial of service attacks (the concept of cryptographic puzzles can be traced back to
Merkle’s key exchange [46] and Dwork and Naor’s pricing function [28]). The general idea of such
puzzles is to associate a cost to each resource allocation request by requiring the client to complete a
task before the server performs any expensive operation, thus making large-scale attacks infeasible.
Classic client-puzzles [40,8,20,22,61] will force adversaries to consume certain CPU cycles as the cost
for attacks. However, state-of-the-art hash engines [14,58] could be 200, 000× faster and 40, 000×
more energy-efficient than a state-of-art multi-core CPU. Hence, denial-of-service attacks may still
be feasible for ASIC-equipped adversaries, even when such client puzzles are deployed as counter-
mechanisms.

Motivated by this, we propose to replace CPU cycles with alternative resources, i.e., energy
consumption using a VCBF. Classic ASIC-resistant methods follow the memory-hard function
approach, i.e., ensuring that solving the puzzle “costs” much memory. In this manner, the cost of
manufacturing an ASIC for puzzle solving would increase proportionally to the chip area devoted
to memory. However, as argued in [58], memory hardness only partially solves the problem since
it does not address the energy aspect of ASIC advantage. Indeed, energy consumption can be
more important than the one-shot ASIC manufacturing cost since the corresponding cost (due to
electricity consumption) keeps accumulating with time. Hence, a function with a strict lower bound
on energy consumption, due to off-chip memory accesses enforced via VCBF, could fill in a critical
but often overlooked gap in ASIC resistance.

Our VCBF can be used as an energy-consumption function in the following protocol between a
server S and a client C:

– C contacts server S, requesting permission to use some service such as establishing TLS con-
nection [24] or accepting an email [28].

– S returns a fresh challenge x to the client C.

– C evaluates VCBF f on x, and returns the output and proof π to S.

– The server S verifies the correctness of f(x). If the verification succeeds, it allows C to use the
service.

Jumping ahead, from Theorem 7 (in Section 5), we can easily find a set of parameters so that an
adversary needs to invest a sufficiently large amount of energy in computing the function. Observe
that the client is required to compute the VCBF f on a (honest) challenge x chosen by the server.
Another option is to allow the client to choose multiple challenges on its own as is usually done in
client-puzzles. In this case, it is fundamental that f can not be amortized, i.e., the puzzle’s total
energy-cost increases proportionally to the number of parallel evaluations (on different challenges)
of f . We stress that this work does not study amortization but this is not an inherent limitation of
VCBF as a primitive. Non-amortizable VCBFs can be studied in future works (Section 6).

The above protocol can be extended to blockchain systems that support smart contracts. For
example, a client C may be required to evaluate the VCBF f on input x = H(s, t) in order to
trigger the execution of a smart contract S. Here, inside the hash function H, we place s which is
the current state of the smart contract and t a counter used to randomize the challenge x = H(s, t)
(e.g., t is incremented after each invocation of the contract or after a block is mined).6 In this
way, an adversary is desisted from monopolizing the service offered by the smart contract S for
specific malicious purposes. For instance, if the smart contract runs a decentralized auction system,
the adversary will not be able to produce spamming bids to delay the acceptance of valid bids

6 The challenge x = H(s, t) has this format since smart contracts cannot generate secret randomness to sample a
random challenge.
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from competitors. We stress that efficient public verification is essential in blockchain systems since
verifiers, that check the correctness of executions, have limited resources.

Real-time Services (and VCBF vs. VDF). Although VCBF and VDF are both efficiently
verifiable, there are applications in which VDFs can not be used, whereas VCBFs can. Consider
a server S that offers a real-time service in which it is a requirement to receive requests within a
precise time frame (e.g., within 1 minute). Clearly, using a VDF to block denial of service attacks is
not an option since the time required to evaluate the VDF will delay all users’ requests and affect
the quality of the real-time service. A concrete example is an auction service: Bids must be received
before the end of the auction or within a given time frame. Hence, VCBFs offer a unique solution
in scenarios in which creating a delay is not acceptable.

The Filecoin network. Protocol Labs is working on Filecoin [54], a blockchain-based decentral-
ized storage system that has gathered much visibility in the last few years (it raised over $250
million through an ICO in 2017). In Filecoin, miners earn coins by offering their storage to clients
interested in storing and replicating files. The mining power in Filecoin is proportional to the active
storage offered by a miner. Thanks to its public and capacity efficient verification, a VCBF can
play an important role in improving proof of useful space (a fundamental primitive in the Filecoin
protocol), i.e., a primitive that allows miners to prove that they are using a significant amount of
space to store (multiple) files. In particular, Filecoin is interested in designing a proof of useful
space in the cost model [47]. However, a common problem of proof of useful space constructions
(e.g., [34]) is the possibility of trading space for computation: An evaluator may erase some data
and reconstruct it on the fly when needed. A VCBF can tremendously improve proof of useful space
by enforcing rationality during the computation when working in the cost model (e.g., by replacing
the RO with a VCBF in graph-labeling based constructions). For example, the minimum capacity
of VCBFs may increase the costs (e.g., energy consumption) of regeneration of the erased data.
This encourages evaluators to store the data in its entirety. Also, the VCBF public verification does
not introduce any additional cost to verifiers with minimal resources in terms of space and energy.

Other possible applications. We believe VCBF may find a plethora of other applications. One
such application could be a proof of network bandwidth that allows paying customers to verify their
real-time upload bandwidth by requiring their cloud storage service provider to retrieve an uploaded
test file. Unlike existing bandwidth puzzles (e.g., [56,67]), a VCBF-based solution would not rely
on random oracles. Other applications may include digital rights management (by requesting the
symmetric-key decryption algorithm used to retrieve copyrighted data to be a VCBF; hence illegal
sharing it on a large scale would be less feasible), or securing mobile payments (by requiring that
the signing process to authorize a transaction is a VCBF, making it hard for attackers to “extract”
a signing key).

2 Preliminaries

2.1 Notation

We use the notation [n]
def
= {1, . . . , n}. Capital boldface letters (such as X) are used to denote

random variables, small letters (such as x) to denote concrete values, calligraphic letters (such as
X ) to denote sets, and sans-serif letters (such as A) to denote algorithms. All of our algorithms
are modeled as (possibly interactive) Turing machines. For a string x ∈ {0, 1}∗, we let |x| be its
length; if X is a set, |X | represents the cardinality of X . When x is chosen randomly in X , we write
x←$ X .
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If A is an algorithm, we write y←$ A(x) to denote a run of A on input x and output y. If A
is randomized, y is a random variable and A(x; r) denotes a run of A on input x and random-
ness r←$ {0, 1}ℓrnd where {0, 1}ℓrnd is the randomness space of A. An algorithm A is probabilistic
polynomial-time (PPT) if A is randomized and for any input x ∈ {0, 1}∗, r ∈ {0, 1}ℓrnd the compu-
tation of A(x; r) terminates in a polynomial number of steps (in the input size). We say that an
algorithm A is constant-size if the code of the Turing machine that implements A is independent
of the input.

Self-delimiting codes. A self-delimiting code permits us to encode binary strings in a prefix-free
fashion. A set A is prefix-free if there do not exist two strings x, y ∈ A such that x||y = z and
z ∈ A. A prefix-free code allows (constant size) Turing machines to read any input composed by
multiple concatenated values, each of arbitrary length. We consider the Elias delta coding (δ-code
in short) that is asymptotically optimal in the length of the original string. Also, it is very efficient
in the concrete setting. The δ-encoding E of a string x of size n is defined as E(x) = 1|n|||0||n||x
where |n| = ⌈log(n)⌉ is the number of bits needed to represent n in binary. The δ-code produces
relatively shorts codes of size |E(x)| = log(x) + 2 log(log(x)) + 1 that are asymptotically optimal:
The bit length of |E(x)| is equal to the length of x in the asymptotic setting, i.e., |E(x)| ∈ O(|x|).

Self-delimiting codes are necessary whenever a (constant size) Turing machine receives multiple
input values that it must unambiguously read. Suppose a Turing machine T needs to perform some
computation on two values (x, y). Such an input (x, y) can be encoded in a prefix-free fashion by
leveraging two-part codes. In more detail, a two-part code ⟨·, ·⟩ w.r.t. the δ-code E(·) is defined as
⟨x, y⟩ = E(x)||y. Two-part codes can be used recursively. For example, three values (x, y, z) can be
encoded as ⟨x, ⟨y, z⟩⟩ = E(x)||E(y)||z. For the sake of clarity we write ⟨x, y, z⟩ = ⟨x, ⟨y, z⟩⟩.

2.2 Publicly Verifiable Computation for Polynomial Evaluation

A publicly verifiable computation scheme (VC) for polynomial evaluation allows a client to out-
source the computation of a polynomial f to an untrusted server. We are interested in VC schemes
that are both publicly delegatable and publicly verifiable. The former allows any querier to submit
input to the server, while the latter allows any verifier to check the computation’s correctness. For-
mally, a VC scheme for a family of polynomials F with input space X is composed of the following
algorithms:

Setup(1λ, f): Upon input the security parameter 1λ and a polynomial f ∈ F , the randomized setup
algorithm returns the evaluation key ekf and the verification key vkf for the polynomial f .

ProbGen(vkf , x): Upon input the verification key vkf for a polynomial f ∈ F and an input x ∈ X ,
the deterministic problem generation algorithm outputs an encoding σx and the verification key
vkx for the input x.

Compute(ekf , σx): Upon input the evaluation key ekf for a polynomial f ∈ F and an encoding σx
for input x ∈ X , the deterministic computation algorithm returns a value y and a proof πy.

7

Verify(vkx, y, πy): Upon input the verification key vkx for an input x ∈ X , a value y ∈ Y, and a
proof πy, the deterministic verification algorithm returns a decisional bit b.

Correctness of a publicly VC scheme captures the fact that an honest execution of the computation
to evaluate a polynomial f ∈ F on input x ∈ X produces the correct output y = f(x) along with
a proof πy that correctly verifies.

7 We explicitly detached y from its proof πy. Several works define the output of the computation algorithm Compute
as a singleton σy (the encoding of the output y) defined as σy = (y, πy).
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Definition 1 (Correctness of VC). A publicly VC scheme Π for a family of polynomials F
with input space X is correct if ∀λ ∈ N, ∀f ∈ F , ∀x ∈ X the following holds:

Pr

Verify(vkx, y, πy) = 1

∣∣∣∣∣
(ekf , vkf )←$ Setup(1λ, f)
(σx, vkx) = ProbGen(vkf , x)
(y, πy) = Compute(ekf , σx)

 = 1.

As for security, a malicious evaluator cannot convince an honest verifier that y∗ ̸= f(x∗) is the
correct evaluation of f(x∗) on an arbitrary input x∗ ∈ X (soundness).

Definition 2 (Soundness of VC [31]). A publicly VC scheme Π for a family of functions F
with input space X is (ϵ)-sound if ∀f ∈ F and every PPT adversary A = (A0,A1) we have:

Pr
[
GSound

Π,A (1λ, f) = 1
]
≤ ϵ,

where GSound
Π,A (1λ, f) is defined as follows:

– (ekf , vkf )←$ Setup(1λ, f).
– (x∗, aux)←$ A0(1

λ, ekf , vkf , f).
– (σx∗ , vkx∗) = ProbGen(vkf , x

∗).
– (y∗, πy∗)←$ A1(σx∗ , vkx∗ , aux).
– If Verify(vkx∗ , y∗, πy∗) = 1 and y∗ ̸= f(x∗) return 1. Otherwise, return 0.

In this work, we are interested in single-variable polynomials f(X) ∈ Fp[x] of degree d of the

form f(X) =
∑d

i=0 ai · xi. An example of such a VC scheme has been proposed by Elkhiyaoui
et al. [31]. It uses an asymmetric bilinear pairing e : G1 × G2 → GT where G1,G2, and GT are
groups of prime order p, and its security follows from the (d/2)-Strong Diffie-Hellman assumption
((d/2)-SDH).

Time Efficient Verification. VC schemes allow verifiers to check the computation’s correctness more
efficiently than the work required to evaluate the polynomial honestly; otherwise, the verifier would
perform the computation by itself without outsourcing the computation to an external untrusted
server. In more detail, if an honest evaluation of the polynomial f(X) requires t steps, then the
verification time complexity (i.e., the execution of ProbGen and Verify) must be sublinear in t (i.e.,
o(t)).8

By leveraging the (d/2)-SDH assumption, the publicly VC scheme proposed in [31] yields a
constant time O(1) verification: The execution of ProbGen requires two multiplications and two
exponentiations in G1 and G2 while Verify requires one multiplication in GT and two pairing
operations, where e : G1 × G2 → GT is an asymmetric bilinear pairing. Furthermore, it presents
succint verification keys vkf of size O(λ) that does not depend on the degree d of the polynomial
f(X) ∈ Zp[x]. This will allow our VCBF to have an efficient verification in terms of capacity
(see Section 5.1).

2.3 Kolmogorov Complexity

The Kolmogorov complexity [43] aims to measure the complexity of objects in terms of the minimum
amount of bits required to represent them. We define a description of a string x ∈ {0, 1}∗ in terms
of algorithmic complexity as follows.

Definition 3 (Description of a string). Let T be a deterministic Turing machine and x ∈
{0, 1}∗ a bit string. We say that (T, α) is a (possibly inefficient) description of x if T(α) = x.
8 We include the algorithm ProbGen as part of the verification phase since we consider VC schemes that are both
publicly delegatable and publicly verifiable.
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Kolmogorov complexity with respect to a Turing machine. We can look at T as a decoding
algorithm and α ∈ {0, 1}∗ as an encoding of x. The minimum amount of bits needed to represent a
fixed bit string x is measured by the Kolmogorov complexity CT(x). In more detail, the Kolmogorov
complexity CT(x) of a bit string x ∈ {0, 1}∗ with respect to a deterministic Turing machine T (called
reference Turing machine) is defined as:

CT(x) = min
α∈{0,1}∗

{|α| : T(α) = x}.

Similarly, the conditional Kolmogorov complexity measures the complexity of x given some auxiliary
information y ∈ {0, 1}∗, i.e.,

CT(x|y) = min
α∈{0,1}∗

{|α| : T(⟨α, y⟩) = x},

where ⟨a, b⟩ denotes the self-delimiting coding of strings a and b.9 The two above definitions of
Kolmogorov complexity are known as plain Kolmogorov complexity. The name comes from the fact
that no constraints are put on the input α of the Turing machine T. Another type of complexity,
called prefix-free Kolmogorov complexity [43, Section 3], focuses only on prefix-free programs, i.e.,
Turing machines that only take in input strings encoded in a prefix-free fashion. In this work, we
focus on the plain version, and we refer the reader to [43, Section 3] for a more detailed discussion
about the prefix-free version.

Kolmogorov complexity independent of the Turing machine. The definition of plain Kol-
mogorov complexity can be made independent from the reference Turing machine. Indeed, Turing
machines are enumerable. The code of any Turing machine T can be interpreted as a binary string
i.10 Therefore, we can define a universal Turing machine U as U(i, α) = Ti(α). In other words, U
simulates all possible computations that Turing machines perform by taking in input α ∈ {0, 1}∗
and the code i of the i-th Turing machine Ti and executes the computation Ti(α). Based on this
observation, it has been proved that the Kolmogorov complexity with respect to different Turing
machines is invariant only up to a constant that depends on the reference Turing machine.

Theorem 1 (Invariance Theorem [43, Theorem 2.1.1]). There is a universal deterministic
Turing machine U such that for any deterministic Turing machine T, there is a constant cT that only
depends on T, such that for any string x, y ∈ {0, 1}∗ we have CU(x) ≤ CT(x) + cT and CU(x|y) ≤
CT(x|y) + cT.

11

Since the choice of the reference Turing machine does not significantly change the Kolmogorov
complexity of any string, we express the Kolmogorov complexity using the universal Turing machine
U as a reference machine.

Definition 4. The Kolmogorov complexity of a string x is defined as C(x)
def
= CU(x) and C(x|y) def

=
CU(x|y) for the universal Turing machine U.

The Kolmogorov complexity is invariant up to a constant (Theorem 1) since it assumes Turing
machines of constant-size, i.e., Turing machines whose description size does not depend on the input.
Note that restricting the size of the Turing machine is necessary. As mentioned in [43, Section 2.1.4],
by removing the size constraint of T, it is possible to assign low complexity to any string by simply

9 As we will discuss later, Kolmogorov Complexity considers constant-size Turing machines. This requires the use
of a self-delimiting code to encode multiple inputs.

10 Note that not all binary strings are valid Turing machines.
11 The constant cT corresponds to the self-delimiting description of the Turing machine T.
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selecting a reference Turing machine with large complexity. For example, consider the reference
Turing machine T′ that has hardcoded x into its code. In this case, T′ is able to output x with
no input, i.e., T′(⊥) = x. Hence, we have CT′(x) = 0. However, this example does not violate the
intuition of the Kolmogorov complexity since the large size of the Turing machine T′ is captured
by the large constant cT in the invariance theorem. Such an example shows that it is impossible to
reduce a string’s complexity significantly. It may only be split among the reference Turing machine
and its corresponding input.

The constant-size reference Turing machine assumption makes the definition of complexity
precise while covering all the possible descriptions (T, α) of any string x ∈ {0, 1}∗. As we will see
later, this will be very useful in building VCBFs since it allows us to precisely measure the minimum
number of bits an algorithm (whose computation is described by a Turing machine) needs to read
to perform specific computations. Observe that the size constraint does not reduce the number of
languages recognizable by a Turing machine. For example, it was shown the existence of a universal
Turing machine with 15 states, 2 symbols, and 30 state-symbol product (transition function) [65,50],
with a polynomial slowdown of O(t6).

String incompressibility. A crucial notion derived from the Kolmogorov complexity is the in-
compressibility of a string [43, Definition 2.2.1] with respect to unbounded deterministic Turing
machines.

Definition 5 (Deterministic c-incompressibility [43, Definition 2.2.1]). A string x ∈
{0, 1}∗ is c-DET-incompressible if C(x) ≥ |x| − c.

We will refer to the above definition as deterministic c-incompressibility (c-DET-incompressibility
in short) since it covers deterministic Turing machines, i.e., the reference Turing machine of the
Kolmogorov complexity is deterministic.

The following theorem provides a lower-bound on the number of c-DET-incompressible elements
in a given set X .

Theorem 2 ([43, Theorem 2.2.1]). Let c ≥ 0 be a positive constant. For each y ∈ {0, 1}∗, every
finite set X of cardinality m has at least m(1−2−c)+1 elements x ∈ X such that C(x|y) ≥ log(m)−c.

By leveraging Theorem 2, we can easily calculate the probability of sampling a c-DET-incompressible
string from X . The proof is included in Appendix A.1.

Theorem 3. Let X be a finite set of cardinality m, then the following probability holds:

Pr[x is c-DET-incompressible | x←$ X ] ≥ 1− 2−c + 1/m.

String incompressibility in the randomized setting. In cryptography, we deal with random-
ized adversaries represented by randomized Turing machines. However, the c-DET-incompressibility
only covers deterministic Turing machines since the reference Turing machine (used to measure the
Kolmogorov complexity) is deterministic. Accordingly, we extend the notion of incompressibility to
randomized Turing machines.

Definition 6 (Randomized (c, ℓrnd)-incompressibility). A string x ∈ {0, 1}∗ is (c, ℓrnd)-RND-
incompressible if for all constant-size unbounded randomized Turing machine T with randomness
space {0, 1}ℓrnd, for all r ∈ {0, 1}ℓrnd, and for all α ∈ {0, 1}|x|−c−1, we have Pr[T(α; r) = x] = 0.

Recall that a string x is c-DET-incompressible (Definition 5) if CT(x) ≥ |x| − c where T is de-
terministic. The (c, ℓrnd)-incompressibility follows the very same idea of its deterministic version,
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i.e., it measures the length of the smallest input (in addition to the randomness) that allows T to
output x.
Naturally, there is an obvious connection between the two definitions of incompressibility. Indeed,
the randomness of a randomized Turing machine can be seen as part of the input of a deterministic
one.

Hence, if a string x ∈ {0, 1}∗ is c-DET-incompressible (Definition 5), then x is (c + ℓrnd +
2 log(ℓrnd) + 1 +O(1), ℓrnd)-RND-incompressible (Definition 6). The factor ℓrnd + 2 log(ℓrnd) + 1 is
due to the self-delimiting δ-encoding (Section 2.1) to encode the randomness r ∈ {0, 1}ℓrnd . Observe
that the relation between the two incompressibility definitions is up to a constant O(1). This is
because the DET-incompressibility leverages the Kolmogorov complexity defined over universal
Turing machines U. In this setting, as implied by the invariance theorem (Theorem 1), any equality
holds up to a constant factor. The following Theorem 4 reports the formal result, whose proof
appears in Appendix A.2.

Theorem 4. Let x ∈ {0, 1}∗ be a string. If x is c-DET-incompressible (Definition 5) then x is
(c′, ℓrnd)-RND-incompressibile (Definition 6) where c′ = c+ ℓrnd + 2 log(ℓrnd) + 1 +O(1).

3 Kolmogorov-bound for Polynomial Evaluation

At each evaluation, a VCBF scheme forces the evaluator to read at least m distinct bits from its
main memory. To achieve this functionality, our construction leverages a single variable polynomial
f(X) =

∑d
i=0 ai · xi ∈ Fp[x] of degree d. Intuitively, on receiving a challenge x ∈ {0, 1}ℓin , an

honest evaluator needs to read the coefficients (a0, . . . , ad) ∈ Fd+1
p that determine the polynomial

f(X) in order to compute y = f(x). In this case, we obtain the desired functionality by setting
|(a0, . . . , ad)| ≥ m. However, a malicious evaluator may find an alternative strategy to compute
y = f(x) and read fewer than m bits. In this section, we prove the lower bound on the number
of bits read during the polynomial evaluation by leveraging the Kolmogorov complexity. Next, we
provide some examples of strategies a malicious evaluator could adopt:

1. Compress the coefficients (a0, . . . , ad) into a smaller string α. In this way, the evaluator just
needs to read α, decompress it into (a0, . . . , ad), and evaluate f(X) on the desired point x.

2. Precompute a dictionary T
def
= (f(x0), . . . , f(xn)) composed of the evaluation of f(X) on points

(x0, . . . , xn). By accessing T , the malicious evaluator can simply read and return yi = f(xi) if
the challenge xi is one of the precomputed points. In this case, the malicious evaluator reads
only |yi| ≤ |p| < m.

3. Instead of storing (a0, . . . , ad), the evaluator may choose to store d+1 arbitrary points (x0, . . . ,
xd), the corresponding evaluations (f(x0), . . . , f(xd)), and the prime p. These pieces of infor-
mation are enough to recover a via polynomial interpolation. As a result, if the expression of
(f(x0), . . . , f(xd)), the points (x0, . . . , xd) and the prime p could be effectively compressed, the
evaluator will read fewer bits than expected when evaluating the polynomial.

To estimate the bits that an adversary/algorithm needs to read to evaluate f(X) correctly, we built
a bridge between the Kolmogorov complexity and polynomial evaluation. Our approach is based
on two main observations.

– First, any string a (of appropriate size) can be encoded into f(X) =
∑d

i=0 ai · xi by setting its
coefficients to different sub-portions of a. Let p be a prime of size λ+1 bits. We can interpret a
string a ∈ {0, 1}(d+1)λ as a = a0|| . . . ||ad where ai ∈ Fp (i.e., |ai| ≤ λ < |p|) and use (a0, . . . , ad)
as the coefficients of f(X).
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– Second, if algorithm T is able to compute (f(x0), . . . , f(xd)) taking in input a string α and the
challenge d points (x0, . . . , xd), then (T, ⟨α, x0, . . . , xd⟩) is a valid description of (f(x0), . . . , f(xd))
according to Definition 3. As explained in Item 3, the tuples (f(x0), . . . , f(xd)), (x0, . . . , xd),
and the prime p, are enough to reconstruct (a0, . . . , ad) via polynomial interpolation (i.e., the
prime’s size λ+ 1 guarantees the encoding is injective).

By combining the above two observations, we can easily lower bound the size of α with the
Kolmogorov complexity C(a) of a. In more detail, consider a Turing machine T′ that first executes
T(α, x0, . . . , xd) to compute f(x0), . . . , f(xd), and then retrieves and return a via polynomial inter-
polation. This implies that (T′, ⟨p, α, x0, . . . , xd⟩) is a description of a. As a consequence, the size
of α (the string that T would read to compute (f(x0), . . . , f(xd))) cannot be too small and must
be related to the complexity C(a) of a. Below, we provide the formal result whose proof appears
in Appendix A.3.

Theorem 5 (Kolmogorov-bound for (adaptive) Polynomial Evaluation). For any λ ∈ N,
let a ∈ {0, 1}(d+1)λ be a binary string and p a prime of size λ+ 1, respectively. Fix the polynomial
f(X) =

∑d
i=0 ai · xi ∈ Fp[x] of degree d with input space {0, 1}ℓin where a = a0|| . . . ||ad and

ai ∈ Fp for i ∈ [d]. If a is (c′, ℓrnd)-RND-incompressible (Definition 6), then for every constant-size
randomized unbounded Turing machine T with randomness space {0, 1}ℓrnd, every α ∈ {0, 1}m, every
r ∈ {0, 1}ℓrnd, and every tuple (x0, . . . , xd) such that ∀

i ̸=j
i, j ∈ {0, . . . , d}, xi ̸= xj and xi ∈ {0, 1}ℓin,

we have:
Pr[(f(x0), . . . , f(xd)) = T(α, x0, . . . , xd; r)] = 0

where m = (d+ 1)(λ− ℓin − 2 log(ℓin)− 1)− c′ − λ− 2 log((d+ 1)λ− c′)− 2 log(λ+ 1)− 4.

We stress that Kolmogorov complexity permits us to prove Theorem 5 under the universal quan-
tification of any d + 1 evaluation points and any adversarial strategy (i.e., any memory α and
evaluation strategy T) selected after the polynomial. This is essential in the adaptive space-based
setting (Section 1.1) in which we want to estimate the size of information generated/read w.r.t.
an arbitrary precomputation of the polynomial. Indeed, the precomputation adopted by an adver-
sary may depend on both the polynomial and an arbitrary distribution of the evaluation points
(e.g., dictionary attack). This aspect is fundamental to prove the adaptive security of our VCBF
(see Section 4 and Section 5.1).

Remark 1. An alternative way to interpret Theorem 5 is that any possible description (T, α) of
f(X) is bigger than the parameter m (defined in Theorem 5). Indeed, if there exists a string α
that encodes f(X) such that |α| < m, then we contradict Theorem 5 since α would allow the
prover to answer to any point x ∈ {0, 1}ℓin . In addition, the parameter m depends on the size of
both a ∈ {0, 1}(d+1)λ and x ∈ {0, 1}ℓin . In particular, we have a loss factor that is proportional to
(d + 1)ℓin. Hence, for some values of ℓin (e.g., ℓin = λ), we derive that m < 0, which makes the
theorem meaningless. The reason behind this non-negligible loss is due to the fact that (x0, . . . , xd)
may contain several bits of information about f(X). Suppose that ℓin = λ. In this case, it is
possible that (x0, . . . , xd) = (a0, . . . , ad) since Theorem 5 holds for every tuple of points (x0, . . . , xd)
such that xi ∈ {0, 1}ℓin for i ∈ {0, . . . , d}. In this scenario, we can set α = ⊥ since the tuple
(x0, . . . , xd) leaks the entire polynomial f(X).12 For this reason, to ensure that m ≥ 0, we must set

ℓin ≤ (d+1)λ−c′−2 log((d+1)λ−c′)−2 log(λ+1)−4
d+1 − 2 log(ℓin) − 1 (note that this implies ℓin < λ). Hence,

α must necessarily contain the bits of information about f(X) that cannot be reclaimed from the
points (x0, . . . , xd).
12 The example can be expressed in term of Kolmogorov complexity, i.e., C(a0, . . . , ad|x0, . . . , xd) = 0 where xi = ai

for i ∈ {0, . . . , d}.
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4 Definition of Verifiable Capacity-bound Functions

A VCBF forces an evaluator to read at least m distinct bits from its main memory. Moreover, a
VCBF does not permit to trade time for capacity, i.e., an evaluator is forced to read m distinct
bits independently from its computational capabilities. As explained in [57], the number of off-chip
memory accesses impacts the energy consumption of the machine. If the cache’s size is significantly
smaller than m, evaluating the function requires significant resources. However, on the (honest)
receiver’s side, the validity of the computation can be verified efficiently in terms of capacity.

Formally, a VCBF scheme Π with input space {0, 1}ℓin is composed of the following polynomial-
time algorithms:

Setup(1λ, 1k): Upon input the security parameter 1λ and the capacity parameter 1k (the capacity
parameter 1k regulates the actual capacity cost, i.e., the number of bits read by the evaluator),
the randomized setup algorithm returns the evaluation key ek and the verification key vk.

Eval(ek, x): Upon input the evaluation key ek and an input x ∈ {0, 1}ℓin , the deterministic eval-
uation algorithm returns the output y and a proof π. In the paper, we use the notation
y = Eval(ek, x) (or simply Eval(ek, x)) to denote solely the output y.

Verify(vk, x, y, π): Upon input the verification key vk, an input x ∈ {0, 1}ℓin , an output y, and a
proof π, the deterministic verification algorithm returns a decisional bit b.

Generally speaking, a VCBF scheme should satisfy four basic properties: correctness, minimum
capacity, soundness and capacity efficient verification.

Correctness. Intuitively, a VCBF scheme is correct if the output of an honest execution of the
evaluation algorithm is accepted by the verification algorithm.

Definition 7 (Correctness of VCBF). A VCBF scheme Π with input space {0, 1}ℓin is correct
if ∀λ ∈ N, ∀k ∈ N, ∀x ∈ {0, 1}ℓin, we have:

Pr

[
Verify(vk, x, y, π) = 1

∣∣∣∣ (ek, vk)←$ Setup(1λ, 1k)
(y, π) = Eval(ek, x)

]
= 1.

Adaptive Minimum Capacity. The name captures the scheme’s lower-bound on the number of
distinct bits m that must be fetched from the main memory to evaluate the function. In more detail,
on input a random challenge x←$ {0, 1}ℓin , the adversary A is asked to return the correct output
y = Eval(ek, x) while reading at most m bits from its main memory. We assume the main memory
of A is bounded since there is a strict relationship between the memory available and A’s advantage
ϵ. Indeed, as discussed in Section 3, a viable adversarial strategy is to precompute a relatively large
dictionary τ = (Eval(ek, x1), . . . ,Eval(ek, xn)) (stored in the main memory) and return Eval(ek, x),
if x has been precomputed and included into τ . A larger memory would allow the adversary to
store more precomputed values Eval(ek, xi), thus increasing the probability of success.

More formally, let τ ∈ {0, 1}n and x ∈ {0, 1}ℓin be the binary string representing the memory
of the adversary A and a challenge, respectively. We denote with IA(τ,x;r) = {i1, i2, . . . , in′}n′≤n the
ordered set of n′ distinct indexes read by A during the computation of the output y = A(τ, x; r)
for the corresponding challenge x while having access to memory τ and randomness r ∈ {0, 1}ℓrnd .
Intuitively, on input the challenge x and randomness r, the adversary A fetches the binary string
τx,r = bi1 || . . . ||bin′ from τ (where bi represents the i-th bit of τ and IA(τ,x;r) = {i1, i2, . . . , in′})
and then compute the output y using the knowledge of τx,r, x, and r.13 A VCBF scheme is secure

13 Observe that τx,r can be fetched from τ in an adaptive fashion according to the challenge x and randomness r.
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in the adaptive setting if for any unbounded adversary sampled after VCBF’s instiantiation (i.e.,
execution of Setup) it is infeasible to compute the correct output Eval(ek, x) ̸= y = A(τ, x; r) when
reading |IA(τ,x;r)| = m bits.14

Definition 8 ((Adaptive) Minimum Capacity of VCBF). Fix the keys (ek, vk)←$ Setup(1λ,
1k). A VCBF scheme Π with input space {0, 1}ℓin satisfies (ϵ,m, ℓrnd, n)-min-capacity with respect
to keys (ek, vk) if for all constant-size unbounded randomized adversaries A with randomness space
{0, 1}ℓrnd and for all τ ∈ {0, 1}n, we have:

Pr
[
Eval(ek, x) = y ∧ |IA(τ,x;r)| = m

∣∣∣x←$ {0, 1}ℓin , y = A(τ, x; r)
]
≤ ϵ, (1)

where r←$ {0, 1}ℓrnd.

Informally, Definition 8 states that if a VCBF scheme Π satisfies (ϵ,m, ℓrnd, n)-min-capacity then
the only way for an (exponential time) adversary A to increase its advantage ϵ is to either read
more than m distinct bits or have access to a memory larger than n bits (e.g., by storing in the
memory τ ∈ {0, 1}n more precomputed values). This guarantees the impossibility of trading time
for capacity.

Note that the evaluator must return the correct output y = Eval(ek, x) and not a verifying proof
π. The infeasibility of computing a verifying proof for a false output is defined by the soundness
property (see next Definition 10). The choice of defining these two properties independently allows
us to define them with respect to different settings, i.e., unbounded vs. computational adversaries.
As mentioned above, defining adaptive minimum capacity in the unbounded setting is necessary to
properly capture the absence of time/bits read trade-offs. See Remark 3 for more details.

Moreover, the definition captures the adaptive space-based setting described in Section 1.1.
This is because the quantifiers of the security definition states that the VCBF remains secure for
any memory τ and adversary A both selected after the VCBF’s instantiation (i.e., Setup algo-
rithm). Intuitively, each τ (resp. A) represents an arbitrary precomputed memory (resp. arbitrary
evaluation/reading strategy) that can depend on ek and vk (e.g., polynomial’s coefficients).

Relation between the memory size n and the advantage ϵ. Definition 8 is optimal in the sense that
it does not put any constraint on the indexes IA(τ,x;r) read by the adversary A. This means that
A can arbitrarily access its memory. For example, it may perform multiple random accesses to the
memory τ , i.e., perform one or more conditional jumps into specific memory indexes to read different
portions of the memory). Hence, one (or more) couple of progressive indexes {ij , ij+i} ⊂ IA(τ,x;r)
may be not consecutive (i.e., |ij − ij+1| > 1).

The optimality of Definition 8 appears to be the primary (apparently insurmountable) obstacle
when trying to relate the memory size n and the advantage ϵ. To retain an advantage ϵ, an adversary
A may choose to store (in the memory) a precomputed data structure which contains (possibly
partial) precomputed values, e.g., some evaluations y = Eval(ek, xi) of a subset of inputs X ⊂
{0, 1}ℓin (precomputed dictionary). However, the estimation of the memory size n (required to store
the data structure) highly depends on what type of precomputation is performed (e.g., the entropy
of the precomputed values, the algorithm used, etc.) and on the type of encoding and memory access
strategy used by A when fetching the data from memory τ to answer to an incoming challenge x.
Unfortunately, this turned out to be a primary challenge when having block-box access to A and
working in the standard setting (i.e., no oracles, no idealized functionalities, no ROM).

14 Without loss of generality, we assume the adversary reads exactly m bits since the higher the number of bits read,
the higher the probability to compute the correct output y = Eval(ek, x).
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As a foundation paper of VCBF, we initiate a fine-grained study regarding the level of minimum
capacity that can be achieved according to specific classes of adversaries. In particular, we provide
a feasibility result showing (in the concrete setting) the meaningful relation between parameters ϵ
and n (using an information-theoretic approach) when dealing with the smaller class of adversaries
A1-access. Such a class is composed by all the adversaries that perform exactly one (adaptive) random
access to the memory τ , i.e., on input the memory τ ∈ {0, 1}n, the challenge x ∈ {0, 1}ℓin , and
randomness r ∈ {0, 1}n, an adversary A ∈ A1-access adaptively jumps to an index i ∈ [n −m + 1]
(memory location) and reads m consecutive indexes. Formally, when dealing with A ∈ A1-access,
the indexes IA(τ,x;r) = {i1, . . . , im} read by A are consecutive, i.e., ij + 1 = ij+1 for j ∈ [m − 1].15

Observe that in A1-access we can identify several adversarial strategies used mainly in practice, e.g.,
precomputed dictionary attacks or any rainbow table technique that leverages a single adaptive
random access.

As we will see during the security analysis of our construction (Section 5.1), by restricting
the adversaries to the ones of the class A1-access, we can use a counting argument to concretely
estimate the memory size n that an adversary A ∈ A1-access requires in order to retain a fixed
advantage ϵ (Theorem 8). For completeness, we also include the results regarding the class Av-access

for 1 ≤ v ≤ m, i.e., adversaries that perform exactly v (adaptive) random access to the memory
(observe that Definition 8 coincides with Definition 9 when A =

⋃m
i=1Ai-access). However, due to

the limited power of counting arguments, the memory size estimation n presents an exponential
loss proportional to the number v of random accesses that A ∈ Av-access performs. In any case,
this is enough to show that there exists a VCBF that satisfies (negl(λ), O((d + 1)λ), o((d + 1)λ),
ω(λs))-min-capacity (in the asymptotic setting) with respect to the class of adversaries AO(1)-access

for every positive constant s. Regarding Aω(1)-access, the minimum capacity of our construction
remains unclear. What we know is that the evaluation of a polynomial can not satisfy minimum
capacity for ϵ ∈ negl(λ) and m ∈ ω(log(d)s1λs2) (for some positive s1, s2 ∈ O(1)) when n is close
to or greater than d1+δλ1+o(1) (for a constant δ > 0) because of the efficient data structure for
polynomial evaluation of Kedlaya and Umans [42] (see Section 5.1). We now provide the formal
security definition of minimum capacity with respect to a specific class of adversaries A.

Definition 9 (A-class (adaptive) minimum capacity of VCBF). A VCBF scheme Π with
input space {0, 1}ℓin satisfies (ϵ,m, ℓrnd, n)-min-capacity with respect to the class of adversaries A
if Π satisfies (ϵ,m, ℓrnd, n)-min-capacity of Definition 8 where A is sampled from A.

Remark 2. The Definitions 8-9 give robust guarantees in terms of capacity (according to the corre-
sponding class of adversaries). For example, they consider unbounded adversaries and the minimum
capacity must hold for every possible adversary A and memory τ after the instantiation of the
scheme (execution of the setup algorithm). This corresponds to the adaptive space-based security
setting described in Section 1.1. Also, there is a more fundamental aspect to consider regarding
Definitions 8-9: They do not rely on any heuristic assumptions, such as the Random Oracle (RO) or
the Ideal Cipher [21], to measure the number of read bits. In fact, previous definitions of bandwidth-
hard or memory-hard functions [58,15,6,2,19,5,3,21,4] do not directly measure the bits read by the
evaluator. Instead, those models only calculate the number of the random oracle queries for each
step. Therefore, the gap between RO queries and the actual number of bits read by the evaluator is
artificially ignored in previous models. Finally, we stress that both RO and Ideal Cipher definitions
neglect (and do not take into account) the adversary’s strategy in organizing and accessing specific
portions of the memory: A fundamental aspect that needs to be considered when proving specific
concrete memory bounds (in the standard model) for VCBFs.

15 Without loss of generality, we assume that reading the first m bits of τ requires the adversary to perform a random
access to the first index of τ .
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Soundness. Soundness captures the infeasibility of convincing the verifier that y∗ ̸= Eval(ek, x) is
the correct output of the computation. In more detail, it is infeasible for a malicious evaluator to
compute a triple (x∗, y∗, π∗) that verifies successfully, but y∗ is not the correct output of the com-
putation. Soundness is also fundamental to enforce the (ϵ,m, ℓrnd, n)-min-capacity (Definitions 8-9)
of a VCBF scheme. For example, if soundness does not hold, a malicious evaluator can deceive the
verifier by returning a proof π∗ and an output y∗ ̸= Eval(ek, x) such that Verify(vk, x, y∗, π∗) = 1.
In this case, the energy consumption is not guaranteed since the value y∗ is incorrect and may have
been computed without fetching any bit from the main memory.

Definition 10 (Soundness of VCBF). A VCBF scheme Π with input space {0, 1}ℓin is (ϵ)-
sound if for all PPT adversary A we have:

Pr

[
Verify(vk, x, y, π) = 1 and

Eval(ek, x) ̸= y

∣∣∣∣ (ek, vk)←$ Setup(1λ, 1k)
(x, y, π)←$ A(1λ, ek, vk)

]
≤ ϵ.

Remark 3 (On the combination of minimum capacity and soundness). Formalizing adaptive min-
imum capacity (Definitions 8 and 9) and soundness (Definition 10) separately allows us to define
these notions with respect to two distinct settings, i.e., unbounded adversaries vs. computational
bounded adversaries. In turn, minimum capacity with respect to unbounded adversaries is funda-
mental to capturing the (concrete) strict lower bound on the number of distinct bits guaranteed by
a VCBF. This is because the unbounded setting guarantees that the lower bound must be satisfied
independently of the running time of the adversary, i.e., trading time for bits read is infeasible.
Observe that the computational bounded version of minimum capacity does not guarantee the ab-
sence of a time/bits read trade-off. For example, a VCBF presenting an exponential trade-off (e.g.,
a PPT adversary can choose not to read a few bits at the cost of doubling its running time) may
satisfy, asymptotically speaking, computational minimum capacity. However, the concrete lower
bound would not be strict since the adversary can play with the gap allowed by the trade-off (this
is not allowed when considering minimum capacity w.r.t unbounded adversaries as in our results).
This is problematic when the VCBF is instantiated in practice since it makes the capacity bound
less clear. For this reason, we chose to formalize these notions separately instead of being com-
bined into a single one with respect to computational bounded adversaries. Naturally, since we
consider computational soundness, the final security of the VCBF holds only against computation-
ally bounded adversaries (unless we drop the VCBF’s efficient verification). Still, we emphasize
once again that unbounded minimum capacity is fundamental since it guarantees the absence of
a trade-off with which the (computationally bounded) adversary could play with. Lastly, it may
seem that another natural approach is to combine minimum capacity and soundness into a single
definition that considers unbounded adversaries. Unfortunately, this is not possible since a VCBF
that has a capacity efficient verification (see next Definition 11) cannot satisfy, at the same time,
both minimum capacity and soundness with respect to unbounded adversaries (soundness with
respect to unbounded adversaries is also known as perfect soundness, i.e., it does not exist a valid
proof for a false statement/output). This is because an exponential adversary always exists that
brute-forces all pairs of proofs and outputs until it finds the one that verifies. By leveraging perfect
soundness, the adversary is guaranteed that the corresponding output is the correct VCBF’s evalua-
tion. This attack only requires reading the VCBF’s verification key vk, whose size must be sublinear
in the VCBF’s minimum capacity m. This is required to satisfy capacity efficient verification (see
next Definition 11).
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Capacity Efficient Verification. The resource considered by VCBFs is the capacity since an
evaluator is forced to read m distinct bits from its main memory. The verifier, on the other hand,
should not have the same workload. For this reason, we require a VCBF scheme Π to be efficiently
verifiable:

Definition 11 (Capacity Efficient Verification of VCBF). If Π satisfies (ϵ,m, ℓrnd, n)-min-
capacity (either Definition 8 or Definition 9) then an honest execution of the verification algorithm
requires at most fetching o(m) bits from the memory (i.e., sublinear in m).16

In particular, in this work, the capacity parameter is of the form m ∈ O((d + 1)λ) where d is the
degree of a polynomial f(X) =

∑d
i=0 ai · xi ∈ Fp[x] and λ+ 1 is the size of the prime p. As we will

see, to reach high capacities (such as GB or even TB), for a fixed λ we will have to set d ∈ O(λc) for
a constant c ≥ 1. Nevertheless, the verification will be independent of d by leveraging the publicly
VC scheme of Elkhiyaoui et al. [31]. Hence, we will obtain at least O(λc+1) of min-capacity for the
evaluation, and at most O(λ) of min-capacity for the verification (see Section 5.1).17

On Energy Consumption. A motivation for VCBFs is ASIC resistance. State-of-the-art hash engines
[14,58] could be 200, 000× faster and 40, 000×more energy efficient than multi-core CPUs. However,
the energy consumption for off-chip memory accesses is similar for CPUs and ASICs [58]. If we
assume the ASIC can hardcode only s bits, min-capacity guarantees that the ASIC will transfer at
least m− s bits from the external memory during the evaluation. If the energy cost is u nJ per bit
for external memory accesses, the evaluation of the VCBF costs at least u(m− s) nJ.

5 VCBF from VC for Polynomial Evaluation

In this section we show how to build a VCBF from VC for polynomial evaluation.

Construction 1 Let Fλ,d,p = {fa(X) =
∑d

i=0 ai · xi mod p}a∈{0,1}(d+1)λ be an ensemble of poly-
nomials where a = a0|| . . . ||ad, λ ∈ N, d ∈ N, and p is a prime of λ + 1 bits. Let VC =
(SetupVC,ProbGenVC,ComputeVC,VerifyVC) be a publicly VC scheme for the class Fλ,d,p. We build
a VCBF scheme with input space {0, 1}ℓin in the following way:

Setup(1λ, 1k): Without loss of generality, we assume k = (d+1)λ. On input the security parameter
1λ and the capacity parameter 1k, the setup algorithm samples a0|| . . . ||ad = a←$ {0, 1}(d+1)λ

where |ai| = λ for i ∈ {0, . . . , d}. Then, it outputs the evaluation key ek = (ekfa , vkfa) and the
verification key vk = vkfa where (ekfa , vkfa)←$ SetupVC(1

λ, fa) and fa ∈ Fλ,d,p.
Eval(ek, x): On input the evaluation key ek = (ekfa , vkfa) and an input x ∈ {0, 1}ℓin, the evaluation

algorithm returns (y, π) = ComputeVC(ekfa , σx) where (σx, vkx) = ProbGenVC(vkfa , x).
Verify(vk, x, y, π): On input the verification key vk = vkfa, an input x ∈ {0, 1}ℓin, an output y ∈
Y, and a proof π, the verification algorithm returns b = VerifyVC(vkx, y, π) where (σx, vkx) =
ProbGenVC(vkfa , x).

In this scheme, honest evaluators need to read at least k = (d+1)λ bits to load all the coefficients
of the polynomial regardless of the cost of generating the proof π. Correctness follows directly from
the correctness of the underlying schemes. For security and verification complexity, we establish
the following results.

16 Observe that |vk|+ |x|+ |y|+ |π| ∈ o(m) (i.e., vk, π, y, x are “succinct”) is necessary to obtain a capacity-efficient
verification of o(m). This is because vk, π, y, x are part of the verification algorithm Verify of VCBF.

17 In the verification, O(λ) is for reading a constant number of group elements of order p of size at most λ + 1. In
the evaluation, O((d+1)λ) = O(λc+1) is for the d coefficients (a0, . . . , ad) ∈ Fd+1

p of the polynomial f(X) ∈ Fp[x].
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5.1 Security Analysis

The soundness is trivial. It follows from the (ϵ)-soundness of VC. The proof is standard, so we omit
it.

Theorem 6 (Soundness). If VC is (ϵ)-sound (Definition 2), then the VCBF scheme Π of Con-
struction 1 with input space {0, 1}ℓin is (ϵ)-sound (Definition 10).

Next, we show the level of minimum capacity that our VCBF scheme Π of Construction 1
satisfies with respect to the class of adversaries Av-access (Definition 9) for 1 ≤ v ≤ m. Our technique
is divided into two parts: 1) We prove that Construction 1 satisfies an alternative definition of
minimum capacity dubbed decomposed minimum capacity and, 2) we demonstrate that any VCBF
scheme satisfying the decomposed minimum capacity also satisfies the minimum capacity with
respect to the class of adversaries Av-access (Definition 9) for some parameters (ϵ,m, ℓrnd, n). The
second part is only required to give an upper bound to the memory size parameter n.

(Part one). Decomposed (adaptive) minimum capacity. The definition of decomposed minimum
capacity is identical to Definition 8 except that the memory τ is decomposed into n distinct strings
(τ1, . . . , τn) such that τi ∈ {0, 1}m for i ∈ [n] (intuitively, each τi represents one possible string of
length m that the adversary can read and interpret from its main memory, i.e., (τ1, . . . , τn) is the
decomposition of the main memory). Then, the adversary succeeds if there exists i ∈ [n] such that
y = A(τi, x; ri) where ri←$ {0, 1}ℓrnd and x←$ {0, 1}ℓin .

Definition 12 (Decomposed (adaptive) minimum capacity of VCBF). Fix the keys (ek, vk)
output by Setup(1λ, 1k). A VCBF scheme Π with input space {0, 1}ℓin satisfies (ϵ,m, ℓrnd, n)-
decomp-min-capacity with respect to keys (ek, vk) if for all constant-size unbounded randomized
adversaries A with randomness space {0, 1}ℓrnd and for all (τ1, . . . , τn) such that τi ∈ {0, 1}m for
i ∈ [n], we have:

Pr
[
∃i ∈ [n],Eval(ek, x) = yi

∣∣∣x←$ {0, 1}ℓin , {yi←$ A(τi, x)}i∈[n]
]
≤ ϵ.

Regarding decomposed minimum capacity (Definition 12) of Construction 1, for each string
τi ∈ {0, 1}m, the adversary can compute at most d distinct points x ∈ {0, 1}ℓin under the con-
dition that the coefficients (a0, . . . , ad) of the polynomial fa(X) ∈ Fλ,d,p are RND-incompressible
(see Lemma 1). If this is not the case, it would violate Theorem 5 which states that a constant-size
Turing machine needs more than m bits to compute d+ 1 points if the coefficients (a0, . . . , ad) are
(c′, ℓrnd)-RND-incompressible (for c′ as defined in Theorem 4). Since the adversary is only allowed
to access n strings τi, the maximum number of the points the adversary can evaluate for fa(X)
is nd. Based on our parameters, nd points are only a small fraction of the input space {0, 1}ℓin .
Lastly, we can leverage Theorems 3-4 to claim that the string a = a0|| . . . ||ad (i.e., the coefficients
of the polynomial fa(x) described by ek) is not (c′, ℓrnd)-RND-incompressible with probability at
most 1

2c −
1

2(d+1)λ . We report the formal result whose proof appears in Appendix A.4.

Theorem 7 (Decomposed (adaptive) minimum capacity). Fix the keys (ek, vk) output by
Setup(1λ, 1k). The VCBF scheme Π of Construction 1 with input space {0, 1}ℓin satisfies (ϵ,m, ℓrnd, n)-
decomp-min-capacity (Definition 12) with respect to keys (ek, vk) where λ ∈ N, d ∈ N, c ∈ N, ϵ1 ∈
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[0, 1],

m = (d+ 1)(λ− ℓin − 2 log(ℓin)− 1)− c′

− λ− 2 log((d+ 1)λ− c′)− 2 log(λ+ 1)− 4,

c′ = c+ ℓrnd + 2 log(ℓrnd) + 1 +O(1),

ϵ = ϵ1 +
d+ 1

2ℓin
+

1

2c
− 1

2(d+1)λ
, n =

ϵ1 · 2ℓin
d

+ 1.

(Part two). From Definition 12 to Definition 9. We now show that any VCBF that satisfies
(ϵ,m, ℓrnd, n−m+1)-decomp-min-capacity (Definition 12) also satisfies (ϵ,m, ℓrnd, n)-min-capacity
with respect to the class of adversaries A1-access (Definition 9). The result follows by using a counting
argument: An adversary A ∈ A1-access with access to memory τ of length n can read at most n−m+1
different strings (τ1, . . . , τn−m+1) each of length m (as defined in Theorem 7). For completeness,
we generalize the technique to every class of adversaries Av-access for 1 ≤ v ≤ m. However, due to
the limited power of counting arguments, we stress that memory size n presents an exponential
loss proportional to v. Lastly, we want to stress that the counting argument is not required if we
consider memories of size n = m. This because a precomputed memory τ ∈ {0, 1}m only allows an
adversary to answer to at most d points (Theorem 5). This directly implies that our Construction 1
satisfies (ϵ,m, ℓrnd,m)-min-capacity with respect to the optimal Definition 8 (i.e., security against
adversaries that arbitrarly access its memory) where ϵ = d+1

2ℓin
+ 1

2c −
1

2(d+1)λ . We now report the
formal result for the class of adversaries Av-access whose proof is included in Appendix A.5.

Theorem 8 (Av-access-class (adaptive) minimum capacity). Let v ∈ N and Π be a VCBF
scheme with input space {0, 1}ℓin. Fix the keys (ek, vk)←$ Setup(1λ, 1k). If Π satisfies (ϵ,m, ℓrnd, n1)-
decomp-min-capacity (Definition 12) with respect to keys (ek, vk) then Π satisfies (ϵ,m, ℓrnd, n2)-
min-capacity with respect to the class of adversaries Av-access and keys (ek, vk) (Definition 9) where

n1 =

{
n2 −m+ 1 if v = 1

n2!
(n2−v)!

(
m−1
v−1

)
if 1 < v ≤ m.

The following corollaries report the concrete and asymptotic min-capacity of Construction 1
whose proofs appears in Appendix A.6 and Appendix A.7). The concrete Corollary 1 shows that we
can obtain a reasonable concrete trade-off between ϵ and n only for the class of adversaries A1-access

(due to the limited power of our counting argument). Still, the result applies to adversarial strategies
(primarily used in practice) such as precomputed dictionary attacks (e.g., ordered dictionary in
which the x-th evaluation f(x) is stored at the x-th offset) or limited devices that are hindered
from performing non-constant random accesses (e.g., for energy efficiency). In Section 5.2 we provide
some examples of concrete instantiations. On the other hand, the asymptotic Corollary 2 shows that
a secure VCBF exists (in the standard model) with respect to the class of adversary AO(1)-access. We
stress that this must be interpreted as a purely theoretical result showing the feasibility of VCBF
since the constants hidden by the asymptotic notation are significantly large.

Corollary 1. For any v ∈ N, the VCBF scheme Π of Construction 1 with input space {0, 1}ℓin
satisfies (ϵ,m, ℓrnd, n)-min-capacity (Definition 9) with respect to the class of adversaries Av-access
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where λ ∈ N, d ∈ N, c ∈ N, ϵ1 ∈ [0, 1],

m = (d+ 1)(λ− ℓin − 2 log(ℓin)− 1)− c′

− λ− 2 log((d+ 1)λ− c′)− 2 log(λ+ 1)− 4,

c′ = c+ ℓrnd + 2 log(ℓrnd) + 1 +O(1),

ϵ = ϵ1 +
d+ 1

2ℓin
+

1

2c
− 1

2(d+1)λ
,

n =


m+ ϵ1·2ℓin

d if v = 1

v

√(
ϵ1·2ℓin

d + 1
)
/

(
v!
(
m−1
v−1

)v−1
)
· v if 1 < v ≤ m.

Corollary 2. For any λ ∈ N and k = (d + 1)λ ∈ N such that d ∈ N, there exists a VCBF that
satisfies (negl(λ), O((d+1)λ), o((d+1)λ), ω(λs))-min-capacity with respect to the class of adversaries
AO(1)-access for every constant s ≥ 1.

We stress that the memory size n does not need to be super-polynomial (in the security parameter)
in order to consider a VCBF secure. Indeed, in a scenario in which a machine has at most n =
λs ∈ poly(λ) bits of free memory (for a positive constant s), it is enough to show that the VCBF
satisfies (ϵ,m, ℓrnd, λ

s)-min-capacity where ϵ is the target advantage.

Verification Complexity. Corollary 2 shows that an evaluator needs to read at least O((d + 1)λ)
distinct bits from its main memory. We now analyze the verifier capacity complexity. By inspect-
ing Construction 1, we observe that the capacity complexity of Verify coincides with the ones
of algorithms ProbGenVC and VerifyVC of the underlying VC scheme. Therefore, we must con-
sider a concrete instantiation of the VC scheme. For this reason, we measured the efficiency of
our VCBF with respect to the VC scheme of Elkhiyaoui et al. [31] that uses an asymmetric bi-
linear pairing e : G1 × G2 → GT in which the (d/2)-SDH assumption holds. The execution of
ProbGenVC(vkf , x) computes and returns vkx = (vk0x, vk

1
x) = (gb0 · gx

2
, hxr1 · hr0) and σx = x, where

vkf = (gb0 , hr1 , hr0) ∈ G1 × G2 × G2, x ∈ Fp, and g the generator of G1 (observe that the size
of the verification key vkf is O(λ), i.e., does not depend on the degree d of the polynomial).
Moreover, VerifyVC(vkx, y, πy) verifies the correctness of the computation by checking the equality

e(g, hy)
?
= e(vk0x, πy) · e(g, vk1x), where vkx = (vk0x, vk

1
x) and h is a generator of G2. Hence, in the

worst case, the verification capacity complexity of our VCBF is O(λ) ∈ o((d+1)λ), while the verifi-
cation time is O(1) in the number of group operations. This is because the executions of ProbGenVC,
VerifyVC, and the sizes of (vkf , x, y, πy) (that compose the inputs of ProbGenVC and VerifyVC), are
independent of the polynomial degree d in terms of both capacity and time.

Improve the memory size bound. For v ∈ ω(1), our VCBF construction needs to face the efficient
data structure for polynomial evaluation of Kedlaya and Umans [42]. In particular, they show that,
for any constant δ > 0, there exists a data structure D of size d1+δλ1+o(1) that can be computed
by preprocessing only the coefficients of f(X) ∈ Fp[X]. An evaluator in Aω(1)-access can correctly
evaluate f(x) on every x ∈ {0, 1}ℓin in time polylog(d) · λ1+o(1), performing a non-constant number
of random accesses and reading at most polylog(d)λ1+o(1) · w bits from D (with w ∈ O(λ) we
denote bit size of the elements contained in D). Hence, our VCBF construction can not achieve
(ϵ,m, ℓrnd, n) for ϵ ∈ negl(λ) and m ∈ ω(log(d)s1λs2) (for some positive s1, s2 ∈ O(1)) when n is
close to or greater than d1+δλ1+o(1). The above observation poses the natural question of whether an
asymptotic VCBF (in the Aω(1)-access setting) that satisfies min-capacity for reasonably large m and
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Table 2: Example of concrete instantiations of Corollary 1 with respect to the class of adversaries
A1-access for k = 1GB and k = 100GB where ℓin = ℓrnd = c = 128 and k = (d+ 1)λ.

Capacity
Param. k

Prime Size λ+ 1
Advantage Param. ϵ1

ϵ1 = 2−90 ϵ1 = 2−50

1GB
512 (d ≈ 15.65 · 106 ≈ λ2.66) ϵ ≈ 2−90, n ≈ 0.69GB, m ≈ 0.69GB ϵ ≈ 2−50, n ≈ 2.14PB, m ≈ 0.69GB

1024 (d ≈ 78.20 · 105 ≈ λ2.29) ϵ ≈ 2−90, n ≈ 0.82GB, m ≈ 0.82GB ϵ ≈ 2−50, n ≈ 4.29PB, m ≈ 0.82GB

100GB
512 (d ≈ 15.65 · 108 ≈ λ3.39) ϵ ≈ 2−90, n ≈ 67.25GB, m ≈ 67.25GB ϵ ≈ 2−50, n ≈ 22.06TB, m ≈ 67.25GB

1024 (d ≈ 78.20 · 107 ≈ λ2.95) ϵ ≈ 2−90, n ≈ 80.20GB, m ≈ 80.20GB ϵ ≈ 2−50, n ≈ 44.02TB, m ≈ 80.20GB

n super-polynomial in λ as in Corollary 2 (i.e., n asymptotically larger than the size d1+δ · λ1+o(1)

of the data structure of Kedlaya and Umans [42]). The answer to the important question requires
a non-trivial and precise study that can be undertake in future works.

5.2 Concrete Instantiation

Table 2 shows two candidate instantiations satisfying the requirements of Corollary 1 for the capac-
ity parameter k = 1GB and k = 100GB when considering the class of adversaries A1-access. We first
set the intermediate parameter ϵ1 as 2

−90 and 2−50, respectively. Then, we compute the adversary’s
advantage ϵ, the bound m of minimum capacity, and the memory size n according to Corollary 1.
Note that the bound m of Corollary 1 contains a constant O(1) which represents the tolerance that
depends on the constant-size Turing machine implementing A ∈ A1-access. Recall that in A1-access

we can identify attack strategies, primarily used in practice, that use a single adaptive random
access to the memory such as pre-computed dictionaries (e.g., on input x, perform a random access
to fetch the evaluation f(x) stored at the x-th position). Hence, Corollary 1 and the estimations of
the parameters reported in this section apply to these strategies.

The efficient verification algorithm allows our VCBF scheme to handle very large capacities
(i.e., d ≫ λ) since its complexity is independent of the degree of the polynomial d. Note that d
is the dominating factor of the minimum capacity bound m. For example, for λ + 1 = 512 and
k = (d + 1)λ = 1GB, we need to set the polynomial degree to d = 15.65 · 106 ≈ λ2.66 (Table 2).
Hence, the verifier complexity is d ≈ λ2.66 times smaller than the evaluator complexity, i.e., at most
O(λ) verification capacity versus at least O(λ3.66) minimum capacity.

There is always a loss between the capacity parameter k (the number of bits read by an honest
evaluator) and the provable minimum capacity m. Such a loss is inevitable due to Theorem 5
(see Section 3 for additional details). To reduce this gap, one could reduce the input size ℓin, but
this increases the advantage ϵ of the adversary. Alternatively, we recommend to increase the security
parameter λ and get a larger prime p. For example, by increasing λ+ 1 from 512 to 1024 bits, the
lower-bound m goes from 0.69GB to 0.82GB (resp. from 67.25GB to 80.20GB) for k = 1GB (resp.
for k = 100GB).

Lastly, as we discussed in Section 4, the advantage ϵ of the adversary is highly correlated
with the memory size n (see Corollary 1). If the adversary involves more memory (e.g., increase
n from ≈ 80.20GB to ≈ 22.06TB for k = 100GB and λ + 1 = 512), the advantage ϵ could
be significantly improved from ≈ 2−90 to ≈ 2−50. As discussed in Section 4, this trade-off is
inevitable. This trade-off is inevitable. For example, an adversary may involve its memory only
to store precomputed dictionary, i.e., it encodes in the memory τ of size n different precomputed
polynomial evaluations f(xj) for arbitrary points xj ∈ {0, 1}ℓin . Intuitively, the larger the memory
n, the more the precomputed polynomial evaluations f(xj), the higher the advantage ϵ. Analogously,
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for very small advantages ϵ, the memory size n decreases close to m (see column ϵ1 = 2−90 of Table 2
and Corollary 1): An adversary needs a small memory in order to retain very small advantages.
This also relates to Theorem 5: A binary string of size m may allow an adversary to answer to at
most d points. Hence, a memory size n = m is enough for any adversary to retain a very small
advantage ϵ ≈ d/2ℓin . Concretely, for k = 100GB and d = 15.65 · 108 (λ + 1 = 512) and ℓin = 128
(as in Table 2), a memory of size n = m may permit us to retain an advantage ϵ ≈ d/2ℓin ≈ 2−99.

6 Future Work

This work lays the foundation for verifiable capacity-bound functions (VCBFs). We have demon-
strated the level of minimum capacity a VCBF can achieve when only leveraging an information-
theoretical approach based on Kolmogorov complexity. We believe this work opens up several new
directions that could be investigated further:

1. As extensively discussed in Section 5.1, a natural and important next step is to study if a
VCBF exists in stronger security models (e.g., Aω(1)-access setting), possibly obtaining a super-
polynomial bound on n (at least in the computational-bounded setting).

2. We have also shown that some classes of polynomials have high Kolmogorov complexity and
require a large amount of space to be evaluated. Identifying (or even building) other high
Kolmogorov complexity functions may yield new VCBFs with new exciting properties.

3. The definition of minimum capacity (Definition 8) and our polynomial-based VCBF (Construc-
tion 1) do not take into account amortization: An evaluator that computes in parallel the VCBF
on ℓ random points (x1, . . . , xℓ)←$ X ℓ (known in advance) will still incur a minimum capacity
of m (and not ℓ ·m). Hence, the minimum capacity does not scale linearly with the number ℓ of
points computed in parallel. Studying amortization in VCBFs (as done by [6,4] for memory-hard
functions) is an interesting future line of research.

4. Protocol Labs is investigating the use of VCBFs, improving proof of useful space in Filecoin [54].
However, several aspects of VCBF needs to be studied before achieving their goals, such as: i)
removing the trusted setup or making it independent from the polynomial/function that needs
to be verified (a candidate solution is to use a public-coin protocol that can be made non-
interactive by using a random oracle) and, ii) analyzing the security of VCBF in the cost
model [47].
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38. Grunwald, P., Vitányi, P.: Shannon information and kolmogorov complexity. arXiv preprint cs/0410002 (2004)
39. Jaeger, J., Tessaro, S.: Tight time-memory trade-offs for symmetric encryption. In: Annual International Confer-

ence on the Theory and Applications of Cryptographic Techniques. pp. 467–497. Springer (2019)
40. Juels, A.: Client puzzles: A cryptographic countermeasure against connection depletion attacks. In: Proc. Net-

works and Distributed System Security Symposium (NDSS), 1999 (1999)
41. Kaliski, B.: Password-based cryptography specification. RFC 2898 (2000)
42. Kedlaya, K.S., Umans, C.: Fast modular composition in any characteristic. In: 2008 49th Annual IEEE Symposium

on Foundations of Computer Science. pp. 146–155. IEEE (2008)
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A Supporting Proofs

A.1 Proof of Theorem 3

Let Y ⊆ X be the set composed of all strings x ∈ X that are c-DET-incompressible. By using The-
orem 2, we conclude that Y is of size at least m(1− 2−c) + 1. Hence, the probability that x←$ X
is c-DET-incompressible is defined as follows:

Pr[x is c-DET-incompressible | x←$ X ] = |Y|
|X |
≥ m(1− 2−c) + 1

m
= 1− 2−c +

1

m
.

This concludes the proof.

A.2 Proof of Theorem 4

The proof follows the same strategy of [43, Lemma 2.1.1]. Let e = ℓrnd+2 log(ℓrnd)+1. By contradic-
tion assume that, for any constant v ∈ O(1), x is not (c+e+v, ℓrnd)-RND-incompressible, i.e., there
exists a constant-size unbounded randomized Turing machine T, a string α ∈ {0, 1}|x|−c−e−v−1, and
r ∈ {0, 1}ℓrnd such that Pr[T(α; r) = x] = 1. Let T′ be the deterministic Turing machine defined

as T′(α, r)
def
= T(α; r). Without loss of generality, assume that T′ is the i-th deterministic machine

with respect to the enumeration defined by a universal deterministic Turing machine U, i.e.,

U(⟨i, r, α⟩) = T′
i(α, r) = T′(α, r) = T(α; r).

The Kolmogorov complexity of x with respect to the deterministic reference universal Turing ma-
chine U is

CU(x) = |⟨i, r, α⟩| ≤ log(i) + 2 log log(i) + 1 + ℓrnd + 2 log(ℓrnd) + 1 + |α|
= log(i) + 2 log log(i) + 1 + e+ |α| < |x| − c− v + log(i) + 2 log log(i) + 1.

If we set v = log(i)+2 log log(i)+1 ∈ O(1) we obtain that CU(x) < |x|−c. (Note that v is a constant
that only depends on the enumeration U.) This contradicts the fact that x is c-DET-incompressible.

A.3 Proof of Theorem 5

Suppose there exists a constant-size randomized unbounded Turing machine T with randomness
space {0, 1}ℓrnd , a string α ∈ {0, 1}m, a randomness r ∈ {0, 1}ℓrnd , and a tuple (x0, . . . , xd) such
that ∀

i ̸=j
i, j ∈ {0, . . . , d}, xi ̸= xj and xi ∈ {0, 1}ℓin for which the following probability holds

Pr[(f(x0), . . . , f(xd)) = T(α, x0, . . . , xd; r)] = 1.18

Then, we show that a is not (c′, ℓrnd)-RND-incompressible (Definition 6). Let α′ = ⟨p, α, x0, . . . , xd⟩
and consider the following Turing machine T′:

T′(α′; r′): On input α′ = ⟨p, α, x0, . . . , xd⟩ and a randomness r′ ∈ {0, 1}ℓrnd , T′ proceeds as follows:
1. Interpret the input α′ = ⟨p, α, x0, . . . , xd⟩ and separate the inputs p, α and x0, . . . , xd.
2. Compute (f(x0), . . . , f(xd)) = T(α, x0, . . . , xd; r

′).
3. Reconstruct the polynomial via interpolation.
4. Return a = a0|| . . . ||ad.

18 Note that the randomness is made explicit. Hence, the probability is equal to either 0 or 1.

31



The steps executed by T′ can be implemented by a constant number of operations if T receives in in-
put all the pieces of information on which the computation depends on. That is, (p, α, x0, . . . , xd, r,T,
d) and the structure of the polynomial. Note that the values (p, α, x0, . . . , xd) are δ-encoded (Sec-
tion 2.1) into α′, r′ is taken as input, and the degree d can be computed by counting the points
(x0, . . . , xd) and decrease that amount by 1 (i.e., |{x0, . . . , xd}| − 1 = d). Moreover, T and the
structure of f(X) are of constant size and can be hardcoded into the code of T′. Hence, we can
conclude that T′ is of constant size.

In addition, it is easy to see that T′, on input α′, correctly computes a, if r′ = r. We can bound
the size of α′ as follows:

|α′| = |⟨p, α, x0, . . . , xd⟩|
≤ λ+ 1 + 2 log(λ+ 1) +m+ 2 log(m) + (d+ 1)(ℓin + 2 log(ℓin) + 1) + 2

≤ (d+ 1)λ− c′ + 2 log(m)− 2 log((d+ 1)λ− c′)− 1

≤ log(a)− c′ − 1 < log(a)− c′ ≤ (d+ 1)λ− c′,

where we used the fact that |α| ≤ m = (d + 1)(λ − ℓin − 2 log(ℓin) − 1) − c′ − λ − 2 log((d +
1)λ − c′) − 2 log(λ + 1) − 4 and log(m) ≤ log((d + 1)λ − c′). This contradicts the fact that a is
(c′, ℓrnd)-RND-incompressible.

A.4 Proof of Theorem 7

Let fa(x) ∈ Fλ,d,p be the polynomial sampled by Setup (as defined in Construction 1). Let ERND
c′,ℓrnd

be the event that the string a = a0|| . . . ||ad (the coefficients of the polynomial fa(x) described by
ek) is (c′, ℓrnd)-RND-incompressible (Definition 6). We first prove the following lemma.

Lemma 1. If ERND
c′,ℓrnd

holds, then the VCBF scheme Π of Construction 1 with input space {0, 1}ℓin
satisfies (ϵ′,m, ℓrnd, n)-decomp-min-capacity (Definition 12) with respect to keys (ek, vk) where λ ∈
N, d ∈ N, c ∈ N, ϵ1 ∈ [0, 1],

m = (d+ 1)(λ− ℓin − 2 log(ℓin)− 1)− c′

− λ− 2 log((d+ 1)λ− c′)− 2 log(λ+ 1)− 4,

c′ = c+ ℓrnd + 2 log(ℓrnd) + 1 +O(1),

ϵ′ = ϵ1 +
d+ 1

2ℓin
, n =

ϵ1 · 2ℓin
d

+ 1.

Proof. Assume there exists a constant-size randomized unbounded adversary A with randomness
space {0, 1}ℓrnd and a tuple (τ1, . . . , τn) such that τi ∈ {0, 1}m for i ∈ [n] for which the following
probability holds:

Pr

∃i ∈ [n],Eval(ek, x) = yi

∣∣∣∣∣
ERND

c′,ℓrnd
,

x←$ {0, 1}ℓin ,
{yi←$ A(τi, x)}i∈[n]

 =

Pr

∃i ∈ [n],Eval(ek, x) = yi

∣∣∣∣∣
ERND

c′,ℓrnd
,

x←$ {0, 1}ℓin ,
{yi = A(τi, x; ri)}i∈[n]

 > ϵ′, (2)

where Eval(ek, x) = fa(x) and ri←$ {0, 1}ℓrnd is the i-th fresh randomness taken in input by A,
together with τi, at the i-th independent execution.
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Next, we count the number of points x that A can successfully compute. We fix the code and the
random tape (randomness ri) of A, and run A on different x∗. In this case, let X be the set of inputs
x∗ ∈ {0, 1}ℓin for which A is able to correctly compute y∗ = fa(x

∗) in at least one of n independent
executions. Respectively, let Xi (such that Xi ⊆ X ) be the set of inputs x∗ ∈ {0, 1}ℓin for which
A can correctly compute y∗ = fa(x

∗) during the i-th execution with string τi and randomness ri.
Formally,

Xi
def
= {x∗ ∈ {0, 1}ℓin | fa(x

∗) = A(τi, x
∗; ri)} and X

def
=

⋃
i∈[n]

Xi.

By leveraging Equation (2), we can conclude that Pr
[
x ∈ X |x←$ {0, 1}ℓin

]
= |X |

2ℓin
> ϵ′ (otherwise

A’s advantage cannot be greater than ϵ′). This implies that the set X has cardinality |X | > ϵ′ ·2ℓin =
ϵ1 · 2ℓin + d+ 1.

We now claim that conditioned on ERND
c′,ℓrnd

, we have |Xi| ≤ d, for all i ∈ [n]. Assume the contrary,
i.e., |Xi| ≥ d+1. Hence, we can build a Turing machine T by running A on d+1 points in Xi with
τi ∈ {0, 1}m and ri ∈ {0, 1}ℓrnd , since fa(x

∗) = A(τi, x
∗; ri) for all x∗ ∈ Xi and |Xi| ≥ d + 1. This

would contradict Theorem 5 and accordingly |Xi| ≤ d. Since each i-th execution of A on input τi
and ri allows us to correctly compute at most |Xi| ≤ d, then we conclude that the only way to
cover all points x∗ ∈ X is to set n to be at least

n ≥ |X |
d

>
ϵ1 · 2ℓin

d
+

d+ 1

d
>

ϵ1 · 2ℓin
d

+ 1.

This concludes the proof of Lemma 1. ⊓⊔

To conclude the proof of Theorem 7, we need to bound the probability of ERND
c′,ℓrnd

. Let EDET
c be the

following event

EDET
c

def
=

(
a is c-DET-incompressibile

)
,

where a = a0|| . . . ||ad are the coefficients of the polynomial fa(x) sampled by Setup. By using The-
orem 4, we know that if a is c-DET-incompressible then a is (c′, ℓrnd)-RND-incompressible for
c′ = c+ ℓrnd + 2 log(ℓrnd) + 1 +O(1) as defined in Theorem 7. Since we only consider randomized
adversaries with randomness space {0, 1}ℓrnd , we have that EDET

c implies ERND
c′,ℓrnd

, and ¬ERND
c′,ℓrnd

implies ¬EDET
c . Thus, Pr

[
¬EDET

c

]
≥ Pr

[
¬ERND

c′,ℓrnd

]
. Hence, we conclude that, given ri←$ {0, 1}ℓrnd

and for i ∈ [n], the following inequality holds:

Pr

[
∃i ∈ [n],Eval(ek, x) = yi

∣∣∣∣∣ x←$ {0, 1}ℓin ,
{yi←$ A(τi, x)}i∈[n]

]
=

Pr

[
∃i ∈ [n],Eval(ek, x) = yi

∣∣∣∣∣ x←$ {0, 1}ℓin ,
{yi = A(τi, x; ri)}i∈[n]

]
=

Pr

∃i ∈ [n],Eval(ek, x) = yi

∣∣∣∣∣
ERND

c′,ℓrnd
,

x←$ {0, 1}ℓin ,
{yi = A(τi, x; ri)}i∈[n]

 · Pr[ERND
c′,ℓrnd

]
(3)

+ Pr

∃i ∈ [n],Eval(ek, x) = yi

∣∣∣∣∣
¬ERND

c′,ℓrnd
,

x←$ {0, 1}ℓin ,
{yi = A(τi, x; ri)}i∈[n]

 · Pr[¬ERND
c′,ℓrnd

]
(4)

< ϵ′ +
1

2c
− 1

2(d+1)λ
= ϵ1 +

d+ 1

2ℓin
+

1

2c
− 1

2(d+1)λ
= ϵ (5)
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where in Equation (3) we used the fact that Construction 1 satisfies (ϵ′,m, ℓrnd, n)-decomp-min-

capacity when ERND
c′,ℓrnd

occurs (Lemma 1) and Pr
[
ERND

c′,ℓrnd

]
≤ 1. Conversely, in Equation (4) we used

the fact that the advantage of A is at most 1 (even conditioned to ¬ERND
c′,ℓrnd

) and Pr
[
¬ERND

c′,ℓrnd

]
≤

Pr
[
¬EDET

c

]
< 1

2c −
1

2(d+1)λ when a←$ {0, 1}(d+1)λ (Theorem 3). This concludes the proof of Theo-
rem 7.

A.5 Proof of Theorem 8

Case v = 1. Recall that, on input x ∈ {0, 1}ℓin , r ∈ {0, 1}ℓrnd , and τ ∈ {0, 1}n2 , a constant-size
randomized unbounded adversary A ∈ A1-access (with randomness space {0, 1}ℓrnd) performs exactly
one (adaptive) random access to τ and, then, read m consecutive bits (i.e., IA(τ,x;r) = {i1, . . . , im}
such that ij + 1 = ij+1 for i ∈ [m − 1]). Independently from the challenge x ∈ {0, 1}ℓin , the
randomness r ∈ {0, 1}ℓrnd , the memory τ ∈ {0, 1}n2 , an adversary A ∈ A1-access is able to read
at most n2 − m + 1 strings {τ1, . . . , τn2−m+1} each of length m. This because there are at most
n2−m+1 different valid indexes of the memory τ ∈ {0, 1}n2 that allow A to read m (consecutive)
bits. Since Π satisfies (ϵ,m, ℓrnd, n1)-decomp-min-capacity for n1 = n2−m+1, then a constant-size
randomized unbounded adversary A ∈ A1-access with randomness space {0, 1}ℓrnd retains at most
the same advantage ϵ when having access to τ ∈ {0, 1}n2 .

Case 1 < v ≤ m. We now give an upper bound on the number of strings n1 of length m that
an adversary A ∈ Av-access can read from a memory of size n2. Recall, an adversary A ∈ Av-access

performs exactly v random accesses to the memory. Hence, the number of valid ordered random
access combinations that A can perform with a memory τ ∈ {0, 1}n2 are at most P (n2, v) =

n2!
(n2−v)!

where P (n, k) = n!
(n−k)! is the number of permutation of k elements (without replacement) out of

n distinct elements. Fix the random access composed by v different indexes V = {i1, . . . , iv}. Let
tj be the number of consecutive bits read by A starting from the index ij . The number of different
strings q of length m that A can read using the fixed random access V are at most q ≤ |S| where

S def
= {(t1, . . . , tv) ∈ Nv|tj ≥ 1 for j ∈ [v] and t1 + . . .+ tv = m} .

Observe that the cardinality of |S| =
(
m−1
v−1

)
can be estimated by leveraging the stars and bars

combinatorial theorem where the number of stars is m and the number of bars is v. To conclude,
the number n1 of distinct strings of length m that an adversary A ∈ Av-access could potentially read
are at most

n1 ≤
n2!

(n2 − v)!
·
(
m− 1

v − 1

)
.

This concludes the proof.

A.6 Proof of Corollary 1

Proof. For v = 1, we easily obtain n = m + ϵ1·2ℓin
d by combining Theorems 7-8. We now proceed

with the case 1 < v ≤ m. Let n1 as defined in Theorem 8. By leveraging the fact that
(
ℓ
k

)
≥ (ℓ/k)k

and n2!
(n2−v)! =

(
n2

v

)
v! we conclude that

n1 =
n2!

(n2 − v)!

(
m− 1

v − 1

)
= v!

(
n2

v

)(
m− 1

v − 1

)
≥ v!

(n2

v

)v
(
m− 1

v − 1

)v−1

.
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This means that Theorem 8 still holds if we consider n1 = v!
(
n2
v

)v (m−1
v−1

)v−1
. The latter equality

allows us to obtain the following bound

v

√√√√ n1

v!
(
m−1
v−1

)v−1 · v = n2.

By substituting n1 =
ϵ·2ℓin

d +1 as defined in Theorem 7 and setting n = n2 we obtain the bound of
n as defined in the Corollary 1.

A.7 Proof of Corollary 2

The corollary follows directly by setting v ∈ O(1), ℓin ∈ [ω(log(λ)), o(λ)], ℓrnd ∈ o((d + 1)λ), and
c ∈ [ω(log(λ)), O((d+ 1)λ)] in Corollary 1.
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