
Roulette: Breaking Kyber with
Diverse Fault Injection Setups

Jeroen Delvaux and Santos Merino Del Pozo

Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
jeroen.delvaux@tii.ae, santos@tii.ae

Abstract. At Indocrypt 2021, Hermelink, Pessl, and Pöppelmann presented a fault
injection attack against Kyber’s decapsulation module. The attack can thwart coun-
termeasures such as masking, shuffling, and double executions, but is not overly easy
to perform. In this work, we extend and facilitate the attack in two ways, thereby
admitting a larger variety of fault injection setups. Firstly, the attack surface is en-
larged: originally, the two input operands of the polynomial comparison are covered,
and we additionally cover encryption modules such as binomial sampling, butterflies
in the last layer of the inverse number-theoretic transform (NTT), modular reduc-
tion, and ciphertext compression. Secondly, the fault model is relaxed: originally,
precise bit flips are required, and we additionally support set-to-0 faults, set-to-1
faults, random faults, arbitrary bit flips, instruction skips, etc. A notable feature of
our attack is that masking and certain forms of blinding help the attack. If finite
field elements are visualized in a circular manner, our attack is analogous to the
casino game roulette: randomization-based countermeasures spin the wheel, and the
attacker only needs to wait for a certain set of pockets.
Keywords: Fault Attack · Kyber · Key-Encapsulation Mechanism · Lattice-Based
Cryptography · Post-Quantum Cryptography

1 Introduction
Kyber [ABD+20] is a lattice-based key-encapsulation mechanism (KEM) and, at the
time of writing this paper, one of the round 3 finalists in the on-going post-quantum
cryptography (PQC) standardization process run by the United States’ National Institute
of Standards and Technology (NIST). Although the selection process initially focused
on the mathematical strength and the implementation efficiency of the proposals, the
resistance to side-channel analysis (SCA) and fault injection (FI) attacks became a major
topic towards the end—i.e., at round 3. In this work, we revisit the FI attack proposed
by Hermelink et al. [HPP21] at Indocrypt 2021, which requires a precise bit flip (e.g.,
induced with a laser beam) at either input operand of the polynomial comparison.

1.1 Contributions of this paper
Although the attack of Hermelink et al. [HPP21] is efficient, the time and expertise needed
to prepare and calibrate such a specialized FI setup is substantial—but unaccounted for.
Especially in scenarios where a single device instead of a batch of devices is targeted,
the time spent on building the setup has no advantages of scale and likely surpasses
the time needed for the actual key-recovery. Motivated by this disparity, we make the
attack of Hermelink et al. [HPP21] accessible to a large variety of possibly low-budget
adversaries—by relying on an avalanche of faulty intermediates, it happens that almost
any fault is a good fault. We also extend the attack surface such that these arbitrary faults

https://orcid.org/0000-0003-0684-8427
https://orcid.org/0000-0001-7580-7237
mailto:jeroen.delvaux@tii.ae
mailto:santos@tii.ae

2 Roulette Attack

can be injected into previously untargeted computations. The polynomial comparison
was already identified as a prime target for FI attacks [OSPG18, HPP21, XIU+21], and
we forewarn secure-system designers that an additional set of building blocks, including
binomial sampling, butterflies in the last layer of the inverse number-theoretic transform
(NTT), modular reduction, and ciphertext compression, should be protected against FI
attacks. These new targets also enable an attacker to bypass a redundancy countermeasure
proposed by Hermelink et al. [HPP21]. Finally, our manuscript lays out a peculiar case
where masking and certain forms of blinding facilitate an FI attack—normally, these SCA
countermeasures either decrease the vulnerability to FI attacks or result in a status quo.
Due to the inherent hunger for true randomness in prime-field elements, which are often
represented by a circle, our attack methodology is nicknamed Roulette.

1.2 Organization of this paper
Section 2 reviews the specifications of Kyber, which is the KEM targeted by our attacks.
Sections 3 and 4 consist of background and related work on SCA and FI against lattice-
based KEM implementations, respectively. Section 5 presents the Roulette methodology,
and its application to Kyber’s decapsulation. Finally, we conclude our paper in Section 6.

1.3 Notation
Variables and constants are denoted by characters from the Latin and Greek alphabets,
respectively. Vectors and matrices of polynomials are severally denoted by bold lowercase
and bold uppercase characters. Functions are printed in a sans-serif font, e.g., F. With ⌈·⌋,
we denote rounding to the nearest integer where ties (fraction of exactly 0.5) are rounded
up.

2 Kyber
As for other lattice-based KEMs, Kyber [ABD+20] starts from a public-key encryption
(PKE) scheme that is secure against chosen-plaintext attacks (CPAs), as recapitulated in
Section 2.1, and to which a variation of the Fujisaki–Okamoto (FO) transform is applied
to additionally resist chosen-ciphertext attacks (CCAs), as summarized in Section 2.2. We
abstain from comprehensive descriptions and only highlight aspects that are important
for this work.

2.1 Public-Key Encryption
The PKE scheme consists of key generation, encryption, and decryption, as specified in
simplified form in Algorithms 1 to 3 respectively. The security of the scheme is based on
the module learning with errors (MLWE) problem. Polynomial arithmetic is performed
in the ring R(ρ,η) = Zρ[x]/(xη + 1), where degree η = 256 of the irreducible polynomial
is a power of two and where prime ρ = 3329 = 256 · 13 + 1 so that the η-th root of
unity exists, i.e., ζ256 mod ρ = 1 where ζ = 17. These design choices allow polynomial
multiplications to be realized with quasilinear time complexity O(η · log2 η) through the
number-theoretic transform (NTT) according to Equation (1), where operator ◦ comprises
η/2 = 128 products of linear polynomials.

a[x] · b[x] mod (xη + 1) = INTT(NTT(a) ◦ NTT(b)). (1)

The NTT and the inverse NTT (INTT) both consist of log2(η) − 1 = 7 layers that
each contains η/2 = 128 butterfly operations Butterfly : Z2

ρ → Z2
ρ. The INTT is typically

Jeroen Delvaux and Santos Merino Del Pozo 3

Algorithm 1 Kyber.CPAPKE.KeyGen(): key generation
Output: Public key p
Output: Private key ŝ

1: d← {0, 1}256

2: (q, b)← G(d)
3: Â← Parse(XOF(q)) ▷ Generate uniform matrix Â in the NTT domain
4: (s, e)← CBD(PRF(b)) ▷ Sample from a centered binomial distribution (CBD)
5: ŝ← NTT(s)
6: t̂← Â ◦ ŝ + NTT(e) ▷ t← As + e
7: p← t̂∥q

Algorithm 2 Kyber.CPAPKE.Enc(p, m, r): encryption

Input: Public key p ≜ t̂∥q
Input: Message m
Input: Coins r
Output: Ciphertext c ≜ (u, v)

1: Â← Parse(XOF(q)) ▷ Regenerate uniform matrix Â
2: (r, e1, e2)← CBD(PRF(r)) ▷ Sample noise from binomial distribution
3: r̂ ← NTT(r)
4: u ← INTT(Â

⊺
◦ r̂) + e1 ▷ u ← A⊺r + e1

5: m ← Decompress(m; ρ, 1) ▷ Error-free message; see Eq. (4)
6: v ← INTT(t̂⊺ ◦ r̂) + e2 + m ▷ v ← t⊺r + e2 + m
7: u ← Compress(u; ρ, δu) ▷ See Eq. (3)
8: v ← Compress(v; ρ, δv) ▷ See Eq. (3)

Algorithm 3 Kyber.CPAPKE.Dec(ŝ, c): decryption
Input: Private key ŝ
Input: Ciphertext c ≜ (u, v)
Output: Message m

1: u ← Decompress(u; ρ, δu) ▷ See Eq. (4)
2: v ← Decompress(v; ρ, δv) ▷ See Eq. (4)
3: û ← NTT(u)
4: m ← v − INTT(ŝ⊺ ◦ û) ▷ m ← v − s⊺u
5: m ← Compress(m; ρ, 1) ▷ LWE error correction according to Eq. (5)

implemented using the Gentleman–Sande (GS) butterfly in Equation (2), where twiddle
factor τ is a power of the root of unity ζ.

GSButterfly(a, b; τ) ≜
(
a + b, (a− b) τ

)
mod ρ. (2)

The lossy compression is defined in Equations (3) and (4). For Kyber512 and Ky-
ber768, the compression of ciphertext (u, v) uses constants (δu, δv) = (10, 4), whereas for
Kyber1024, (δu, δv) = (11, 5). The compression of message coefficients m ∈ Zρ in Line 5
of Algorithm 3 uses δ = 1, which implies that Equation (3) boils down to Equation (5).

Compress(x; ρ, δ) = ⌈2dx/ρ⌋ mod 2δ. (3)
Decompress(x; ρ, δ) = ⌈ρ x/2δ⌋. (4)

Compress(x; ρ, 1) =

{
1 if q/4 < x < 3q/4,

0 otherwise.
(5)

4 Roulette Attack

Algorithm 4 Kyber.CCAKEM.KeyGen(): key generation
Output: Public key p
Output: Private key s

1: z ← {0, 1}256

2: (p, ŝ)← Kyber.CPAPKE.KeyGen()
3: h← H(p)
4: s ← ŝ∥p∥h∥z

Algorithm 5 Kyber.CCAKEM.Enc(p): key encapsulation
Input: Public key p
Output: Ciphertext c
Output: Symmetric key k

1: m← {0, 1}256

2: m← H(m)
3: (k, r)← G(m∥H(p))
4: c← Kyber.CPAPKE.Enc(p, m, r) ▷ Encryption with message-derived seed
5: k ← KDF(k∥H(c))

Algorithm 6 Kyber.CCAKEM.Dec(c, s′): key decapsulation
Input: Ciphertext c
Input: Private key s′ ≜ ŝ∥p∥h∥z
Output: Symmetric key k

1: m← Kyber.CPAPKE.Dec(ŝ, c) ▷ CPA-secure decryption with private key
2: (k, r)← G(m∥h) ▷ Regenerate seed for encryption
3: c′ ← Kyber.CPAPKE.Enc(p, m, r) ▷ CPA-secure re-encryption with recovered seed
4: if c = c′ then ▷ Equality checking
5: k ← KDF(k∥H(c)) ▷ Return shared secret on success
6: else
7: k ← KDF(z∥H(c)) ▷ Implicit rejection on failure
8: end if

It can be derived that the decryption faces an accumulated error on the message m ∈ R(ρ,η)
as given in Equation (6), where summands ∆u and ∆v denote contributions from the lossy
ciphertext compression. If it holds for each coefficient i ∈ [0, η − 1] that −ρ/2 < ∆mi <
ρ/2, then the decryption outputs the correct message m ∈ {0, 1}η after its final step
Compress(·; ρ, 1).

∆m = e⊺r− s⊺(e1 + ∆u) + e2 + ∆v mod ±ρ (6)

Barrett and Montgomery reduction methods enable efficient and time-constant
implementations of modular arithmetic in a prime field Zρ. In a Barrett reduction, the
problematic division in (a mod ρ) = a − ⌊a/ρ⌋ρ is avoided by approximating 1/ρ by
a well-chosen constant γ/2σ, given that division by a power of two is merely a shifting
operation. In a Montgomery reduction, the standard remainder r such that a = mρ + r
is replaced by the so-called Hensel remainder r′ defined as a = mρ + r′β, where β is the
word size and −β/2 ≤ m < β/2.

2.2 Key-encapsulation mechanism
Kyber uses a variation of the FO transform, as specified in Algorithms 4 to 6. Essen-
tially, the ciphertext c received by the decapsulation is re-encrypted after decryption and

Jeroen Delvaux and Santos Merino Del Pozo 5

the result c′ is compared to c. If this comparison fails, the decapsulation returns a pseu-
dorandom value instead of a failure symbol ⊥, which is referred to as implicit rejection.
Hash functions G and H are modeled as random oracles and instantiated with SHA3-
512 and SHA3-256 respectively. The key-derivation function (KDF) is instantiated with
SHAKE-256.

Algorithm 7 Montgomery [KRSS, commit on 20 Jan 2020]
Input: Integer a where −(β/2) · ρ ≤ a < (β/2) · ρ and β = 216

Input: Prime ρ = 3329
Input: Negated inverted prime −ρ−1 = 3327
Output: Reduced t[31 : 16] where −ρ < t[31 : 16] < ρ

1: smulbb t, a, −ρ−1 ▷ t← (a mod β) · (−ρ−1)
2: smlabb t, ρ, t, a ▷ t[31 : 16]← ⌊((t mod β)ρ + a)/216⌋

Algorithm 8 DoubleGSButterfly [KRSS, commit on 20 Jan 2020]
Input: (a[15 : 0], b[15 : 0]) to first butterfly
Input: (a[31 : 16], b[31 : 16]) to second butterfly
Input: Twiddle factor τ [15 : 0] or τ [31 : 16]
Output: (a[15 : 0], b[15 : 0]) from first butterfly
Output: (a[31 : 16], b[31 : 16]) from second butterfly

1: usub16 t1, a, b ▷

{
t1[15 : 0]← a[15 : 0]− b[15 : 0],
t1[31 : 16]← a[31 : 16]− b[31 : 16]

2: uadd16 a, a, b ▷

{
a[15 : 0]← a[15 : 0] + b[15 : 0],
a[31 : 16]← a[31 : 16] + b[31 : 16]

3: smulbt/smulbb b, t1, τ ▷ b← t1[15 : 0] · τ [· · ·]
4: smultt/smultb t1, t1, τ ▷ t1 ← t1[31 : 16] · τ [· · ·]
5: montgomery ρ, −ρ−1, b, t2 ▷ Algorithm 7: reduce b to t2[31 : 16]
6: montgomery ρ, −ρ−1, t1, b ▷ Algorithm 7: reduce t1 to b[31 : 16]
7: pkhtb b, b, t2, asr#16 ▷ b[15 : 0]← t2[31 : 16]

Algorithm 9 DoubleBarrett [KRSS, commit on 20 Jan 2020]
Input: Integers a[15 : 0], a[31 : 16]
Input: Prime ρ[15 : 0] = 3329

Input: Multiplicand γ[15 : 0] = 20159 ▷

{
σ = ⌊log2(ρ)⌋ − 1 + 16 = 26,

γ = ⌊2σ/ρ⌉
Output: Reduced integers a[15 : 0], a[31 : 16] ∈ [0, ρ− 1]

1: smulbb t1, a, γ ▷ t1← a[15 : 0] · γ[15 : 0]
2: smultb t2, a, γ ▷ t2← a[31 : 16] · γ[15 : 0]
3: asr t1, t1, #26 ▷ t1 ← t1 ≫ 26
4: asr t2, t2, #26 ▷ t2 ← t2 ≫ 26
5: smulbb t1, t1, ρ ▷ t1 ← t1[15 : 0] · ρ[15 : 0]
6: smulbb t2, t2, ρ ▷ t2 ← t2[15 : 0] · ρ[15 : 0]
7: pkhbt t1, t1, t2, lsl#16 ▷ t1[31 : 16]← t2[15 : 0]

8: usub16 a, a, t1 ▷

{
a[15 : 0]← a[15 : 0]− t1[15 : 0],
a[31 : 16]← a[31 : 16]− t1[31 : 16]

6 Roulette Attack

2.3 ARM Cortex-M4
Following a recommendation by NIST, the ARM Cortex-M4 is the primary reduced in-
struction set computer (RISC) processor for benchmarking the implementation efficiency
of post-quantum schemes. This embedded processor features sixteen 32-bit registers: thir-
teen for general purposes and three reserved for the stack pointer, the link register, and
the program counter. The general-purpose registers may pack two 16-bit signed integers;
instructions that perform multiplications, subtractions, and other operations on these
halfwords are supported.

Source code for many schemes is publicly available in the pqm4 library [KRSS]. Al-
though the Kyber implementations are largely written in C, we analyze routines written
in assembly exclusively. Given that prime ρ = 3329 < 212, 16-bit halfwords can efficiently
store polynomial coefficients whilst providing a margin for lazy reductions, i.e., reductions
after additions and subtractions that do not cause overflow may be skipped. As pointed
out by Alkim et al. [ABCG20, Algorithm 11], Montgomery reductions can be implemented
using two instructions only. Algorithm 7 shows the latest version from the pqm4 library,
which only differs from the academic paper in how temporary variables are used. The
NTT and INTT exclusively rely on these Montgomery reductions, as evidenced by the
double GS butterfly in Algorithm 8.

Unfortunately, the Montgomery-reduced coefficients lie in the interval [−ρ + 1, ρ − 1]
instead of [0, ρ−1]. To obtain coefficients in the interval [0, ρ−1] right before compression,
a slower Barrett reduction is used. As shown in Algorithm 9, a Barrett reduction on two
signed coefficients requires eight instructions.

3 Side-Channel Analysis of Lattice-Based KEMs
As specified in Algorithm 6, the decryption is the only building block of Kyber’s decapsu-
lation that uses the private key ŝ and is thus the obvious target for a SCA attack. However,
SCA-assisted chosen-ciphertext attacks proposed by D’Anvers et al. [DTVV19], Ravi et
al. [RRCB20], and Ueno et al. [UXT+22] subverted this intuition. In many lattice-based
schemes, ciphertexts c can be constructed such that the correctness of a decrypted message
bit m ∈ {0, 1} depends on ŝ. By exploiting a series of leakages traces of the execution of
the hash function G, the encryption, or the polynomial comparison as a message-checking
oracle, ŝ is recovered. In conclusion, almost every single component of the decapsulation
should be protected. The academically preferred way of countering SCA attacks is to
randomize computations such that dependencies between internal secrets and measurable
emissions are weakened. Below, we distinguish between masking methods, which are ex-
pensive and substantiated by a security proof in a probing model, and blinding methods,
which are cheap and unsupported by a security proof.

3.1 Masking
In masked implementations, finite ring elements x ∈ X are randomly and uniformly split
into λ ≥ 2 shares according to Definition 1. According to Lemma 1, one way to meet
Definition 1 is to first select

(
x(2), x(3), · · · , x(λ)) uniformly at random from X λ−1, followed

by a computation x(1) = x− x(2) − x(3) − · · · − x(λ).

Definition 1 (Uniformity). A finite ring element x ∈ X is randomly and uniformly split
into λ ≥ 2 shares if Pr(x(1), x(2), · · · , x(λ) | x) equals 1/|X |λ−1 if x(1) +x(2) + · · ·+x(λ) = x
and 0 otherwise.

Lemma 1 (Subset of Shares). For a finite ring element x ∈ X that is randomly and
uniformly split into λ shares according to Definition 1, any tuple of λ−1 shares is uniformly

Jeroen Delvaux and Santos Merino Del Pozo 7

distributed on X λ−1 and thus independent of x. More generally, any tuple of α ∈ [1, λ−1]
shares is uniformly distributed on Xα.

We distinguish between Boolean masking, where X = {0, 1}σ and additions are defined
by XORing, and arithmetic masking, where x ∈ Zρ, and additions are performed modulo
a prime ρ. For efficiency reasons, Boolean masking is typically used for symmetric-key al-
gorithms, whereas arithmetic masking is used for polynomial operations. Hence, Boolean-
to-arithmetic (B2A) and arithmetic-to-Boolean (A2B) conversions are commonplace in
lattice-based cryptography.

A function F : X → Y must also be split such that shares of x ∈ X satisfying
Definition 1 are mapped to shares of y = F(x) that again satisfy Definition 1. If F is
linear, F is trivially split by defining ∀i ∈ [1, λ] : F(i)(x(i)) ≜ F(x(i)), considering that
F(1)(x(1)) + F(2)(x(2)) + · · · + F(λ)(x(λ)) = F(x(1) + x(2) + · · · + x(λ)) = F(x). For lattice-
based cryptography, linear components include polynomial additions, the NTT, and the
INTT. Non-linear components, such as Compress in Equation (3) and the polynomial
comparison, require custom-developed masking schemes [BGR+21].

3.2 Blinding
For blinding methods, we distinguish between randomization of data and randomization
of time. The latter can be achieved by randomly permuting the order of parallelizable
operations [Saa18, OSPG18, RPBC20, PP21]. For example, the polynomial coefficients
fed into Compress in Equation (3) and Decompress in Equation (4) can be permuted.
Similarly, the butterfly operations within an NTT/INTT layer can be shuffled.

To randomize data in a polynomial multiplication c[x] = a[x] · b[x] in a ring R(ρ,η),
Saarinen [Saa18] proposed computing a′[x] = α ·a[x] and b′[x] = β ·b[x] where α and β are
chosen randomly, uniformly, and independently from Zρ, and multiplying c′[x] = a′[x]·b′[x]
with γ = (α β)−1. Alternatively, the final step could be omitted by selecting α uniformly
at random from Zρ and computing β = α−1, which implies γ = 1.

For an NTT-based multiplication, Saarinen [Saa18] suggested lowering the costs by
computing α = ζi, β = ζj , and γ = ζ−i−j , where i and j are chosen randomly, uniformly,
and independently from [0, η − 1]. If a lookup table of the powers of ζ is available,
numerous multiplications in Zρ can be avoided. Furthermore, unlike Zρ, the cardinality
of [0, η − 1] is a power of two, which eliminates the need for rejection sampling given
that random number generators output binary vectors. Ravi et al. [RPBC20] applied the
latter technique at finer granularities: instead of generating blinding factors ζi for an entire
polynomial multiplication, factors can be generated for individual NTT/INTT layers or
even for individual butterflies. In its most generic form, the GS butterfly in Equation (2)
is realized as in Equation (7), where blinding factors ζi and ζj will eventually cancel out.

BlindedGSButterfly(a, b; ζk) ≜
(
(a + b) ζi, (a− b) ζk+j

)
mod ρ. (7)

4 Fault Injection against Lattice-Based KEMs
For KEMs, the decapsulation is particularly vulnerable—an attacker can fault this module
a virtually unlimited number of times in order to retrieve the private key. Not surprisingly,
we only target the decapsulation, even though one faulted key generation may result in a
mathematically weak key pair, and even though one faulted encapsulation may result in
message recovery [VOGR18, RRB+19].

4.1 Differential fault analysis
As pointed out by Oder et al. [OSPG18], a positive side effect of using the Fujisaki–
Okamoto transform is that many fault attacks on the decapsulation are inherently coun-

8 Roulette Attack

tered: by re-encrypting the decrypted message m′ and comparing the result to the ex-
ternally provided ciphertext c, secret-revealing faulted data is kept internal instead of
forwarded to the output. This countermeasure, which also exists in a simpler form where
an encryption or decryption is executed twice, is well-established since the early 2000s,
at which time Karri et al. [KWMK02] protected block ciphers such as the Advanced En-
cryption Standard (AES) against differential fault analysis (DFA). For block ciphers, the
countermeasure can only be defeated through a double fault injection: a fault in the en-
cryption can compensate a fault in the decryption such that the equality-check is passed,
or a fault can skip the equality-check so that an arbitrary fault in the encryption prop-
agates to the output. Unfortunately, and as surveyed by Xagawa et al. [XIU+21], the
lattice-based version can be broken through a single fault that skips the equality check,
considering that resistance to chosen-ciphertext attacks is not baked-in.

4.2 Ineffective Faults
Another concern is that the above countermeasure only counters DFA, or more gener-
ally, any attack that leverages faulted data. As already established in the 2000s, mere
knowledge of whether or not the execution of a keyed cryptographic algorithm fails after
injecting a fault can enable key recovery. Faults of the latter type are often referred to as
safe errors [YJ00] or ineffective faults [Cla07]. Below, we recapitulate three applications
to lattice-based cryptography.

Bettale, Montoya, and Renault [BMR21] exploited that the secret polynomials of
lattice-based schemes have relatively many coefficients that are zero—if they are drawn
from CBD or other small-error distributions. Hence, by setting these coefficients to zero
and observing whether such faults are effective, many coefficients are revealed to be zero.
Kyber, however, cannot be defeated, given that the CBD coefficients of the private key s
are stored and used in the NTT domain in Algorithm 3, i.e., the transformed coefficients
are virtually uniformly distributed on [0, ρ− 1]. In other schemes, shuffling and masking
can preclude the attack.

Pessl and Prokop [PP21] skipped an instruction in the final compression step of Kyber’s
decryption, i.e., Line 5 in Algorithm 3, such that the observed effectiveness of the fault
reveals the sign of the accumulated error ∆m in Equation (6). By gathering thousands of
these inequalities, the system can be solved for the secret (s, e) through belief propagation.
This algorithm is chosen instead of linear programming for two reasons: large dimensions
can be handled and occasional errors in the inequalities are tolerable.

4.3 Ineffective Faults at Indocrypt 2021
Hermelink et al. [HPP21] solved an identical system of inequalities through belief propa-
gation, but collected the inequalities using a different method: the aforementioned SCA-
assisted chosen-ciphertext attacks [DTVV19, RRCB20, UXT+22] are adapted such that
the message-checking oracle is realized through fault injections instead of leakage mea-
surements. More precisely, the attacker manipulates one coefficient vi of the compressed
ciphertext polynomial v[x] of an otherwise correctly computed encapsulation by replacing
Line 8 in Algorithm 2 with Equation (8), and the (in)ability to rectify the manipulation by
faulting either input of the polynomial comparison reveals the sign of ∆m in Equation (6).
Recall that the coins r used by re-encryption are derived from the message m using a hash
function, so changing a single message bit alters the entire ciphertext.

v⋆[x] = Compress(v[x] + ⌊ρ/4⌋xi). (8)

In response to Equation (8), the accumulated error ∆m faced by the decryption in
Equation (6) increases by ⌊ρ/4⌋, as given in Equation (9).

∆m⋆ = ∆m + ⌊ρ/4⌋. (9)

Jeroen Delvaux and Santos Merino Del Pozo 9

From Equation (9) and the observed correctness of the faulted decapsulation, an in-
equality follows in Equation (10). The difference in strictness is due to rounding. If mi

is correct, an attacker is able to fault coefficient vi in either input operand of the polyno-
mial comparison such that the decapsulation succeeds. If mi is incorrect, any attempt for
rectification is in vain.

m ̸= m⋆ ⇐⇒ (m = 0 ∧∆m > 0) ∨ (m = 1 ∧∆m ≥ 0). (10)

To condense the fault model into single bit flips, using a laser, the Hamming dis-
tance (HD) constraint in Equation (11) is imposed when manipulating the encapsulation.
Assuming an attacker with an optimal FI setup, around 6000, 7000, and 9000 faulted de-
capsulations suffice to recover the private key of Kyber512, Kyber768, and Kyber1024
respectively, with a success rate of nearly 100%. If multiple bits can reliably be flipped,
the HD constraint can be removed. Although the authors assumed perfect bit flips in
their simulated attacks, a few trials would suffice to cover imperfect bit flips.

HD(Compress(v), Compress(v[x] + ⌊ρ/4⌋xi)) = 1 (11)

The attack may be hindered by masking, shuffling, and/or double executions, but is
not precluded. Therefore, the authors proposed an additional countermeasure: instead
of ciphertexts c, pairs (c, Hash(c)) are stored in random-access memory (RAM) and even-
tually compared. Although faulting c while it is stored in RAM becomes pointless, the
attack still succeeds by faulting c before it is fed into the hash function, e.g., in the back
end of Compress(v; ρ, δv).

5 Roulette Attacks
We first present the general attack methodology in Section 5.1, and apply this methodology
to Kyber’s decapsulation in Section 5.2.

5.1 General Methodology
Consider a keyed cryptographic algorithm A : S × I → O where s ∈ S is keying material,
i ∈ I is the public input, and o ∈ O is the output. Output o is not necessarily public, but
an attacker can observe whether or not o is correct. We decompose A into five parts, as
shown in Figure 1.

A1

A2,1 A2,2

A3

A4

s

i
x

y z

o

Figure 1: Decomposition of cryptographic algorithm A.

To keep the execution time of the attack within bounds, we require that cardinalities
|Y| and |Z| are small. For a constant input (s, i), the attacker repeatedly faults either
A2,1 or y or A2,2 or z such that z⋆ ∈ Z is not constant, i.e., z⋆ does not follow a one-point
distribution with respect to the infinite set of fault injections. Although many distributions
might enable an attack, we idealize the case where z⋆ is uniformly distributed on Z. In
our casino analogy, this corresponds to spinning a roulette wheel, at least if we visualize

10 Roulette Attack

Z through a circular representation. This analogy also emphasizes that random draws are
an essential element of the attack. If for the given distribution of z⋆, the probability that
A fails to produce the correct output o depends on the secret s ∈ S, then the attacker can
retrieve information on s.

Our motivation for idealizing (nearly) uniform distributions of z⋆ ∈ Z is that they
naturally support (i) a large attack surface and (ii) various fault models, especially when
SCA countermeasures such as masking and data-randomizing blinding are deployed. Sec-
tion 5.1.1 formalizes the notion that uniformly distributed faults tend to propagate to
uniformly distributed faults. Section 5.1.2 gives examples of supported fault models.

5.1.1 Attack Surface

For a function that is balanced according to Definition 2, uniformly distributed faults
propagate as uniformly distributed faults, as formalized in Lemma 2 and proven in Ap-
pendix C.1. If the function A2,2 : Y → Z in Figure 1 happens to be balanced, an attacker
who is able fault A2,1 or y such that the faulted value y⋆ ∼ U(Y), indirectly achieves
z⋆ ∼ U(Z).

Definition 2 (Balanced Function). Let F : A → C be a function. If it holds ∀c ∈ C that
|{a ∈ A | F(a) = c}| = |A|/|C|, then F is balanced. Similarly, for a function F : A×B → C,
if it holds ∀(b, c) ∈ B × C that |{a ∈ A | F(a, b) = c}| = |A|/|C|, then F is balanced with
respect to input a ∈ A.

Lemma 2 (Fault Propagation for Balanced Functions). Let F : A → C be a balanced
function, as formalized in Definition 2. If a ∼ U(A), then c ∼ U(C). Similarly, for a
function F : A × B → C that is balanced with respect to input a ∈ A, if a ∼ U(A) is
independent of b ∈ B, then c ∼ U(C).

Fortunately for the attacker, balanced functions are frequently used in cryptography.
Bijections are a trivial example. Addition in a finite ring and multiplication in a finite
field are two more examples, as formalized in Lemmas 3 and 4 respectively, and proven
in Appendices C.2 and C.3 respectively. In fact, balancedness is merely the ideal case;
imbalanced fault propagation may still enable an attack in practice.

Lemma 3 (Balancedness of Addition in Finite Ring). Let R be a finite ring and let
F : R2 → R be defined as c ≜ F(a, b) ≜ a + b. It holds that F is fully balanced, i.e.,
Definition 2 is met with respect to both input a ∈ R and b ∈ R.

Lemma 4 (Balancedness of Multiplication in Finite Field). Let F be a finite field and
let F : F2 → F be defined as c ≜ F(a, b) ≜ a · b, where b ≠ 0. It holds that F is balanced,
i.e., Definition 2 is met with respect to a ∈ F .

5.1.2 Fault Models

Examples 1 to 4 demonstrate that the ideal distribution, z⋆ ∼ U(Z), can be achieved for
various fault models. Despite assuming that the attacker faults either A2,2 or z, balanced
fault-propagation properties according to Section 5.1.1 may extend the attack surface
to A2,1 and y. Again, note that a uniform distribution is merely the ideal case; other
distributions may enable an attack as well.

Example 1 (Random Faults). Random faults where z⋆ ∼ U(Z) comprise a well-established
fault model in the academic literature and are covered by definition. Also stronger fault
models where z ∈ {0, 1}λ is XORed with an attacker-chosen error e ∈ {0, 1}λ are covered.
If the attacker chooses e ∼ U({0, 1}λ), then z⋆ ≜ z ⊕ e ∼ U({0, 1}λ).

Jeroen Delvaux and Santos Merino Del Pozo 11

Example 2 (Set-To-Constant Faults). Set-to-0 and set-to-1 faults are covered for masked
implementations. Let z be randomly and uniformly split into λ ≥ 2 shares according to
Definition 1, and without loss of generality, assume that the first share, z(1) ∈ Z, is
set to an arbitrary constant θ ∈ Z, whereas shares z(2), · · · , z(λ) ∈ Z are untouched.
Considering that z(1) ∼ U(Z) and

(
z(2), · · · , z(λ)) ∼ U(Zλ−1) according to Lemma 1, it

follows that the faulted value z⋆ = θ + z(2) + · · ·+ z(λ) = z − z(1) + θ ∼ U(Z).

Example 3 (Instruction Skips). Let A2,2 : Y → Z be realized through a masked software
implementation. Without loss of generality, assume that an instruction in the first share
function, A(1)

2,2, is skipped such that the faulty output share (z(1))⋆ is independent of the
correct output share z(1). Hence, z⋆ = (z(1))⋆ + z(2) + · · · + z(λ) is again uniformly
distributed on Z.

Example 4 (Arbitrary Bit Flips). Let A2,2 : Y → Z be an affine function over a finite
field Y = Z = {0, 1}λ where addition is defined by XORing. Let z ≜ A2,2(y) be realized
through a blinded implementation z = r−1 A2,2(r · y) where r ∼ U({0, 1}λ \ {0}). For any
pattern of bit flips e ∈ {0, 1}λ \ {0} applied to the input of A2,2, it holds that the faulted
output z⋆ ≜ r−1 A2,2(r ·y⊕e) = z⊕ r−1 A2,2(e) ∼ U({0, 1}λ \{0}). Strictly speaking, this
distribution is nearly uniform, given that the case z⋆ = z is excluded. One could achieve
z⋆ ∼ U({0, 1}λ) by aborting the fault injection with probability 1/2λ, but this would be
pointless in an actual attack.

5.1.3 Comparisons

Table 1 compares our Roulette attacks to well-known fault attacks, i.e., DFA, FSA [LOS12],
and SIFA [DEK+18]. The standout property of Roulette attacks is that masking is a fa-
cilitator. Although masking may not preclude DFA [BH08], FSA [MMP+11, Del20], or
SIFA [DEG+18], it is not a facilitator here. Furthermore, note that the fault distributions
of Roulette and SIFA are complementary to some extent.

Table 1: Comparison of fault attacks.
Technique DFA FSA SIFA Roulette

Input i Unknown Known Unknown Known
Correct output o Known Unknown Known Unknown
Faulty output o⋆ Known Unknown Unknown Unknown

Input i Constant i Constant i i← U(I) Constant i
Correct intermediate z Constant z Constant z z ∼ U(Z) Constant z
Faulty intermediate z⋆ Any Any z⋆ ̸∼ U(Z) Any, z⋆ ∼ U(Z)

Fault intensity Constant Variable Constant Constant
Masking Nuisance Nuisance Nuisance Facilitator

Duplication Game over Don’t care Don’t care Don’t care

5.2 Application to Kyber’s Decapsulation
We now instantiate the generic cryptographic algorithm A from Section 5.1 with Kyber’s
decapsulation, as specified in Algorithm 6. Our first and foremost Roulette attack is
an extension of the attack of Hermelink et al. [HPP21]; the private key s is recovered
by faulting the re-encryption. A second Roulette attack recovers the message m and
the corresponding session key k by faulting the decryption. Considering that the second
attack is far less practical while recovering the short-term and thus not the long-term
secret, its specification is deferred to Appendix B.

12 Roulette Attack

5.2.1 Attack Surface

The generic variable z ∈ Z in Figure 1 is instantiated with a compressed ciphertext
coefficient v ∈ {0, 1}δv that is output from the re-encryption, as specified in Algorithm 2.
Following Hermelink et al. [HPP21], the goal is to match a manipulated coefficient so
that the polynomial comparison succeeds, at least if the preceding decryption is correct.
If the faulted value v⋆ is uniformly distributed on {0, 1}δv , then the probability of a
successful decapsulation, Psuccess, is approximately 0 if m ̸= m⋆ and 1/2δv otherwise. The
probability that at least one out of n ∈ N0 faulted decapsulations is successful becomes
1− (1− 1/2δv)n in the latter case and we arbitrarily impose Psuccess ≥ 99%, considering
that belief propagation is somewhat error-tolerant. For Kyber512 and Kyber768, where
δv = 4, this implies n ≥ 72. For Kyber1024, where δv = 5, this implies n ≥ 146. The
attacker always performs 72 or 146 injections if m ̸= m⋆, but can stop prematurely after
the first success otherwise.

Compared to the attack of Hermelink et al. [HPP21] in its original form, the number
of fault injections increases by roughly one or two orders of magnitude, but we get a
considerably larger attack surface and support for various fault models in return. As
illustrated in Figure 2, the function A2 ≜ A2,2◦A2,1 that produces a coefficient v ∈ {0, 1}δv

comprises one GS butterfly in the last layer of an INTT, the generation of one CBD
sample, the decompression of one message bit, one modular addition, and one compression.
Moreover, by faulting any of these building blocks, the countermeasure of Hermelink et
al. [HPP21] to store (c, Hash(c)) in RAM is bypassed.

=?
Compress

Reduce+

CBD

×−

+

Decompress

Decrypt

m

a

b
d

c v

c
v

u

c

u v⋆

Encrypt

INTT

Figure 2: The attack surface of Hermelink et al. [HPP21] is colored blue; our extension is
colored orange.

Another godsend for the attacker is that the fault-propagation statistics are almost
ideal. The modular addition is perfectly balanced according to Definition 2 with respect
to all three inputs (this is a trivial generalization of Lemma 3). Ciphertext compression
as defined in Equation (3) is not perfectly balanced, but the deviation is too small to
notably impact the attack. If we introduce faults such that the uncompressed coefficient
is uniformly distributed on [0, ρ − 1], then the compressed coefficient slightly deviates
from uniform. For δ = 4, the zero coefficients occurs with probability 209/3329, whereas
all other coefficients occur with probability 208/3329. Similarly, for δ = 5, this becomes
105/3329 for the zero coefficient and 104/3329 for all other coefficients.

Jeroen Delvaux and Santos Merino Del Pozo 13

5.2.2 Optional Hamming-Distance Constraint

The sole purpose of the Hamming distance constraint in Equation (11) is to establish
single bit flips as the fault model. In our extension of the attack, this constraint does not
affect the feasibility of a fault injection and is thus entirely optional. To accommodate a
potential omission, we extend Equations 8 to 10. As a starting point, we summarize the
behavior of Compress in Equation (3) and Decompress in Equation (4). For Kyber512 and
Kyber768, where δv = 4, our summary is contained in the first five columns of Table 2.
For brevity, we do not discuss Kyber1024, where δv = 5, but identical conclusions can
be drawn from Table 4 in Appendix A.

Table 2: Properties of the compressed ciphertext coefficients v ∈ [0, 2δ − 1] where δ = 4.
The first and last elements of each bin are defined by Compress in Equation 3. The bin
centers are defined by Decompress in Equation 4.

Original Manipulated
Bin Size First Last Center Bin Fault HD ∆m⋆

0 209 3225 104 0 4

0100 1 ∆m + 8321

208

105 312 208 5
2 313 520 416 6
3 521 728 624 7
4 729 936 832 8

1100 2 ∆m + 8335 937 1144 1040 9
6 1145 1352 1248 10
7 1353 1560 1456 11
8 1561 1768 1665 12

0100 1 ∆m + 8329 1769 1976 1873 13
10 1977 2184 2081 14
11 2185 2392 2289 15
12 2393 2600 2497 0

1100 2 ∆m + 83313 2601 2808 2705 1
14 2809 3016 2913 2
15 3017 3224 3121 3

An evident anomaly is that bin 0 is ‘oversized’: it contains 209 elements, whereas 15
‘ordinary’ bins each contain 208 elements. The proposed manipulation in Equation (8) is
to add ⌊ρ/4⌋ = 832 = 4 · 208 to the uncompressed coefficient, which is a jump spanning
exactly 4 ‘ordinary’ bins. Unfortunately, the first element of bin 0 then maps to the last
element of bin 3, given that 3225+832 mod 3329 = 728, and thus not to the first element
of bin 4. In absence of the HD constraint in Equation (11), the decryption would face an
accumulated error ∆m⋆ = ∆m + 632, which significantly undershoots the desired effect
∆m⋆ = ∆m + 832 in Equation (9). An easy fix is to replace Equation (8) by a direct
manipulation of the compressed coefficient, as given in Equation (12).

v⋆ = v + 2δv−2 mod 2δv . (12)

Furthermore, in cases where the HD is 2 instead of 1, the accumulated error ∆m
happens to be increased by 833 instead of 832. The required extension of Equations (9)
and (10) is given in Equation (13).

14 Roulette Attack

∆m⋆ = ∆m + 832 =⇒ m ̸= m⋆ ⇐⇒
(m = 0 ∧∆m ≥ 1) ∨ (m = 1 ∧∆m ≥ 0), (13a)

∆m⋆ = ∆m + 833 =⇒ m ̸= m⋆ ⇐⇒
(m = 0 ∧∆m ≥ 0) ∨ (m = 1 ∧∆m ≥ −1). (13b)

5.2.3 Masked Software on ARM Cortex-M4

Due to the large attack surface in Fig. 2, where most building blocks come with a plethora
of implementation strategies and masking schemes, we cannot possibly be exhaustive in
our demo attacks. Firstly, we consider a segment of masked software on the ARM Cortex-
M4. Although the Kyber implementations in the pqm4 library [KRSS] are unprotected,
we focus on linear functions exclusively so that masking is realized merely by executing
the corresponding code segments λ ≥ 2 times on their respective shares. More specifically,
we focus on linear functions that are written in assembly so that differences among C
compilers and build settings are irrelevant. Firstly, we analyze the double GS butterfly
in the last layer of the INTT, as implemented in Algorithm 8 and executed on λ ≥ 2
shares. For all nine instructions, Table 3 summarizes the effect of skipping that particular
instruction for a single share.

Table 3: The impact of an instruction skip on the double GS butterfly in Algorithm 8
where one out of λ ≥ 2 shares is targeted. A checkmark (3) denotes the correct result.

Skipped instruction c⋆
1 d⋆

1 c⋆
2 d⋆

2 Proof
1 usub16 t1, a, b 3 ∼ U(Zρ) 3 ∼ U(Zρ) Eq. (17)
2 uadd16 a, a, b ∼ U(Zρ) 3 ∼ U(Zρ) 3 Eq. (14)
3 smulbb b, t1, τ 3 ∼ U(Zρ) 3 3 Eq. (15)
4 smultb t1, t1, τ 3 3 3 ∼ U(Zρ) Eq. (16)
5.1 smulbb t2, b, −ρ−1 3 ̸∼ U(Zρ) 3 3 Fig. 3(a)
5.2 smlabb t2, ρ, t2, b 3 ̸∼ U(Zρ) 3 3 Fig. 3(c)
6.1 smulbb b, t1, −ρ−1 3 3 3 ̸∼ U(Zρ) Fig. 3(b)
6.2 smlabb b, ρ, b, t1 3 3 3 ̸∼ U(Zρ) Fig. 3(c)
7 pkhtb b, b, t2, asr#16 3 ∼ U(Zρ) 3 3 Eq. (18)

Clearly, the attacker is in a privileged position: for five out of nine instruction skips, the
faulted output coefficients are uniformly distributed, which is our ideal-case scenario. For
the first two instruction skips though, two output coefficients are disturbed, which implies
that the attacker must perform more fault injections. To prove uniformity, we start from
the observation that for each out of λ shares, the input to last INTT layer is uniformly
distributed on Zη

ρ = Z256
ρ , which implies that all 256 finite-field elements are independent

of one another. This follows from Lemma 1 and the fact that every INTT layer is a
permutation on Zη

ρ. The uniformity proofs are all instances of Example 3. The proofs
for instructions 2 to 4 in Eqs. (14) to (16) respectively are particularly straightforward.
Note that the faulty output shares are low in magnitude even before being reduced by
the Montgomery macro and cannot violate the margin for lazy reductions in any building
block following the double butterfly. Also, note that the multiplications with τ , (τ + 1),
or (1− τ) preserve uniformity according to Lemma 4.

Jeroen Delvaux and Santos Merino Del Pozo 15

(
c

(1)
1 , c

(1)
2
)⋆ =

(
a

(1)
1 , a

(1)
2
)
,(

c
(2)
1 , c

(2)
2
)

=
(
a

(2)
1 + b

(2)
1 , a

(2)
2 + b

(2)
2
)
,

...(
c

(λ)
1 , c

(λ)
2
)

=
(
a

(λ)
1 + b

(λ)
1 , a

(λ)
2 + b

(λ)
2
)
,

=⇒
(
c1, c2

)⋆ = (c1, c2)−
(
b

(1)
1 , b

(1)
2
)
∼ U(Z2

ρ).

(14)

(
d

(1)
1
)⋆ = b

(1)
1 ,

d
(2)
1 =

(
a

(2)
1 − b

(2)
1
)
τ,

...

d
(λ)
1 =

(
a

(λ)
1 − b

(λ)
1
)
τ,

=⇒ d⋆
1 = d1 +b

(1)
1 (τ +1)−a

(1)
1 τ ∼ U(Zρ). (15)

(
d

(1)
2
)⋆ = a

(1)
2 − b

(1)
2 ,

d
(2)
2 =

(
a

(2)
2 − b

(2)
2
)
τ,

...

d
(λ)
2 =

(
a

(λ)
2 − b

(λ)
2
)
τ

=⇒ d⋆
2 = d2 +

(
a

(1)
2 − b

(1)
2
)
(1− τ) ∼ U(Zρ).

(16)

For instruction 1 in Table 3, the faulted output coefficients (d1, d2)⋆ are determined
by an uninitialized temporary variable t1, as formalized in Eq. (17). Following the INTT
implementation of the pqm4 library, each layer is completed before starting the next one,
and for the most part, t1 has last been set in another double butterfly in the last layer.
Hence, t1 is independent of the current double-butterfly inputs. As for instructions 2 to
4, the faulted output shares are reduced by the Montgomery macro.

(
d

(1)
1 , d

(1)
2
)⋆ = (t1[15 : 0], t1[31 : 16]) τ,(

d
(2)
1 , d

(2)
2
)

=
(
a

(2)
1 − b

(2)
1 , a

(2)
2 − b

(2)
2
)

τ,

...(
d

(λ)
1 , d

(λ)
2
)

=
(
a

(λ)
1 − b

(λ)
1 , a

(λ)
2 − b

(λ)
2
)

τ,

where t1 and(
a

(1)
1 , b

(1)
1 , a

(1)
2 , b

(1)
2
)

are independent,
(17a)

=⇒
(
d1, d2

)⋆ = (d1, d2) +
(
t1[15 : 0]− a

(1)
1 + b

(1)
1 ,

t1[31 : 16]− a
(1)
2 + b

(1)
2
)

τ ∼ U(Z2
ρ)

(17b)

For instruction 7 in Table 3, the faulty output coefficient d⋆
1 is uniformly distributed on

Zρ in theory, but not necessarily in practice. The output of the function M is not properly
reduced, and the margin for lazy reduction may be violated in building blocks following
the double butterfly. Such violations may still produce the desired result in Eq. (12), but
are hard to analyze from a mathematical perspective and not further addressed here.

16 Roulette Attack

(
d

(1)
1
)⋆ = M

((
a

(1)
2 − b

(1)
2
)
τ
)

,

d
(2)
1 =

(
a

(2)
1 − b

(2)
1
)
τ,

...

d
(λ)
1 =

(
a

(λ)
1 − b

(λ)
1
)
τ

=⇒
d⋆

1 = d1 + M
((

a
(1)
2 − b

(1)
2
)
τ
)

−
(
a

(1)
1 − b

(1)
1
)
τ ∼ U(Zρ).

(18)

For instructions 5.1 to 6.2 in Table 3, a tractable closed-form expression for the dis-
tribution of the faulted coefficient d⋆ might not exist. Therefore, we take an empirical
approach by measuring the distribution of d⋆ on the ARM Cortex-M4 of an STM32F407
Discovery board. An instruction skip is trivially realized by removing that particular
instruction from the source code. For convenience, we measure the absolute error ∆d
as defined in Equation (19); this quantity is fully determined by one share and is thus
independent of the correct unshared value d.

∆d ≜ d⋆ − d mod ρ =
(
d(1))⋆

− d(1) mod ρ. (19)
In Figure 3, we show histograms of ∆d with 64 equidistant bins for 104 double-butterfly

inputs (a(1)
1 , b

(1)
1 , a

(1)
2 , b

(1)
2) ∼ U([−ρ + 1, ρ − 1]4) and twiddle factor τ = 3042. For skips

of instruction 5.1 in particular, a dummy double-butterfly where τ = 3127 is performed
in advance on random inputs so that the temporary variable t2 is properly initialized.
The histograms for instructions 5.1 and 6.1 in Figure 3(a) and Figure 3(b) respectively
are fairly uniform and thus exploitable. The histogram for instructions 5.2 and 6.2 in
Figure 3(b) has empty bins around ∆d = ⌊ρ/4⌋ and cannot be exploited.

0
50

100
150
200

(a)

0
50

100
150

(b)

0 ρ/4 ρ/2 3 ρ/4 ρ
0

500

1,000
1,500

∆d

(c)

Figure 3: Histogram of double-butterfly error ∆d in Equation (19) measured on an
STM32F407 Discovery board for instructions (a) 5.1, (b) 6.1, and (c) 5.2 and 6.2 in
Table 3.

Secondly, consider the Barrett reduction in Algorithm 9 prior to ciphertext-coefficient
compression. As empirically validated on the STM32F407 Discovery board, for six out of

Jeroen Delvaux and Santos Merino Del Pozo 17

eight instructions, the effect of a skip is that the output is not properly reduced, i.e., the
absolute error is an integer multiple of prime ρ. Although the desired offset ρ/4 cannot
be created, the attack might still succeed given that the masked compression function
is likely designed to only accept inputs in the range [0, ρ] and might generate all kinds
of unexpected outputs outside of the this interval. The two shift instructions (asr) are
inherently exploitable due to a higher degree of diffusion. Even with inputs in the interval
[−2ρ+1, 2ρ−1], the faulted output is fairly uniform across the entire 16-bit integer range.
A histogram across [−10ρ, 10ρ] with 320 equidistant bins is shown in Figure 4.

−10ρ 0 10ρ

0

20

40

Figure 4: Histogram of Barrett error ∆v measured on an STM32F407 Discovery board
for instructions 3 and 4 in Algorithm 9.

5.2.4 Blinded Hardware

For attacks on hardware implementations, spatially localized fault-injections methods such
as laser or electromagnetic are of particular interest. A potential target is, for example, a
GS butterfly blinded according to Equation (7) in the final INTT layer. As formalized in
Equation (20), if the attacker flips an arbitrary set of bits in multiplicand (a + b), then
the faulted butterfly output c⋆ is uniformly distributed on a subset of Zρ with cardinality
η, given that ζ is the η-th root of unity. Contrary to Example 4, only η/ρ ≈ 7.7% of all
possible values are covered, but the attack succeeds considering that one or more values
around ∆c = ⌊ρ/4⌋ suffice.

(a + b)⋆ ≜ (a + b)⊕ e =⇒ ∆c ≜ c⋆ − c =

(⌊log2(ρ)⌋∑
n=0

e[n](−1)(a+b)[n]2n

)
ζi. (20)

Similarly, bit flips in multiplicand (a − b) cause butterfly output d to be uniformly
distributed on a subset of η elements in Zρ. It also possible to flip bits of either a or b,
but then more injections must be performed considering that c and d are simultaneously
faulted.

6 Concluding Remarks
This work reveals a novel trade-off for the fault attack of Hermelink et al. [HPP21]. In
exchange for more faults, the attack surface can be increased and more fault models can
be covered. This also shows that a hash-based countermeasure purely for the polynomial
comparison is not enough. Lastly, we suggest two directions for further work.

Firstly, other post-quantum schemes could be investigated. Hermelink et al. [HPP21]
demonstrated their fault attack on Kyber [ABD+20] but conjectured that a similar attack
applies to Saber [BMD+20], which is another lattice-based KEM and round-3 finalist.
Similarly, we conjecture that our Roulette attacks can be mapped to Saber too. In the
ideal case, a ciphertext coefficient cm ∈ {0, 1}τ , where τ equals 3, 4, and 6 for LightSaber,
Saber, and FireSaber respectively, is faulted such that c⋆

m is uniformly distributed on

18 Roulette Attack

{0, 1}τ . Furthermore, c⋆
m is the result of rounding (pruning least-significant bits) and an

addition, both of which are balanced functions as defined in Definition 2, i.e., the attack
surface is large once again.

Secondly, the vulnerability analysis is performed manually in this article. Considering
that novel masking and blinding implementations are continuously being proposed, it
seems worthwhile to investigate to which extent our analysis can be automated.

References
[ABCG20] Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard. Cortex-

M4 optimizations for {R,M}LWE schemes. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems (TCHES), 2020(3):336–357, 2020.

[ABD+20] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. CRYSTALS-Kyber: Algorithm specifications and support-
ing documentation. Technical report, National Institute of Standards and
Technology (NIST), October 2020. https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[BGR+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Chris-
tine van Vredendaal. Masking Kyber: First- and higher-order implementa-
tions. IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES), 2021(4):173–214, 2021.

[BH08] Arnaud Boscher and Helena Handschuh. Masking does not protect against
differential fault attacks. In Luca Breveglieri, Shay Gueron, Israel Koren,
David Naccache, and Jean-Pierre Seifert, editors, 5th Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC 2008), pages 35–40. IEEE,
August 2008.

[BMD+20] Andrea Basso, Jose Maria Bermudo Mera, Jan-Pieter DAnvers, Angshuman
Karmakar, Sujoy Sinha Roy, Michiel Van Beirendonck, and Frederik Ver-
cauteren. SABER: Mod-LWR based KEM (round 3 submission). Techni-
cal report, National Institute of Standards and Technology (NIST), October
2020. https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions.

[BMR21] Luk Bettale, Simon Montoya, and Guénaël Renault. Safe-error analysis of
post-quantum cryptography mechanisms. Cryptology ePrint Archive, Report
2021/1339, October 2021. https://ia.cr/2021/1339.

[Cla07] Christophe Clavier. Secret external encodings do not prevent transient fault
analysis. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems - CHES 2007, 9th International Workshop,
Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture
Notes in Computer Science, pages 181–194. Springer, 2007.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard, Flo-
rian Mendel, and Robert Primas. Statistical ineffective fault attacks on
masked AES with fault countermeasures. In Thomas Peyrin and Steven D.
Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018, volume
11273 of Lecture Notes in Computer Science, pages 315–342. Springer, De-
cember 2018.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://ia.cr/2021/1339

Jeroen Delvaux and Santos Merino Del Pozo 19

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard,
Florian Mendel, and Robert Primas. SIFA: exploiting ineffective fault in-
ductions on symmetric cryptography. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018(3):547–572, 2018.

[Del20] Jeroen Delvaux. Threshold implementations are not provably secure against
fault sensitivity analysis. Cryptology ePrint Archive, Report 2020/400, 2020.
https://ia.cr/2020/400.

[DTVV19] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Timing attacks on error correcting codes in post-quantum schemes.
In Begül Bilgin, Svetla Petkova-Nikova, and Vincent Rijmen, editors, Pro-
ceedings of ACM Workshop on Theory of Implementation Security Workshop
(TIS@CCS 2019), pages 2–9. ACM, November 2019.

[HPP21] Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. Fault-enabled
chosen-ciphertext attacks on Kyber. In Progress in Cryptology - IN-
DOCRYPT 2021, Lecture Notes in Computer Science, page 25. Springer,
2021. https://ia.cr/2021/1222.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://
github.com/mupq/pqm4.

[KWMK02] Ramesh Karri, Kaijie Wu, Piyush Mishra, and Yongkook Kim. Concurrent er-
ror detection schemes for fault-based side-channel cryptanalysis of symmetric
block ciphers. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 21(12):1509–1517, December 2002.

[LOS12] Yang Li, Kazuo Ohta, and Kazuo Sakiyama. New fault-based side-channel
attack using fault sensitivity. IEEE Transactions on Information Forensics
and Security, 7(1):88–97, February 2012.

[MMP+11] Amir Moradi, Oliver Mischke, Christof Paar, Yang Li, Kazuo Ohta, and
Kazuo Sakiyama. On the power of fault sensitivity analysis and collision
side-channel attacks in a combined setting. In Bart Preneel and Tsuyoshi
Takagi, editors, 13th Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2011), volume 6917 of Lecture Notes in Computer Science,
pages 292–311. Springer, October 2011.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2-secure and masked ring-LWE implementation. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2018(1):142–174,
2018.

[PP21] Peter Pessl and Lukás Prokop. Fault attacks on CCA-secure lattice KEMs.
IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES), 2021(2):37–60, 2021.

[RPBC20] Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam Chattopad-
hyay. On configurable SCA countermeasures against single trace attacks for
the NTT. In Lejla Batina, Stjepan Picek, and Mainack Mondal, editors, Se-
curity, Privacy, and Applied Cryptography Engineering - 10th International
Conference, SPACE 2020, Kolkata, India, December 17-21, 2020, Proceed-
ings, volume 12586 of Lecture Notes in Computer Science, pages 123–146.
Springer, 2020.

https://ia.cr/2020/400
https://ia.cr/2021/1222
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4

20 Roulette Attack

[RRB+19] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopad-
hyay, and Debdeep Mukhopadhyay. Number "not used" once - practical fault
attack on pqm4 implementations of NIST candidates. In Ilia Polian and Marc
Stöttinger, editors, Constructive Side-Channel Analysis and Secure Design -
10th International Workshop, COSADE 2019, Darmstadt, Germany, April
3-5, 2019, Proceedings, volume 11421 of Lecture Notes in Computer Science,
pages 232–250. Springer, 2019.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam
Bhasin. Generic side-channel attacks on CCA-secure lattice-based PKE and
KEMs. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems (TCHES), 2020(3):307–335, 2020.

[Saa18] Markku-Juhani O. Saarinen. Arithmetic coding and blinding countermea-
sures for lattice signatures. Journal of Cryptographic Engineering, 8(1):71–84,
2018.

[UXT+22] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of re-encryption: A generic power/EM analysis on
post-quantum KEMs. IACR Transactions on Cryptographic Hardware and
Embedded Systems (TCHES), 2022.

[VOGR18] Felipe Valencia, Tobias Oder, Tim Güneysu, and Francesco Regazzoni. Ex-
ploring the vulnerability of R-LWE encryption to fault attacks. In John
Goodacre, Mikel Luján, Giovanni Agosta, Alessandro Barenghi, Israel Koren,
and Gerardo Pelosi, editors, Fifth Workshop on Cryptography and Security
in Computing Systems (CS2 2018), pages 7–12. ACM, January 2018.

[XIU+21] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma.
Fault-injection attacks against NIST’s post-quantum cryptography round 3
KEM candidates. In Advances in Cryptology – ASIACRYPT 2021, Lecture
Notes in Computer Science. Springer, 2021.

[YJ00] Sung-Ming Yen and Marc Joye. Checking before output may not be
enough against fault-based cryptanalysis. IEEE Transactions on Comput-
ers, 49(9):967–970, 2000.

Jeroen Delvaux and Santos Merino Del Pozo 21

A Omitting HD Constraint in Kyber1024

Table 4: Properties of the compressed ciphertext coefficients v ∈ [0, 2δ − 1] where δ = 5.
Original Manipulated

Bin Size First Last Center Bin Fault HD ∆m⋆

0 105 3277 52 0 8

01000 1 ∆m + 832

1

104

53 156 104 9
2 157 260 208 10
3 261 364 312 11
4 365 468 416 12
5 469 572 520 13
6 573 676 624 14
7 677 780 728 15
8 781 884 832 16

11000 2 ∆m + 833

9 885 988 936 17
10 989 1092 1040 18
11 1093 1196 1144 19
12 1197 1300 1248 20
13 1301 1404 1352 21
14 1405 1508 1456 22
15 1509 1612 1560 23
16 1613 1716 1665 24

01000 1 ∆m + 832

17 1717 1820 1769 25
18 1821 1924 1873 26
19 1925 2028 1977 27
20 2029 2132 2081 28
21 2133 2236 2185 29
22 2237 2340 2289 30
23 2341 2444 2393 31
24 2445 2548 2497 0

11000 2 ∆m + 833

25 2549 2652 2601 1
26 2653 2756 2705 2
27 2757 2860 2809 3
28 2861 2964 2913 4
29 2965 3068 3017 5
30 3069 3172 3121 6
31 3173 3276 3225 7

B Roulette Attack on Decryption Module
Section 5.2 specified a first roulette attack on Kyber’s decapsulation, in which the re-
encryption is faulted in order to recover the private key s. This appendix specifies a
second roulette attack on the decapsulation, but now the decryption is faulted in order
to recover the message m and the corresponding session key k. This second attack is
much more ‘academic’ because (i) the distribution of the faulted value must be known,
and (ii) millions of perfectly injected faults are required. Nevertheless, there is no harm
in reporting an exploit on building blocks that have not previously been faulted, even if it
only serves as a reminder that not only obvious targets such as the polynomial comparison

22 Roulette Attack

should be protected.
The generic variable z ∈ Z in Fig. 1 is instantiated with an uncompressed message co-

efficient m ∈ [0, ρ−1]. Although practically any distribution of its faulted counterpart m⋆

enables the attack, at least if the distribution is known to the attacker, we again idealize
the case where m⋆ is uniformly distributed on [0, ρ−1]. Leveraging fault propagation, the
attack surface consists of Decompress(v; ρ, δv), a butterfly in the final layer of the INTT,
and a modular subtraction. Recall that the modular subtraction is balanced according
to Lemma 3, i.e., a uniformly distributed fault in the butterfly or decompression output
results in a uniformly distributed m⋆. Given that primes ρ are odd, the final decryption
step, i.e., m⋆ ← Compress(m⋆; ρ, 1) as defined in Eq. (5), is inherently biased. As illus-
trated in Fig. 5 for ρ = 7, the compression function maps ⌊ρ/2⌋ = 3 coefficients in [0, ρ−1]
to m⋆ = 0, whereas ⌈ρ/2⌉ = 4 coefficients map to m⋆ = 1.

m = 1 m = 0

Figure 5: Message coefficients m before and after compression according to Eq. (5) where
prime ρ = 7.

For the actual prime ρ = 3329 used in Kyber, the right and left semicircles contain
⌊ρ/2⌋ = 1664 and ⌈ρ/2⌉ = 1665 field elements respectively. Hence, the probability of
a failed decapsulation is 1665/3329 ≈ 50.015% if the original message bit m = 0 and
1664/3329 ≈ 49.985% otherwise. At least in theory, a measurement of this failure rate
suffices to recover m. For n = 18201189 perfectly faulted decapsulations, the recovery
succeeds with 90% certainty, as can be derived from the cumulative distribution function
(CDF) of a binomial distribution: Fbino(⌊n/2⌋; n, 1664/3329) ≥ 90% where n is odd.
Apart from the staggering number of faults, the attack is hampered in practice because
fault injections are unlikely to be perfect, and the probability that no fault is injected is
typically unknown.

C Proofs

C.1 Lemma 2

The case F : A → C of Lemma 2 is proven in Eq. (21); the case F : A× B → C is proven
in Eq. (22).

Pr(c) =
∑

a∈A s.t.
F(a)=c

Pr(a) = |A|
|C|
· 1
|A|

= 1
|C|

. (21)

Jeroen Delvaux and Santos Merino Del Pozo 23

Pr(c) =
∑

(a,b)∈A×B
s.t. F(a,b)=c

Pr(a ∧ b) =
∑
b∈B

Pr(b)
∑

a∈A s.t.
F(a,b)=c

Pr(a)

= |A|
|C|
· 1
|A|
·
∑
b∈B

Pr(b) = 1
|C|

.

(22)

C.2 Lemma 3
Balancedness with respect to input a ∈ R in Lemma 3 is proven in Eq. (23) and follows
from the property that each element in a ring has an additive inverse. Balancedness with
respect to input b ∈ R is proven in an identical manner.

∀(b, c) ∈ R2, |{a ∈ R | a + b = c}| = |{c− b}| = 1. (23)

C.3 Lemma 4
Balancedness with respect to input a ∈ F in Lemma 4 is proven in Eq. (24) and follows
from the property that each element b ̸= 0 in a field has an multiplicative inverse.

∀(b, c) ∈ F2, |{a ∈ F | a · b = c}| = |{c · b−1}| = 1. (24)

	Introduction
	Contributions of this paper
	Organization of this paper
	Notation

	Kyber
	Public-Key Encryption
	
	 Cortex-M4

	Side-Channel Analysis of Lattice-Based KEMs
	Masking
	Blinding

	Fault Injection against Lattice-Based KEMs
	
	Ineffective Faults
	Ineffective Faults at Indocrypt 2021

	Roulette Attacks
	General Methodology
	Application to Kyber's Decapsulation

	Concluding Remarks
	Omitting HD Constraint in Kyber1024
	Roulette Attack on Decryption Module
	Proofs
	
	
	

