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Abstract. At Indocrypt 2021, Hermelink, Pessl, and Pöppelmann presented a fault
attack against Kyber in which a system of linear inequalities over the private key
is generated and solved. The attack requires a laser and is, understandably, demon-
strated with simulations—not actual equipment. We facilitate and diversify the
attack in four ways, thereby admitting cheaper and more forgiving fault-injection
setups. Firstly, the attack surface is enlarged: originally, the two input operands
of the ciphertext comparison are covered, and we additionally cover re-encryption
modules such as binomial sampling and butterflies in the last layer of the inverse
number-theoretic transform (NTT). This extra surface also allows an attacker to by-
pass the custom countermeasure that was proposed in the Indocrypt paper. Secondly,
the fault model is relaxed: originally, precise bit flips are required, and we addition-
ally support set-to-0 faults, random faults, arbitrary bit flips, and instruction skips.
Thirdly, the IndoCrypt attack is like most other fault attacks either hindered or
unaffected by countermeasures against passive side-channel attacks, i.e., masking
and blinding of sensitive variables, whereas our attack is an exception to this rule.
Given that we randomly fault prime-field elements until a desired set of values is
hit, randomization-based countermeasures kindly help us with injecting randomness.
If field elements are represented on a circle, which is a common visualization, our
attack is analogous to spinning a roulette wheel until the ball lands in a desired set
of pockets. Hence, the nickname. Fourthly, we accelerate and improve the error tol-
erance of solving the system of linear inequalities: run times of roughly 100 minutes
are reduced to roughly one minute, and inequality error rates of roughly 1% are re-
laxed to roughly 25%. Benefiting from the four advances above, we use a reasonably
priced ChipWhisperer® board to break a masked implementation of Kyber running
on an ARM Cortex-M4 through clock glitching.
Keywords: Fault Attack · Kyber · Key-Encapsulation Mechanism · Lattice-Based
Cryptography · Post-Quantum Cryptography

1 Introduction
Kyber [ABD+20] is a lattice-based key-encapsulation mechanism (KEM) and, at the
time of writing this paper, a round-3 finalist in the on-going post-quantum cryptography
(PQC) standardization process run by the United States’ National Institute of Standards
and Technology (NIST). Although the selection process initially focused on the mathe-
matical strength and the implementation efficiency of the proposals, the resistance to
side-channel analysis (SCA) and fault attacks became a major topic towards the end—
round 3 in particular. We revisit a fault attack against Kyber proposed by Hermelink,
Pessl, and Pöppelmann at Indocrypt 2021 [HPP21a], where a single ciphertext bit in either
input operand of the ciphertext comparison must be flipped. Every faulted decapsulation
provides one inequality over the private key, and fewer than 10000 inequalities suffice to
break all versions of Kyber.
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The authors suggest using a laser owing to its small spot size and thus spatial preci-
sion. The time, budget, and expertise needed to decapsulate a chip [SH07] and calibrate
such a specialized fault-injection setup is substantial—but unaccounted for. Especially in
scenarios where a single device instead of a batch of devices is targeted, the time spent
on building the setup has no advantages of scale and likely surpasses the time needed for
the actual key-recovery. Presumably for the above reasons, Hermelink et al. [HPP21a]
simulate the use of a laser in software.

1.1 Contributions
We improve the practicality of the above fault attack such that even a low-budget adver-
sary has plenty of options. Four advances are made:

• Before the IndoCrypt paper [HPP21a], the ciphertext comparison was already iden-
tified as a prime target for fault attacks [OSPG18, XIU+21]. We forewarn secure-
system designers that previously untargeted building blocks of the re-encryption
should be protected against fault attacks too. This includes binomial sampling, but-
terflies in the last layer of the inverse number-theoretic transform (NTT), ciphertext
compression, and its preceding modular reduction. By faulting any of these build-
ing blocks, an attacker can obtain inequalities over the private key while bypassing
any potential countermeasures that guard the ciphertext comparison. One such
countermeasure is proposed in the IndoCrypt paper.

• Whilst the IndoCrypt attack [HPP21a] requires a laser to precisely flip a bit, we
support various equipment through various fault models, i.e., set-to-0 faults, set-to-
1 faults, random faults, arbitrary bit-flip patterns, instruction skips, and instruction
corruptions. The flip side is that more faults are needed for key recovery: roughly
speaking, 1000s become 10000s or 100000s. Even so, for a well-optimized Kyber
implementation that is clocked at MHz rates, the latter range typically equates to a
day or less and thus a feasible attack. Furthermore, the additional time needed for
a key recovery can partially, if not completely, be recouped by not having to set-up
and calibrate a laser. This thought actually pertains to the entire field of study:
in many papers that propose fault attacks using pure theory and no equipment,
minimizing the number of faults is the exclusive focus [ASMM18], i.e., penalties
encountered in practice and caused by strong theoretical assumptions are missing
from the optimization model.

• Considering that Kyber has known weaknesses against side-channel analysis (SCA)
[UXT+22], such as power-consumption analysis, countermeasures should be in place.
We lay out a peculiar case where masking and certain forms of blinding facilitate
a fault attack. Under normal circumstances, which includes the IndoCrypt pa-
per [HPP21a], SCA countermeasures either decrease the vulnerability to fault at-
tacks or result in a status quo. Because we fault otherwise input-defined prime-field
elements such that they cover a wide range of values, ideally but not necessarily
uniformly distributed, countermeasures that randomize intermediate variables nat-
urally help achieving a more uniform coverage. To succeed, an attacker needs to
keep faulting the element until its value is contained in a specific subset of values.
In related work, field elements are often represented on a circle [OSPG18], or in our
analogy, a wheel from the casino game roulette. Every fault spins the wheel until,
eventually, the ball lands in a winning set of pockets.

• The IndoCrypt paper [HPP21a] presents an algorithm based on belief propagation
to solve systems of linear inequalities. Solving 7000 inequalities for Kyber768 takes
approximately 100 minutes using a single thread. To get around this inconvenience,
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the authors parallelize their code: 32 threads on 16 cores result in circa 7 minutes.
Instead, we deploy an accurate numerical approximation that reduces the execution
time to roughly one minute using a single thread. Upscaling the hardware through
threading remains possible but is no longer needed. A second, more acute problem
with the solver from the IndoCrypt paper is that all inequalities are assumed to be
correct, but fault-injection setups that supposedly provide these inequalities are not
perfectly reliable. Based on a previous report by Pessl and Prokop [PP21a], a 1%
error rate is yet to be exceeded. We alter the algorithm such that at least 25% of the
inequalities can be incorrect. To tie the above two improvements together: higher
error rates necessitate more inequalities and thus more computation time, causing
our acceleration technique to pay off. Our solver is made open-source.

To demonstrate the above four advances, we break a masked implementation of Ky-
ber running on an ARM Cortex-M4. A ChipWhisperer® board, which is affordable for
individuals not just organizations, is used to inject faults in the inverse NTT through
clock glitching, thereby providing inequalities that are mostly but not always correct.

1.2 Structure
The remainder of this paper is structured as follows. Sections 2 to 4 provide prelimi-
naries on Kyber, SCA, and fault attacks respectively. Section 5 presents the roulette
attacks from a theoretical perspective. Section 6 presents our solver. Section 7 presents
ChipWhisperer experiments. Section 8 concludes this work.

1.3 Notation
Variables and constants are denoted by characters from the Latin and Greek alphabets,
respectively. Vectors and matrices are denoted by bold lowercase and bold uppercase
characters respectively. Functions are printed in a sans-serif font, e.g., F. With ⌈·⌋, we
denote rounding to the nearest integer where ties (fraction of exactly 0.5) are rounded up.

2 Kyber
Kyber [ABD+20] starts from a public-key encryption (PKE) scheme that is secure against
chosen-plaintext attacks (CPAs), as recapitulated in Section 2.1, and to which a variation
of the Fujisaki–Okamoto (FO) transform is applied to additionally resist chosen-ciphertext
attacks (CCAs), as summarized in Section 2.2. We abstain from comprehensive descrip-
tions and only highlight aspects that are important for this work.

2.1 Public-Key Encryption
The PKE scheme consists of key generation, encryption, and decryption, as specified in
Algorithms 1 to 3 respectively. For brevity, the use of binary encodings to efficiently
transmit data is omitted. Parameters corresponding to three security levels are given in
Table 1. The security of the scheme is based on the module learning with errors (MLWE)
problem. Errors are drawn from a centered binomial distribution (CBD), i.e., E ≜ E1−E2
where E1, E2 ∼ B(ϵ, 1/2).

Polynomial arithmetic is performed in the ring R(ρ,η) = Zρ[x]/(xη + 1), where degree
η = 256 of the irreducible polynomial is a power of two and where prime ρ = 3329 = 256 ·
13+1 so that the η-th root of unity exists, i.e., ζ256 mod ρ = 1 where ζ = 17. These design
choices allow polynomial multiplications to be realized with quasilinear time complexity
O(η · log2 η) through the number-theoretic transform (NTT) according to Equation (1),
where operator ◦ comprises η/2 = 128 products of linear polynomials.
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Algorithm 1 Kyber.PKE.KeyGen
Output: Public key p
Output: Private key ŝ

1: d← {0, 1}256

2: (q, b)← G(d)
3: for i ∈ [0, κ− 1] do
4: for j ∈ [0, κ− 1] do
5: Â[i, j]← Parse(XOF(q; j, i))
6: s[i]← CBD(PRF(b; i); ϵ1)
7: ŝ[i]← NTT(s[i])
8: e[i]← CBD(PRF(b;κ+ i); ϵ1)
9: ê[i]← NTT(e[i])

10: t̂← Â ◦ ŝ + ê
11: p← t̂∥q

Algorithm 2 Kyber.PKE.Encrypt

Input: Public key p ≜ t̂∥q
Input: Message m
Input: Coins r
Output: Ciphertext c ≜ (u, v)

1: for i ∈ [0, κ− 1] do
2: for j ∈ [0, κ− 1] do
3: Â

⊺
[i, j]← Parse(XOF(q; i, j))

4: r[i]← CBD(PRF(r; i); ϵ1)
5: r̂[i]← NTT(r[i])
6: e1 ← CBD(PRF(r;κ+ i); ϵ2)
7: e2 ← CBD(PRF(r; 2κ); ϵ2)
8: û← Â

⊺
◦ r̂

9: for i ∈ [0, κ− 1] do
10: u[i]← INTT(û[i]) + e1
11: u[i]← Compress(u[i]; ρ, δu)
12: m← Decompress(m; ρ, 1)
13: v ← INTT(t̂⊺ ◦ r̂) + e2 +m
14: v ← Compress(v; ρ, δv)

Algorithm 3 Kyber.PKE.Decrypt
Input: Private key ŝ
Input: Ciphertext c ≜ (u, v)
Output: Message m

1: for i ∈ [0, κ− 1] do
2: u[i]← Decompress(u[i]; ρ, δu)
3: û[i]← NTT(u[i])
4: v ← Decompress(v; ρ, δv)
5: m← v − INTT(ŝ⊺ ◦ û)
6: m← Compress(m; ρ, 1)

Algorithm 4 Kyber.KEM.KeyGen
Output: Public key p
Output: Private key s

1: z ← {0, 1}256

2: (p, ŝ)← Kyber.PKE.KeyGen()
3: h← H(p)
4: s← ŝ∥p∥h∥z

Algorithm 5 Kyber.KEM.Encapsulate
Input: Public key p
Output: Ciphertext c
Output: Symmetric key k

1: m← {0, 1}256

2: m← H(m)
3: (k, r)← G(m∥H(p))
4: c← Kyber.PKE.Encrypt(p,m, r)
5: k ← KDF(k∥H(c))

Algorithm 6 Kyber.KEM.Decapsulate
Input: Ciphertext c
Input: Private key s′ ≜ ŝ∥p∥h∥z
Output: Symmetric key k

1: m← Kyber.PKE.Decrypt(ŝ, c)
2: (k, r)← G(m∥h)
3: c′ ← Kyber.PKE.Encrypt(p,m, r)
4: if c = c′ then
5: k ← KDF(k∥H(c))
6: else
7: k ← KDF(z∥H(c))

Table 1: Parameters of Kyber

Para
mete

r

Kybe
r51

2

Kybe
r76

8

Kybe
r10

24

κ 2 3 4
η 256 256 256
ρ 3329 3329 3329
ϵ1 3 2 2
ϵ2 2 2 2
δu 10 10 11
δv 4 4 5



Jeroen Delvaux 5

a[x] · b[x] mod (xη + 1) = INTT(NTT(a) ◦ NTT(b)). (1)

The NTT and the inverse NTT (INTT) both consist of log2(η) − 1 = 7 layers that
each contains η/2 = 128 butterfly operations Butterfly : Z2

ρ → Z2
ρ. The INTT is typically

implemented using the Gentleman–Sande (GS) butterfly in Eq. (2), where twiddle factor
τ is a power of the root of unity ζ. Barrett and Montgomery reduction methods enable
efficient and time-constant implementations of modular arithmetic in the prime field Zρ.

GSButterfly(a, b; τ) ≜
(
a+ b, (a− b) τ

)
mod ρ. (2)

The lossy compression is defined in Eqs. (3) and (4). The compression of message
coefficients m ∈ Zρ in Line 6 of Algorithm 3 uses δ = 1, and Eq. (3) boils down to Eq. (5).

Compress(x; ρ, δ) = ⌈2δx/ρ⌋ mod 2δ. (3)
Decompress(x; ρ, δ) = ⌈ρ x/2δ⌋. (4)

Compress(x; ρ, 1) =

{
1 if q/4 < x < 3q/4,
0 otherwise.

(5)

The decryption faces an accumulated error on the message m ∈ R(ρ,η) as given in
Eq. (6), where summands ∆u and ∆v denote contributions from the lossy ciphertext
compression. If it holds for each coefficient i ∈ [0, η − 1] that −ρ/2 < ∆mi < ρ/2, then
the decryption outputs the correct message m ∈ {0, 1}η after its final step Compress(·; ρ, 1).

∆m = e⊺r− s⊺(e1 + ∆u) + e2 + ∆v mod ±ρ (6)

2.2 Key-encapsulation mechanism
Kyber [ABD+20] uses a variation of the FO transform that is specified in Algorithms 4
to 6. Essentially, the ciphertext c received by the decapsulation is re-encrypted after
decryption and the result c′ is compared to c. If this comparison fails, the decapsulation
returns a pseudorandom value instead of a failure symbol ⊥, which is referred to as
implicit rejection. Hash functions G and H are instantiated with SHA3-512 and SHA3-
256 respectively; the key-derivation function (KDF) is instantiated with SHAKE-256.
Kyber has a 90s variant with other symmetric primitives, which we do not use.

2.3 ARM Cortex-M4
Following a recommendation by NIST, the ARM Cortex-M4 is the primary reduced in-
struction set computer (RISC) processor for benchmarking the implementation efficiency
of PQC schemes. This embedded processor features thirteen 32-bit registers for general
purposes, which may pack two 16-bit signed integers. Instructions that perform multipli-
cations, subtractions, and other operations on these halfwords are supported.

Source code for Kyber is publicly available in the pqm4 library [KRSS]. Although
the implementation is largely written in C, we analyze routines written in assembly exclu-
sively. Given that prime ρ = 3329 < 212, 16-bit halfwords can efficiently store polynomial
coefficients whilst providing a margin for lazy reductions, i.e., reductions after additions
and subtractions that do not cause overflow may be skipped. As pointed out by Alkim
et al. [ABCG20, Algorithm 11], Montgomery reductions can be implemented using two
instructions only. Algorithm 7 shows the latest version from the pqm4 library, which only
differs from the academic paper in how temporary variables are used. The NTT and
INTT exclusively rely on these Montgomery reductions, as evidenced by the double GS
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butterfly in Algorithm 8. Unfortunately, the Montgomery-reduced coefficients lie in the
interval [−ρ+ 1, ρ− 1] instead of [0, ρ− 1]. To obtain coefficients in the interval [0, ρ− 1]
right before compression, a slower Barrett reduction is used.

Algorithm 7 Montgomery [KRSS, commit on 20 Jan 2020]
Input: Integer a where −(β/2) · ρ ≤ a < (β/2) · ρ and β = 216

Input: Prime ρ = 3329
Input: Negated inverted prime −ρ−1 = 3327
Output: Reduced t[31 : 16] where −ρ < t[31 : 16] < ρ

1: smulbb t, a, −ρ−1 ▷ t← (a mod β) · (−ρ−1)
2: smlabb t, ρ, t, a ▷ t[31 : 16]← ⌊((t mod β)ρ+ a)/216⌋

Algorithm 8 DoubleGSButterfly [KRSS, commit on 20 Jan 2020]
Input: (a[15 : 0], b[15 : 0]) to first butterfly
Input: (a[31 : 16], b[31 : 16]) to second butterfly
Input: Twiddle factor τ [15 : 0] or τ [31 : 16]
Output: (a[15 : 0], b[15 : 0]) from first butterfly
Output: (a[31 : 16], b[31 : 16]) from second butterfly

1: usub16 t1, a, b ▷

{
t1[15 : 0]← a[15 : 0]− b[15 : 0],
t1[31 : 16]← a[31 : 16]− b[31 : 16]

2: uadd16 a, a, b ▷

{
a[15 : 0]← a[15 : 0] + b[15 : 0],
a[31 : 16]← a[31 : 16] + b[31 : 16]

3: smulbt/smulbb b, t1, τ ▷ b← t1[15 : 0] · τ [· · · ]
4: smultt/smultb t1, t1, τ ▷ t1 ← t1[31 : 16] · τ [· · · ]
5: montgomery ρ, −ρ−1, b, t2 ▷ Algorithm 7: reduce b to t2[31 : 16]
6: montgomery ρ, −ρ−1, t1, b ▷ Algorithm 7: reduce t1 to b[31 : 16]
7: pkhtb b, b, t2, asr#16 ▷ b[15 : 0]← t2[31 : 16]

3 Side-Channel Analysis
As specified in Algorithm 6, the decryption is the only building block of Kyber’s de-
capsulation that uses the private key ŝ and is thus the obvious target for SCA. However,
SCA-assisted chosen-ciphertext attacks proposed by D’Anvers et al. [DTVV19], Ravi et
al. [RRCB20], and Ueno et al. [UXT+22] subverted this intuition. An attacker can con-
struct ciphertexts c such that the correctness of a single decrypted message bit m ∈ {0, 1}
depends on ŝ. To avoid the realization of a message-checking oracle through SCA, algo-
rithms that process m should be protected. This includes hash function G, the encryption,
and the ciphertext comparison. The academically preferred way of countering SCA is to
randomize computations such that dependencies between internal secrets and measurable
emissions are weakened. Below, we distinguish between masking methods, which are ex-
pensive and substantiated by a security proof in a probing model, and blinding methods,
which are cheap and unsupported by a security proof.

3.1 Masking
In masked implementations, finite ring elements x ∈ X are randomly and uniformly split
into λ ≥ 2 shares according to Definition 1. According to Lemma 1, one way to meet
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Definition 1 is to first select
(
x(2), x(3), · · · , x(λ)) uniformly at random from X λ−1, followed

by a computation x(1) = x− x(2) − x(3) − · · · − x(λ).

Definition 1 (Uniformity). A finite ring element x ∈ X is randomly and uniformly split
into λ ≥ 2 shares if Pr(x(1), x(2), · · · , x(λ) | x) equals 1/|X |λ−1 if x(1) +x(2) + · · ·+x(λ) = x
and 0 otherwise.

Lemma 1 (Subset of Shares). For a finite ring element x ∈ X that is randomly and
uniformly split into λ shares according to Definition 1, any tuple of λ−1 shares is uniformly
distributed on X λ−1 and thus independent of x. More generally, any tuple of α ∈ [1, λ−1]
shares is uniformly distributed on Xα.

We distinguish between Boolean masking, where X = {0, 1}σ and additions are defined
by XORing, and arithmetic masking, where x ∈ Zρ, and additions are performed modulo
a prime ρ. For efficiency reasons, Boolean masking is typically used for symmetric-key al-
gorithms, whereas arithmetic masking is used for polynomial operations. Hence, Boolean-
to-arithmetic (B2A) and arithmetic-to-Boolean (A2B) conversions are commonplace.

A function F : X → Y must also be split such that shares of x ∈ X satisfying
Definition 1 are mapped to shares of y = F(x) that again satisfy Definition 1. If F is
linear, F is trivially split by defining ∀i ∈ [1, λ] : F(i)(x(i)) ≜ F(x(i)), considering that
F(1)(x(1)) + F(2)(x(2)) + · · · + F(λ)(x(λ)) = F(x(1) + x(2) + · · · + x(λ)) = F(x). For lattice-
based cryptography, linear components include polynomial additions, the NTT, and the
INTT. Non-linear components, such as Compress in Equation (3) and the polynomial
comparison, require custom-developed masking schemes [BGR+21].

3.2 Blinding
For blinding methods, we distinguish between randomization of data and randomization
of time. The latter can be achieved by randomly permuting the order of parallelizable
operations [Saa18, OSPG18, RPBC20, PP21a]. For example, the polynomial coefficients
fed into Compress in Equation (3) and Decompress in Equation (4) can be permuted.
Similarly, the butterfly operations within an NTT/INTT layer can be shuffled.

To randomize data in a polynomial multiplication c[x] = a[x] · b[x] in a ring R(ρ,η),
Saarinen [Saa18] proposed computing a′[x] = α ·a[x] and b′[x] = β ·b[x] where α and β are
chosen randomly, uniformly, and independently from Zρ, and multiplying c′[x] = a′[x]·b′[x]
with γ = (αβ)−1. Alternatively, the final step could be omitted by selecting α uniformly
at random from Zρ and computing β = α−1, which implies γ = 1.

For an NTT-based multiplication, Saarinen [Saa18] suggested lowering the costs by
computing α = ζi, β = ζj , and γ = ζ−i−j , where i and j are chosen randomly, uniformly,
and independently from [0, η − 1]. If a lookup table of the powers of ζ is available,
numerous multiplications in Zρ can be avoided. Furthermore, unlike Zρ, the cardinality
of [0, η − 1] is a power of two, which eliminates the need for rejection sampling given
that random number generators output binary vectors. Ravi et al. [RPBC20] applied the
latter technique at finer granularities: instead of generating blinding factors ζi for an entire
polynomial multiplication, factors can be generated for individual NTT/INTT layers or
even for individual butterflies. In its most generic form, the GS butterfly in Equation (2)
is realized as in Equation (7), where blinding factors ζi and ζj will eventually cancel out.

BlindedGSButterfly(a, b; ζk) ≜
(
(a+ b) ζi, (a− b) ζk+j) mod ρ. (7)

4 Fault Attacks
Although fault attacks on the key generation and the encapsulation exist [VOGR18,
RRB+19], the decapsulation is once again particularly vulnerable. An attacker can fault
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this module a virtually unlimited number of times in order to retrieve the private key s,
i.e., the long-term secret. Not surprisingly, we also target the decapsulation.

4.1 Differential fault analysis
As pointed out by Oder et al. [OSPG18], a positive side effect of using the FO transform is
that many fault attacks on the decapsulation are inherently countered: by re-encrypting
the decrypted message m′ and comparing the result to the externally provided cipher-
text c, secret-revealing faulted data is kept internal instead of forwarded to the output.
This countermeasure, which also exists in a simpler form where an encryption or decryp-
tion is executed twice, is well-established since the early 2000s, at which time Karri et
al. [KWMK02] protected block ciphers such as the Advanced Encryption Standard (AES)
against differential fault analysis (DFA). For block ciphers, the countermeasure can only
be defeated through a double fault injection: a fault in the encryption can compensate
a fault in the decryption such that the equality-check is passed, or a fault can skip the
equality-check so that an arbitrary fault in the encryption propagates to the output. Un-
fortunately, and as surveyed by Xagawa et al. [XIU+21], the lattice-based version can be
broken through a single fault that skips the equality check, considering that resistance to
chosen-ciphertext attacks is removed this way.

4.2 Ineffective Faults
Another concern is that the inherent FO defense only counters DFA, or more generally, any
attack that leverages faulted data. As already established in the 2000s, mere knowledge
of whether or not the execution of a keyed cryptographic algorithm fails after injecting
a fault can enable key recovery. Faults of the latter type are often referred to as safe
errors [YJ00] or ineffective faults [Cla07]. Below, we recapitulate three applications to
lattice-based cryptography.

Bettale, Montoya, and Renault [BMR21] exploited that the secret polynomials of
lattice-based schemes have relatively many coefficients that are zero—if they are drawn
from a CBD or other small-error distributions. Hence, by setting these coefficients to zero
and observing whether such faults are effective, many coefficients are revealed to be zero.
Kyber, however, cannot be defeated, given that the CBD coefficients of the private key s
are stored and used in the NTT domain in Algorithm 3, i.e., the transformed coefficients
are virtually uniformly distributed on [0, ρ− 1].

Pessl and Prokop [PP21a] skipped an instruction in the final compression step of
Kyber’s decryption, i.e., Line 6 in Algorithm 3, such that the observed effectiveness of the
fault reveals, roughly speaking, the sign of the accumulated error ∆m in Equation (6). By
gathering 1000s of these inequalities, the system can be solved for the secret (s, e). Their
solver is based on belief propagation because of the following two advantages over linear
programming: large dimensions can be handled and errors in the inequalities are tolerable.
Their eventual algorithm, however, was unable to exceed a 1% error rate, and attempts
to increase this number were deferred as future work.

4.3 Ineffective Faults at Indocrypt 2021
Hermelink, Pessl, and Pöppelmann [HPP21a] solved a quasi-identical system of inequali-
ties with a similar algorithm, but collected the inequalities using a different method: the
aforementioned SCA-assisted chosen-ciphertext attacks [DTVV19, RRCB20, UXT+22]
are adapted such that the message-checking oracle is realized through fault injections in-
stead of leakage measurements. More precisely, the attacker manipulates one coefficient
vι, where ι ∈ [0, η − 1], of the compressed ciphertext polynomial v[x] of an otherwise
correctly computed encapsulation by replacing Line 14 in Algorithm 2 with Eq. (8), and
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the (in)ability to rectify the manipulation by faulting either input of the polynomial com-
parison reveals, roughly speaking, the sign of ∆m in Eq. (6). Recall that the coins r used
by the re-encryption are derived from the message m using a hash function, so changing
a single message bit alters the entire ciphertext.

v⋆[x] = Compress(v[x] + ⌊ρ/4⌋xι). (8)

In response to Eq. (8), the accumulated error ∆m faced by the decryption in Eq. (6)
increases by ⌊ρ/4⌋, as given in Eq. (9).

∆m⋆ = ∆m+ ⌊ρ/4⌋. (9)

From Eq. (9) and the observed correctness of the faulted decapsulation, an inequality
follows in Eq. (10). The difference in strictness is due to rounding. If mι is correct, an
attacker is able to fault coefficient vι in either input operand of the polynomial comparison
such that the decapsulation succeeds. If mι is incorrect, any attempt for rectification is
in vain.

m ̸= m⋆ ⇐⇒ (m = 0 ∧∆m > 0) ∨ (m = 1 ∧∆m ≥ 0). (10)

To restrict the fault model to single bit flips, which enables the use of a laser, the
Hamming distance (HD) constraint in Equation (11) is imposed when manipulating the
encapsulation. If multiple bits can reliably be flipped, the HD constraint can be removed.

HD(Compress(v),Compress(v[x] + ⌊ρ/4⌋xι)) = 1 (11)

An inequality is formed as given in Eq. (12). Vector x consists of ψ ≜ 2κ η unknowns,
each taking values in [−ϵ1, ϵ1]. The manipulated index ι may be identical for all collected
inequalities, so that the fault-injection setup only needs to cover a single point in space
and time. Considering that the coefficients of matrix A and vector b are small in absolute
value, modulo operations are entirely omitted.

a x + b

{
≥ 0 if decapsulation fails
< 0 otherwise,

,where b ≜ (e2 + ∆v)ι +

{
−1 if mι = 0
0 otherwise,

(12a)

x ≜



Poly2Vec(s[0])
...

Poly2Vec(s[κ− 1])
Poly2Vec(e[0])

...
Poly2Vec(e[κ− 1])


,Poly2Vec(p) ≜

 p0
...

pη−1

 , (12b)

a⊺ ≜



−Poly2VecX(e1[0] + ∆u[0]; ι)
...

−Poly2VecX(e1[κ− 1] + ∆u[κ− 1]; ι)
Poly2VecX(r[0]; ι)

...
Poly2VecX(r[κ− 1]; ι)


,Poly2VecX(p; ι) ≜



pι
...
p0
−pη−1

...
−pι+1


. (12c)

The solver is another variation of belief propagation, and is fed inequalities that are
100% correct, originating from software-simulated faults. Although the bit flips are as-
sumed to be perfectly reliable, the authors mention that a few trials would suffice to cover
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imperfect bit flips. Around 6000, 7000, and 9000 faulted decapsulations suffice to recover
the private key of Kyber512, Kyber768, and Kyber1024 respectively, with a success
rate of nearly 100%. To achieve an execution time under 10 minutes for Kyber768 with
7000 inequalities, 32 threads running on 16 cores are required.

The attack may be hindered by masking, shuffling, and/or double executions, but is
not precluded. Therefore, the authors proposed an additional countermeasure: instead
of ciphertexts c, pairs (c,Hash(c)) are stored in random-access memory (RAM) and even-
tually compared. Although faulting c while it is stored in RAM becomes pointless, the
attack still succeeds by faulting c before it is fed into the hash function, e.g., in the back
end of Compress(v; ρ, δv).

5 Roulette Attacks

Considering that our roulette attacks may be applicable to several KEMs, we first present
a general methodology in Section 5.1, and then apply this methodology to Kyber’s de-
capsulation in Section 5.2.

5.1 General Methodology

Consider a keyed cryptographic algorithm A : S × I → O where s ∈ S is keying material,
i ∈ I is the public input, and o ∈ O is the output. Output o is not necessarily public, but
an attacker can observe whether or not o is correct. We decompose A into five parts, as
shown in Figure 1.

A1

A2,1 A2,2

A3

A4

s

i
x

y z

o

Figure 1: Decomposition of cryptographic algorithm A.

To keep the execution time of the attack within bounds, we require that cardinalities
|Y| and |Z| are small. For a constant input (s, i), the attacker repeatedly faults either
A2,1 or y or A2,2 or z such that z⋆ ∈ Z is not constant, i.e., z⋆ does not follow a one-point
distribution with respect to the infinite set of fault injections. Although many distributions
might enable an attack, we idealize the case where z⋆ is uniformly distributed on Z. In
our casino analogy, this corresponds to spinning a roulette wheel, at least if we visualize
Z through a circular representation. This analogy also emphasizes that random draws are
an essential element of the attack. If for the given distribution of z⋆, the probability that
A fails to produce the correct output o depends on the secret s ∈ S, then the attacker can
retrieve information on s.

Our motivation for idealizing (nearly) uniform distributions of z⋆ ∈ Z is that they
naturally support (i) a large attack surface and (ii) various fault models, especially when
SCA countermeasures such as masking and data-randomizing blinding are deployed. Sec-
tion 5.1.1 formalizes the notion that uniformly distributed faults tend to propagate as
uniformly distributed faults. Section 5.1.2 gives examples of supported fault models.
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5.1.1 Attack Surface

For a function that is balanced according to Definition 2, uniformly distributed faults
propagate as uniformly distributed faults, as formalized in Lemma 2 and proven in Ap-
pendix C.1. If the function A2,2 : Y → Z in Figure 1 happens to be balanced, an attacker
who is able fault A2,1 or y such that the faulted value y⋆ ∼ U(Y), indirectly achieves
z⋆ ∼ U(Z).

Definition 2 (Balanced Function). Let F : A → C be a function. If it holds ∀c ∈ C that
|{a ∈ A | F(a) = c}| = |A|/|C|, then F is balanced. Similarly, for a function F : A×B → C,
if it holds ∀(b, c) ∈ B × C that |{a ∈ A | F(a, b) = c}| = |A|/|C|, then F is balanced with
respect to input a ∈ A.

Lemma 2 (Fault Propagation for Balanced Functions). Let F : A → C be a balanced
function, as formalized in Definition 2. If a ∼ U(A), then c ∼ U(C). Similarly, for a
function F : A × B → C that is balanced with respect to input a ∈ A, if a ∼ U(A) is
independent of b ∈ B, then c ∼ U(C).

Fortunately for the attacker, balanced functions are frequently used in cryptography.
Bijections are a trivial example. Addition in a finite ring and multiplication in a finite
field are two more examples, as formalized in Lemmas 3 and 4 respectively, and proven
in Appendices C.2 and C.3 respectively. In fact, balancedness is merely the ideal case;
imbalanced fault propagation may still enable an attack in practice.

Lemma 3 (Balancedness of Addition in Finite Ring). Let R be a finite ring and let
F : R2 → R be defined as c ≜ F(a, b) ≜ a + b. It holds that F is fully balanced, i.e.,
Definition 2 is met with respect to both input a ∈ R and b ∈ R.

Lemma 4 (Balancedness of Multiplication in Finite Field). Let F be a finite field and
let F : F2 → F be defined as c ≜ F(a, b) ≜ a · b, where b ≠ 0. It holds that F is balanced,
i.e., Definition 2 is met with respect to a ∈ F .

5.1.2 Fault Models

Examples 1 to 4 demonstrate that the ideal distribution, z⋆ ∼ U(Z), can be achieved for
various fault models. Despite assuming that the attacker faults either A2,2 or z, balanced
fault-propagation properties according to Section 5.1.1 may extend the attack surface
to A2,1 and y. Again, note that a uniform distribution is merely the ideal case; other
distributions may enable an attack as well. Regarding our distinction in Section 3.2,
remark that roulette attacks are facilitated by blinding methods that randomize data but
counteracted by blinding methods that randomize time.

Example 1 (Random Faults). Random faults where z⋆ ∼ U(Z) comprise a well-established
fault model in the academic literature and are covered by definition. Also stronger fault
models where z ∈ {0, 1}λ is XORed with an attacker-chosen error e ∈ {0, 1}λ are covered.
If the attacker chooses e ∼ U({0, 1}λ), then z⋆ ≜ z ⊕ e ∼ U({0, 1}λ).

Example 2 (Set-To-Constant Faults). Set-to-0 and set-to-1 faults are covered for masked
implementations. Let z be randomly and uniformly split into λ ≥ 2 shares according to
Definition 1, and without loss of generality, assume that the first share, z(1) ∈ Z, is
set to an arbitrary constant θ ∈ Z, whereas shares z(2), · · · , z(λ) ∈ Z are untouched.
Considering that z(1) ∼ U(Z) and

(
z(2), · · · , z(λ)) ∼ U(Zλ−1) according to Lemma 1, it

follows that the faulted value z⋆ = θ + z(2) + · · ·+ z(λ) = z − z(1) + θ ∼ U(Z).

Example 3 (Instruction Skips and Corruptions). Let A2,2 : Y → Z be realized through a
masked software implementation. Without loss of generality, assume that an instruction
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in the first share function, A(1)
2,2, is either skipped or corrupted such that the faulty output

share (z(1))⋆ is independent of the correct output share z(1). Hence, z⋆ = (z(1))⋆ + z(2) +
· · ·+ z(λ) is again uniformly distributed on Z.

Example 4 (Arbitrary Bit Flips). Let A2,2 : Y → Z be an affine function over a finite
field Y = Z = {0, 1}λ where addition is defined by XORing. Let z ≜ A2,2(y) be realized
through a blinded implementation z = r−1 A2,2(r · y) where r ∼ U({0, 1}λ \ {0}). For any
pattern of bit flips e ∈ {0, 1}λ \ {0} applied to the input of A2,2, it holds that the faulted
output z⋆ ≜ r−1 A2,2(r ·y⊕e) = z⊕ r−1 A2,2(e) ∼ U({0, 1}λ \{0}). Strictly speaking, this
distribution is nearly uniform, given that the case z⋆ = z is excluded. One could achieve
z⋆ ∼ U({0, 1}λ) by aborting the fault injection with probability 1/2λ, but this would be
pointless in an actual attack.

5.1.3 Comparisons

Table 2 compares our roulette attacks to well-known fault attacks, i.e., DFA, fault sensi-
tivity analysis (FSA) [LOS12], and a statistical ineffective fault attack (SIFA) [DEK+18].
The standout property of roulette attacks is that masking is a facilitator. Although mask-
ing may not preclude DFA [BH08], FSA [MMP+11, Del20], or SIFA [DEG+18], it is not
a facilitator here. Furthermore, note that the fault distributions of roulette attacks and
SIFA are complementary to some extent.

Table 2: Comparison of fault attacks.
Technique DFA FSA SIFA Roulette

Input i Unknown Known Unknown Known
Correct output o Known Unknown Known Unknown
Faulty output o⋆ Known Unknown Unknown Unknown

Input i Constant i Constant i i← U(I) Constant i
Correct intermediate z Constant z Constant z z ∼ U(Z) Constant z
Faulty intermediate z⋆ Any Any z⋆ ̸∼ U(Z) Any, z⋆ ∼ U(Z)

Fault intensity Constant Variable Constant Constant
Masking Nuisance Nuisance Nuisance Facilitator

Duplication Game over Don’t care Don’t care Don’t care

5.2 Application to Kyber’s Decapsulation
We now instantiate the generic cryptographic algorithm A from Section 5.1 with Kyber’s
decapsulation, as specified in Algorithm 6. Our first and foremost roulette attack is an
extension of the IndoCrypt paper [HPP21a]; the private key s is recovered by faulting the
re-encryption. A second roulette attack recovers the message m and the corresponding
session key k by faulting the decryption. Considering that the second attack is far less
practical while recovering the short-term and thus not the long-term secret, its specifica-
tion is deferred to Appendix B.

5.2.1 Attack Surface

The generic variable z ∈ Z in Figure 1 is instantiated with a compressed ciphertext co-
efficient v ∈ {0, 1}δv that is output from the re-encryption, as specified in Algorithm 2.
Following Hermelink et al. [HPP21a], the goal is to match a manipulated coefficient so
that the polynomial comparison succeeds, at least if the preceding decryption is correct.
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If the faulted value v⋆ is uniformly distributed on {0, 1}δv , then the probability of a suc-
cessful decapsulation is approximately 0 if m ̸= m⋆ and 1/2δv otherwise. For Kyber512
and Kyber768, the latter probability is 1/16; for Kyber1024, the latter probability is
1/32. The attacker injects faults until a decapsulation success is observed. After β unsuc-
cessful injections, a decapsulation failure is assumed. Inequalities that correspond to an
observed decapsulation success are always correct, whereas the error rate of inequalities
that correspond to an observed decapsulation failure decreases with β.

Compared to the attack of Hermelink et al. [HPP21a] in its original form, the number
of fault injections increases by roughly one or two orders of magnitude, but we get a
considerably larger attack surface and support for various fault models in return. As
illustrated in Figure 2, the function A2 ≜ A2,2◦A2,1 that produces a coefficient v ∈ {0, 1}δv

comprises one GS butterfly in the last layer of an INTT, the generation of one CBD
sample, the decompression of one message bit, one modular addition, and one compression.
Moreover, by faulting any of these building blocks, the countermeasure of Hermelink et
al. [HPP21a] to store (c,Hash(c)) in RAM is bypassed.

=?
Compress

Reduce+

CBD

×−

+

Decompress

Decrypt

m

a

b
d

c v

c
v

u

c

u v⋆

Encrypt

INTT

Figure 2: The attack surface of the IndoCrypt paper [HPP21a] is colored blue; our exten-
sion is colored orange.

Another godsend for the attacker is that the fault-propagation statistics are almost
ideal. The modular addition is perfectly balanced according to Definition 2 with respect
to all three inputs (this is a trivial generalization of Lemma 3). Ciphertext compression
as defined in Equation (3) is not perfectly balanced, but the deviation is too small to
notably impact the attack. If we introduce faults such that the uncompressed coefficient
is uniformly distributed on [0, ρ − 1], then the compressed coefficient slightly deviates
from uniform. For Kyber512 and Kyber768, the zero coefficient occurs with probability
209/3329, whereas all other coefficients occur with probability 208/3329. Similarly, for
Kyber1024, this becomes 105/3329 for the zero coefficient and 104/3329 for all other
coefficients.

5.2.2 Optional Hamming-Distance Constraint

The sole purpose of the Hamming distance constraint in Equation (11) is to establish
single bit flips as the fault model. In our extension of the attack, this constraint does not
affect the feasibility of a fault injection and is thus entirely optional. To accommodate a
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potential omission, we extend Equations 8 to 10. As a starting point, we summarize the
behavior of Compress in Equation (3) and Decompress in Equation (4). For Kyber512 and
Kyber768, where δv = 4, our summary is contained in the first five columns of Table 3.
For brevity, we do not discuss Kyber1024, where δv = 5, but identical conclusions can
be drawn from Table 5 in Appendix A.

Table 3: Properties of the compressed ciphertext coefficients v ∈ [0, 2δ − 1] where δ = 4.
The first and last elements of each bin are defined by Compress in Equation 3. The bin
centers are defined by Decompress in Equation 4.

Original Manipulated
Bin Size First Last Center Bin Fault HD ∆m⋆

0 209 3225 104 0 4

0100 1 ∆m+ 8321

208

105 312 208 5
2 313 520 416 6
3 521 728 624 7
4 729 936 832 8

1100 2 ∆m+ 8335 937 1144 1040 9
6 1145 1352 1248 10
7 1353 1560 1456 11
8 1561 1768 1665 12

0100 1 ∆m+ 8329 1769 1976 1873 13
10 1977 2184 2081 14
11 2185 2392 2289 15
12 2393 2600 2497 0

1100 2 ∆m+ 83313 2601 2808 2705 1
14 2809 3016 2913 2
15 3017 3224 3121 3

An evident anomaly is that bin 0 is ‘oversized’: it contains 209 elements, whereas 15
‘ordinary’ bins each contain 208 elements. The proposed manipulation in Eq. (8) is to add
⌊ρ/4⌋ = 832 = 4 · 208 to the uncompressed coefficient, which is a jump spanning exactly 4
‘ordinary’ bins. Unfortunately, the first element of bin 0 then maps to the last element of
bin 3, given that 3225+832 mod 3329 = 728, and thus not to the first element of bin 4. In
absence of the HD constraint in Eq. (11), the decryption would face an accumulated error
∆m⋆ = ∆m + 632, which significantly undershoots the desired effect ∆m⋆ = ∆m + 832
in Eq. (9). An easy fix is to replace Eq. (8) by a direct manipulation of the compressed
coefficient, as given in Eq. (13).

v⋆ = v + 2δv−2 mod 2δv . (13)

Furthermore, in cases where the HD is 2 instead of 1, the accumulated error ∆m
happens to be increased by 833 instead of 832. The required extension of Eqs. (9) and (10)
is given in Eq. (14).

∆m⋆ = ∆m+ 832 =⇒ m ̸= m⋆ ⇐⇒
(m = 0 ∧∆m ≥ 1) ∨ (m = 1 ∧∆m ≥ 0), (14a)

∆m⋆ = ∆m+ 833 =⇒ m ̸= m⋆ ⇐⇒
(m = 0 ∧∆m ≥ 0) ∨ (m = 1 ∧∆m ≥ −1). (14b)

Similarly, Eq. (12a) is extended in Eq. (15).
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b ≜ (e2 + ∆v)ι +


−1 if mι = 0 and ∆m⋆ = ∆m+ 832
1 if mι = 1 and ∆m⋆ = ∆m+ 833
0 otherwise.

(15)

5.2.3 Masked Software on ARM Cortex-M4

To demonstrate how roulette attacks can defeat SCA countermeasures, theoretical exam-
ples are given. Due to the large attack surface in Fig. 2, where most building blocks come
with a plethora of implementation strategies and masking schemes, we cannot possibly be
exhaustive. Our first example is a segment of masked software on the ARM Cortex-M4.
Although the Kyber implementations in the pqm4 library [KRSS] are unprotected, we
focus on linear functions exclusively so that masking is realized merely by executing the
corresponding code segments λ ≥ 2 times on their respective shares. More specifically,
we focus on linear functions that are written in assembly so that differences among C
compilers and build settings are irrelevant. We opted for the double GS butterfly in the
last layer of the INTT, as implemented in Algorithm 8 and executed on λ ≥ 2 shares. For
all nine instructions, Table 4 summarizes the effect of skipping that particular instruction
for a single share.

Table 4: The impact of an instruction skip on the double GS butterfly in Algorithm 8
where one out of λ ≥ 2 shares is targeted. A checkmark (3) denotes the correct result.

Skipped instruction c⋆1 d⋆1 c⋆2 d⋆2 Proof
1 usub16 t1, a, b 3 ∼ U(Zρ) 3 ∼ U(Zρ) Eq. (26)
2 uadd16 a, a, b ∼ U(Zρ) 3 ∼ U(Zρ) 3 Eq. (23)
3 smulbb b, t1, τ 3 ∼ U(Zρ) 3 3 Eq. (24)
4 smultb t1, t1, τ 3 3 3 ∼ U(Zρ) Eq. (25)
5.1 smulbb t2, b, −ρ−1 3 ̸∼ U(Zρ) 3 3 -
5.2 smlabb t2, ρ, t2, b 3 ̸∼ U(Zρ) 3 3 -
6.1 smulbb b, t1, −ρ−1 3 3 3 ̸∼ U(Zρ) -
6.2 smlabb b, ρ, b, t1 3 3 3 ̸∼ U(Zρ) -
7 pkhtb b, b, t2, asr#16 3 ∼ U(Zρ) 3 3 Eq. (27)

Clearly, the attacker is in a privileged position: for five out of nine instruction skips,
the faulted output coefficients are uniformly distributed, which is our ideal-case scenario.
The uniformity proofs are all instances of Example 3 and deferred to Appendix C.4. For
the first two instruction skips though, two output coefficients are disturbed, which implies
that the attacker must perform more fault injections. For instructions 5.1 to 6.2 in Table 4,
a tractable closed-form expression for the distribution of the faulted coefficient d⋆ might
not exist. However, we took an empirical approach by measuring the distribution of d⋆
on the ARM Cortex-M4, where an instruction skip is trivially realized by removing that
particular instruction from the source code, and did not observe any non-uniformities that
would hinder the attack.

5.2.4 Blinded Hardware

For attacks on hardware components, spatially localized fault-injections methods such as
lasers beams or electromagnetic waves are of particular interest. A potential target is, for
example, a GS butterfly blinded according to Equation (7) in the final INTT layer. As
formalized in Equation (16), if the attacker flips an arbitrary set of bits in multiplicand
(a + b), then the faulted butterfly output c⋆ is uniformly distributed on a subset of Zρ
with cardinality η, given that ζ is the η-th root of unity. Contrary to Example 4, only
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η/ρ ≈ 7.7% of all possible values are covered, but the attack succeeds considering that
one or more values around ∆c = ⌊ρ/4⌋ suffice.

(a+ b)⋆ ≜ (a+ b)⊕ e =⇒ ∆c ≜ c⋆ − c =

(⌊log2(ρ)⌋∑
n=0

e[n](−1)(a+b)[n]2n
)
ζi. (16)

Similarly, bit flips in multiplicand (a − b) cause butterfly output d to be uniformly
distributed on a subset of η elements in Zρ. It also possible to flip bits of either a or b,
but then more injections must be performed considering that c and d are simultaneously
faulted.

6 Solving Systems of Linear Inequalities
Both Pessl and Prokop [PP21b] and Hermelink et al. [HPP21b] published source code for
solving systems of linear inequalities on GitHub, but we implement our own solver from
scratch in order to reduce the computation time and increase the error tolerance. With
Pessl as a common author, it is also the first third-party validation. Source code is available
in the following GitHub repository: https://github.com/Crypto-TII/roulette

The solver is entirely written in Python, but by mapping resource-intensive operations
to large NumPy arrays, the heavy lifting is actually done in C on contiguous memory. Our
code includes an implementation of Kyber, which uses symmetric primitives from the
PyCryptodome library. Test routines compare the private key, the public key, the cipher-
text c, and the shared secret k against those from the NIST reference implementation. To
make all plots in this section reproducible, we include the methods that generated their
data points, besides the solver itself.

6.1 Reduced Computation Time
The high computation times from previous solvers can be attributed to a single culprit, i.e.,
Eq. (17). Belief-propagation algorithms maintain a probability mass function (PMF) for
each out of ψ unknowns X[j], to be initialized with the CBD, and in each iteration, these
PMFs are updated based on the probabilities p[i, j, k] in Eq. (17), until they converge
to one-point distributions. After the first iteration, the PMFs of X[j] do not have a
special shape anymore, so the PMF of the sum of ψ − 1 random variables is computed
through general means: linear (non-circular) convolutions via the fast Fourier transform
(FFT). The previous solvers [PP21b, HPP21b] use binary trees to improve the reuse of
intermediate variables, yet with ω ψ FFTs and ω ψ inverse FFTs per iteration, the load
remains heavy.

∀i ∈ [0, ω − 1],
∀j ∈ [0, ψ − 1],
∀k ∈ [0, 2 ϵ1],

p[i, j, k] = Pr

(
A[i, j] (k− ϵ1)+

( ∑
j′∈[0,ψ−1]\{j}

A[i, j′]X[j′]

)
+ b[i] ≥ 0

)
.

(17)
We accelerate Eq. (17) by replacing the exact approach with an approximation. Con-

sidering that a large number of variables, i.e., ψ−1, is being summed, the PMF of the sum
can accurately be approximated by a normal distribution according to the central limit
theorem (CLT). In later iterations, the binomial distributions evolved towards one-point
distributions, and the approximation becomes less precise, but by then the algorithm is al-
ready honed in on the solution anyway. The resulting computation in Eq. (18) is light and
straightforward. The summand 1/2 compensates for the fact that a discrete distribution
with step size 1 is approximated by a continuous distribution.

https://github.com/Crypto-TII/roulette
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p[i, j, k] ≈ Fnorm

( 1
2 + A[i, j] (k − ϵ1) +

∑
j′∈[0,ψ−1]\{j} A[i, j′] E

[
X[j′]

]√∑
j′∈[0,ψ−1]\{j} A[i, j′]2 Var

[
X[j′]

]
)
. (18)

Instead of the reported 15 minutes, a single-threaded iteration with ω = 7000 inequali-
ties and ψ = 1536 unknowns now takes less than five seconds. These numbers are obtained
from different computers, but as our number comes from a laptop with Python running in
a virtual machine, we are unlikely to have a significant advantage. The need for paralleliz-
ing computations through threading is removed. In the next section on error tolerance,
the benefit of the CLT-based acceleration increases, given that the required number of
inequalities ω increases with the error rate.

6.2 Increased Error Tolerance
Our entire solver is represented in Algorithm 9, including changes to increase the error
tolerance. Whilst observed decapsulation successes are correctly classified with quasi
100% certainty, observed decapsulation failures are only correct up to a probability that
is estimated in Lines 4 to 7. In Line 14, this information is taken into account.

Algorithm 9 Solver
Input: Matrix A
Input: Vector b
Input: Decapsulation failures r ∈ {0, 1}ω
Output: Solution xguess ∈ [−ϵ1, ϵ1]ψ

1: for j ∈ [0, ψ − 1] do
2: for k ∈ [0, 2ϵ1] do
3: punknowns[j, k]← fbino(k; 2 ϵ1, 1/2) ▷ Proof in Eq. (28).
4: pfail,expected ← 1

ω

∑ω−1
i=0 Pr

(∑ω−1
j=0 A[i, j]x[j] + b[i] ≥ 0

)
▷ CLT approximation

5: pfail,measured ← 1
ω

∑ω−1
i=0 r[i]

6: pfail,correct ← min(pfail,expected/pfail,measured, 1)
7: pfail ← r · pfail,correct
8: xguess ←

(
0 0 · · · 0

)
9: while StopCriterionFails(A, b, r, xguess, · · · ) do

10: for j ∈ [0, ψ − 1] do
11: for k ∈ [0, 2 ϵ1] do
12: for i ∈ [0, ω − 1] do
13: Compute p[i, j, k] using Eq. (18) ▷ CLT approximation.
14: p[i, j, k]← p[i, j, k] pfail[i] + (1− p[i, j, k])(1− pfail[i])
15: p[i, j, k]← max(p[i, j, k], 10−5)
16: p′

unknowns[j, k] = punknowns[j, k]
∏ω−1
i=0 p[i, j, k] ▷ Sum of logarithms

17: for k ∈ [0, 2 ϵ1] do
18: p′

unknowns[j, k]← p′
unknowns[j, k]/

∑2 ϵ1
k′=0 p

′
unknowns[j, k′] ▷ Normalize

19: xguess[j]← −ϵ1 + arg maxk∈[0,2 ϵ1] p
′
unknowns[j, k]

20: punknowns ← p′
unknowns

Regarding the CBD in Line 3, we point out that the PMF of E ≜ E1 − E2 where
E1, E2 ∼ B(ϵ, 1/2) can simply be evaluated as fbino(ϵ−i; 2ϵ, 1/2), as proven in Appendix C.5.
Not equally compact, Hermelink [HPP21b] loops over all pairs (e1, e2) ∈ [0, ϵ]2. As the
probabilities p[i, j, k] may be small, the product in Line 16 is realized through a sum of
logarithms to avoid underflow. Line 15 ensures that the logarithms do not receive inputs
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close to zero. The stop criterion in Line 9 is met if a maximum of 16 iterations is reached,
or if an estimated fitness of xguess obtained by filling in the inequalities does not improve
anymore.

As noted in the IndoCrypt paper [HPP21a], correctly guessing ψ/2 out of ψ unknowns
suffices for key-recovery, because the remaining half can be recovered via the public key.
The authors implemented several confidence measures to select ψ/2 coefficients in every
iteration, but we do not despite the reduction in the number of inequalities needed.

6.3 Experiments with Software-Simulated Faults
We perform three experiments where faults are simulated in software. Success is quantified
by measuring the probability that the coefficients of xguess are correct, as a function of
the provided number of inequalities ω. Each probability is averaged over either 5 or 10
systems of inequalities, which correspond to different key pairs. No runs are discarded,
thereby demonstrating the stability of our solver.

In our first experiment, we revisit a filtering technique from Pessl and Prokop [PP21a]
where inequalities are selected such that coefficient b is small in absolute value. This way,
the probability of a decapsulation success (or failure) is approximately 50%. Hence, the
information or Shannon entropy carried by the inequality is maximized, and fewer faults
are needed for key recovery. Because the potential gains have not been quantified before,
we do so in Fig. 3. For the unfiltered curve, the faulted ciphertext index ι ∈ [0, η − 1]
is constant, and the result of a single encapsulation is unconditionally accepted. For the
filtered curve, a single encapsulation is still performed, but the faulted index ι is variable
and chosen such that |b| is minimized. Remark that in an attack with actual hardware, a
similar effect could be obtained by fixing ι and performing η encapsulations. Considering
that the gains are significant, we filter inequalities by default.
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Figure 3: Filtered and unfiltered inequalities for Kyber512.

For our second experiments, all three security levels of Kyber are compared in Fig. 4.
The curves lie relatively close to one another, especially Kyber512 and Kyber768. This
is at least partially attributable to the followings effects cancelling out: Kyber768 has
more unknowns (1536 > 1024), whereas Kyber512 has more possible values per unknown
(7 > 5).

For our third experiment, inequalities are corrupted. In line with the working prin-
ciples of the attack, inequalities corresponding to a decapsulation failure are untouched,
whereas decapsulation successes are turned into decapsulation failures with probability
ps2f. Figure 5 shows that even with ps2f = 50%, the entire secret can still be recovered.
The overall error rate is approximately half of ps2f, resulting in an error tolerance of 25%.
This is a considerable improvement upon the 1% reported by Pessl and Prokop [PP21a],
and demands on the fault-injection setup are reduced accordingly.
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Figure 4: All security levels.
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Figure 5: Error tolerance for Kyber512. Given ω otherwise correct inequalities, decap-
sulation successes are turned into decapsulation failures with probability ps2f ∈ [0, 0.6].

7 ChipWhisperer Experiments
We experiment with actual fault-injection equipment and target a masked software imple-
mentation of Kyber running on an ARM Cortex-M4. Upon discarding (i) the pqm4 imple-
mentation [KRSS] for being unprotected, (ii) the implementation of Bos et al. [BGR+21]
for being closed-source, and (iii) the implementation of Heinz et al. [HKL+22] for having
an unresolved masking issue at the time of writing this paper, we opted for the implemen-
tation of Coron et al. [CGMZ22]. Because the latter implementation is entirely written
in plain C and thus unoptimized for the M4, it runs too slow for bulk experiments yet
fast enough to show that our attack works. We build Kyber768 with first-order masking
using GNU Compiler Collection (GCC) with O3 optimization.

We use a ChipWhisperer board from NewAE Technology Inc. [Inc] to generate and
glitch a 24 MHz clock. Through a CW308 UFO Target Board, this clock is provided
to the M4 that is contained in an STM32F405RGT6 chip from STMicroelectronics, and
causes either instruction skips or instruction corruptions [TSW16]. The glitch is created
by XORing a single short pulse with an otherwise proper clock signal, and is configured
by three parameters: a global offset expressed as a number of clock cycles, a local offset
with respect to the clock edge, and the width of the pulse. The latter two parameters
jointly embody an intensity that must be carefully balanced for the given STM chip: if
too low, no data is faulted, and if too high, our target crashes. The former parameter
must be paired with a vulnerable spot of Kyber’s re-encryption and the given ciphertext
index ι ∈ [0, 255] that is manipulated, which can be considered as a fourth parameter.
Considering that we focused on the last layer of the INTT earlier-on, we mark this section
of the source code with a trigger signal. Through a series of grid searches within the
trigger window, four parameter values are selected. The selected ciphertext index ι = 130.
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Remark that in a typical closed-source commercial product, a trigger cannot simply be
added to the source code but may be derived from SCA or communications with chip
peripherals such as external memory.

Upon selecting parameters, key recovery would be possible in a few hours up to a day
for a well-optimized implementation of Kyber, but as we had to settle for an unoptimized
target, it would take approximately five days. And ideally, multiple recoveries should be
performed. Therefore, our attack is showcased through faster but fairly equivalent means:
the ability to generate correct inequalities is measured. Based on 500 inequalities, Fig. 6
shows the probability of assigning the wrong sign to an inequality as a function of the
maximum number of fault injections, β. Recall that only decapsulation successes can
be misclassified and thus negatively contribute to the error rate. If, guided by Fig. 5,
we tolerate misclassifying approximately 50% of the decapsulation successes, it should
roughly hold that β ≥ 20. To conclude: even with a cheap setup and an SCA-protected
target, we can deliver a solvable system of inequalities.
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Figure 6: Inequality error rates obtained by clock glitching an ARM Cortex-M4 using a
ChipWhisperer board.

8 Concluding Remarks

We overhauled a fault attack against Kyber proposed at IndoCrypt 2021 [HPP21a] such
that it becomes easier to perform and harder to defend against. Popular masking tech-
niques against SCA that originally favoured the defender now favor the attacker. Further-
more, more building blocks can be attacked, thereby increasing expenses for the defender.
Finally, defending against a nearly perfect laser setup is no longer enough because cheaper
methods such as voltage and clock glitching also suffice, even if they provide error-prone
inequalities. In light of the above, the design of effective yet affordable countermeasures
against our roulette attacks is a first suggestion for follow-up work.

A second suggestion for follow-up work is the investigation of other PQC schemes. The
authors of the IndoCrypt paper [HPP21a] already conjectured that a similar attack applies
to Saber [BMD+20], which is another lattice-based KEM and round-3 finalist. Similarly,
we conjecture that our roulette attacks can be mapped to Saber too. In the ideal case,
a ciphertext coefficient cm ∈ {0, 1}τ , where τ equals 3, 4, and 6 for LightSaber, Saber,
and FireSaber respectively, is faulted such that c⋆m is uniformly distributed on {0, 1}τ .
Furthermore, c⋆m is the result of rounding (pruning the least significant bits) and an
addition, both of which are balanced functions as defined in Definition 2, i.e., the attack
surface is large once again.
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A Omitting HD Constraint in Kyber1024

Table 5: Properties of the compressed ciphertext coefficients v ∈ [0, 2δ − 1] where δ = 5.
Original Manipulated

Bin Size First Last Center Bin Fault HD ∆m⋆

0 105 3277 52 0 8

01000 1 ∆m+ 832

1

104

53 156 104 9
2 157 260 208 10
3 261 364 312 11
4 365 468 416 12
5 469 572 520 13
6 573 676 624 14
7 677 780 728 15
8 781 884 832 16

11000 2 ∆m+ 833

9 885 988 936 17
10 989 1092 1040 18
11 1093 1196 1144 19
12 1197 1300 1248 20
13 1301 1404 1352 21
14 1405 1508 1456 22
15 1509 1612 1560 23
16 1613 1716 1665 24

01000 1 ∆m+ 832

17 1717 1820 1769 25
18 1821 1924 1873 26
19 1925 2028 1977 27
20 2029 2132 2081 28
21 2133 2236 2185 29
22 2237 2340 2289 30
23 2341 2444 2393 31
24 2445 2548 2497 0

11000 2 ∆m+ 833

25 2549 2652 2601 1
26 2653 2756 2705 2
27 2757 2860 2809 3
28 2861 2964 2913 4
29 2965 3068 3017 5
30 3069 3172 3121 6
31 3173 3276 3225 7

B Roulette Attack on Decryption Module
Section 5.2 specified a first roulette attack on Kyber’s decapsulation, in which the re-
encryption is faulted in order to recover the private key s. This appendix specifies a
second roulette attack on the decapsulation, but now the decryption is faulted in order
to recover the message m and the corresponding session key k. This second attack is
much more ‘academic’ because (i) the distribution of the faulted value must be known,
and (ii) millions of perfectly injected faults are required. Nevertheless, there is no harm
in reporting an exploit on building blocks that have not previously been faulted, even if it
only serves as a reminder that not only obvious targets such as the polynomial comparison
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should be protected.
The generic variable z ∈ Z in Fig. 1 is instantiated with an uncompressed message co-

efficient m ∈ [0, ρ−1]. Although practically any distribution of its faulted counterpart m⋆

enables the attack, at least if the distribution is known to the attacker, we again idealize
the case where m⋆ is uniformly distributed on [0, ρ−1]. Leveraging fault propagation, the
attack surface consists of Decompress(v; ρ, δv), a butterfly in the final layer of the INTT,
and a modular subtraction. Recall that the modular subtraction is balanced according
to Lemma 3, i.e., a uniformly distributed fault in the butterfly or decompression output
results in a uniformly distributed m⋆. Given that primes ρ are odd, the final decryption
step, i.e., m⋆ ← Compress(m⋆; ρ, 1) as defined in Eq. (5), is inherently biased. As illus-
trated in Fig. 7 for ρ = 7, the compression function maps ⌊ρ/2⌋ = 3 coefficients in [0, ρ−1]
to m⋆ = 0, whereas ⌈ρ/2⌉ = 4 coefficients map to m⋆ = 1.

m = 1 m = 0

Figure 7: Message coefficients m before and after compression according to Eq. (5) where
prime ρ = 7.

For the actual prime ρ = 3329 used in Kyber, the right and left semicircles contain
⌊ρ/2⌋ = 1664 and ⌈ρ/2⌉ = 1665 field elements respectively. Hence, the probability of
a failed decapsulation is 1665/3329 ≈ 50.015% if the original message bit m = 0 and
1664/3329 ≈ 49.985% otherwise. At least in theory, a measurement of this failure rate
suffices to recover m. For β = 18201189 perfectly faulted decapsulations, the recovery
succeeds with 90% certainty, as can be derived from the cumulative distribution function
(CDF) of a binomial distribution: Fbino(⌊β/2⌋;β, 1664/3329) ≥ 90% where n is odd.
Apart from the staggering number of faults, the attack is hampered in practice because
fault injections are unlikely to be perfect, and the probability that no fault is injected is
typically unknown.

C Proofs

C.1 Lemma 2

The case F : A → C of Lemma 2 is proven in Eq. (19); the case F : A× B → C is proven
in Eq. (20).

Pr(c) =
∑

a∈A s.t.
F(a)=c

Pr(a) = |A|
|C|
· 1
|A|

= 1
|C|
. (19)
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Pr(c) =
∑

(a,b)∈A×B
s.t. F(a,b)=c

Pr(a ∧ b) =
∑
b∈B

Pr(b)
∑

a∈A s.t.
F(a,b)=c

Pr(a)

= |A|
|C|
· 1
|A|
·
∑
b∈B

Pr(b) = 1
|C|
.

(20)

C.2 Lemma 3
Balancedness with respect to input a ∈ R in Lemma 3 is proven in Eq. (21) and follows
from the property that each element in a ring has an additive inverse. Balancedness with
respect to input b ∈ R is proven in an identical manner.

∀(b, c) ∈ R2, |{a ∈ R | a+ b = c}| = |{c− b}| = 1. (21)

C.3 Lemma 4
Balancedness with respect to input a ∈ F in Lemma 4 is proven in Eq. (22) and follows
from the property that each element b ̸= 0 in a field has an multiplicative inverse.

∀(b, c) ∈ F2, |{a ∈ F | a · b = c}| = |{c · b−1}| = 1. (22)

C.4 Instruction Skips in Double Butterflies on ARM Cortex M4
To prove uniformity, we start from the observation that for each out of λ shares, the
input to last INTT layer is uniformly distributed on Zηρ = Z256

ρ , which implies that all 256
finite-field elements are independent of one another. This follows from Lemma 1 and the
fact that every INTT layer is a permutation on Zηρ.

The proofs for instructions 2 to 4 in Table 4 are particularly straightforward and given
in Eqs. (23) to (25) respectively. Note that the faulty output shares are low in magnitude
even before being reduced by the Montgomery macro and cannot violate the margin for
lazy reductions in any building block following the double butterfly. Also, note that the
multiplications with τ , (τ + 1), or (1− τ) preserve uniformity according to Lemma 4.
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For instruction 1 in Table 4, the faulted output coefficients (d1, d2)⋆ are determined
by an uninitialized temporary variable t1, as formalized in Eq. (26). Following the INTT
implementation of the pqm4 library, each layer is completed before starting the next one,
and for the most part, t1 has last been set in another double butterfly in the last layer.
Hence, t1 is independent of the current double-butterfly inputs. As for instructions 2 to
4, the faulted output shares are reduced by the Montgomery macro.
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1 , d

(1)
2
)⋆ = (t1[15 : 0], t1[31 : 16]) τ,(

d
(2)
1 , d

(2)
2
)

=
(
a

(2)
1 − b

(2)
1 , a

(2)
2 − b

(2)
2
)
τ,

...(
d

(λ)
1 , d

(λ)
2
)

=
(
a

(λ)
1 − b(λ)

1 , a
(λ)
2 − b(λ)

2
)
τ,

where t1 and(
a

(1)
1 , b

(1)
1 , a

(1)
2 , b

(1)
2
)

are independent,
(26a)

=⇒
(
d1, d2

)⋆ = (d1, d2) +
(
t1[15 : 0]− a(1)

1 + b
(1)
1 ,

t1[31 : 16]− a(1)
2 + b

(1)
2
)
τ ∼ U(Z2

ρ)
(26b)

For instruction 7 in Table 4, the faulty output coefficient d⋆1 is uniformly distributed on
Zρ in theory, but not necessarily in practice. The output of the function M is not properly
reduced, and the margin for lazy reduction may be violated in building blocks following
the double butterfly. Such violations may still produce the desired result in Eq. (13), but
are hard to analyze from a mathematical perspective and not further addressed here.



(
d

(1)
1
)⋆ = M

((
a

(1)
2 − b

(1)
2
)
τ
)
,

d
(2)
1 =

(
a

(2)
1 − b

(2)
1
)
τ,

...

d
(λ)
1 =

(
a

(λ)
1 − b(λ)

1
)
τ

=⇒
d⋆1 = d1 + M

((
a

(1)
2 − b

(1)
2
)
τ
)

−
(
a

(1)
1 − b

(1)
1
)
τ ∼ U(Zρ).

(27)

C.5 PMF of CBD
Let X be a random variable with a CBD, i.e., X ≜ X1 − X2 where X1, X2 ∼ B(ϵ, 1/2).
The PMF of X is derived in Eq. (28). Vandermonde’s identity is used in Eq. (28c) to
dispose of the summation operator.

Pr(X = i) = Pr(X = |i|) =
ϵ−|i|∑
j=0

Pr(X2 = j) Pr(X1 = |i|+ j) (28a)

=
ϵ−|i|∑
j=0

fbino(j; ϵ, 1/2) fbino(|i|+ j; ϵ, 1/2) =
ϵ−|i|∑
j=0

(
ϵ

j

)(
1
2

)ϵ(
ϵ

|i|+ j

)(
1
2

)ϵ
(28b)
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=
(

1
2

)2ϵ ϵ−|i|∑
j=0

(
ϵ

j

)(
ϵ

ϵ− |i| − j

)
=
(

1
2

)2ϵ( 2ϵ
ϵ− |i|

)
= fbino(ϵ− i; 2ϵ, 1/2). (28c)
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