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Abstract. Function Secret Sharing (FSS), introduced by Boyle, Gilboa
and Ishai [BGI15], extends the classical notion of secret-sharing a value
to secret sharing a function. Namely, for a secret function f (from a class
F), FSS provides a sharing of f whereby succinct shares (“keys”) are dis-
tributed to a set of parties, so that later the parties can non-interactively
compute an additive sharing of f(x), for any input x in the domain of f .
Previous work on FSS concentrated mostly on the two-party case, where
highly efficient schemes are obtained for some simple, yet extremely use-
ful, classes F (in particular, FSS for the class of point functions, a task
referred to as DPF – Distributed Point Functions [GI14,BGI15]).

In this paper, we concentrate on the multi-party case, with p ≥ 3
parties and t-security (1 ≤ t < p). First, we introduce the notion of
CNF-DPF (or, more generally, CNF-FSS), where the scheme uses the
CNF version of secret sharing (rather than additive sharing) to share
each value f(x). We then demonstrate the utility of CNF-DPF by pro-
viding several applications. Our main result shows how CNF-DPF can be
used to achieve substantial asymptotic improvement in communication
complexity when using it as a building block for constructing standard
(t, p)-DPF protocols that tolerate t > 1 (semi-honest) corruptions. For
example, we build a 2-out-of-5 secure (standard) DPF scheme of commu-
nication complexity O(N1/4), where N is the domain size of f (compared
with the current best-known of O(N1/2) for (2, 5)-DPF). More gener-
ally, with p > dt parties, we give a (t, p)-DPF whose complexity grows
as O(N1/2d) (rather than O(

√
N) that follows from the (p − 1, p)-DPF

scheme of [BGI15]).4

We also present a 1-out-of-3 secure CNF-DPF scheme, in which each
party holds two of the three keys, with poly-logarithmic communication
complexity. These results have immediate implications to scenarios where
(multi-server) DPF was shown to be applicable. For example, we show
how to use such a scheme to obtain asymptotic improvement (O(log2 N)
versus O(

√
N)) in communication complexity over the 3-party protocol

of [BKKO20].

1 Introduction

Function Secret Sharing (FSS) [BGI15] provides a sharing of a secret function
f , from a class of functions F , between p parties, such that each party’s share
of f (also termed “key”) is succinct (in terms of the size of the truth-table rep-
resenting f) and such that the parties can locally compute (additive) shares of

⋆ Work done while consulting for Stealth Software Technologies, Inc.
4 We ignore here terms that depend on the number of parties, p, the security param-
eter, etc. See precise statements in the main body of the paper below.



f(x), for any input x, without further interaction. While efficient FSS schemes
are currently known only for limited classes of functions (and impossibility re-
sults demonstrate other classes of functions for which no efficient FSS scheme
can exist), FSS has found enormous utility in distributed and multi-party pro-
tocols, due to its low communication overhead. Indeed, the FSS paradigm has
proven to be incredibly powerful even for the most basic of function classes:
Point Functions, which output a non-zero value at only a single point in their
domain. FSS for the class of point functions is known as DPF (Distributed
Point Functions). Since DPF and FSS were introduced [GI14,BGI15], they have
found applications in many areas of cryptography (see Section 1.3 below for
more details). For the case of p = 2 parties, highly efficient (both theoreti-
cally and practically) DPF schemes, with poly-logarithmic complexity (in N)
are known [GI14,BGI15,BGI16a], based on the minimal assumption that one-
way functions (OWF) exist. This clearly implies (1, p)-DPF schemes for any
p > 2. Obtaining similar results for the multiparty case, with t > 1, is an open
problem and, to the best of our knowledge, the only known result in the FSS
setting, based on OWF alone, is a (p − 1, p)-DPF scheme of complexity pro-
portional to

√
N from [BGI15] (and a protocol with similar complexity for the

special case of (2, 3)-DPF in [BKKO20]).

CNF secret-sharing [ISN87] (also known as “replication-based secret-sharing”
in [GI99]) has found great utility in a variety of applications, including: Verifiable
Secret Sharing and MPC protocols [Mau02], PIR [BIK05] and others.5 A (t, p)-
CNF secret-sharing works by first additively breaking the secret value s to ℓ =(
p
t

)
random shares {sT }

T∈
(
[p]
t

), subject to their sum satisfying
∑

T∈
(
[p]
t

) sT = s,

and then distributing each share sT to all parties not in T . It satisfies t-secrecy
since, for any set T of t parties, all parties in T miss the share sT .

6 In the
present work, we adapt the same approach in the context of FSS and introduce
the notion of CNF-FSS (and the analogous notion of CNF-DPF, when the class
of functions being shared are point functions) whereby, given an input x, the
parties obtain a CNF-secret-sharing of f(x).7 We then explore the power of this
new notion by constructing CNF-DPF schemes and by getting applications of
these constructions. Specifically, in Section 1.1 we describe our main result – for
the case of p parties and 1 < t < p, we show how to use CNF-DPF schemes to
obtain improved standard DPF schemes; then, in Section 1.2, we deal with the
special case p = 3, t = 1, where CNF-sharing is useful in some applications.

5 In fact, CNF secret sharing is a special case of formula-based secret sharing [BL88];
similar generalizations are in principle possible also in the context of FSS.

6 CNF sharing immediately implies additive sharing, by arbitrarily assigning each
share sT to one of the parties who hold it (i.e., a party not in T ), and each party’s
share being the sum of all (at least one) shares assigned to it.

7 In our constructions, this is often achieved by having each party receive multiple
overlapping keys, in a CNF form, that encode the DPF function f ; however, in
general, this is not a requirement. For formal definitions, see Section 2 (including
Remark 1).
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1.1 Improved Multiparty DPF with t > 1 from CNF-DPF

As mentioned, [GI14] and subsequent works demonstrated highly efficient 1-
out-of-2 DPF schemes (with logarithmic communication in the size of the DPF
domain), but much less is known for the p > 2 and secrecy threshold t > 1 case.
A trivial solution for (p− 1)-out-of-p DPF is to additively share the truth-table
of the point function fx,v : [N ] → F as a string. However, this approach has
communication complexity O(N ·m), where N is the size of the domain of fx,v
and m is its output length (note that this trivial solution is, in fact, information-
theoretic). A more efficient (p − 1)-out-of-p DPF solution is given by [BGI15]
and has complexity of essentially O(

√
N) (more precisely O(

√
N · 2p · (λ+m)),

where λ is the security parameter).8 For the special case p = 3, a scheme with
O(
√
N) complexity was also pointed out in [BKKO20]. When making stronger

assumptions than the existence of OWF, additional results are known: for exam-
ple, using PK assumptions and operations, specifically seed-homomorphic PRG,
[CBM15] also achieve a scheme with complexity that depends on

√
N , but has

better dependency on p and, under the LWE assumption, a (p−1, p)-FSS scheme
for all functions can be constructed [DHRW16].

In this paper, we show how to get better complexity, when one can settle
for smaller values of t. The high-level idea is as follows. First, we construct, as
an intermediate tool, a (t, p)-CNF-DPF scheme. The key-generation algorithm
Gen of our (t, p)-CNF-DPF scheme, produces ℓ =

(
p
t

)
keys {KT }

T∈
(
[p]
t

) and

gives each key KT to each party not in T (i.e., to each party in [p] \ T ). This
is done by invoking the key-generation algorithm of [BGI15] for the (ℓ − 1, ℓ)-
DPF case. Algorithm Eval of [BGI15] can be applied to any input y and any
key KT , and together these ℓ values give an additive sharing of fx,v(y) with
ℓ values. Our next idea is to view the domain [N ] of the point function as a
d-dimensional cube, where each dimension is of size M = N1/d. This allows to
express the point function fx,v as the product of d point functions f1, . . . , fd, on
much smaller domain of size M and apply CNF-DPF sharing to each fi. Finally,
the property of CNF sharing is that with the right relations between p, t and d
(specifically, when p > td) non-interactive multiplication is possible, since the
replication guarantees that each term in the product is known to some party.

These results are presented in detail in Section 3. As an example, we get a
(2, 5) (standard) DPF scheme with complexity O(N1/4) (instead of O(N1/2))
and, more generally, with p > dt parties, we get a (t, p)-DPF with complexity

O(N1/2d ·
√
2pt · pt · d · (λ + m)). In fact, one can also obtain a scheme with

information-theoretic security of complexity O(N1/d · pt · d ·m) by just replacing
the CNF-DPF above (based on [BGI15]) with a naive CNF sharing of the truth
table of each fi.

Our results may be useful in several cases where DPF was already shown to
be relevant. For instance, consider the case of Binary CPIR (i.e., Computational

8 In [BGI15], the range may be a group, as they only need the additive structure. How-
ever, we require a Ring structure for the range, since we will also use multiplication.
For concreteness, we can think of the field GF [2m], represented by m-bit strings.
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Private Information Retrieval schemes where servers’ answers are a single bit)
or, more generally, CPIR with constant answer length. Binary PIR schemes are
useful in the context of retrieving long records, and have connections with locally
decodable codes (LDC). The fact that DPF schemes imply Binary CPIR schemes
with the same complexity was shown in [GI14,BGI15] and this connection holds
also for the t-private version of DPF and CPIR schemes. Hence, our (t, p)-DPF
schemes with complexity ≈ O(N1/2d) (for p = dt+1 parties) imply (t, p)-binary-
CPIR with similar complexity. Before, to get (t, p)-binary-CPIR, one could use
a number of servers p that is exponential in t, to get much better complexity.
Specifically, one could get information-theoretic Binary PIR of complexity No(1)

using p = 3t servers (by combining [BIW07] with [Efr09]), or Binary CPIR
of poly-logarithmic complexity using p = 2t servers (by combining [BIW07]
with a 2-server DPF, as pointed out in [GI14]). Or, with a moderate number of
servers p, one could use a binary (information theoretic) PIR with complexity
≈ O(N1/d) (again, for p = dt+1) [DIO98,BIK05]. We essentially get a quadratic
improvement in this regime of parameters. Similar improvements can be applied
also to the PIR writing model [OS97].

1.2 1-out-of-3 CNF-DPF

Motivated by applications, we give a special treatment for the 3-party case. A
(1, 3) standard DPF scheme of poly-logarithmic complexity is easy to achieve
just by using solutions for the (1, 2)-case and not utilizing the third party at
all. In [BKKO20] a so-called Distributed ORAM (DORAM) scheme is presented
that relies on (2, 3)-DPF, for which only schemes of complexity O(

√
N) are

known. We observe that [BKKO20] does not need the full strength of (2,3)-
security and, instead, can rely on a (1, 3)-DPF, provided an appropriate “CNF”
replication of keys between the 3 parties (i.e., there are still 3 keys, as in the
(2, 3) case, but each of them is known to 2 of the parties, which can clearly
only give 1-security). Note that this does not seem trivial to achieve: if we start
from a (2,3)-DPF scheme then we can easily get a (1, 3)-CNF-DPF but with
much higher complexity than what we aim for, and if we start from a (1, 3)-DPF
and give each key to 2 parties, then security is lost. Nevertheless, we show (in
Section 4) how to construct a (1, 3)-CNF-DPF scheme, while still maintaining
poly-logarithmic complexity. Hence, improving the asymptotic complexity of the
scheme from [BKKO20].9

While we focus on the case of 1-out-of-3 CNF-DPF, as our construction is
similar in spirit to the 2-party DPF scheme of [BGI15], the same modifications
that are proposed in [BGI15] to extend DPF to FSS for related function classes

9 In order to use our (1, 3)-CNF-DPF scheme as a subprotocol of [BKKO20], it must
be converted into a distributed (dealerless) protocol. While generic techniques exist
to perform this conversion, using these would decrease overall performance of the
resulting protocol. We show, in Appendix D, how our (1, 3)-CNF-DPF can be con-
verted into a distributed protocol in a black-box manner, while maintaining polylog
communication (though this conversion does incur a hit in round-complexity over
the protocol of [BKKO20]: log rounds versus constant-round).
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(e.g. “sparse” vectors or matrices, step functions, interval functions, etc.) are
applicable for our 1-out-of-3 scheme as well; details and additional discussion
will be provided in the full version.

Additionally, (1, 3)-CNF-DPF schemes have features that may be useful in
other applications. The most basic one is the ability to perform multiplication;
that is, given two point functions f and g that are shared using a (1, 3)-CNF-DPF
scheme, and any evaluation points x and y, the parties can (non-interactively)
generate additive shares of the product10 f(x) · g(y). The reason is that f(x) is
the sum of 3 values, each of which is known to 2 parties, and similarly g(y) is
the sum of 3 values, each known to 2 parties, so their product contains 9 terms
each known to (at least) one party. (A similar observation is what we use for the
general (t, p)-case (see below), and what is used in other contexts where CNF
secret sharing is used; see, e.g., [BIK05].) Similarly, we can multiply a point
function by a (secret-shared) value a to get additive shares of a · f(x), as well as
other generalizations. We note that the ability to perform non-interactive mul-
tiplication(s), in CNF-FSS schemes, can be used to extend the known function
classes for which standard FSS is available. For example, FSS for functions that
involve the product of two sparse matrices, or of a sparse vector times a (secret-
shared) pseudo-random matrix, can be readily built using CNF-FSS. (See below
for comparison with a related notion from [BGI16b].)

1.3 Related Work

Distributed point functions (DPF) were introduced by Gilboa and Ishai [GI14]
who gave efficient constructions of (2-party) DPF schemes, based on the mini-
mal assumption of OWF, together with a spectrum of useful applications, such
as improved schemes for 2-server (computational) PIR, “PIR writing” (PIW)
and related problems. Boyle, Gilboa and Ishai [BGI15], generalized this notion
to other classes of functions, obtaining the notion of Function Secret Sharing
(FSS). They present various FSS schemes, for DPF and other classes and, of
particular relevance to the present work, they presented the first non-trivial
solution for multi-party DPF. Further extension and optimizations of FSS are
given in [BGI16b]. In particular, this paper presents the notion of FSS product
operator, that allows to combine FSS schemes for classes F1,F2 to an FSS for
the class of their products. For a more detailed discussion and a comparison of
this operator with our construction, see Section 3.2.

The related notion of Homomorphic Secret Sharing (HSS), which is “dual”
to FSS (in the sense that it switches roles between functions and inputs), was
introduced in [BGI16a] and further studied in [BGI+18b]. It allows for sharing
a value x between p parties, so that given a function f ∈ F , each party may
(non-interactively) apply Eval to its share of x (and a representation of f) so as
to get a sharing of f(x). In particular, [BGI16a] gives a 2-party FSS for a wide

10 As mentioned, for the product to be defined we need the range of the functions to
be a ring rather than just a group.
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class of functions such as branching programs (though, under a stronger assump-
tion, DDH, and with 1/poly error probability). This result yields 2-party secure
computation protocols with communication sub-linear in the circuit size. Other
applications of FSS include silent OT extension and pseudorandom correlation
generation for simple correlations [BCG+19], and many more.

Another application that makes use of DPF for p > 2 parties is Distributed
ORAM (DORAM), where read/write operations into memory are done obliv-
iously (see, e.g., [LO13,ZWR+16,DS17,GKW18,JW18,KM19,BKKO20,HV20]).
Concretely, [BKKO20] use a (2, 3)-DPF scheme in order to construct efficient
3-party DORAM. They use overlaps between the keys of pairs of servers, to in-
voke PIR/PIW schemes that rely on replication of information. This serves as
one motivation for the study of CNF-sharing in the present paper. Before the
work of [BKKO20], Doerner and Shelat [DS17] used 2-party DPF to construct
what can be viewed as a DORAM protocol in the two-party setting. In com-
paring [DS17] and [BKKO20] as multiparty DORAM protocols: the former has
superior communication complexity (polylog N versus

√
N) but inferior round-

complexity (logarithmic in N versus constant-round). Applying the results in the
current paper to [BKKO20], the communication complexity improves from

√
N

to polylog (albeit with a cost of logarithmic round-complexity), thus matching
the asymptotic communication complexity of [DS17]; see Appendix D.

In [CBM15], the authors describe a multi-server system called Riposte for
anonymous broadcast messaging, with various features. They use the general
notion of (t, p)-DPF, hence giving motivation for improving the complexity of
such schemes. While concentrating on a 3-server system (using 2-party DPF),
they also present a (p− 1, p)-DPF scheme of O(

√
N) complexity. (It differs from

the scheme of [BGI15] by using also PK assumptions and operations, specifically
seed-homomorphic PRGs, and also their scheme does not have the 2p term in the
complexity.) A follow-up paper describes the Express system [ECZB19], in a 2-
server setting and using 2-party DPF. They also mention the need for improved
multi-party DPFs. Finally, Blinder [APY20] is a scalable system for so-called
Anonymous Committed Broadcast. As with the previous systems, Blinder also
uses DPF as a building block but concentrates on the multi-server case.

As mentioned, the CNF version of secret sharing [ISN87] is useful in many ap-
plications, including VSS and MPC (e.g. [Mau02,IKKP15,AFL+16,FLNW17]),
PIR [BIK05], etc. In the context of share conversion, it was shown in [CDI05]
that shares from the CNF scheme can be locally converted to shares of the same
secret from any other linear scheme realizing the same access structure (e.g.,
shares from the (t, p)-CNF scheme can be converted to shares for the t-out-of-p
Shamir scheme).

1.4 Organization

We provide the requisite definitions and notation in Section 2. We then describe
our improved t-out-of-p secure DPF schemes in Section 3, and our 1-out-of-3
secure CNF-DPF construction, with poly-logarithmic complexity, in Section 4.
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2 Model and Definitions

Notation: We use [a..b] to denote the integers in the (closed) interval from a to

b, and [b] to denote [1..b]. We further denote by
(
[b]
t

)
the collection of all subsets

of [b] of size t.

Definition 1 FSS [BGI15,BGI16a]. A t-out-of-p Function Secret Sharing
scheme ((t, p)-FSS, for short) for a class of functions F = {f : D → G}, with
input domain D and output domain an abelian group (G,+), is a pair of PPT
algorithms FSS = (Gen,Eval) with the following syntax:

- Gen(1λ, f): On input the security parameter λ and a description of a function
f ∈ F , outputs p keys: {κ1, . . . , κp};

- Eval(i, κi, x): On input an index i ∈ [p], key κi, and input string x ∈ D,
outputs a value (“share”) yi ∈ G;

satisfying the following correctness and secrecy requirements:

Correctness. For all f ∈F, x∈D:

Pr

[
{κ1, . . . , κp}←R Gen(1λ, f) :

p∑

i=1

Eval(i, κi, x) = f(x)

]
= 1.

Security. For any subset of indices I ⊂ [p] with size |I| ≤ t, there exists a PPT
simulator Sim such that for any polynomial-size function sequence fλ ∈ F , the
following distributions are computationally indistinguishable:
{
{κ1, . . . , κp} ←R Gen(1λ, f) : {κi}i∈I

}
≈C

{
{κ1, . . . , κ|I|} ←R Sim(1λ, D,G)

}
.

We now extend the original FSS definition to Conjunctive Normal Form
(CNF) FSS. This is similar to Definition 1, except that the output of Eval, over
all p parties, should be a legal (t, p)-CNF secret-sharing of f(x) (rather than
additive secret sharing). That is, let St denote the set of subsets of [p] of size
t (there are

(
p
t

)
such subsets) and, for any i ∈ [p], let T Pi

t ⊂ St denote the

subsets of St that do not contain index i (there are
(
p−1
t

)
such subsets). Then

the algorithm Eval of a (t, p)-CNF-FSS scheme produces, for each party i ∈ [p],
all the shares of f(x) corresponding to T Pi

t .

Definition 2 A t-out-of-p CNF-FSS (also denoted (t, p)-CNF-FSS) scheme for a
class of functions F = {f : D → G} with input domain D and output domain an
abelian group (G,+) is a pair of PPT algorithms CNF-FSS = (Gen,Eval) with
the following syntax:

- Gen(1λ, f): On input the security parameter λ and a description of a function
f ∈ F , outputs p keys: {κ1, . . . , κp};

- Eval(i, κi, x): On input an index i ∈ [p], key κi, and input string x ∈ D,
outputs a sequence of a =

(
p−1
t

)
values Yi := {yT}T∈T

Pi
t

in Ga;

satisfying the following consistency, correctness and secrecy requirements:
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Consistency. For every function f ∈ F , input x ∈ D, pair of distinct parties

i, i′ ∈ [p], and set T ∈ St that does not contain i or i′ (i.e. T ∈ T Pi

t ∩ T Pi′

t ),
when producing keys {κ1, . . . , κp} ←R Gen(1λ, f) and getting yi,T ∈ Yi for this

T ∈ T Pi

t from Eval(i, κi, x) (among other outputs) and, similarly, yi′,T ∈ Yi′
for this same T ∈ T Pi′

t from Eval(i′, κi′ , x) then, with probability 1, we have
yi,T = yi′,T . Denote by yT this common share value held by all parties i /∈ T .

Correctness. For all f ∈F, x∈D: let {κ1, . . . , κp}←R Gen(1λ, f) and let yT, for
all T ∈ St, as defined above. Then, with probability 1, we have:

∑
T∈St

yT = f(x).

Security. For any subset of indices I ⊂ [p] with size |I| ≤ t, there exists a PPT
simulator Sim such that for any polynomial-size function sequence fλ ∈ F , the
following distributions are computationally indistinguishable:
{
{κ1, . . . , κp} ←R Gen(1λ, f) : {κi}i∈I

}
≈C

{
{κ1, . . . , κ|I|} ←R Sim(1λ, D,G)

}
.

Remark 1. The above definition requires only that the outputs of Eval, i.e. Yi =
{yT}T∈T

Pi
t

, over all parties i, is a legal CNF secret sharing (of f(x)). A stricter

requirement that some of our constructions satisfy is that: (1) the keys them-
selves are in a CNF form, i.e. that each party i receives keys Ki := {κT}T∈T

Pi
t

;

and (2) each share yT is computed only from κT . Satisfying (1) and (2) im-
mediately implies that the shares are consistent and are in CNF form. Our
CNF-DPF schemes in Section 3 have this property; while the (1,3)-CNF-DPF
scheme of Section 4 satisfies (1) but not (2). That is, for the (1,3)-CNF-DPF
scheme of Section 4, the keys are in CNF format, but Eval needs to operate on
both keys of each party in order to produce its two shares.

Additionally, we will require the definitions of several variants of standard
DPF for our (1,3)-CNF-DPF scheme of Section 4, which for clarity are defined
as they are needed in Section 4.2.

3 t-out-of-p DPF from CNF-DPF

In this section, we discuss standard (i.e. non-CNF) DPF for p > 2 parties, and
security threshold t > 1. As mentioned in Section 1.1, in contrast to the case
t = 1, where very efficient poly-logarithmic solutions are known, even with p = 2
parties, the complexity in the general case of (t, p)-DPF (and more generally
(t, p)-FSS) is much less understood.

We begin with a fixed choice of parameters t = 2 and p = 5 and demonstrate
in Section 3.1 below how CNF-DPF can be used to construct an improved (stan-
dard) (2, 5)-DPF scheme. We then generalize this approach in Section 3.2 to show
how to construct (t, p)-DPF from CNF-DPF for a variety of parameters t and p.

3.1 Example: 2-out-of-5 DPF

To demonstrate our ideas, we start with a concrete example of the case t = 2 and
p = 5, and present a (2, 5)-DPF of complexity O(N1/4). As a first step towards
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this goal, we construct a (2,5)-CNF-DPF scheme B with complexity O(
√
N). For

this, we use the (standard) (q−1, q)-DPF scheme of [BGI15], with q =
(
5
2

)
= 10.

This gives 10 keys K1, . . . ,K10 so that any set of 9 keys gives no information
about the point function f , and those keys allow for producing additive shares
for the value f(y), for any input y. Next, associate with each key Ki (i ∈ [10])

a distinct subset T ∈
(
[5]
2

)
and give Ki to the 3 parties outside the set T (or,

equivalently, do not give Ki only to the 2 parties in T ). In other words, the key
κj of party j in our scheme B consists of all the keys Ki that correspond to
sets T with j /∈ T (there are 6 =

(
4
2

)
such sets). Our B.Eval algorithm, on input

κj , simply works by applying the Eval algorithm of [BGI15] to each Ki that κj

contains, separately. This gives a (2, 5)-CNF scheme B as needed: 10 shares/keys
K1, . . . ,K10, where each pair of parties misses exactly one of them. Therefore,
the view of this pair of parties in B is identical to the view of a corresponding
set of 9 parties in the [BGI15] scheme, which is 9-secure (for q = 10).

Next, assume for convenience, that N = M2. In this case, we can view
points in the domain [N ] as pairs of elements in [M ] (e.g., we can view the point
x ∈ [N ] as (x1, x2) ∈ [M ] × [M ]). Similarly, we can view the truth table of the
function fx,v : [N ]→ F as an M ×M matrix, with v in position (x1, x2) and 0’s
elsewhere. With this view, we can write the point function fx,v as the product
of two point functions (on a smaller domain) fx1,v, fx2,1 : [M ]→ F. That is, for
every y = (y1, y2), we have fx,v(y) = fx1,v(y1) · fx2,1(y2) (because if y = x then
y1 = x1 and y2 = x2 so the product will be v · 1 = v and, otherwise if y 6= x,
the product will be 0 as either the row satisfies y1 6= x1 or the column satisfies
y2 6= x2). The Gen algorithm will apply the B.Gen algorithm twice to generate
10 keys {K1, . . . ,K10} for fx1,v, and 10 keys {K ′

1, . . . ,K
′
10} for fx2,1; and then,

distribute each set of keys, {Ki} and {K ′
i}, to the 5 parties according to the CNF

associations, as described above. The Eval algorithm, on input y = (y1, y2), is
applied with those keys to get additive sharing of fx1,v(y1) (into 10 shares that
we denote u1, . . . , u10); and similarly to get additive sharing of fx2,1(y2) (into 10
shares that we denote v1, . . . , v10). That is, we have:

fx,v(y) = fx1,v(y1) · fx2,1(y2) =

10∑

i=1

ui ·
10∑

j=1

vj =
∑

i,j∈[10]

ui · vj .

Finally, we observe that because B is a CNF-DPF scheme, the CNF sharing
guarantees that for each pair (i, j), there is (at least one) party that knows both
values ui, vj (since ui is not known only to 2 parties and vj is not known only to
2 parties but we have p = 5 parties). Hence, we can allocate the product ui · vj ,
for each pair (i, j), to one of the 5 parties, which will compute it and include it
in its share. So letting ak denote party k’s sum of all the pairs (i, j) allocated to
it, the desired output value fx,v(y) is additively shared across the 5 parties as:
a1 + . . .+ a5, as desired.

Correctness of the above scheme follows by the description. 2-security follows
since the information known to each pair of parties T is only what they got in two
invocations of the CNF-DPF scheme B. Since B is 2-secure this keeps the func-
tions fx1,v, fx2,1 secret. Other than that, everything else is local computations
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that each party does on its own while applying Eval. As for the communication
complexity (i.e., key sizes), both invocations of B and our final scheme have
complexity of O(

√
M · (λ+m)) = O(N1/4 · (λ+m)) where, as above, m denotes

the output length of the point function and λ is the security parameter.

3.2 Extending to General t-out-of-p DPF

Next, we generalize the above example. Suppose one wants to secret-share a
point function with security threshold t, and has p ≥ dt + 1 parties available
for the sharing, for some d (e.g., in the example, p = 5 and t = d = 2). Then,
our next result shows how this can be done with communication complexity
≈ O(N1/2d).

Theorem 3 Let t, p, d be such that p = dt+1. Then, assuming OWF exists, there
is a (standard, computational) (t, p)-DPF scheme Π with complexity O(N1/2d ·√
2pt · pt · d · (λ+m)).

Note that we usually think of p (and hence also t and d) as being “small” and
of N as being the main parameter, so the not-so-good dependency on p (which
is inherited from [BGI15]) is secondary.

Remark 2. Our result uses the (p − 1)-out-of-p DPF protocol of [BGI15] and,
as such, the result is limited to DPF functions when the range is a group G of
characteristic two. Concretely, they consider functions with range {0, 1}m which
we view as F = GF [2m], as we require a ring structure. While it is not explicitly
stated in the conference version of [BGI15], the full version will include a gener-
alization of the (p−1)-out-of-p DPF protocol for more general groups G (private
communication with authors of [BGI15]), and this generality is transferrable to
our constructions. Specifically, for “small” q, a simple modification allows gener-
alization to G = Zq, and this can be further generalized to larger groups Zm for
“smooth” integers m by utilizing the Chinese Remainder Theorem in the Eval

algorithm. Note that these ranges are what is needed for most applications of
DPFs.

Proof. Assume for concreteness that N = Md, and view each input in the do-
main as a vector of d values, e.g. x = (x1, . . . , xd) ∈ [M ]d. Then the truth table of
the point function fx,v can be viewed as a d-dimensional cube with v at position
x = (x1, . . . , xd), and 0’s elsewhere. Next, view the point function fx,v : [N ]→ F

as the product of d point functions fxi,vi : [M ] → F, where v =
∏d

i=1 vi (e.g.,
v1 = v, v2 = . . . = vd = 1). Hence, we have, for all input y = (y1, . . . , yd) in the
domain of fx,v:

fx,v(y) =
d∏

i=1

fxi,vi(yi).

As in the example, the idea will be to share each of the d “smaller” point func-
tions fxi,vi separately, using a CNF-DPF scheme Bi, in such a way that during

10



the evaluation stage we can combine the outcomes of the d evaluations to obtain a
(standard) additive sharing of fx,v(y). To construct each B, we use as a building
block the (q − 1, q)-DPF scheme of [BGI15], with q =

(
p
t

)
. Invoking the [BGI15]

scheme with these parameters generates q keys, which we denote {KT}
T∈
(
[p]
t

),
and each B.Gen distributes each KT to all parties in [p] \ T . Meanwhile, each
B.Eval works by applying the Eval algorithm of the [BGI15] scheme for each
key KT separately. By construction, this is indeed a CNF-sharing scheme. The
t-security of B follows from the fact that each set T of t parties misses the share
KT and by the (q−1)-security of the [BGI15] scheme (assuming OWF). The size
of the keys in the [BGI15] scheme (on domain of size M) is O(

√
M · 2q · (λ+m))

and each of the p parties gets
(
p−1
t

)
< pt of them, and also q < pt so all together

O(
√
M · 2pt · pt · (λ+m)). The key-generation algorithm of our scheme, Π.Gen,

works by invoking the algorithm B.Gen d times, once for each point function
fxi,vi . Denote the keys generated by the i-th invocation by {Ki,T}

i∈[d],T∈
(
[p]
t

).
The algorithm Π.Eval, on input y = (y1, . . . , yd), works as follows: Denote by

Si,T the share obtained by applying the Eval algorithm of [BGI15] onKi,T and yi.
By the correctness of the underlying [BGI15] scheme, we have that fxi,vi(yi) =∑

Ti∈
(
[p]
t

) Si,Ti
, and hence:

fx,v(y) =

d∏

i=1

fxi,vi(yi) =

d∏

i=1




∑

Ti∈
(
[p]
t

)
Si,Ti


 =

∑

T1,...,Td∈
(
[p]
t

)

(
d∏

i=1

Si,Ti

)
.

Consider any term of the form
∏d

i=1 Si,Ti
. Each of the shares Si,Ti

is not known
only to the t parties in Ti, so all together at most d ·t parties miss any of d shares
of this term. Since p > d · t, there is (at least) one party that knows all the shares
of this term and can compute it. Assign each term to, say, the lexicographically
first party (by index) that knows this term, and let aj, for j ∈ [p], be the sum
of all terms assigned to the j-th party. We get that

p∑

j=1

aj =
∑

T1,...,Td∈
(
[p]
t

)

(
d∏

i=1

Si,Ti

)
= fx,v(y),

as needed.
In terms of t-security: this follows since we invoke d times (independently)

the t-secure scheme B. The size of keys is therefore d times larger than the size
of keys in B, i.e. O(

√
M · 2pt ·pt ·(λ+m) ·d) = O(N1/2d ·

√
2pt ·pt ·d ·(λ+m)). ⊓⊔

Remark 3. We observe that setting e.g. v1 = v, and then insisting that for all
i > 1: {fxi,vi} has range {0, 1} instead of F (with vi := 1 for all such i), removes
the factor of m in the complexity of all of the {fxi,vi} (except for fx1,v1), and
consequently the overall complexity of Π in Theorems 3 and 4 can be reduced
(by a factor ofm for Theorem 4 below, and by a factor ofm in one of the additive
terms for Theorem 3, which is meaningful when m >> λ).
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Note that the above scheme, as with most FSS/DPF schemes, provides com-
putational security. However, it is possible to get information-theoretic security
with only a relatively small loss (essentially replacing the N1/2d term in the
complexity of the above scheme with N1/d) and, in fact, getting a slightly better
dependency on p. More precisely:

Theorem 4 Let t, p, d be such that p = dt + 1. Then, there is a (standard,
information-theoretically-secure) (t, p)-DPF scheme Π with complexity O(N1/d ·
pt · d ·m).

Proof. The proof is very similar to the previous construction above, except that
we replace all invocations of the (computational) scheme from [BGI15] for cre-
ating q =

(
p
t

)
key shares, with the naive (but information-theoretically secure)

scheme where the truth table is just CNF-shared as a string (with parameters
(t, p)). When applied to point functions with domain size M and output length
m, the key size of each of the p parties is at most M ·m · q = M ·m ·

(
p
t

)
. The

scheme then proceeds as above, by CNF-sharing the d point functions on domain
of size M = N1/d. The correctness and security arguments are similar to the
above. The key size is O(M · pt · d ·m) = O(N1/d · pt · d ·m). ⊓⊔

Similarly, one can plug the (p − 1, p)-DPF scheme of [CBM15] to the con-
struction of CNF-DPF in Theorem 3. This scheme relies on the existence of
seed-homomorphic PRG [BLMR13] (compared to the minimal assumption of
OWF, as in standard DPF schemes), and has better dependency on p, i.e., com-
plexity of O(

√
N · poly(p) · (λ+m)). Hence, we can get a (t, p)-DPF scheme, like

in Theorem 3, under the same assumption as [CBM15], with a somewhat better
complexity of O(N1/2d · poly(pt) · d · (λ+m)).

It is instructive to compare our technique with that of [BGI16b] (and its full
version in [BGI18a]). Concretely, [BGI18a, Thm. 3.22] shows how to combine
(t, p1)-FSS for a class F1 and a (t, p2)-FSS for a class F2 into a (t, p1 · p2)-FSS
for the class of products (they term this “FSS product operator”). The main
difference between our construction and their transformation is that the number
of parties in their transformation grows very quickly. This means that, even if
combined with our idea of decomposing the point function fx,v : [N ] → F to
a product of d point functions with smaller domains, fxi,vi : [M ] → F, the
[BGI16b] product will require number of parties which is exponential in d, while
we only use p = dt+1 parties. For example, in the case t = 2 we get, in Section 3.1
above, (2,5)-DPF with complexity O(N1/4), while combining two (2, 3)-DPFs,
using [BGI16b], will result in a (2,9)-scheme (with complexity O(N1/4), using
our decomposition).

Determining the exact complexity of multi-party DPF, as a function of t and
p, remains an intriguing open problem. This holds even in concrete special cases,
such as the case p = 4, t = 2 where we do not know of a (2, 4)-DPF scheme with
complexity o(

√
N) (while, as mentioned in the Introduction, (2, 4)-Binary-CPIR

has a very efficient solution by combining DPF with [BIW07]).
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4 1-out-of-3 CNF-DPF

In this section we present a 1-out-of-3 secure CNF-DPF protocol that achieves
poly-log communication (in the domain size N := |D|). Our construction com-
bines ideas from the original 1-out-of-2 protocol of [BGI15] with the 2-out-of-3
protocol of [BKKO20], whereby we seek to get the communication efficiency of
the former, but extended to the 3-party setting as is treated by the latter. Before
giving the formal presentation of our construction, we provide some insight on
the main ideas of how we convert the O(

√
N) protocol of [BKKO20] into the

poly-log(N) protocol presented below.

4.1 Overview of Construction

In [BKKO20], the Gen algorithm partitions the domain size N into
√
N “blocks”

of size
√
N , and to each block 1 ≤ j ≤

√
N , each key will be assigned a pair of

PRG seeds {xj , yj}. In the notation below, the superscript Pi for i ∈ [3] denotes
the key index,11 and PR (respectively PL) refers to a PRG seed associated with
a key to the “right” (respectively, to the “left”) of key P , where we view the key
indices as a cycle: P1 → P2 → P3 → P1, e.g. for P = P1, we have: PR = P2 and
PL = P3. Also, for the DPF scheme of [BKKO20], the terminology “on-block”
index j ∈ [

√
N ] refers to the index of the unique block that contains α ∈ D that

defines the point function. Similarly, in a binary tree partitioning of [N ] used in
our construction, a node ν in this binary tree is “on-path” if the leaf-node with
index α ∈ [N ] is a descendent of ν.

With this notation, the key properties that the PRG seeds in [BKKO20]
satisfy is:12

For On-Block Indices j For Off-Block Indices j

xP1

j 6= xP2

j 6= xP3

j xP
j = yPL

j

yP1

j = yP2

j = yP3

j yPj = xPR

j

(1)

In this paper, to avoid the
√
N cost of dealing the seeds as per (1), as mo-

tivated by the paradigm of [BGI15] we “partition” the domain D via a binary
tree, where the leaf-level has N = |D| nodes. Then, instead of dealing the PRG
seeds for every node in the binary tree, we only deal seeds at the root, and then
describe a process (which uses extra auxiliary information dealt for each level)
to generate PRG seeds for the rest of the nodes in the binary tree. This process

11 The key index appears as a superscript (instead of a subscript) to avoid confusion
with the node index ν that is already a subscript. The choice of P over a simpler index
i ∈ [3] is to avoid confusion with an exponent (since it appears as a superscript), and
the specific choice of character “P” comes from “Party,” as FSS typically associates
each key κ with some party P .

12 The on-block property that seeds {xP
j }P are not equal to each other, as described

in (1), is intended to capture intuition. More formally, the requirement is that the
on-block seeds {xP

j }P are independent and (pseudo-)randomly generated.
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is described formally in Section 4.3 below, but we mention here the important
invariant that is maintained at every node ν in the binary tree:

For On-Path Nodes ν For Off-Path Nodes ν

xP
ν = zPL

ν xP
ν = yPL

ν = zPR
ν

yP1
ν = yP2

ν = yP3
ν yPν = zPL

ν = xPR
ν

zPν = xPR
ν zPν = xPL

ν = yPR
ν

(2)

In comparing (2) to (1), notice first that instead of each key consisting of
two PRG seeds, they each have three PRG seeds now: {xj , yj, zj}. To clarify
the nature of this extra seed, it will be convenient to (temporarily) modify the
notation slightly: for an off-path block, in (1) the first key has PRG seeds {a, b},
the second key has seeds {b, c}, and the third key has seeds {c, a}.13 So there
are a total of three distinct seeds {a, b, c} across all keys, and each key is missing
exactly one of these three seeds for (1). Then the extra seed in each key of (2)
is simply the third “missing seed.”

Meanwhile, for the on-path block, in (1) the first key has PRG seeds {a, d},
the second key has seeds {b, d}, and the third key has seeds {c, d}.14 So there are
a total of four distinct seeds {a, b, c, d} across all keys, with seed d being common
to all three keys, and each of the other three seeds appearing in exactly one key.
Thus, unlike in off-block positions where each key was missing one of the three
seeds, in the on-block position each key is missing two of the four seeds. Then,
in (2), each key is given one of the two missing seeds, namely the missing seed
of the key on their “right.” In sticking with the present notation, we can view
the extra seed z included with each key as: zP1 = b, zP2 = c, and zP3 = a.

The two main points here are:

(i) Including an extra seed as part of the keys is necessary in order to iteratively
generate the seeds on lower nodes in the binary tree. In [BKKO20], there was
no iterative (tree) structure, but rather everything was flat: The domain D
was partitioned into

√
N blocks of

√
N elements. But in following the binary

tree approach of [BGI15] in attempt to minimize communication of the Gen

algorithm, we need an iterative procedure to generate seeds on lower nodes
in the binary tree. As in [BGI15], the difficult step is when the procedure
attempts to specify the seeds on the children nodes of an on-path parent: one
child node remains on-path, while the other becomes off-path. Maintaining
the proper invariant (that on-path seeds should look like the left column of
(2), while off-path seeds should look like the right column of (2)) will require
keys to have partial information about the two “missing” seeds, which is why
our algorithm provides one of the missing seeds as part of each key.

13 The overlapping nature of the PRG seeds, in a CNF format, is the important point
here; formally, to link the two notations, set a = xP1 = yP3 , b = xP2 = yP1 , and
c = xP3 = yP2 .

14 The fact that there is one common seed “d” across all three keys, and that the other
seeds are all distinct, is the important point here; formally, to link the two notations,
set a = xP1 , b = xP2 , c = xP3 , and d = yP1 = yP2 = yP3 .
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(ii) On the other hand, including one of the “missing” seeds as part of each key
is exactly why the 2-out-of-3 security of [BKKO20] is reduced to 1-out-of-3
security in our protocol: If any two parties collude, they can easily link their
own extra/missing seed that they were dealt with the node for which their
partner also has that seed, and thus the secret path is revealed. However,
even though this restricts our protocol to 1-out-of-3 security, we observe that
providing one of the two “missing seeds” as part of each key is exactly the
property we require for CNF sharing of the Gen keys.

Expanding more on (i) above, we provide an overview of how the two child nodes
of an on-path node have correct values (i.e. values satisfying the invariant of (2)).
Fix an on-path node µ on some level l of the binary tree, and denote as the three
sets of values on µ (as would be obtained by invoking the Eval algorithm using
each of the three keys):

κP1 seeds for on-path parent node µ: {a, d, b}
κP2 seeds for on-path parent node µ: {b, d, c}
κP3 seeds for on-path parent node µ: {c, d, a} (3)

where we have assumed in (3) that invariant (2) applies on the on-path node µ.
Then in generating the values on the two children nodes of µ, the on-path child
will have keys:15

κP1 seeds for µ’s on-path child: {q ⊕G∗(a), q ⊕G∗(d), q ⊕G∗(b)}
κP2 seeds for µ’s on-path child: {q ⊕G∗(b), q ⊕G∗(d), q ⊕G∗(c)}
κP3 seeds for µ’s on-path child: {q ⊕G∗(c), q ⊕G∗(d), q ⊕G∗(a)} (4)

where q is a random length-λ bit string and G∗ ∈ {GL, GR} (which of these
G∗ equals depends on whether the on-path child of µ is the left or right child).
Meanwhile, the off-path child will have keys:

κP1 seeds for µ’s off-path child: {q ⊕G∗(b), q ⊕G∗(c), q ⊕G∗(a)}
κP2 seeds for µ’s off-path child: {q ⊕G∗(c), q ⊕G∗(a), q ⊕G∗(b)}
κP3 seeds for µ’s off-path child: {q ⊕G∗(a), q ⊕G∗(b), q ⊕G∗(c)} (5)

Notice that both (4) and (5) satisfy the appropriate invariant in (2). Also notice
that the values in (4) can be generated directly from the same key’s correspond-
ing values on parent node µ (from (3)), whereas the values in (5) cannot (e.g.
each of the new y values require knowledge of the “missing” seed value on parent
node µ). Namely, the ability for each key to generate the center (“y”) seed values

15 The formulas used to generate (4) and (5) come from (17), where we have assumed
“sibling control bit” values bP1 = bP2 = bP3 = 0 for the on-path child of µ, and that
bP1 = bP2 = bP3 = 1 for the off-path child of µ. The other cases for valid sibling
control bits would produce slightly different key values, but the intuition for how
values match/don’t match is similar.
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as in (5) will come from extra information that is provided by the “Correction
Word” component of each Gen key (see (7), and notice the xPL term, which to
emphasize is not xP but rather is the x seed value from the “left” key κPL , and
this exactly corresponds to the “missing” seed value for key κP).

4.2 Variants of DPF

We introduce (somewhat informally) a few variants of DPF that will be used as
building blocks for our protocol below. Formal definitions, as well as concrete
instantiations of these, appear in Appendix B.

Definition 5 (Informal) A 1-out-of-p Matching-Share DPF (MS-DPF) is de-
fined analogously as ordinary DPF, except that instead of the requirement that∑

i Eval(i, κi, β) = 0 for every β 6= α in the domain of the point function fα,v,
we require: ∀β 6= α : Eval(1, κ1, β) = Eval(2, κ2, β) = · · · = Eval(p, κp, β), where
p is the number of parties.

Remark 4. Note that MS-DPF as defined above is strictly speaking not FSS
for the class of point functions: because all Eval shares match on every input
β 6= α, the actual function that an MS-DPF protocol represents looks random.
However, based on the close relation to point functions (indeed, for the two-party
case (p = 2) with (G,+) = (Zm

2 , XOR), MS-DPF is identical to ordinary DPF),
we stick with the “DPF” terminology.

Definition 6 (Informal) A t-out-of-p DPF+ is defined analogously as ordi-
nary DPF, except that instead of the requirement that

∑
i Eval(i, κi, α) = v,

for the point function fα,v, we have a concrete specification of the exact value of
Eval(i,κi,α) for each i. Namely, DPF+allows specification of p values {v1, . . . , vp},
such that ∀i : Eval(i, κi, α) = vi.

Finally, we combine the two definitions above, of MS-DPF and DPF+, and get:

Definition 7 (Informal) A 1-out-of-p MS-DPF+ scheme has Correctness prop-
erties: ∀β 6= α : Eval(1, κ1, β) = Eval(2, κ2, β) = · · · = Eval(p, κp, β), and mean-
while at the special input point α ∈ D: ∀i : Eval(i, κi, α) = vi.

We use MS-DPF+ in our (1, 3)-CNF-DPF construction. For completeness, we also
provide a construction of MS-DPF+ in Appendix B that proves the following:

Claim 8 Assuming OWF , there exists a (1, 3)-MS-DPF+ scheme with com-
plexity O(λ log(N)).

4.3 Detailed Construction of 1-out-of-3 CNF-DPF

For any point function fα,v ∈ F with domain D (of size N := |D|) and range a
finite abelian group16 (G,+) (of size m := |G|), we demonstrate the following:

16 For most applications, G = ZB
2 , so that both addition and multiplication operations

are defined, and with addition equal to XOR (over a bitstring). The write-up in
Section 4.3 focuses on characteristic two groups; we show how to modify the Gen

and Eval algorithms for arbitrary (finite, abelian) groups in Appendix C (the only
substantial modifications to the algorithms will be to (11) and (18)).
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Theorem 9 Assuming OWF , there is a (1, 3)-CNF-DPF scheme with complex-
ity O(m+ λ log2(N)).

We prove Theorem 9 constructively: the Gen and Eval algorithms are presented
in this section, and Appendix A details the proof that the resulting scheme en-
joys the stated complexity and satisfies the consistency, correctness, and security
requirements of Definition 2. Our construction assumes the existence of a PRG
G : {0, 1}λ → {0, 1}2λ+4 for security parameter λ, and a pseudorandom “con-

vert” function Ĝ : {0, 1}λ → G. To fix notation, when G is applied to a seed x
on a node µ, it stretches that seed to two new seeds plus four more bits, with one
new seed and two bits going to each child node of node µ. To emphasize this,

we write G(xµ) =
(
GL(xµ), HL(xµ), ĤL(xµ)

)
,
(
GR(xµ), HR(xµ), ĤR(xµ)

)
,

where GL, GR : {0, 1}λ → {0, 1}λ are zero stretch PRGs; and HL, ĤL, HR, ĤR :
{0, 1}λ → {0, 1} all output a single bit. The L and R subscripts on each PRG
emphasize how the outputs of the PRGs will be applied, namely when generating
values on the Left and Right child nodes of a given parent node µ.

Gen Algorithm.

1. Values at Root (level 0). At the root node of the tree, for each index P ∈ [3],

choose PRG seeds {xP, yP, zP} which are random subject to the constraints
of the left (On-Path) column of (2). Our algorithm will also require that, for
each key P , each node ν in the binary tree has “control bits” {cPν } associated
with it. These “on-path” control bits should appear random, subject to the
constraint that they sum to one if and only if node ν is on-path. We will also
associate a second set of control bits {bPν } to each node; these will satisfy
a similar property as the “on-path” control bits, except with the condition
that they sum to one if and only if ν’s sibling is on-path (for the root node
ν, which has no sibling, we demand the “sibling” control bits sum to zero).
Thus, at the root node, also choose sibling control bits {bP} and on-path
control bits {cP} which are random subject to the constraints of (6). Each
key will actually include four total control bits (as these are CNF-shared
across keys) at the root: {bP , bPR , cP , cPR}.

“Sibling” Control Bit b “On-Path” Control Bit c

⊕
P

bPν =

{
0 if ν’s sibling is off-path
1 if ν’s sibling is on-path

⊕
P

cPν =

{
0 if ν is off-path
1 if ν is on-path

(6)

2. Correction Words. For each level 1 ≤ l ≤ log(N) and each P ∈ [3], let {κP
l }

denote the keys to a MS-DPF+ protocol for fl = f
(α)l−1,{v

P1
l

,v
P2
l

,v
P3
l

}
, and

let {κ̂P
l } denote the keys to a MS-DPF+ protocol for f̂l = f̂

(α)l,{v̂
P1
l

,v̂
P2
l

,v̂
P3
l

}
,

for functions fl and f̂l defined as follows.17 First, for each level l, the Gen

algorithm will generate uniformly random λ-bit strings {pl, ql}. Then, if ν =

17 Recall that MS-DPF+ functions fl and f̂l are not technically point functions (see
Definition 5 and the ensuing remark). Also, for notation, (α)l−1 (as the special point

17



νl denotes the unique on-path node at level l, and µ = µl denotes its parent
node, then fl is the MS-DPF+ function:

f
(α)l−1,{v

P1
l

,v
P2
l

,v
P3
l

}
: {0, 1}l−1 → {0, 1}2λ, with vPl = (vPL , vPR), where:

(vPL , v
P
R ) =

(
GL(x

PL

µ )⊕ (1⊕ αl) · (ql ⊕ pl), GR(x
PL

µ )⊕ αl · (ql ⊕ pl)
)

(7)

where xPL
µ is the first on-path seed of PL (see Step 3 below), and αl is the

lth bit of α. Meanwhile, f̂l is the MS-DPF+ function:

f̂
(α)l,{v̂

P1
l

,v̂
P2
l

,v̂
P3
l

}
: {0, 1}l → {0, 1}λ, with v̂Pl =

{
pl if bPL

ν = 0
ql if bPL

ν = 1
(8)

The above MS-DPF+ keys will serve as the “correction words” for the
PRG seeds. Notice that we use MS-DPF+ (instead of just dealing correction
words directly as a common term across all three keys) because we require
each key use a slightly different correction word. Indeed, as motivated in
Section 4.1, the first correction word (corresponding to fl and keys {κP

l })
encodes the “missing” seed information that allows each key to overlap (as
per CNF sharing) with the values from the other key(s). Meanwhile, the

second correction word (corresponding to f̂l and keys {κ̂P
l }) ensures that for

the next on-path node at the next level l, each key is still missing information
on exactly one of the four distinct seeds on that node.

In addition to the correction words, the Gen algorithm will produce “cor-
rection bits,” which will ensure correct (i.e. respecting (6)) values for {bP}
and {cP} on each level. To simplify notation in the definition of the correc-
tion bits, we define the following values:18

hL := HL(x
P1

µ )⊕HL(x
P2

µ )⊕HL(x
P3

µ )⊕HL(y
P1

µ )

hR := HR(x
P1

µ )⊕HR(x
P2

µ )⊕HR(x
P3

µ )⊕HR(y
P1

µ )

ĥL := ĤL(x
P1

µ )⊕ ĤL(x
P2

µ )⊕ ĤL(x
P3

µ )⊕ ĤL(y
P1

µ )

ĥR := ĤR(x
P1

µ )⊕ ĤR(x
P2

µ )⊕ ĤR(x
P3

µ )⊕ ĤR(y
P1

µ ) (9)

where µ denotes the on-path node on level l − 1. Now, for each level l, each
key will include four “correction bits” {rl, sl, tl, ul}, defined as follows:

rl =

{
hL if αl = 0
1⊕ hL if αl = 1

sl =

{
1⊕ hR if αl = 0
hR if αl = 1

tl =

{
1⊕ ĥL if αl = 0

ĥL if αl = 1
ul =

{
ĥR if αl = 0

1⊕ ĥR if αl = 1

(10)

in the domain of fl = f
(α)l,{v

P1
l

,v
P2
l

,v
P3
l

}
) and (α)l (for f̂l = f̂

(α)l,{v̂
P1
l

,v̂
P2
l

,v̂
P3
l

}
)

denote the first l − 1 bits (respectively l bits) of α; whereas αl (as it appears in (7)
and (8)) denotes the lth bit of α.

18 For clarity, we suppress the level l in the subscript in the notation of (9).
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3. Compute On-Path Seed Values. For each level l, use the correction words
and bits (from the previous step) to generate seeds for the following level,
as per the formulas in (16) and (17) (see Step 1c of the Eval Algorithm).

4. Final Correction Word. Define the final correction word W :

W := v ⊕G Q ∈ G, (11)

where v is the non-zero value of the target point function fα,v, and Q is the
quantity:

Q := Ĝ(xP1

ν̂ )⊕G Ĝ(xP2

ν̂ )⊕G Ĝ(xP3

ν̂ )⊖G 3 · Ĝ(yP1

ν̂ ) ∈ G, (12)

where ⊖G denotes the negation of the group operation in G,19 and Ĝ :
{0, 1}λ → G is a map that converts a random λ-bit string into a pseu-
dorandom group element in G.

As the final output, for each P ∈ [3], the Gen algorithm outputs keys:

κP := ({xP , yP , zP}, {bP , bPR , cP , cPR}, W

∀ 1 ≤ l ≤ log(N) : {κP
l }, {κ̂P

l }, {rl, sl, tl, ul}) (13)

Eval Algorithm.

The Eval(κP, i, β) algorithm is an iterative procedure where we start at the root
of the binary tree, and define a procedure for traversing the tree (along the path
of input β ∈ D)20 whereby, at each step, we use the current node’s values (plus
the Gen key) to compute the values of the next node on the path. Formally, for
any current node µ on level l of the path of β, with seed values {xP

µ , y
P
µ , z

P
µ } and

(CNF-shared) control bits {bPµ , bPR
µ , cPµ , c

PR
µ }, we demonstrate how to generate

corresponding values for the next node ν on the path of β, corresponding to
node µ’s left or right child (depending on whether βl is zero or one).

1. Traverse Tree per β ∈ D. For each level 1 ≤ l ≤ log(N), let ν denote the

current node on the path21 of β at level l, and let µ denote ν’s parent
node. The previous iteration22 of this step output values on parent node
µ: {xP

µ , y
P
µ , z

P
µ } and {bPµ , bPR

µ , cPµ , c
PR
µ }. Also, recall from (13) that for the

current level l the Gen algorithm output the MS-DPF+ keys κP
l and κ̂P

l ; as
well as the correction bits {rl, sl, tl, ul}. Output the following corresponding
values for node ν as follows:

19 For characteristic two groups, ⊖G = ⊕G; but we use this notation in (12) so as to
minimize changes when we extend to arbitrary finite abelian groups G.

20 The binary representation β = β1β2 . . . βlog(N) of input β ∈ D naturally defines a
path down a binary tree (of depth log(N)) by interpreting βl = 0 to indicate going
to the left child of the current node at level l, and moving right at level l if βl = 1.

21 Formally, if we index (0-based) the nodes on any level l, then the (binary represen-
tation of the) index of ν is: β1β2 . . . βl.

22 If l = 1 then µ is the root node and the mentioned values on µ are directly from the
Gen key.
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(a) Generating CNF-sharing of sibling control bits: {bPν , bPR
ν }.

Set {bPν , bPR
ν } as follows:

bPν =

{
cPµ · rl ⊕HL(x

P
µ )⊕HL(y

P
µ ) if ν is left child of µ

cPµ · sl ⊕HR(x
P
µ )⊕HR(y

P
µ ) if ν is right child of µ

(14)

bPR

ν =

{
cPR
µ · rl ⊕HL(y

P
µ )⊕HL(z

P
µ ) if ν is left child of µ

cPR
µ · sl ⊕HR(y

P
µ )⊕HR(z

P
µ ) if ν is right child of µ

(b) Generating CNF-sharing of on-path control bits: {cPν , cPR
ν }.

Set {cPν , cPR
ν } as follows:

cPν =

{
cPµ · tl ⊕ ĤL(x

P
µ )⊕ ĤL(y

P
µ ) if ν is left child of µ

cPµ · ul ⊕ ĤR(x
P
µ )⊕ ĤR(y

P
µ ) if ν is right child of µ

(15)

cPR

ν =

{
cPR
µ · tl ⊕ ĤL(y

P
µ )⊕ ĤL(z

P
µ ) if ν is left child of µ

cPR
µ · ul ⊕ ĤR(y

P
µ )⊕ ĤR(z

P
µ ) if ν is right child of µ

(c) Generating Seeds {xP
ν , y

P
ν , z

P
ν }. First, to set notation: Let G∗ = GL (re-

spectively G∗ = GR) if ν is the left (respectively right) child of µ. Also,
let wP

ν := Eval(κP
l , µ) and let ŵP

ν := Eval(κ̂P
l , ν).

23 Recall from (7) that
wP

ν ∈ {0, 1}2λ, so let wP
∗ be the first (respectively the last) λ bits of wP

ν

if ν is the left (respectively right) child of its parent. We condition on
the {bPν , bPR

ν } values that were output in Step 1a above:

Case I: bPν 6= bPR
ν . Then set {xP

ν , y
P
ν , z

P
ν } as follows:

xP
ν = G∗(y

P
µ )⊕ bPν · (G∗(y

P
µ )⊕ wP

∗ )⊕ ŵP
ν

yPν = G∗(x
P
µ )⊕ bPν · (G∗(x

P
µ )⊕G∗(z

P
µ ))⊕ ŵP

ν

zPν = wP
∗ ⊕ bPν · (wP

∗ ⊕G∗(y
P
µ ))⊕ ŵP

ν (16)

Case II: bPν = bPR
ν . Then set {xP

ν , y
P
ν , z

P
ν } as follows:

xP
ν = G∗(x

P
µ )⊕ bPν · (G∗(x

P
µ )⊕G∗(z

P
µ ))⊕ ŵP

ν

yPν = G∗(y
P
µ )⊕ bPν · (G∗(y

P
µ )⊕ wP

∗ )⊕ ŵP
ν

zPν = G∗(z
P
µ )⊕ bPν · (G∗(z

P
µ )⊕G∗(x

P
µ ))⊕ ŵP

ν (17)

2. Apply Final Correction Word. After terminating the above step at the leaf
node ν on level l = log(N), the above iterative procedure has output values
on ν: {xP

ν , y
P
ν , z

P
ν } and {bPν , bPR

ν , cPν , c
PR
ν }. Then, as per the definition of

(1, 3)-CNF-FSS, Eval(P , κP, β) outputs
(
3−1
1

)
= 2 values in G, which are:

Eval(P, κP, β) :=
(
Ĝ(xP

ν )⊖G
Ĝ(yPν )⊕G

cPν ·W, Ĝ(zPν )⊖G
Ĝ(yPν )⊕G

cPνR ·W
)

(18)

23 Recall that {κP
l , κ̂

P
l } were output as part of the Gen key, and they correspond to

the MS-DPF+ protocols described by (7) - (8). Also, notice that wP
ν comes from

evaluating MS-DPF+ key κP
l at point µ (the location of the parent node), whereas

ŵP
ν comes from evaluating MS-DPF+ key κ̂P

l at point ν; this is why the domains of
the two MS-DPF+ functions {fl, f̂l} differ by a factor of two (one extra bit for f̂l).
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A Proof of Theorem 9

We argue how the scheme described in Section 4.3 enjoys the stated communi-
cation complexity and satisfies each of the requisite properties of CNF-DPF (see
Definition 2).

Communication. The size of each Gen key is O(m+ λ log2(N)):

– O(λ) for each of the original PRG seeds {xP , yP , zP}.
– O(1) for the four control bits on the root node {bP , bPR , cP , cPR}.
– O(m) for the W ∈ G (recall m = log(|G|)).
– For each 1 ≤ l ≤ log(N): O(λ log(N)) for the collection of MS-DPF+ keys
{κP

l , κ̂
P
l } (see Claim 15 in Appendix B). Adding these costs for each level l

yields total cost of these keys: O(λ log2(N)).

Consistency. That the protocol of Section 4.3 satisfies the Consistency property
of CNF-FSS (see Definition 2) requires showing, among other things, that for

each P ∈ [3] and for each P̂ := PR, that the control bits observe CNF-sharing:

bPR
ν = bP̂ν

cPR
ν = cP̂ν (19)

In other words, (19) is emphasizing that the formulas for bPR
ν and cPR

ν in (the
bottom equations of) (14) and (15) generate the same bits as (the top equations

of) the corresponding formulas for bP̂ν and cP̂ν in (14) and (15), for P̂ = PR. For
example, when computing the bottom formulas of (14) and (15) for P = P1, the
values output there (which are for PR = P2) match the values that are output
for key P2 in (the top part of) the equations (14) and (15).

We make an inductive argument to demonstrate CNF-sharing of the control
bits (as per (19)) holds for all nodes ν. At the root, (19) is true by construction
of values {bPν } and {cPν } in Step 1 of the Gen algorithm. Now for any non-root
node ν, let µ denote its parent, and assume that (19); we use the formulas in (14)
and (15) to demonstrate that (19) also holds for ν. To fix notation, fix P ∈ [3],

and let P̂ = PR denote the right key of P .
Case 1: µ is off-path. In the Correctness argument above, we demonstrated

that (2) is satisfied for the seeds on every node. Since µ is off-path: xP
µ = zP̂µ ,

yPµ = xP̂
µ , and zPµ = yP̂µ . Plugging in these relations into (14) for bPR

ν :

If ν is left child of µ: bPR

ν = cPR

µ · rl ⊕HL(y
P
µ )⊕HL(z

P
µ )

= cP̂µ · rl ⊕HL(x
P̂
µ )⊕HL(y

P̂
µ ) = bP̂ν

If ν is right child of µ: bPR

ν = cPR

µ · sl ⊕HR(y
P
µ )⊕HR(z

P
µ )

= cP̂µ · sl ⊕HR(x
P̂
µ )⊕HR(y

P̂
µ ) = bP̂ν

where we have applied the inductive argument that cPR
µ = cP̂µ for parent

node µ for the center equality of each case above.
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Case 2: µ is on-path. Since µ is on-path: zPµ = xP̂
µ and yPµ = yP̂µ . Plugging in

these relations into (14) for bPR
ν :

If ν is left child of µ: bPR

ν = cPR

µ · rl ⊕HL(y
P
µ )⊕HL(z

P
µ )

= cP̂µ · rl ⊕HL(y
P̂
µ )⊕HL(x

P̂
µ ) = bP̂ν

If ν is right child of µ: bPR

ν = cPR

µ · sl ⊕HR(y
P
µ )⊕HR(z

P
µ )

= cP̂µ · sl ⊕HR(y
P̂
µ )⊕HR(x

P̂
µ ) = bP̂ν

The argument that cPR
ν = cP̂ν is analogous, replacing rl with tl, sl with ul, and

PRG H with Ĥ .
With (19) verified, the Consistency property follows immediately from the

invariants of (2), both for the case ν is on-path (i.e. β = α) and ν is off-path
(i.e. β 6= α); see (18).

Security. We provide a sketch of the proof here, which captures the intuition
of the argument; the full proof is relegated to the extended version.

We argue that the components of any Gen key κP(see (13)) are independent
from each other and either truly random or masked with pseudorandom values
whose seeds are known only to other parties (and not to party P). In fact,
the information of κP related to the root node is randomly chosen, and the
information related to the other levels of the tree is masked using pseudorandom
values not known to P . Based on this, a simulator that simply outputs random
values according to the key structure will satisfy Definition 2, which we recall
here (updated for our case of security threshold t = 1):

{
{κ1, . . . , κp} ←R Gen(1λ, fα,v) : κi

}
≈C

{
κ←R Sim(1λ, D,G)

}
. (20)

The proof follows an inductive argument (on the depth of the binary tree),
and argues that assuming a simulator that outputs random values satisfies (20)
for depth l− 1, the extra values output by Gen in (13) for level l do not threaten
the validity of the same simulator (i.e. one that is simply outputting random
values) for the extra layer of the tree. More concretely, we will demonstrate the
existence of a related simulator:

∀1 ≤ l ≤ logN :
{
{κP1 , κP2 , κP3} ←R Gen(1λ, fα,v) : ((κP)l, x

PL

νl
)
}
≈C{

((κ)l, x)←R Sim(1λ, D,G)
}
, (21)

where νl refers to the on-path node at level l, (κP )l refers to the components
of key κP from Gen steps 1-3 through level l (i.e. everything from (13) except
the final correction word W and the per-level values for levels in [l+ 1.. logN ]),
and xPL

νl refer to the seed values x on node νl that are associated with the
key κPL to the left of the provided key κP .24 The reason that the existence of a

24 Note that (21) is motivated by the CNF-sharing of the keys (or more precisely, the
seeds), whereby each key κP has overlapping information from one of the other keys
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simulator as per (21) (and more specifically, where this simulator simply outputs
random values as per the structure of ((κP )l, xPL

νl )) implies the existence of a
simulator as per (20) is based on the formulas dictating how the Gen algorithm
computes the extra seed values on level l: {κP

l }, {κ̂P
l }, {rl, sl, tl, ul}. Namely,

investigating the formulas for these extra values on level l ((7), (8), (9), and
(10)), each formula has a term involving xPL

µ for the value of xPL on node µ

on level l − 1, and consequently as long as the value of xPL
µ on parent level

l − 1 cannot be distinguished from uniform, the new Gen key values on level l:
{κP

l }, {κ̂P
l }, {rl, sl, tl, ul} will also be indistinguishable from uniform. Notice

that for each 1 ≤ l ≤ logN , (21) explicitly excludes the final correction word
W from both sides. However, the last step of the argument has the same spirit,
whereby the existence of the xPL

ν term (for on-path leaf node ν) in W implies
that W is indistinguishible from uniform.

We proceed with an inductive argument, demonstrating that all the values
output by the Gen algorithm respect the security invariant, and then demonstrate
how the security invariant implies that all values output by the Gen algorithm
appear uniformly random (and independent of one another).

– Step 1: Values at Root. The seeds {xP , yP , zP} are chosen uniformly at ran-
dom (subject to the constraint in (2), i.e. that there is a single common seed
yP that is common across all three keys, and that the other two seeds of each
key overlap with exactly one of the seeds from each of the other two keys)
and, in particular, the seeds are chosen independently from the point func-
tion fα,v parameters, α and v. Similarly, the sibling control bits {bP , bPR}
and on-path control bits {cP , cPR} are also chosen uniformly at random (sub-
ject to the constraint in (6)) and independently from the parameters α and
v.

– Step 2.i: For each 1 ≤ l ≤ log(N): MS-DPF+ keys {κP
l , κ̂

P
l }.

Note that the security of the underlying MS-DPF+ schemes for fl and f̂l
ensure that {vPL

l , vPR

l } and {v̂PL

l , v̂PR

l } cannot be distinguished from random
even for someone holding (κP)l (and thus holding κP

l and κ̂P
l , which in

particular reveals vPl = (vPL , vPR) and v̂Pl ; see (7) - (8)). That v̂Pl do not
leak information about parameters α or v follows from the fact that (8)
indicates that v̂Pl is uniformly random. Meanwhile, that vPl = (vPL , vPR) does
not leak information about parameters α or v is argued as follows: For the
base case (l = 1), the formula for vPL indicates dependence on GL(x

PL
µ )

(respectively vPR depends on GR(x
PL
µ )), where µ is the on-path node on

the parent level, i.e. µ is the root node if l = 1. Since (as mentioned in
Step 1 above) xPL

µ cannot be distinguished from uniform by information

in κP , it follows that vPl also cannot be distinguished from uniform (also,
pseudorandomness of G = (GL, GR) implies there is no dependence on the
two components (vPL , v

P
R) of v

P
l ). For the inductive case (1 < l ≤ logN), we

(in this case κPR), but is missing information from the third key (in this case κPL).
In particular, this is why it is the seed of the left key xPL that is referenced in (21),
as well as in (7) and (8).

25



follow the same argument, except now we use the Security Invariant (21)
(plus pseudorandomness of the PRG G) inductively to argue that xPL

µ from
the parent level l − 1 cannot be distinguished from uniform, and therefore
vPl also appears uniformly random.

– Step 2.ii: For each 1 ≤ l ≤ log(N): Correction Bits {rl, sl, tl, ul}.
As can be seen in (10), each correction bit depends on one of the values

{hL, hR, ĥL, ĥR}, and, as per (9), each of these values in turn appears uni-
formly random due to its dependence on xPL

µ for parent node µ (as was

argued above in Step 2.i). Furthermore, pseudorandomness of H, Ĥ implies
that there is no dependency between the correction bit values and any other
values dealt as part of the Gen key κP .

– Step 3: Final Correction Word W .

While W = v⊕ Ĝ(xP1

ν̂ )⊕ Ĝ(xP2

ν̂ )⊕ Ĝ(xP3

ν̂ )⊕ Ĝ(yP1

ν̂ ) involves the secret pa-
rameter v, the Security Invariant applied to on-path leaf node ν̂ implies that
W contains a term (xPL

ν̂ ) that cannot be distinguished from random by P ,
and therefore v remains completely hidden. Furthermore, pseudorandomness
of Ĝ implies that there is no dependency between W and any other values
dealt as part of the Gen key κP .

Correctness. We demonstrate for any input β ∈ D and for each P ∈ [3]:

∑

P

Eval(P , κP, β) =

{
(0G, 0G) if β 6= α
(v, v) if β = α

(22)

(Recall that in a (1, 3)-CNF scheme, Eval outputs for each party a pair of values,
one per key, and the sum of all left values and the sum of all right values should
both equal f(β), which for DPF is either 0G or v, depending on whether input β
equals α.) To show (22) holds, we first show that at every iteration of Step 1 of
the Eval procedure, that the values {xP

ν , y
P
ν , z

P
ν } and {bPν , bPR

ν , cPν , c
PR
ν } respect

the invariants listed in tables (2) and (6), respectively. Then, once this is shown,
(22) follows immediately since:

First coordinate of
⊕

P
G

Eval(P , κP, β) :

=
⊕

P
G

(
Ĝ(xP

ν )⊖G Ĝ(yPν )⊕G c
P
ν ·W

)

=
((
Ĝ(xP1

ν )⊖G Ĝ(yP1

ν )
)
⊕G

(
Ĝ(xP2

ν )⊖G Ĝ(yP2

ν )
)
⊕G

(
Ĝ(xP3

ν )⊖G Ĝ(yP3

ν )
))
⊕G

W ·
⊕

P
G

cPν

=
((
Ĝ(xP1

ν )⊖G Ĝ(yP1

ν )
)
⊕G

(
Ĝ(xP2

ν )⊖G Ĝ(yP2

ν )
)
⊕G

(
Ĝ(xP3

ν )⊖G Ĝ(yP3

ν )
))
⊕G

(v ⊕G Q) ·
⊕

P
G

cPν (23)
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Notice from (2) that:

(
Ĝ(xP1

ν )⊖G Ĝ(yP1

ν )
)
⊕G

(
Ĝ(xP2

ν )⊖G Ĝ(yP2

ν )
)
⊕G

(
Ĝ(xP3

ν )⊖G Ĝ(yP3

ν )
)

=

{
Ĝ(xP1

ν ))⊕G Ĝ(xP2
ν ))⊕G Ĝ(xP3

ν ))⊖G 3 · Ĝ(yP1
ν )) = Q if β = α

0G if β 6= α

Also, notice that (6) implies that:25

⊕

P
G

cPν =

{
1 if ν̂ = ν is on-path ⇔ β = α
0 if ν̂ 6= ν is off-path ⇔ β 6= α

(24)

Thus (23) becomes:

First coordinate of
⊕

P
G

Eval(P , κP, β) :

=

{
Q⊕G (v ⊕G Q) · 1 = v if β = α
0G ⊕G (v ⊕G Q) · 0 = 0G if β 6= α

(25)

Meanwhile, the case for the second coordinate of
∑

P Eval(P , κP, β) is similar,
since the {cPR

ν } obey (6) in the same way that {cPν } do, and the symmetry (in
terms of (2)) of each key’s first two PRG seeds {xP

ν , y
P
ν } and each key’s second

two PRG seeds {yPν , zPν }.
Thus, it remains to show that the invariants of (2) and (6) apply at every

node in the binary tree. We argue this fact recursively, by demonstrating that as
long as the invariants (2) and (6) hold on a parent node µ, then these invariants
will continue to hold for both of µ’s children. We kick off the recursive argument
by noting that the root note (which is necessarily on-path) satisfies (2) and (6) by
construction (see Step 1 of the Gen algorithm). For the inductive step, consider
an arbitrary node ν on level 1 ≤ l ≤ log(N), and let µ denote ν’s parent. We do
a case analysis based on whether ν is the left or right child of µ:

Case 1: ν is the left child of µ.

Sibling Control Bits {bPν }.
Looking at formula (14) for generating the sibling control bits {bPν , bPR

ν } on ν:

∑

P

bPν =
∑

P

(
cPµ · rl ⊕HL(x

P
µ )⊕HL(y

P
µ )
)

= rl ·
∑

P

cPµ ⊕
((
HL(x

P1

µ )⊕HL(y
P1

µ )
)
⊕
(
HL(x

P2

µ )⊕HL(y
P2

µ )
)
⊕
(
HL(x

P3

µ )⊕HL(y
P3

µ )
))

=

{
rl ⊕ hL if µ is on-path
0 if µ is off-path

(26)

25 Notice that (24) assumes that every element in G has order two, so that (6), which
is a statement about bitwise XOR, is correctly interpretted here.
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where we have used in (26) that
∑

P cPµ = 1 if parent node µ is on-path and
otherwise the sum equals zero (as per (6)); and from (2) that:

(
HL(x

P1

µ )⊕HL(y
P1

µ )
)
⊕
(
HL(x

P2

µ )⊕HL(y
P2

µ )
)
⊕
(
HL(x

P3

µ )⊕HL(y
P3

µ )
)

=

{
HL(x

P1
µ ))⊕HL(x

P2
µ ))⊕HL(x

P3
µ )) ⊕HL(y

P1
µ )) = hL if µ is on-path

0 if µ is off-path

Thus, if µ is off-path, then both ν and its sibling are also off-path, and {bPν }
satisfies the requisite property of (6). Meanwhile, if µ is on-path, then exactly
one of ν or its sibling is on-path. Namely, since we are in the case that ν is
the left child of µ, then ν is on-path if and only if αl = 0. In particular if µ is
on-path:

∑

P

bPν = rl ⊕ hL =

{
hL ⊕ hL = 0 if αl = 0 ⇔ ν’s sibling is off-path
1⊕ hL ⊕ hL = 1 if αl = 1 ⇔ ν’s sibling is on-path

where we used (10) to replace rl conditioned on whether αl = 0 or αl = 1. The
argument for the “right” sibling control bits {bPR

ν } mirrors the above argument,
since

∑
P cPµ =

∑
P cPR

µ (as per (19)) and {(xP
µ , y

P
µ )}P = {(yPµ , zPµ )}P (as per

(2)).

On-Path Control Bits {cPν }.
Looking at formula (15) for generating the on-path control bits {cPν , cPR

ν } on ν:

∑

P

cPν =
∑

P

(
cPµ · tl ⊕ ĤL(x

P
µ )⊕ ĤL(y

P
µ )
)

= tl ·
∑

P

cPµ ⊕
((
ĤL(x

P1

µ )⊕ ĤL(y
P1

µ )
)
⊕
(
ĤL(x

P2

µ )⊕ ĤL(y
P2

µ )
)
⊕
(
ĤL(x

P3

µ )⊕ ĤL(y
P3

µ )
))

=

{
tl ⊕ ĥL if µ is on-path
0 if µ is off-path

(27)

where we have used in (27) that
∑

P cPµ = 1 if parent node µ is on-path and
otherwise the sum equals zero (as per (6)); and from (2) that:

(
ĤL(x

P1

µ )⊕ ĤL(y
P1

µ )
)
⊕
(
ĤL(x

P2

µ )⊕ ĤL(y
P2

µ )
)
⊕
(
ĤL(x

P3

µ )⊕ ĤL(y
P3

µ )
)

=

{
ĤL(x

P1
µ ))⊕ ĤL(x

P2
µ ))⊕ ĤL(x

P3
µ ))⊕ ĤL(y

P1
µ )) = ĥL if µ is on-path

0 if µ is off-path

Thus, if µ is off-path, then both ν and its sibling are also off-path, and {cPν }
satisfies the requisite property of (6). Meanwhile, if µ is on-path, then exactly
one of ν or its sibling is on-path. Namely, since we are in the case that ν is
the left child of µ, then ν is on-path if and only if αl = 0. In particular if µ is
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on-path:

∑

P

cPν = tl ⊕ ĥL =

{
1⊕ ĥL ⊕ ĥL = 1 if αl = 0 ⇔ ν is on-path

ĥL ⊕ ĥL = 0 if αl = 1 ⇔ ν is off-path

where we used (10) to replace tl conditioned on whether αl = 0 or αl = 1. The
argument for the “right” sibling control bits {cPR

ν } mirrors the above argument,
since

∑
P cPµ =

∑
P cPR

µ (as per (19)) and {(xP
µ , y

P
µ )}P = {(yPµ , zPµ )}P (as per

(2)).

Seeds {xP
ν , y

P
ν , z

P
ν }.

Demonstrating that the formulas for the next-level seeds in (16) - (17) maintain
the seed invariants of (2) is straightforward, but requires a case analysis based
on whether the current node is on-path or off-path.

Case Analysis of Correctness for 1-out-of-3 CNF-DPF

We prove the new seed values on ν, computed as per (16)-(17), obey (2) by doing
a case analysis, broken down by ν’s location (on-path, sibling is on-path, both
self and sibling are off-path), as well as on the {bPν , bPR

ν } values on ν. Before
proceeding, recall the notation for wP

∗ (see Step (1c) of the Eval algorithm): the
first (respectively last) λ bits of Eval(κP

l , ν) if ν is the left (respectively right)
child of its parent, where κP

l denotes the MS-DPF+ key for level l (see (7) in
Step 2 of the Gen algorithm); and also the notation for ŵP

ν = Eval(κ̂P
l , ν), and

for G∗ = GL (respectively GR) if ν is the left (respectively right) child of its
parent.

For each case in the analysis below, we present a table which shows what
each key’s new seed values on node ν will be, given ν’s position (on/off path)
and the seed values that were present on ν’s parent node µ. The tables indicate,
for each key, which seed formula ((16) vs. (17)) are used to derive the new seed
values on ν.

Case A: Parent µ is off-path. Because parent node µ is off-path, its position (at
depth l−1) does not correspond to the DPF index (α)l−1 of MS-DPF+ function
fl; and similarly, neither of its children nodes are at position (α)l, and therefore

they do not correspond to the DPF index of f̂l. Therefore, w
P1
∗ = wP2

∗ = wP3
∗ and

ŵP1
ν = ŵP2

ν = ŵP3
ν (by definition of fl and f̂l; see Step 2 of the Gen algorithm),

and so we suppress player superscripts and write simply w∗ and ŵν . Also, since
µ is off-path, the seeds on µ satisfy invariant (2), and for convenience we will
denote the three keys’ seeds as:

κP1 seeds for off-path parent node µ: {a, b, c}
κP2 seeds for off-path parent node µ: {b, c, a}
κP3 seeds for off-path parent node µ: {c, a, b} (28)

Finally, since µ is off-path, so is ν and its sibling, and thus by the invariant of
(6), we have that

⊕
P bPν = 0. Thus, there are four possibilities for the values of
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(bP1
ν , bP2

ν , bP3
ν ): (0, 0, 0), (0, 1, 1), (1, 0, 1), or (1, 1, 0). We do a case-analysis just

of the first two; the latter two are similar to the second:

Case A.1: {bPν } = (0, 0, 0) :

κP1 (via (17)) κP2 (via (17)) κP3 (via (17))

xP
ν G∗(a)⊕ ŵν G∗(b)⊕ ŵν G∗(c)⊕ ŵν

yPν G∗(b)⊕ ŵν G∗(c)⊕ ŵν G∗(a)⊕ ŵν

zPν G∗(c)⊕ ŵν G∗(a)⊕ ŵν G∗(b)⊕ ŵν

Case A.2: {bPν } = (0, 1, 1) :

κP1 (via (16)) κP2 (via (17)) κP3 (via (16))

xP
ν G∗(b)⊕ ŵν G∗(a)⊕ ŵν w∗ ⊕ ŵν

yPν G∗(a)⊕ ŵν w∗ ⊕ ŵν G∗(b)⊕ ŵν

zPν w∗ ⊕ ŵν G∗(b)⊕ ŵν G∗(a)⊕ ŵν

Case B: Parent µ is on-path; ν is on-path. Because parent node µ is on-path, its
position (at depth l−1) corresponds to the DPF index (α)l−1 of MS-DPF+ func-
tion fl; and similarly ν on-path means that its position is (α)l which corresponds

to the DPF index of f̂l. Therefore, w
P
∗ follows (7) and ŵP

ν follows (8):

wP
∗ =

{
vPL = GL(x

PL
µ )⊕ ql ⊕ pl if ν is the left child

vPR = GR(x
PL
µ )⊕ ql ⊕ pl if ν is the right child

(29)

ŵP
ν = v̂Pl =

{
pl if bPν = 0
ql if bPν = 1

(30)

where {pl, ql} are uniform random values chosen for each level 1 ≤ l ≤ log(N),
and we have used that, since ν is on-path, then αl = 1 (respectively αl = 0)
when ν is the left child (respectively right child) of µ. Also, since µ is on-path,
the seeds on µ satisfy invariant (2), and for convenience we will denote the three
keys’ seeds as:

κP1 seeds for on-path parent node µ: {a, d, b}
κP2 seeds for on-path parent node µ: {b, d, c}
κP3 seeds for on-path parent node µ: {c, d, a} (31)

Finally, since ν is on-path, its sibling is off-path, and thus by the invariant of
(6), we have that

⊕
P bPν = 0. Thus, there are four possibilities for the values of

(bP1
ν , bP2

ν , bP3
ν ): (0, 0, 0), (0, 1, 1), (1, 0, 1), or (1, 1, 0). We do a case-analysis just
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of the first two; the latter two are similar to the second:

Case B.1: {bPν } = (0, 0, 0) :

κP1 (via (17)) κP2 (via (17)) κP3 (via (17))

xP
ν G∗(a)⊕ pl G∗(b)⊕ pl G∗(c)⊕ pl

yPν G∗(d) ⊕ pl G∗(d) ⊕ pl G∗(d)⊕ pl

zPν G∗(b)⊕ pl G∗(c)⊕ pl G∗(a)⊕ pl

Case B.2: {bPν } = (0, 1, 1) :

κP1 (via (16)) κP2 (via (17)) κP3 (via (16))

xP
ν G∗(d)⊕ ql G∗(c)⊕ pl G∗(b)⊕ pl

yPν G∗(a)⊕ ql G∗(a)⊕ ql G∗(a)⊕ ql

zPν G∗(c)⊕ pl G∗(b)⊕ pl G∗(d)⊕ ql

Case C: µ is on-path, ν is off-path. Because parent node µ is on-path, its posi-
tion (at depth l−1) corresponds to the DPF index (α)l−1 of MS-DPF+ function
fl; and similarly ν off-path means that its position is does not correspond to
(α)l, the DPF index of f̂l. Therefore, ŵ

P1
ν = ŵP2

ν = ŵP3
ν (by definition of f̂l; see

Step 2 of the Gen algorithm), and so we suppress player superscripts and write
simply ŵν . Meanwhile, wP

∗ follows (7):

wP
∗ =

{
vPL = GL(x

PL
µ ) if ν is the left child

vPR = GR(x
PL
µ ) if ν is the right child

(32)

where we have used that, since ν is off-path and parent µ is on-path, then αl = 1
(respectively αl = 0) when ν is the left child (respectively right child) of µ. Also,
since µ is on-path, the seeds on µ satisfy invariant (2), and for convenience we
will denote the three keys’ seeds as in (31). Finally, since ν is off-path but parent
node µ is on-path, the sibling of ν must be on-path, and thus by the invariant of
(6), we have that

⊕
P bPν = 1. Thus, there are four possibilities for the values of

(bP1
ν , bP2

ν , bP3
ν ): (1, 1, 1), (0, 0, 1), (0, 1, 0), or (1, 0, 0). We do a case-analysis just

of the first two; the latter two are similar to the second:

Case C.1: {bPν } = (1, 1, 1) :

κP1 (via (17)) κP2 (via (17)) κP3 (via (17))

xP
ν G∗(b)⊕ ŵν G∗(c)⊕ ŵν G∗(a)⊕ ŵν

yPν G∗(c)⊕ ŵν G∗(a)⊕ ŵν G∗(b)⊕ ŵν

zPν G∗(a)⊕ ŵν G∗(b)⊕ ŵν G∗(c)⊕ ŵν

Case C.2: {bPν } = (0, 0, 1) :

κP1 (via (17)) κP2 (via (16)) κP3 (via (16))

xP
ν G∗(a)⊕ ŵν G∗(d)⊕ ŵν G∗(b)⊕ ŵν

yPν G∗(d)⊕ ŵν G∗(b)⊕ ŵν G∗(a)⊕ ŵν

zPν G∗(b)⊕ ŵν G∗(a)⊕ ŵν G∗(d)⊕ ŵν

Case 2: ν is the right child of µ.

The argument for this case is essentially identical to Case 1, making the sym-
metric replacements of HL → HR, rl → sl, and tl → ul. Details are provided in
the full version. ⊓⊔
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B Building Blocks: Variants of Standard DPF

In this section, we formally define the variants of DPF that were introduced
(informally) in Definitions 5 - 7.

Definition 10 Matching Share DPF (MS-DPF). A26 1-out-of-p Matching
Share Distributed Point Function (MS-DPF) scheme for the class of functions27

F = {fα,v : D → G} with input domain D and output domain an abelian group
(G,+) is a pair of PPT algorithms MS-DPF = (Gen,Eval) with syntax:

- Gen(1λ, f): On input the security parameter λ and a description of a function
f ∈ F , outputs p keys: {κ1, . . . , κp}.

- Eval(i, κi, β): On input an index i ∈ [p], key κi, and input string β ∈ D,
outputs a value yi ∈ G.

satisfying the following correctness and secrecy requirements:

Correctness.

(i) For all fα,v ∈F , at input point α ∈ D:

1 = Pr

[
{κ1, . . . , κp}←R Gen(1λ, f) :

p∑

i=1

Eval(i, κi, α) = fα,v(α) = v

]

(ii) For all fα,v ∈F, at input point β ∈ D (for β 6= α):

1 = Pr
[
{κ1, . . . , κp}←R Gen(1λ, f) : Eval(1, κ1, β) = · · · = Eval(p, κp, β)

]

Security. For any index i ∈ [p], there exists a PPT simulator Sim such that for
any polynomial-size function sequence fλ ∈ F , the following distributions are
computationally indistinguishable:

{
{κ1, . . . , κp} ←R Gen(1λ, f) : κi

}
≈C

{
κ←R Sim(1λ, D,G)

}

Claim 11 Assuming OWF , there exists a (1, 3)-MS-DPF scheme for range
group G = ZN

2 with complexity O(λ log(N)).

Proof. We observe that 3-PartyMS-DPF can be readily obtained from invoking a
2-Party DPF protocol three times.28 Namely, let {κ1, κ̂1}, {κ2, κ̂2}, and {κ3, κ̂3}
26 Since MS-DPF has each party’s Eval shares equal one another at every domain

point except the non-zero evaluation point y, this immediately implies that MS-
DPF cannot possibly achieve greater than 1-out-of-p security.

27 As mentioned in Remark 4, Matching Share DPF is not technically a distributed
point function, since the actual function being shared by the p parties is random
(and unspecified) at all points in the domain except the special point α. Indeed,
notice that the Correctness property does not make a statement about what the
actual reconstructed value f(β) =

∑
P Eval(P , κP , β) must equal when β 6= α; only

that the individual shares {Eval(P , κP , β)} must equal each other.
28 Alternatively, 3-Party MS-DPF can also be readily obtained from invoking 1-out-of-

3 CNF-DPF; however, for the parameters for which we’ll need MS-DPF, it will be
more efficient to derive it from 1-out-of-2 DPF in the manner described above.
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denote the Keys output by the Gen algorithm of three separate invocations of
2-Party DPF for three functions fα,v1 , fα,v2 , fα,v3 (these functions have same
non-zero point α in the domain, but three different and randomly chosen range
values at that point: {v1, v2, v3}). Then specify the Gen algorithm for 3-Party
MS-DPF for fα,v to output {κ1, κ̂2, κ̂3} to Party 1, {κ̂1, κ2, κ̂3} to Party 2,
and {κ̂1, κ̂2, κ3} to Party 3, and then additionally give each player the value
z := v ⊕ v1 ⊕ v2 ⊕ v3 ⊕ Eval(3, κ̂1, α) ⊕ Eval(1, κ̂2, α) ⊕ Eval(2, κ̂3, α) = v ⊕
Eval(3, κ1, α)⊕Eval(1, κ2, α)⊕Eval(2, κ3, α). Define the Eval algorithm to be the
same as the 2-Party DPF Eval algorithm applied to each of a party’s three keys,
and then summing these three outputs together with z:

Party 1: Eval(1, (κ1, κ̂2, κ̂3), β) :=Eval(1, κ1, β)⊕Eval(1, κ̂2, β)⊕Eval(1, κ̂3, β)⊕z

Party 2: Eval(2, (κ̂1, κ2, κ̂3), β) :=Eval(2, κ̂1, β)⊕Eval(2, κ2, β)⊕Eval(2, κ̂3, β)⊕z

Party 3: Eval(3, (κ̂1, κ̂2, κ3), β) :=Eval(3, κ̂1, β)⊕Eval(3, κ̂2, β)⊕Eval(3, κ3, β)⊕z

Correctness follows from the fact that DPF ≡ MS-DPF in the two party set-
ting, and thus if β 6= α in the equations above, then every term on the RHS
matches the corresponding term above/below it; and for β = α, the sum of
the first terms on the RHS is v1 ⊕ Eval(3, κ̂1, α), the sum of the second terms
is v2 ⊕ Eval(1, κ̂2, α), the sum of the third terms is v3 ⊕ Eval(2, κ̂3, α), and
the sum of the last term is z, which cancels everything except the desired
output v. Meanwhile, Security follows from the Security of the underlying 1-
out-of-2 DPF scheme, together with the fact that the extra information z =
v ⊕ Eval(3, κ1, α) ⊕ Eval(1, κ2, α) ⊕ Eval(2, κ3, α) dealt to each party looks uni-
formly random (and leaks nothing about position v), since at least one term29 in
{Eval(3, κ1, α),Eval(1, κ2, α),Eval(2, κ3, α)} is unknown (and appears uniformly
random) to each party.

Note that the above construction of 1-out-of-3 MS-DPF from (three invoca-
tions of) 1-out-of-2 DPF has asymptotic communication cost the same as the
underlying 1-out-of-2 DPF scheme, and so e.g. using the original 1-out-of-2 pro-
tocol of [BGI15] results in a O(λ log(N)) communication scheme for 1-out-of-3
MS-DPF. ⊓⊔

Next we provide a formal definition of DPF+ (informally this was Definition 6).

Definition 12 (DPF+) A t-out-of-p Distributed Point Function with Per-Party
Target Values (DPF+) scheme for the class of point functions F = {fα,{vi}i

:
D → G} with input domain D and p specified values {vi} in the output domain
of an abelian group (G,+) is a pair of PPT algorithms DPF+ = (Gen,Eval)
with the following syntax:

- Gen(1λ, f):30 On input the security parameter λ and a description of a func-
tion f ∈ F , outputs p keys: {κ1, . . . , κp}.

29 In reality, for any index i ∈ [3], there are exactly two unknown terms in the set
{Eval(3, κ1, α),Eval(1, κ2, α),Eval(2, κ3, α)}.

30 Implicit in providing f = fα,{vi}i to the Gen algorithm is that the p target values
{vi}pi=1 are provided to Gen.
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- Eval(i, κi, β): On input an index i ∈ [p], key κi, and input string β ∈ D,
outputs a value yi ∈ G.

satisfying the following correctness and secrecy requirements:

Correctness.

(i) For all fα,{vi} ∈F, i ∈ [p], at input point α ∈ D:

1 = Pr
[
{κ1, . . . , κp}←R Gen(1λ, f) : Eval(i, κi, α) = vi

]

(ii) For all fα,{vi} ∈F, at input point β ∈ D:

1 = Pr

[
{κ1, . . . , κp}←R Gen(1λ, f) :

p∑

i=1

Eval(i, κi, β) = f(β)

]

Security. For any subset of indices up to size t: I ⊂ [p], there exists a PPT
simulator Sim such that for any polynomial-size function sequence fλ ∈ F , the
following distributions are computationally indistinguishable:

{
{κ1, . . . , κp}←RGen(1λ, fα,{vi}) : {κi}i∈I

}
≈C{

{κ1, . . . , κ|I|}←R Sim(1λ, D,G, {vi}i∈I)
}

Observe that in order to satisfy the Security definition, the target values {vi}
must be chosen from a suitably random/unknown distribution; for example, if
{vi} come from a low-entropy distribution that the parties know, then they can
perform a guess-and-check attack to gain information about DPF location α.

Claim 13 Assuming OWF , there exists a (1, 3)-DPF+ scheme for range group
G = ZN

2 and target values {vi} ←R G with complexity O(λ log(N)).

Proof. We observe that for parameters t = 1 and p = 3, a standard 1-out-of-3
DPF protocol for point function fα,v can be trivially converted into a 1-out-of-3
DPF+ protocol for point function fα,v1,v2,v3 (where v := v1 ⊕ v2 ⊕ v3 for values
{vi} chosen from a uniform random distribution) with extra communication
O(m) simply by updating the Gen algorithm to additionally include a value
zi ∈ G with each key κi defined as zi := Eval(i, κi, α) ⊕ vi, and then updating
the Eval algorithm to add zi to the original Eval(i, κi, β) output share. Note that

this doesn’t affect Correctness because
∑3

i=1 zi =
∑3

i=1 Eval(i, κi, α)⊕
∑3

i=1 vi =
v ⊕ v = 0; and Security is readily reduced to the Security of the underlying 1-
out-of-3 DPF protocol for fα,v=v1⊕v2⊕v3.

Note that the above construction of 1-out-of-3 DPF+ from 1-out-of-3 DPF
has asymptotic communication cost the same as the underlying 1-out-of-3 DPF
scheme. Since any 1-out-of-3 DPF scheme can be trivially built from a 1-out-
of-2 DPF scheme (either by making one parties’ shares always zero, or just
running the 1-out-of-2 scheme three times, once for each pair of parties), and
so e.g. using the original 1-out-of-2 protocol of [BGI15] results in a O(λ log(N))
communication scheme for 1-out-of-3 DPF+. ⊓⊔
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Lastly, we provide the formal definition of MS − DPF+ (informally this was
Definition 7), which is simply a combination of the above two variants.

Definition 14 (MS−DPF+) A 1-out-of-p Distributed Point Function with
Per-Party Target Values (MS-DPF+) scheme for the class of functions F =
{fα,{vi}i

: D → G} with input domain D and p specified values {vi} in the
output domain of an abelian group (G,+) is a pair of PPT algorithms MS-
DPF+ = (Gen,Eval) with the following syntax:

- Gen(1λ, f):31 On input the security parameter λ and a description of a func-
tion f ∈ F , outputs p keys: {κ1, . . . , κp}.

- Eval(i, κi, β): On input an index i ∈ [p], key κi, and input string β ∈ D,
outputs a value yi ∈ G.

satisfying the following correctness and secrecy requirements:

Correctness.

(i) For all fα,{vi} ∈F, i ∈ [p], at input point α ∈ D:

1 = Pr
[
{κ1, . . . , κp}←R Gen(1λ, f) : Eval(i, κi, α) = vi

]

(ii) For all fα,{vi} ∈F, at input point β ∈ D (for β 6= α):

1 = Pr
[
{κ1, . . . , κp}←R Gen(1λ, f) : Eval(1, κ1, β) = · · · = Eval(p, κp, β)

]

Security. For any subset of indices up to size t: I ⊂ [p], there exists a PPT
simulator Sim such that for any polynomial-size function sequence fλ ∈ F , the
following distributions are computationally indistinguishable:

{
{κ1, . . . , κp}←RGen(1λ, fα,{vi}) : {κi}i∈I

}
≈C{

{κ1, . . . , κ|I|}←R Sim(1λ, D,G, {vi}i∈I)
}

Claim 15 Assuming OWF , there exists a (1, 3)-MS-DPF+ scheme for range
group G = ZN

2 with complexity O(λ log(N)).

Proof. We observe that 1-out-of-3 MS-DPF+ can be readily obtained from 1-out-
of-3 MS-DPF in the same way that 1-out-of-3 DPF+ is obtained from (ordinary)
1-out-of-3 DPF, namely by dealing an appropriate value zi ∈ {0, 1}m with each
key κi. Thus, constructing 1-out-of-3 MS-DPF+ in this way (starting from 1-
out-of-3 MS-DPF and then dealing the extra values to convert it into 1-out-of-3
MS-DPF+) has asymptotic communication cost the same as the underlying 1-
out-of-3 MS-DPF scheme, which as discussed above is O(λ log(N)). ⊓⊔
31 Implicit in providing f = fα,{vi}i to the Gen algorithm is that the p target values

{vi}pi=1 are provided to Gen.

35



C Extending 1-out-of-3 CNF-FSS to Arbitrary Group G

The 1-out-of-3 CNF-FSS protocol of Section 4 works for groups of characteristic
two (every element in the group is its own inverse). In this section, we discuss
modifications that can be made to support 1-out-of-3 CNF-FSS for DPFs whose
range group is any arbitrary (finite, abelian) group.

Before describing modifications for other groups, we make the following sim-
ple observations:

Obs. 1 Regarding DPF (α, 0G), where the DPF value is the zero element.

In all subsections below, as well as Section 4, the special case where the
target value v is the zero element of the group 0G can be supported simply
by modifying the “Root Values“ (Step 1 of the Gen protocol of Section
4). In particular, instead of choosing initial root values as per the on-path
invariants in (2) and (6), we choose initial seed and control bit values as per
the off-path invariants.

Obs. 2 Regarding Common Groups G Encountered in Practice.

While many protocols commonly encountered in cryptographic primitives
involve complex groups or groups with private structure (e.g. groups whose
order is the product of two or more “secret” primes, or groups where discrete
log is assumed to be hard), the underlying range groupG of the DPF function
is typically very simple, often ZN

2 , or ZN . This is because for DPF, security
is not tied to the complexity of the underlying DPF group, but rather the
DPF group is chosen in accordance to the structure of the underlying data.

Obs. 3 Regarding Convert Function Ĝ.

As per the original DPF construction in [BGI15] (as well as subsequent

works), communicating the “Convert” function Ĝ : {0, 1}λ→ G (see (11)) is
not considered to be part of the communication overhead in delivering the
Gen keys. Indeed, Ĝ (as well as other input-independent parameters like λ
and PRG G) is considered to be part of overall Setup.

Observation 1 is important to avoid corner cases in some of the constructions
below, while Observation 2 will be used to ensure the Gen algorithms below can
be performed by a polynomially bounded machine. Observation 3 will be impor-
tant as we need to specify additional “convert” functions {Ĝ} for a given group.
While the additional convert functions will be input-dependent, our strategy will
be to include a number of candidate convert functions as part of Setup (these will
be input-independent), and then to select an appropriate candidate from this list
in the Gen alogrithm (i.e. choose one that satsifies the requirements based on
the DPF parameters (α, v)). One way to generate many convert functions with
low overhead (both in terms of what is specified as part of Setup, as well as size
of the Gen key and computation cost in then Eval algorithm) is as follows:

Obs. 3′ Specifying Many Convert Functions {Ĝ}.
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For given PRG32 G : {0, 1}λ → {0, 1}2λ, and given γ ∈ {0, 1}q, we define a
PRG G(γ) : {0, 1}λ → {0, 1}λ inductively (on q) as:

G(γ1)(x) : = (1 ⊕ γ1) ·GL(x) ⊕ γ1 ·GR(x)

G(γ)(x) : = G(γ1γ2...γq)(x) =
(
G(γ1) ◦G(γ2) ◦ . . . G(γq)

)
(x), (33)

where G = (GL, GR) denotes the left and right λ bits of the output of G,
γi denotes the ith bit of γ, and the first ⊕ denotes addition in Z2 and the
second in Zλ

2 . Notice that (33) defines 2q distinct PRG’s (from λ bits to λ

bits). We can now generate 2q distinct convert functions {Ĝγ}γ∈{0,1}q from

a single convert function Ĝ and the above PRGs via:

Ĝγ(x) := Ĝ(G(γ)(x)) (34)

C.1 Groups of Characteristic Two

The protocol of Section 4 works for groups of characteristic two.

C.2 Groups of Prime Order

We consider here groups G of prime order p (also, assume p > 2, since p = 2 is
covered in Section C.1 above). In particular, every non-zero group element is a
generator for G, so fix an arbitrary non-zero group element g ∈ G, and then we
have that the DPF target value v ∈ G can be written as: v = r ·g, for appropriate
0 < r < p, where “r · g” denotes adding group element g to itself r times. Note
that we have used both Observations 1 and 2 here: the former guarantees r > 0,
while the latter is needed to argue that r is computable in polynomial time.

The modified Gen algorithm is exactly as per Section 4, except we replace
Step 4 (“Final Correction Word” W ) with the w value in (36) below.

Modified Gen Algorithm.

1-3. Run Steps 1-3 of the original Gen algorithm of Section 4.
4. Let ν̂ denote the on-path (leaf) node on level logN , and as per Step 3

applied to the final level, denote the seeds associated to each key on ν̂ as:
{aν̂ , dν̂ , bν̂}, {bν̂ , dν̂ , cν̂}, and {cν̂ , dν̂ , aν̂}.
(a) For a given mapping Ĝ: {0, 1}λ→ Zp, let k = kĜ, k

′ = k′
Ĝ
denote the

following values in Zp:

k : = Ĝ(aν̂) + Ĝ(bν̂) + Ĝ(cν̂)

k′ : = 3 · Ĝ(dν̂), (35)

Then, choose a mapping Ĝ: {0, 1}λ→ Zp such that k 6= k′.

32 Even though the actual PRG G used in the setup of the CNF FSS protocol of Section
4 maps to an extra two bits, if desired, we can overload this same G to map to just
2λ bits by ignoring the trailing two bits.
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(b) Since k 6= k′, there exists w ∈ Zp such that (recall r is from v = r · g):

r ≡ w · (k − k′) (mod p), (36)

The final output of the Modified Gen algorithm matches that of (13), except that

W has been replaced by w from (36), and the “convert” function Ĝ and group

generator g ∈ G must be specified. In order to choose a convert function Ĝ as per
Step (4a), i.e. that k 6= k′, we use the method described above in Observation
3′ and include a λ′-bit string γ (for λ′ = 2 log (λp)) such that the corresponding

convert function Ĝγ satisfies Step (4a).33

Eval Algorithm.

1. Run Step 1 of the original Eval algorithm of Section 4.

2. Output:

Eval(P, κP, β) :=
((

w · (Ĝ(xP
ν )⊖G Ĝ(yPν ))

)
· g,

(
w · (Ĝ(zPν )⊖G Ĝ(yPν ))

)
· g
)

(37)

Analysis

Communication

Communication is the same as the communication of the main protocol in Section
4: O(m+ λ log2(N)). This is because the only two changes are the specification
of λ′ = 2 log (λN) bits (for specifying the convert function G) and replacing
the W component of (13) with w (both have size |G| = logN , so this has
no net effect). Note that, as is standard practice, specifying group generator g

and a single (input-independent) “convert” function Ĝ are not included in the
communication cost of the protocol.

Correctness

Since only Step 4 of the Gen algorithm is modified, and only the final output of
Eval alogrithm is modified, the arguments in Section 4 that the seed invariants
of (2) hold remain valid. Thus, if β 6= α, then the final seed values {xP

ν , y
P
ν , z

P
ν }

overlap so that each seed appears exactly once as some key’s xP
ν value and

exactly once as another key’s yPν value (and similarly for the second coordinate
of Eval, this time regarding zPν and yPν ). Thus,

⊕
P Eval(P , κP , β) = (0G, 0G)

when β 6= α. On the other hand, when β = α, then the first coordinate of Eval

33 Since λ′ bits generates 2λ
′

= λ2p2 distinct convert functions, and since a given
pseudo-random convert function satisfies the requisite property that k 6= k′ with
probability p−1

p
, the probability that no sequence of λ′ bits generates an acceptable

convert function is negligible.

38



is:

⊕

P
G

Eval(P , κP , α) =

w ·
[(
Ĝ(xP1

ν )⊖G Ĝ(yP1

ν )
)
⊕G

(
Ĝ(xP2

ν )⊖G Ĝ(yP2

ν )
)
⊕G

(
Ĝ(xP3

ν )⊖G Ĝ(yP3

ν )
)]
· g =

w ·
[(
Ĝ(aν̂)⊖G Ĝ(dν̂)

)
⊕G

(
Ĝ(bν̂)⊖G Ĝ(dν̂)

)
⊕G

(
Ĝ(cν̂)⊖G Ĝ(dν̂)

)]
· g =

w ·(k − k′) · g = r · g = v (38)

where we have used the notation for final seed values as described in Step 4 of
the Modified Gen algorithm to go from the second line to the third line and used
(35) and (36) (and the definition of r) to go from the third line to the fourth
line.

Security

Since the only component of Gen that has changed is the addition of w and γ,
we only need to show that these do not leak anything about DPF position α nor
value v ∈ G. For this, we use pseudo-randomness of the convert function Ĝ to
argue that k, and hence k − k′, are uniformly distributed in G, and therefore w
and γ do not leak anything about v = r · g (nor about DPF location α). As with
the security proof of the protocol in Section 4, we use the fact that each key has
no information about one of the seeds on leaf node ν̂, which is why k appears
uniformly random.

C.3 Groups of Order N = p1p2 . . . pl, for Distinct Primes {pi}

To begin, let G = {g1, g2, . . . , gl} denote a minimal set of group generators, and
let {r1, r2, . . . , rl} denote the (unique) coefficients such that:

v =

l⊕

i=1
G

(ri · gi), (39)

where ri · gi = gi ⊕G gi ⊕G · · · ⊕G gi denotes adding group element gi to itself ri
times.

Our strategy will be to mimic what was done in Section C.2, repeating the
process for each distinct prime pi. There are a couple of items to note:

– As part of Setup, instead of providing one generator g ∈ G, we now need to
provide l generators: one generator gi for each subgroup Gi < G of order pi.

– Similarly, instead of one convert function Ĝ : {0, 1}λ → ZN , we now need l

(input-independent) convert functions {Ĝi}, with Ĝi : {0, 1}λ → Zpi
corre-

sponding to each subgroup Gi < G of order pi.

– Similarly, instead of one w value (as per Step 4 of the modified Gen algorithm
of Section C.2), we now require l values: {wi}.
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One important point to emphasize is that it is not enough to just make the
above list of modifications (leaving Steps 1-3 the same). The reason this does
not work is for the case that ri = 0 for one or more indices i. Afterall, as per
Observation 1, we emphasized that if v = 0G, then we would need to choose
root values satisfying the off-path invariants instead of the on-path invariants
(see (2) and (6)). Here, if ri = 0, this means that one component of v is zero
with respect to its subgroup Gi, but it does not necessarily mean that v = 0G.
Thus, we must repeat the full (modified) Gen algorithm of Section C.2 l times,
handling each subgroup Gi separately (and using the appropriate invariant for
the root node, based on whether ri = 0 or not).

Analysis

Communication

Since we repeat the Gen algorithm of Section C.2 l times, the total communica-
tion is: O(lm+ λl log2(N)).

Correctness

Same argument as Section C.2.

Security

Same argument as Section C.2.

C.4 Groups of Prime Power Order: N = pk

Before describing a protocol, we first explain why this case is different than
the prime order case (Section C.2) above: In Step (4a) of the Gen algorithm of

Section C.2, we chose a convert function Ĝ such that k− k′ 6= 0. The reason we
needed this condition was to ensure the existence of a w that satisfies (36), and
since the group G was prime in Section C.2, we only required that k − k′ 6= 0.
For groups of order N = pk, the guaranteed existence of a value w ∈ ZN requires
that gcd(N, k − k′) = 1. Thus, we need that p ∤ (k − k′).

While we could further restrict the condition on choice of convert function
Ĝ to satisfy the property that p ∤ (k − k′), there is another potential problem
with security: if p | r (recall that r is the coefficient of a generator g ∈ G such
that v = r · g), then w may reveal this fact. For example, imagine G = Zp2 for
some prime p, group generator g = 1, and v = p (and hence r = p). Then most

choices of convert function Ĝ will satisfy the property that gcd(p2, k − k′) = 1

(indeed by pseudorandomness of Ĝ this will happen with probability roughly
p−1
p ). In this case, in order for (36) to be satisfied, it must be that p | w (when

viewed as elements in Z). This means that unless we change the criteria that
gcd(p2, k−k′) = 1, then in cases that v = p, this fact will be leaked by knowledge
of w.

With these pitfalls in mind, we now present a solution for arbitrary (finite,
abelian) groups G of prime power order: |G| = pk. Choose a chain of subsets
{Hi} satisfying:

{0G} = H0 < H1 < · · · < Hk = G, (40)
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and notice that |Hi| = pi for all 0 ≤ i ≤ k. Also, choose elements {hi ∈ Hi} such
that hi /∈ hj for any j < i.34 Then, since G is abelian, there exists a unique set
of integers {ri ∈ [0..p− 1]} such that:

v =

k⊕

i=1
G

(ri · hi), (41)

where ri · hi = hi ⊕G hi ⊕G · · · ⊕G hi denotes adding group element hi to itself ri
times.

Our strategy is similar to that of Section C.3, in which we mimic what was
done in Section C.2, repeating the process for each subgroup Hi. There are a
couple of items to note:

– As part of Setup, specify generators {hi}ki=1
for each of the k subgroups {Hi}.

– Similarly, instead of one convert function Ĝ : {0, 1}λ → ZN , we now need a

set of convert functions {Ĝi}, with Ĝi : {0, 1}λ → Zpi corresponding to each
subgroup Hi < G.

– Similarly, instead of one w value (as per Step 4 of the modified Gen algorithm
of Section C.2), we now require k such values: {wi}.

– As with in Section C.3 (and as discussed in Observation 1 above), if any
ri = 0, we use the off-path invariants when choosing root values in Step 1
of the Gen algorithm of Section 4, instead of the on-path invariants (see (2)
and (6)).

Analysis

Communication

Since we repeat the Gen algorithm of Section C.2 k times, the total communica-
tion is: O(km+ λk log2(N)).

Correctness

Same argument as Section C.2.

Security

Same argument as Section C.2.

C.5 Arbitrary Finite Abelian Groups of Order: N = p
k1

1 p
k2

2 . . . p
kl

l

We describe now modifications for an arbitrary finite abelian group G of order
N = pk1

1 pk2

2 . . . pkl

l . The strategy is to write G = 〈H1, H2, . . . , Hl〉 for Sylow p-
groups {Hi}li=1, and then (as done in Section C.4) for each Hi choose a chain of
subgroups {Hi,j}:

{0G} = Hi,0 < Hi,1 < · · · < Hi,ki
= Hi (42)

34 The existence of such subgroups {Hi} and elements {hi ∈ Hi} follows from elemen-
tary group theory.
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Then choose elements {hi,j ∈ Hi,j} such that hi,j /∈ hi,j′ for any j′ < j. Then,
since G is abelian, there exists a unique set of integers {ri,j ∈ [0..pi − 1]} such
that:

v =

l⊕

i=1
G




ki⊕

j=1
G

(ri,j · hi,j)


 (43)

Then, we use the techniques of Section C.4 to construct 1-out-of-3 CNF-DPF
for each ri,j , and then use the techniques of Section C.3 to combine these results
(for each 1 ≤ i ≤ l) to construct the final 1-out-of-3 CNF-DPF for v.

Note that this construction assumes:

(a) The order N of G is known, as is the factorization: N = pk1

1 pk2

2 . . . pkl

l .

(b) The p-Sylow subgroups {H1, . . . , Hl} of G are known, as is the chain of
subgroups {Hi,j} for each p-Sylow subgroup Hi (as in (42)) with corre-
sponding elements {hi,j ∈ Hi,j} with hi,j /∈ Hi,j′ for j

′ < j.

(c) The exponents {ri,j} can be readily found (i.e. computable in polynomial
time), such that DPF value v can be expressed as in (43).

We use Observation 2 above to argue that the above assumptions are reason-
able, in that they are satisifed for most applications we are aware of in which
DPFs are used in practice. For example, if G = ZN of (known) factorization
N = pk1

1 pk2

2 . . . pkl

l , then each Sylow p-subgroug is cyclic: Hi = 〈hi〉, where

hi = N/pki

i . Furthermore, for any i, the chain of subgroups {Hi,j} satisfying

(42) are each cyclic, with generators {hi,j = N/pji}ki

j=1. Finally, for a given DPF
value v ∈ ZN , the exponents {ri,j} can be readily computed (as required in (c))
by inspecting (43) via basic abstract algebra computations (for example, ri,ki

is

computable by multiplying (43) by pki−1
i , and then reducing modulo pki

i , which
leaves only the ri,ki

term).

Analysis

Communication

Since we repeat the Gen algorithm of Section C.2
∑

i ki ≤ log(N) times, the
total communication is: O(m log(N) + λ log3(N)).

Correctness

Correctness for each Hi follows from the Correctness argument in Section C.4,
and then overall correctness follows from the Correctness argument in Section
C.3, applied to the process of aggregating the CNF-DPF for each p-Sylow sub-
group Hi to form the final CNF-DPF for v.

Security

Security follows immediately from the Security of the protocol in Section C.4,
together with the security argument in Section C.3.
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D Distributed 1-out-of-3 CNF-DPF

Recall that the Gen keys of our 1-out-of-3 CNF-DPF protocol have the form:

κP := ({xP , yP , zP}, {bP , bPR , cP , cPR}, W

∀ 1 ≤ l ≤ log(N) : {κP
l }, {κ̂P

l }, {rl, sl, tl, ul}) (44)

We now show how to distributively generate each of the components, where as
input the parties hold shares of:

DPF location α: Shared both additively (modulo domain size N := |G|)
as: α = αP1 + αP2 + αP3(mod N) and via bitwise-XOR (on the binary
representation of α = αlogN . . . α1) whereby, for each coordinate l of the

binary representation, αl is 3-way XOR secret shared as: αl = αP1

l ⊕ αP2

l ⊕
αP3

l .

DPF value v: XOR shared (over ZB
2 , for B = |v|) as: v = vP1 ⊕ vP2 ⊕ vP3 .

For simplicity, we’ll consider the case that G = ZN , so that α is additively shared
over ZN . As output, the three parties should hold their portion of the Gen key
that is output by the original 1-out-of-3 CNF-DPF protocol (see equation (44)
in Section 4.3).

The strategy will be to demonstrate how each component of the Gen keys
in equation (44) can be generated in a distributed manner. As it turns out,
the only difficult components are the keys {κl} and {κ̂l} corresponding to the
various MS-DPF+ functions (see equations (7) and (8)). So we’ll describe the
process for generating those keys first (in Section D.1), and then do the rest of
the components (in Section D.2).

D.1 Generating the MS-DPF+ Keys

In this section, we demonstrate how to make an arbitrary 1-out-of-3 MS-DPF+

protocol distributed. We do this step-by-step, by building distributed protocols
for each of the following:

– Distributed 1-out-of-2 DPF
– Distributed 1-out-of-3 MS-DPF
– Distributed 1-out-of-3 MS-DPF+

For the final point, recall that MS-DPF+ (for three parties) has three target
values: {v1, v2, v3}, such that Eval(κi, α) = vi. Thus, instead of having a single
target value v (which is the case for ordinary DPF and MS-DPF), there are three
target values. So in the distributed setting, there is a natural question of how
these three values are shared amongst the three parties. Notice that we cannot
allow Party Pi to know the value vi, since this leaks the DPF position α. Instead,
we define distributed 1-out-of-3 MS-DPF+ as declaring that the {vi} values are
shared as protocol inputs between the two other parties; that is, as input, each
value vi is secret-shared amongst the two parties Pj for j 6= i.
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Distributed 1-out-of-2 DPF We demonstrate how to convert the original 1-
out-of-2 DPF protocol of [BGI15] into a distributed protocol.35 So as input, three
parties share DPF location α = αP1 + αP2 (mod N) and value v = vP1 ⊕ vP2 .
As output, they hold DPF keys for fα,v.

The construction follows the construction of [BGI15]. The only challenge will
be generating the Correction Words and Correction Bits at each level l. So let’s
fix a level l ∈ [1.. log(N)] (though where convenient, we’ll suppress subscript l
in notation below for readability), and recall:

W :=

{
GR(s)⊕GR(ŝ) if αl = 0
GL(s)⊕GL(ŝ) if αl = 1

Thus, in the distributed setting, in order to deal the correction words, the two
tasks are: (i) Generate values (GR(s) ⊕ GR(ŝ)) and (GL(s) ⊕ GL(ŝ)); and (ii)
correctly pick between these two as the actual W . We achieve these tasks as
follows:

1. As input, assume that the bits (path) of α has been XOR secret-shared
amongst the players. That is, for bit αl, each player P has a bit αP

l such

that: αl = αP1

l ⊕ αP2

l .
2. Each player P sums GL and GR applied to their seeds for every node ν on

level l:

tPL :=
∑

ν

GL(s
P
ν )

tPR :=
∑

ν

GR(s
P
ν )

3. Player 1 forms 1-out-of-2 OTλ secrets (sP1

0 , sP1

1 ) as follows:

(sP1

0 , sP1

1 ) =

{
(tP1

R , tP1

L ) if αP1

l = 0

(tP1

L , tP1

R ) if αP1

l = 1
(45)

4. Player 2 acts as 1-out-of-2 OTλ client with selection bit αP2

l . Notice that the
result of this OT is that Player 2 has retrieved secret s

α
P2
l

:

s
α

P2
l

=

{
tP1

R if αP1

l ⊕ αP2

l = 0

tP1

L if αP1

l ⊕ αP2

l = 1

5. Player 2 acts as 1-out-of-2 OTλ Server with secrets (sP2

0 , sP2

1 ) as follows:

(sP2

0 , sP2

1 ) = (s
α

P2
l

, s
α

P2
l

)⊕
{
(tP2

R , tP2

L ) if αP2

l = 0

(tP2

L , tP2

R ) if αP2

l = 1
(46)

35 The conversion of the 1-out-of-2 DPF protocol of [BGI15] to a distributed version
is straightforward, and we do not claim a novel contribution here; we provide the
given construction above only for completeness.
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6. Player 1 acts as 1-out-of-2 OTλ client with selection bit αP1

l . Notice that the
result of this OT is that Player 1 has retrieved secret s

α
P1
l

:

W := s
α

P1
l

=

{
tP1

R ⊕ tP2

R if αP1

l ⊕ αP2

l = 0

tP1

L ⊕ tP2

L if αP1

l ⊕ αP2

l = 1
(47)

7. The above process got the W to Player 1; to get it to Player 2, we can
either re-do Steps 3-6 with the roles reversed, or we can simply have Player
1 publish (send to Player 2) W .

The key point that we utilized above is that we can write tPL and tPR as:

tPL =
∑

ν

GL(s
P
ν ) = GL(s

P
ν̃ )⊕

∑

ν 6=ν̃

GL(s
P
ν )

tPR =
∑

ν

GR(s
P
ν ) = GR(s

P
ν̃ )⊕

∑

ν 6=ν̃

GR(s
P
ν )

where ν̃ denotes the on-path node on level l. Then, since sP1
ν = sP2

ν for all ν 6= ν̃
(where ν̃ = ν̃l denotes the on-path node at level l), we have that: tP1

L ⊕ tP2

L =

GL(s
P1

ν̃ ) ⊕GL(s
P2

ν̃ ) and similarly for tP1

R ⊕ tP2

R , and hence the W as defined in
(47) is correct.

The above describes how to generate the Correction Words at each level. The
Correction Bits are handled similarly. Recall that unlike the Correction Words,
in which there is just one W per level, there are two Correction Bits generated:
one to be used for left-children, and one for right-children. The Correction Bits
will satisfy:

cL := HL(s)⊕HL(ŝ)⊕
{
1 if αl = 0
0 if αl = 1

cR := HR(s)⊕HR(ŝ)⊕
{
0 if αl = 0
1 if αl = 1

(48)

where we have used the notation G = (GL, HL, GR, HR) to split out the left and
right output bits (subscript “L” vs. “R”) and also the first λ bits versus the last
bit (“G” vs. “H”). Thus, we can do a similar trick as above, where each party
computes the XOR-sums of HL and HR for all their seeds at level l, and then
have the players engage in an analogous sequence of OTs to generate the correct
Correction Bit values.

Cost of Distributed 1-out-of-2 DPF. Summing up the costs in Steps 1-7
above, computation on each level is O(N) and communication is O(λ+λ′) bits.
This process is repeated across O(n) rounds, where N denotes the size (number
of nodes) in the binary tree, n = logN denotes the depth of the binary tree
(which equals the number of bits in α), and λ′ denotes the security parameter
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for the 1-out-of-2 OTλ protocol. Thus, overall computation is O(N logN), and
communication is O((λ + λ′) · logN).

Remark. Depending on the setting in which this distributed 1-out-of-2 DPF
scheme will be used, there may be a desire to implement it differently to achieve
different communication/computation costs. For example, notice that the high
computation cost comes from Step 2. While having an exponential computation
cost (in n = |α|) is prohibitive for large α, we note that the setting in which this
protocol would be used as a subprotocol of [BKKO20] already has exponential
computation cost in |α|, so this would not add any asymptotic overhead.

Conversely, in other settings, reducing from O(n) round complexity to e.g.
constant-round may be desirable, even if it inflates other metrics (overall com-
munication and/or computation). For example, there is a straightforward trans-
formation of the above procedure that would result in communication that is
constant round but exponential O(N) in number of bytes transferred.

Distributed 1-out-of-3 MS-DPF With the distributed 1-out-of-2 DPF pro-
tocol described above, we can apply the same process that was used to get
(ordinary/non-distributed) 1-out-of-3 MS-DPF from 1-out-of-2 DPF: Namely,
just run the distributed 1-out-of-2 DPF protocol three times.

To be more precise, again assume inputs: Party Pi holds {αPi , vPi} such that
DPF location α = αP1 + αP2 + αP3 (arithmetic modulo DPF domain size G)
and DPF value v = vP1 ⊕ vP2 ⊕ vP3 (XOR shared over ZB

2 ).
Then, as described in the proof of Claim 11 in Section B, we first run dis-

tributed 1-out-of-2 DPF whereby Party 1 acts “as his own” party, while Parties
2 and 3 will get identical information. Thus, for the first run, we first reran-
domize the sharing of α and v into two shares, where Party 1 knows one share
for each (say (α̂P1 , v̂P1)), and Parties 2 and 3 both hold the opposite share (say
(α̃P2 , ṽP2)). Then we run the Distributed 1-out-of-2 DPF protocol described
above, where Parties 2 and 3 each act as the second party (either in separate
protocols, or just have one of them engage in the protocol with Party 1, and
have that party forward his entire view to the third party). Now, repeat this
process (in the obvious manner) two more times, alternating which party acts
“as his own” party.

Cost of Distributed 1-out-of-3 MS-DPF. Since this invokes the Distributed
1-out-of-2 DPF protocol three times, the asymptotics are the same: overall
computation is O(N logN) and communication is O((λ + λ′) · logN) bits and
O(logN) rounds.

Distributed 1-out-of-3 MS-DPF+ As noted above, we assume that the MS-
DPF+ target values {v1, v2, v3} are inputs to the protocol, such that vi is shared
between the two parties who are not Pi.

Recall that for the ordinary (non-distributed) scenario, MS-DPF can be ex-
tended to MS-DPF+ simply by having the Dealer send to each party i: zi :=
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Eval(κi, α) ⊕ vi. We can do the identical thing in the distributed setting, pro-
vided we have a way for the other two parties to be able to generate (shares of)
the quantity zi; then the other two parties can simulate the Dealer and send Pi

(shares of) zi. Thus, we just need a mechanism for e.g. Parties 2 and 3 to com-
pute (shares of) z1. And since P2 and P3 already share v1 (as protocol input),
we need only demonstrate how P2 and P3 can generate shares of Eval(κi, α).

So assume as each party P has inputs {αP , vPL , v
P
R} such that:

α = αP1 + αP2 + αP3 (mod N)

v1 = vP2

L ⊕ vP3

R

v2 = vP3

L ⊕ vP1

R

v3 = vP1

L ⊕ vP2

R

Notice that if each party adds their two “v” shares together: vP := vPL ⊕ vPR , the
parties have a sharing of v = vP1 ⊕ vP2 ⊕ vP3 . Thus, we first instruct the three
parties to run distributed 1-out-of-3 MS-DPF using secret location α and value
v. As output of this MS-DPF protocol, each party has a Gen key that would
produce, on a call to EvalAll:

Party 1 : (a1, a2, . . . , d1, . . . , aN )

Party 2 : (a1, a2, . . . , d2, . . . , aN )

Party 3 : (a1, a2, . . . , d3, . . . , aN )

such that ai (for i 6= α) is the same for all three parties, and d1 ⊕ d2 ⊕ d3 = v =
vP1 ⊕ vP2 ⊕ vP3 .

Notice that {d1, d2, d3} are random (subject to the constraint that they sum
to v = vP1 ⊕ vP2 ⊕ vP3). Recall that the goal is to have e.g. Parties 2 and 3
share Eval(κi, α) = d1. This is essentially a shared-input PIR problem, and as
such there are a handful of PIR protocols that can achieve this. For the sake of
completion, we present a solution here which is less efficient but simple, (and
the lack of efficiency does not impact the asymptotics of the overall protocol).
Namely, for each party Pi define the quantity:

Ai :=
⊕

j

Eval(κi, j) (49)

Notice that, e.g.: A2 ⊕ A3 = d2 ⊕ d3, since all terms in the summand cancel
except these. Now we specify that P1 chooses a random r1, and sends r1 to P2

and sends vP1

L ⊕ vP1

R ⊕ r1 to P3. Notice now that P2 and P3 share d1 via:

P2’ share: dP2

1 := vP2

L ⊕ vP2

R ⊕ r1 ⊕A2

P3’ share: dP3

1 := vP3

L ⊕ vP3

R ⊕ (vP1

L ⊕ vP1

R ⊕ r1)⊕A3
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Notice that, as desired, d1 = dP2

1 ⊕ dP3

1 , since:

dP2

1 ⊕ dP3

1 = (vP2

L ⊕ vP2

R ⊕ r1 ⊕A2)⊕ (vP3

L ⊕ vP3

R ⊕ (vP1

L ⊕ vP1

R ⊕ r1)⊕A3)

= (vP1

L ⊕ vP1

R ⊕ vP2

L ⊕ vP2

R ⊕ vP3

L ⊕ vP3

R )⊕ (A2 ⊕A3)⊕ (r1 ⊕ r1)

= v ⊕ d2 ⊕ d3

= d1 (50)

Cost of Distributed 1-out-of-3 MS-DPF+. The two dominating contribu-
tors to the cost of this protocol is the use of Distributed 1-out-of-3 MS-DPF, and
the computation required to compute the sum in (49). Since the latter has com-
putation cost O(N logN), the cost of Distributed 1-out-of-3 MS-DPF+ matches
the cost of Distributed 1-out-of-3 MS-DPF: overall computation is O(N logN)
and communication is O((λ + λ′) · logN) bits and O(logN) rounds.

Putting it Together: Distributed Gen for our 1-out-of-3 CNF-DPF The
section above demonstrated how to achieve Distributed 1-out-of-3 MS-DPF+,
assuming the input condition that the {vi} values are shared amongst the three
parties: namely, that for each vi, the other two parties know (shares of) vi. This
present section demonstrates how to achieve this input condition.

There are two MS-DPF+ protocols used in the Gen algorithm described in
Section 4.3, and thus we must demonstrate how the {vi} are shared for each of
them. E.g. for each of the two relevant MS-DPF+ functions, we need to show
how P2 and P3 can be (distributively) dealt (shares of) vP1

l and v̂P1

l .
First, recall that for both MS-DPF+ functions, the original (non-distributed)

protocol specified that random λ-bit strings {pl, ql} are chosen by the Dealer.
So first, we have players distributively generate random values {pl, ql} by having
each party Pi choose random values {pPi

l , qPi

l }, and then defining:

pl : = pP1

l ⊕ pP2

l ⊕ pP3

l

ql : = qP1

l ⊕ qP2

l ⊕ qP3

l

We begin with describing how to deal shares of v̂P1

l . First, notice that the con-

dition of choosing pl versus ql for v̂
P1

l depends on bP3
ν . Since the unique on-path

node ν = νl on level l is unknown to the players, we use the 2-server SISO-PIR
protocol (see Section D.3 below), where we leverage the fact that players have
a copy of their right-partner’s control bits b, and therefore we define the PIR
database to be {bP3

µ }µ, and notice that P2 and P3 will act as the PIR database

servers, with shared selection point: (α)l = ((α)P1

l + r2 + r3) + ((α)P2

l +(α)P3

l −
r2 − r3), where e.g. P2 has chosen a random r2 and sent r2 to P1 and sent
((α)P2

l − r2) to P3 (and ditto for P3 choosing random r3). At the end of this
protocol, the three players share bP3

ν . We can now run 1-out-of-2 SISO OTλ (see
Section D.3), with selection bit bP3

ν and secret values {pl, ql}, to give players P2

and P3 shares of v̂P1

l , as desired.

We now describe how P2 and P3 can generate shares of vP1

l . To do this, we
will run 1-out-of-4 SISO OTλ (see Section D.3), with selection bits αl and δl, and
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secrets: {GL(x
P3
µ )⊕GL(y

P3
µ ), GL(x

P3
µ )⊕GL(y

P3
µ ), ql, ql⊕GR(x

P3
µ )⊕GR(y

P3
µ )⊕pl}.

Thus, it remains to show how to generate each of these values:

– αl: This is secret-shared amongst the three parties as part of the Input.
– δl: Above we described how bP3

ν could be obtained (via shares). Repeat that
process for bP1

ν and bP2
ν . We now have computation: δl = 1⊕ (bP1

ν ∗bP2
ν ∗bP1

ν ).
Thus, this can be viewed as a two-gate AND circuit and run through a
standard GMW-style MPC computation (see e.g. [Gol09]), so that as output
parties have shares of δ1.

– ql: Parties have this by construction (they each generated a share of ql).
– GL(x

P3
µ )⊕GL(y

P3
µ ): We leverage that for all nodes ν on the parent level:

GL(x
P3

ν )⊕GL(y
P3

ν ) = GL(y
P2

ν )⊕GL(z
P2

ν ) (51)

This is because:

If ν = µ is the on-path node: xP3
µ = zP2

µ and yP3
µ = yP2

µ

If ν 6= µ is an off-path node: xP3
µ = yP2

µ and yP3
µ = zP2

µ

Therefore, we run the 2-server SISO-PIR protocol (see Section D.3), where
players P2 and P3 act as the database servers (with values {GL(x

P3
ν ) ⊕

GL(y
P3
ν )}), and input location is (α)l−1.

– ql ⊕ pl ⊕ GR(x
P3
µ ) ⊕ GR(y

P3
µ ): Since parties have shares of ql and pl, it

remains to show how they can generate shares of GR(x
P3
µ )⊕GR(y

P3
µ ), which

is analogous to the previous step (with GL(·) replaced with GR(·)).

D.2 Generating the Remaining Components

It is straightforward to describe how the values at the root of the tree, seeds
{xP , yP , zP} and control bits {bP , bPR , cP , cPR}, can be dealt in a distributed
manner. Also, for each level 1 ≤ l ≤ log (N), the correction bits {rl, sl, tl, ul}
can be handled similarly to how the MS-DPF+ keys were dealt: first run a 2-
server SISO PIR protocol to generate (shares of) the values in (9), and then
run 1-out-of-2 SISO OT2 to generate (shares of) the correction bit values as per
(10).

It remains to show how to distribute the final correction word W . Notice:

W = v ⊕G(xP1 )⊕G(xP2)⊕G(xP3 )⊖ 3 ·G(yP1)

=
(
vP1 ⊕ vP2 ⊕ vP3

)
⊕
(
G(xP1)⊕G(xP2 )⊕G(xP3 )

)
⊖

(
G(yP1)⊕G(yP2)⊕G(yP3)

)
⊕
∑

P,ν 6=ν̃

(
G(xP

ν )⊖G(yPν )
)

=

[
vP1 ⊕

∑

ν

(
G(xP1

ν )⊖G(yP1

ν )
)
]
⊕
[
vP2 ⊕

∑

ν

(
G(xP2

ν )⊖G(yP2

ν )
)
]
⊕

[
vP3 ⊕

∑

ν

(
G(xP3

ν )⊖G(yP3

ν )
)
]

(52)
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where we have used in the second equality that G(yP1) = G(yP2) = G(yP3) and
that the sum over both seed values over all three parties and all off-path nodes
is zero (every term appears exactly twice and hence cancels); see (2). Notice the
final line of (52) shows how W is shared amongst the three parties.

Cost of Distributed 1-out-of-3 CNF-DPF. The dominating contributor
to the cost of this protocol is running the Distributed 1-out-of-3 MS-DPF+

protocol (twice). Thus, overall computation is O(N logN) and communication
is O((λ + λ′) · logN) bits and O(logN) rounds.

D.3 Building Blocks

In this section we describe, for completeness, the SISO-PIR and SISO-OT func-
tionalities, and provide pointers to sample implementations.

2-Server SISO-PIR.

Setup. Two “database” servers have identical copies of a database D, viewed
as an array of N elements, each element of size |v|. There is a third “client”
party.
Input. An index i ∈ [1..N ] is secret-shared, with the client party holding one
share and both database servers holding the other share.
Output. Value D[i] is secret-shared, with the client party holding one share,
and both database servers holding the other share.

There are several implementations of the above described functionality, see for
example [IKLO16].

1-out-of-2 SISO-OTλ.

Setup. There are “server” parties, and one “client” party.
Input. There are two secret values s0, s1 each of λ bits. Each secret is secret-
shared, with each server party holding one share. There is a selection bit
b, which is secret-shared, with the client holding one share, and each server
party holding the other share.
Output. Secret sb is secret-shared, with the client holding one share, and
each server party holding the other share.

There are several implementations of the above described functionality, see for
example [FLO19]. Observe that 1-out-of-4 SISO-OT can be readily obtained
from 1-out-of-2 SISO-OT (the same reduction for (ordinary) 1-out-of-4 OT from
1-out-of-2 OT can be applied here).
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