
Secure Sampling of Constant-Weight Words – Application
to BIKE

Nicolas Sendrier

Inria
nicolas.sendrier@inria.fr

Abstract. The pseudo-random sampling of constant weight word, as it is currently imple-
mented in schemes like BIKE or HQC, is prone to the leakage of information on the seed
being used. This creates a vulnerability when the semantic security conversion requires a
deterministic re-encryption. This observation was first made in [HLS21] about HQC, and
a timing attack was presented to recover the secret key. As suggested in [HLS21] a similar
attack applies to BIKE and an instance of such an attack is presented here, as well as
countermeasures similar to those suggested in [HLS21] for HQC.
A new approach for fixing the issue is also proposed. It is first remarked that, contrary
to what is done currently, the sampling of constant weight words doesn’t need to produce
a uniformly distributed output. If the distribution is close to uniform in the appropriate
metric, the impact on security is negligible. Also, a new variant of Fisher-Yates shuffle
is proposed which is (1) very well suited for secure implementations against timing and
cache attacks, and (2) produces constant weight words with a distribution close enough to
uniform.

1 Introduction

In a recent work [HLS21], a timing attack on an implementation of HQC [AMAB+21] is described.
This attack exploits the fact that the timing for sampling words of constant weight depends on
the seed used to initialized the pseudo-random generator. In conjunction, the Fujisaki-Okamoto
transformation, which is used to provide semantic security, uses secret data for this seed. This
can be used to mount a successful key recovery attack on HQC. As suggested in [HLS21], the
same vulnerability applies to BIKE. We give hereafter a possible instance of attack using this
same idea.

We first review the process used in BIKE for pseudo-random sampling constant weight words
and we observe that its timing variation induces a vulnerability which could potentially be
exploited as in [HLS21], if key reuse is allowed, to recover either a message or the secret key. The
standard countermeasure consists in modifying the sampling to make sure it runs in constant
time. We give an estimate of the corresponding overhead for BIKE.

The main contribution of this paper consists in exploring a new possibility. Part of the
difficulty of the sampling comes from the fact that uniform distribution is a requirement. We will
show it is not the case, and sampling constant weight words with a distribution close enough to
uniform (in a metric that we will specify) has no impact on security. We will exhibit a variant
of the Fisher-Yates shuffle, which we believe to be new and which is particularly well suited to
secure implementation. This new variant can be implemented in constant time and with a fixed
memory access pattern to sample constant weight words from uniformly distributed random bits,
with a distribution which is close enough to uniform to have a negligible impact on security.

2 Nicolas Sendrier

Algorithm 1 Current BIKE Constant Weight Word Sampling
Input: n, t, seed
Output: t distinct elements of {0, . . . , n− 1}
1: prng← prng_init(seed)
2: i← 0
3: while i < t do
4: j ← rand(n, prng)
5: if j 6∈ pos then
6: pos[i]← j
7: i← i+ 1

8: return pos

rand(n, prng) :

1: repeat
2: x← randbits(B, prng)
3: x← x & mask

4: until x < n
5: return x

2 Sampling Constant-Weight Words in BIKE

In its current specification, BIKE uses (essentially) Algorithm 1 to sample a table of t distinct
indices in {0, 1, . . . , n−1}. Further treatment to change that into a constant-weight word (sorting
or producing a binary word or just keeping a table of indices) is not considered here. In practice,
the state-of-the-art implementation of BIKE [DGK] uses a constant-time routine, embedded in
Algorithm 1, which sets the bit corresponding to each accepted position in a binary word of length
n. The function rand(n, prng) produces a random integer uniformly distributed in {0, 1, . . . , n−1}
from uniformly distributed integers in {0, 1, . . . , 2B − 1} produced by randbits(B, prng). The
pseudorandom number generator prng is initialized with seed. In BIKE, mask = 2u − 1 where u
is the smallest integer such that n ≤ 2u, and B = 32. Those quantities are hard-coded for each
given parameter set. In BIKE specification, it is suggested to use AES in counter mode as prng.
Whatever is used for prng, it is assumed that randbits(B, prng) is constant-time for a given
B and behaves as a random oracle producing uniformly distributed bits. The situation is very
similar to what is observed in [HLS21], and, as for HQC, the sampling process has a variable
running time for two reasons:

1. In rand(), the index x is rejected with a probability that can reach 50%. For BIKE parameters
the rejection probability varies from 25% to 38%. The number of iterations is a random
number ranging from 1 to a few units.

2. In the main algorithm, any duplicate position is rejected (instruction 5) and causes an addi-
tional execution of the while loop.

Overall, the timing for the constant-weight word sampling will depend on the total number of
calls to randbits() which will vary with seed.

2.1 BIKE Specification

The specification of BIKE is given in Table 1. The parameters are the block length r (the
code length is n = 2r), the row weight w, the error weight t (with w ≈ t ≈

√
n), and the

message size `. In addition, a mapping decoder : R × Hw → R2 ∪ {⊥} must be defined
such that decoder(e0h0 + e1h1, h0, h1) = (e0, e1) with high probability when (e0, e1) ∈ Et and
(h0, h1) ∈ Hw are drawn uniformly at random.

2.2 Timing Attacks on BIKE

The attack of [HLS21] on HQC can easily be adapted for BIKE. The exact mechanism and the
way the timing information is used may differ, but the principle is the same.

Secure Sampling of Constant-Weight Words – Application to BIKE 3

Notation
F2: Binary finite field
R: Cyclic polynomial ring F2[X]/(Xr − 1)
Hw: Private key space {(h0, h1) ∈ R2 | |h0| = |h1| = w/2}
Et: Error space {(e0, e1) ∈ R2 | |e0|+ |e1| = t}
M: Message space {0, 1}`
K: Session key space {0, 1}`
H: Constant weight word (CWW) sampler H :M→ Et
L: Hash function L : R2 →M
K: Key derivation function K :M×R×M→ K
⊥: Decoding failure
|g|: Hamming weight of a binary polynomial g ∈ R
u

$←U : Variable u is sampled uniformly at random from the set U
u D←U : Variable u is sampled from the set U according to distribution D
KeyGen : () 7→ (h0, h1, σ), h

Output: (h0, h1, σ) ∈ Hw ×M, h ∈ R
1: (h0, h1)

$←Hw

2: h← h1h
−1
0

3: σ $←M

Encaps : h 7→ K, c

Input: h ∈ R
Output: K ∈ K, c ∈ R×M
1: m $←M
2: (e0, e1)← H(m)
3: c← (e0 + e1h,m⊕ L(e0, e1))
4: K ← K(m, c)

Decaps : (h0, h1, σ), c 7→ K

Input: ((h0, h1), σ) ∈ Hw ×M, c = (c0, c1) ∈ R×M
Output: K ∈ K
1: e′ ← decoder(c0h0, h0, h1) . e′ ∈ R2 ∪ {⊥}
2: m′ ← c1 ⊕ L(e′) . with the convention ⊥ = (0, 0)
3: if e′ = H(m′) then K ← K(m′, c) else K ← K(σ, c)

Table 1: The BIKE Key Encapsulation Mechanism

The attacks presented here do not apply to the ephemeral key setting but only to scenarii
where secret keys can be reused. The adversary is allowed to make multiple request, with the
same secret key, to a decapsulation oracle. The attacks were not implemented nor fully analyzed,
the purpose of this paper is to state that the vulnerabilities presented in [HLS21] affect BIKE to
some extend, and to propose countermeasures.

In BIKE, each call to Decaps will issue a call to H(m′) (using the notation in BIKE spec-
ification, Table 1), where m′ = c1 ⊕ L(e′) and e′ is the result of the decoding of c0. The call to
H(m′) will sample a constant-weight word using m′ as seed.

The adversary first seeks a message m̃ ∈ {0, 1}` such that the callH(m̃) produces a remarkable
timing. Typically such that the number of calls to randbits() is very high, so that any call to
H(m̃) can be detected from the timing. Because of the random oracle assumption, this can only
be done by brute force. We assume that the adversary was able to perform this task and knows
such a message m̃.

In the next step the adversary produces a fake encapsulation (c0, c1) with c1 = m̃ ⊕ L(⊥)
and any choice of c0 (it could be c0 = e0 + he1 for some chosen error e = (e0, e1) or anything
else). This encapsulation is submitted to Decaps and the timing of the execution of H() is
measured. From the timing, the adversary can distinguish the case of a decoding failure, where
H(c1 ⊕ L(⊥)) = H(m̃) is called, from the case of a successful decoding, where H(c1 ⊕ L(e)) is
called.

4 Nicolas Sendrier

Note that this decapsulation almost certainly fails, but the adversary can nevertheless measure
the execution time.

Several attacks are possible from there:

1. A message recovery attack. The adversary wants to decode some c0 = e0 + e1h for an un-
known error (e0, e1). Several small modifications of c0 are submitted and by observing which
decoding fail and which succeed, the adversary gains information on (e0, e1). This leads to a
variant of the reaction attack [KI00].

2. A key recovery attack. The adversary can mount a GJS-like attack by chosing (e0, e1) with a
specific distance spectrum (see [GJS16] for details).

2.3 Countermeasures

Those attacks both use the timing of H() to guess whether or not the decoder failed. Being able
to do that enables the various forms of reaction attacks mentionned above. To completely avoid
that, the simplest (only?) way is to make sure that H() runs in time independent of its input.

Constant Time Sampling. Since the running time variation comes from the number N of
calls to randbits(), the solution would be to estimate the distribution of N when seed varies,
choose a value N0 such that only a negligible proportion of the calls to H() require more than
N0 calls to randbits(), and finally implement the sampler so that it makes exactly N0 calls to
randbits(). This would lead to a relatively high computational overhead because the rejection
probability is high and so is the standard deviation of N . An alternative is to use rand() as in
HQC (Table 2). It leads to a smaller overhead.

rand(n, prng) :

1: repeat
2: x← randbits(B, prng)
3: until x < b2B/ncn
4: return x mod n

Table 2: Uniform Sampling in {0, ..., n− 1} with Lower Rejection Rate

The following proposition gives the generating function of the distribution of the number of
calls to randbits() for sampling one constant-weight word:

Proposition 1. Let N be the random variable for the number of calls to randbits() in Algo-
rithm 1. We have the following series identity

S(X) =

∞∑
`=1

Pr[N = `]X` =

t−1∏
i=0

(n− i)(1− π)X

n− ((n− i)π + i)X

where π is the probability to reject a call to randbits() in rand().

A proof is given in appendix.

Secure Sampling of Constant-Weight Words – Application to BIKE 5

rand() with mask rand() with mod

n t π N0 − t N0−t
t

π N0 − t N0−t
t

24 646 134 0.248 193 144% 1.7 10−6 26 19%
49 318 199 0.247 289 145% 5.1 10−6 37 19%
81 194 264 0.381 600 227% 1.1 10−5 48 18%

Table 3: Overheads for a Constant-Time Implementation of Algorithm 1

Overhead for Constant-Time. The generating function of Proposition 1 provides a convenient
way to estimate the probabilities Pr[N = `]. In Table 3 we give, for BIKE parameters, the
overheads corresponding to the two variants of rand() (π is the rejection probability in both
situations), the value of N0 is chosen such that the probability to make more than N0 calls to
randbits() is smaller than 2−λ, where λ is the security parameter (respectively 128, 192, and
256 for the three rows Table 3). The countermeasures proposed in [HLS21] are essentially of the
same nature and lead to similar overheads in the case HQC.

Note that the cost for sampling constant-weight words is far from dominant, and compared
to the full cost of Encaps or Decaps, this overhead would have a very limited impact on the
global efficiency. Still, the patched version of Algorithm 1 would be probabilistic, and moreover
the access to the table pos[] would depend on the instance, making it vulnerable to cache attacks
and requiring a careful implementation, possibly involving another overhead.

Cost for Producing a Distinguishable Message. Proposition 1 can also help to determine what
we could reasonably expect for the distinguishable message m̃ in the attack. For instance, for
the first set of parameters, with Algorithm 1, the average number of calls to randbits() is
N̄ = 178 while obtaining a message m̃ such that N = 237 (33% overhead) would require about
264 calls to H(). If rand() is as in HQC (Table 3), most of the time there is no additional
call to randbits(), and one message out of 264 will be such that N = t + 15 (11% overhead).
Other parameter sets give numbers of similar magnitude. Whether or not this enough to make
the timing difference measurable, and thus the attack effective, will depend on the adversary’s
capabalities, but, nevertheless, the threat is significant enough to justify the need for a constant-
time sampling.

Relaxing the Uniformity Condition. There is another possible approach. To comply with the
security reduction given in the BIKE specification document, it is required that constant weight
words are produced with a uniform distribution. However, we show in the next section that if
instead the distribution is only close to uniform, the impact on security is negligible. We will see
that a variant of the Fisher-Yates algorithm which is suitable for constant time implementation
can be devised to produce constant-weight words with a distribution close enough to uniform.

3 Towards Constant-Time Variants of the Fisher-Yates Shuffle

An advantage of the Fisher-Yates algorithm is that it doesn’t need to reject duplicate indices.
This cancels one source of running time variation. The other source of variation, the rejection
sampling for uniform random integers is still there, but we will see that removing this rejection
creates a bias whose impact on security is negligible.

Using the Fisher-Yates shuffle for cryptographic implementations has sometimes been dis-
carded because of its data-dependent memory access. We give here a variant with a fixed memory
access pattern. Moreover, because the space complexity is proportional to t rather than n, this

6 Nicolas Sendrier

variant is well adapted to the sampling of words of fixed weight t much smaller than the block
length n.

3.1 Fisher-Yates Shuffle

In its usual form, the Fisher-Yates algorithm inputs, n and t, are equal and a uniformly distributed
random permutation of n elements is returned. In the version given in Algorithm 2, it returns a

Algorithm 2 Fisher-Yates Algorithm
Input: n, t
Output: t distinct elements of {0, . . . , n− 1}
1: pos← [0, 1, . . . , n− 1]
2: for i = 0 to t− 1 do
3: `

$←{i, . . . , n− 1}
4: swap pos[i] and pos[`]

5: return pos[0], . . . , pos[t− 1]

table of t distinct elements of {0, . . . , n− 1}, that is a constant weight word, also with a uniform
distribution. The algorithm is ill-suited to the case where t is small compared to n and to secure
implementation in the context of cryptographic implementation, mostly because of the of need
to make data-dependent access in a large table.

Mathematical Abstraction. If we denote Si the random number drawn at the i-th iteration
(instruction 3 of Algorithm 2), the Fisher-Yates algorithm draws t random transpositions µi =
(i Si) with i ≤ Si < n and returns the images of 0, 1, . . . , t− 1 by the permutation

σ = µ0 ◦ µ1 ◦ · · · ◦ µt−1 (where µi = (i Si))

obtained as the product of those t transpositions. In fact, to obtain the t indices pos[i] = σ(i),
0 ≤ i < t, there is no need for a table of size n nor for data-dependent access to a data structure.
Note that µi(j) = j if j < i, so to compute σ(i) we may ignore the transpositions µj for j > i.
We have:

pos[0] = σ(0) = µ0(0) = S0

pos[1] = σ(1) = µ0 ◦ µ1(1) = µ0(S1)
...

...
pos[i] = σ(i) = µ0 ◦ · · · ◦ µi−1 ◦ µi(i) = µ0 ◦ · · · ◦ µi−1(Si)

...
...

The above formulas can be evaluated column-wise or row-wise and lead to the variants proposed
in the next section.

Two Variants of Fisher-Yates Shuffle. The variants described in Algorithm 3 and Algo-
rithm 4 will sample the transpositions, and then either iterate on the transpositions, starting
from the end, updating all the images pos[j], 0 ≤ j < t of 0, . . . , t− 1, or iterate on the elements
i ∈ {0, . . . , t − 1}, applying all transpositions, starting from the end, to each i to obtain pos[i].
Note that most loops are in reverse order. This is needed, either to apply the transposition in

Secure Sampling of Constant-Weight Words – Application to BIKE 7

Algorithm 3 Fisher-Yates Algorithm – Variant
Input: n, t
Output: t distinct elements of {0, . . . , n− 1}
1: for i = 0 to t− 1 do
2: pos[i]

$←{i, . . . , n− 1}
3: for i = t− 1 downto 0 do
4: for j = i+ 1 to t− 1 do
5: pos[j]← (pos[j] = pos[i]) ? i : pos[j]

6: return pos[0], . . . , pos[t− 1]

Algorithm 4 Fisher-Yates Algorithm – Variant
Input: n, t
Output: t distinct elements of {0, . . . , n− 1}
1: for i = 0 to t− 1 do
2: pos[i]

$←{i, . . . , n− 1}
3: for i = t− 1 downto 0 do
4: for j = i− 1 downto 0 do
5: pos[i]← (pos[i] = pos[j]) ? j : pos[i]

6: return pos[0], . . . , pos[t− 1]

the correct order (outer loop in Algorithm 3 and inner loop in Algorithm 4), or to allow the
computation in place (outer loop of Algorithm 4). At the i-th iteration, Algorithm 3 applies
the transposition µi to update the whole table pos[]. Algorithm 4 has a slightly different logic
with a simpler pattern for writing: at iteration i, only the i-th entry of the table is modified.
Also, if they use the same randomness, Algorithms 2, 3, and 4 return exactly the same value.
So it is possible to choose the most suitable variant depending on the platform and/or security
requirement while keeping full interoperability.

Secure Implementation. A key feature of Algorithm 3 and Algorithm 4 is that the pattern of
access to the table pos[] is independent of the data, which brings a natural imunity to timing
and cache attacks. On the other hand, the complexity is quadratic (in t), but in practice, as
far as secure implementation is concerned, it is also the case of Algorithm 1 because of the
collision check (instruction 5), and of Algorithm 2 because a secure implementation of the swap
(instruction 4) will require an overhead of at least the same magnitude.

3.2 Relaxing the Distribution

In Algorithm 5 the rejection sampling is removed from rand(), so it runs in constant time.
On the other hand, the distribution of its output is no longer uniform. This algorithm derives
from Algorithm 3 but Algorithm 4 could be used as well. With Algorithm 3 (or Algorithm 4),
each possible output, an array of t distinct integers in {0, . . . , n− 1}, is obtained with the same
probability

π′ =

t−1∏
i=0

1

n− i
.

With the integers drawn as in Algorithm 5, the maximal probability over all possible outputs is

πmax =

t−1∏
i=0

1

n− i

(
1 +

(n− i)− (2B mod (n− i))
2B

)
.

8 Nicolas Sendrier

Algorithm 5 Fisher-Yates Algorithm – Non Uniform
Input: n, t, seed
Output: t distinct elements of {0, . . . , n− 1}
1: prng← prng_init(seed)
2: for i = 0 to t− 1 do
3: pos[i]← i+ rand(n− i, prng)
4: for i = t− 1 downto 0 do
5: for j = i+ 1 to t− 1 do
6: pos[j]← (pos[j] = pos[i]) ? i : pos[j]

7: return pos[0], . . . , pos[t− 1]

rand(n, prng) :

1: x← randbits(B, prng)
2: return x mod n

and the minimal probability over all possible outputs is

πmin =

t−1∏
i=0

1

n− i

(
1− 2B mod (n− i)

2B

)
.

For BIKE parameters, the ratios τmin = πmin/π
′ and τmax = πmax/π

′ are very close to 1 (see
Table 4). As shown next, this is close enough to the uniform distribution to have a negligible

B = 32
n t τmin τmax

24 646 134 0.99962 1.00038
49 319 199 0.9989 1.0011
81 194 264 0.9975 1.0025

B = 24
n t τmin τmax

24 646 134 0.91 1.11
49 319 199 0.76 1.37
81 194 264 0.51 1.85

Table 4: Bias Between the Uniform Distribution and the Output of Algorithm 5

impact on security.
Finally, remark that each constant weight word can be obtained from t! distinct and indepen-

dent outputs of the algorithm, leading to an unsurprising probability t!π′ = 1/
(
n
t

)
in the uniform

case. In the non uniform case, the minimal probability is at least t!πmin and the maximal prob-
ability is at most t!πmax. If we denote D the distribution over the sample space Et which stems
from Algorithm 5

τmin ≤
Pr
[
e | e D←Et

]
Pr
[
e | e $←Et

] ≤ τmax (1)

3.3 Security Reduction

This section relates to the IND-CCA proof of BIKE, available in [AAB+21, §C] and deriving from
[HHK17]. We give below a sketch of why the security is not reduced when the output distribution
D of H() is close to uniform instead of uniform. More details are given in §B. The security proof
of BIKE cares about the distribution of the errors on two occasions: (1) for the computational
hardness of decoding, and (2) for the so-called correctness error, that is the decoding failure
rate. In both cases the corresponding terms in the reduction (see [AAB+21, Theorem 3,§C.3]
and [HHK17, Theorem 3.2 and 3.4]) are averaged over all error patterns e ∈ Et. Now, for any

Secure Sampling of Constant-Weight Words – Application to BIKE 9

real-valued random variable V : Et → R, we have∑
e∈Et

Pr
[
e | e D←Et

]
V (e) ≤ τmax ·

∑
e∈Et

Pr
[
e | e $←Et

]
V (e). (2)

It follows that the two terms mentionned above, and thus the advantage of any adversary when
the error distribution changes from uniform to D, cannot increase by a factor larger than τmax,
as defined in (1).

4 Conclusion

We have shown here that the vulnerabilty of constant weight word sampling presented in [HLS21]
for HQC, indeed applies to BIKE when key reuse is allowed. The timing variation can be analyzed
and the overhead for constant time implementation estimated.

We have proposed another approach for BIKE’s constant weight word sampling based on
the Fisher-Yates shuffle and which is original in two respects. First, and contrary to common
belief about Fisher-Yates shuffle, our variant is very well suited for secure implementation against
timing and cache attacks. Second, we allow our sampler to produce its output with a non uniform
distribution, but close enough to uniform to have no effective impact on the global security of
the BIKE scheme.

Even though our new proposed algorithm for constant weight word sampling has a higher al-
gorithmic complexity, we believe that for secure implementation, it offers an interesting, possibly
even advantageous, trade-off.

References

AAB+21. Carlos Aguilar Melchor, Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loïc Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Güneysu, Rafael
Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, and Gilles Zémor.
BIKE. Round 3 Submission to the NIST Post-Quantum Cryptography Call, v. 4.2, Septem-
ber 2021.

AMAB+21. Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-
Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, Gilles Zémor, and Jurjen Bos.
Optimized implementation of HQC, June 2021. https://pqc-hqc.org/download.php?file=
hqc-optimized-implementation_2021-06-06.zip.

DGK. Nir Drucker, Shay Gueron, and Dusan Kostic. Optimized constant-time implementation of
BIKE. https://github.com/awslabs/bike-kem.

FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO,
volume 1666 of LNCS, pages 537–554. Springer, 1999.

GJS16. Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack on MDPC with
CCA security using decoding errors. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
Advances in Cryptology - ASIACRYPT 2016, volume 10031 of LNCS, pages 789–815, 2016.

HHK17. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In Theory of Cryptography Conference, pages 341–371. Springer,
2017.

HLS21. Clemens Hlauschek, Norman Lahr, and Robin Leander Schröder. On the timing leak-
age of the deterministic re-encryption in HQC KEM. Cryptology ePrint Archive, Report
2021/1485, 2021. https://ia.cr/2021/1485.

KI00. Kazukuni Kobara and Hideki Imai. Countermeasure against reaction attacks (in japanese).
In The 2000 Symposium on Cryptography and Information Security : A12, January 2000.

https://pqc-hqc.org/download.php?file=hqc-optimized-implementation_2021-06-06.zip
https://pqc-hqc.org/download.php?file=hqc-optimized-implementation_2021-06-06.zip
https://github.com/awslabs/bike-kem
https://ia.cr/2021/1485

10 Nicolas Sendrier

A Proof of Proposition 1

Let’s consider a Bernouili trial of probability 1 − p, and let N be the random variable for the
index of the first success. The following generating function gives the distribution of N

Sp(X) =

∞∑
`=1

Pr [N = `]X` =

∞∑
`=1

p`−1(1− p)X` =
(1− p)X
1− pX

.

The i-th loop of Algorithm 1 is a Bernoulli trial of probability 1 − pi with pi = i/n. The
successive iterations are independent, thus the distribution of number of calls to rand() is given
by the series

S′(X) =

t−1∏
i=0

Spi(X) =

t−1∏
i=0

(n− i)X
n− iX

.

The number of calls to randbits() in one call of rand() is itself a Bernoulli trial of probability
1− π and thus the generating series for the total number of calls to randbits() is

S(X) = S′(Sπ(X)) =

t−1∏
i=0

(n− i)(1− π)X

n− ((n− i)π + i)X
.

B More on the Security Reduction

We consider an instance of BIKE’s KEM where the Constant Weight Word (CWW) sampler H()
produces elements of Et with a non uniform distribution D. We denote

τmax = max
e∈Et

Pr
[
e | e D←Et

]
Pr
[
e | e $←Et

] .
Modifying the distribution of the CWW sampling from uniform to D close to uniform will
not affect significantly the computational hardness of decoding nor the decoding failure rate.
However the IND-CCA security model is more involved, in particular by allowing multiple call
to the CWW sampler. We revisit below the IND-CCA proof of BIKE to check that the impact
of this biased distribution on the IND-CCA security is indeed negligible.

In order to achieve IND-CCA security, the key encapsulation mechanism BIKE follows the
KEM6⊥ transformation of [HHK17] which derives itself from the Fujisaki-Okamoto transformation
[FO99]. The initial public encryption PKE0 is transformed into PKE then PKE1 and finally into
the KEM of Table 1. The final step of the proof in the HHK framework relates the security of
the KEM to the security of PKE1 with [HHK17, Theorem 3.4] which states that for all IND-CCA
adversary B against the KEM, there exists an OW-PCA adversary B′ against PKE1 running in
about the same time such that

AdvIND-CCA
KEM6⊥ (B) ≤ qK

|M|
+ AdvOW-PCA

PKE1
(B′)

where qK is the number of calls to the key derivation function (viewed as an oracle). This
inequality holds regardless of the CWW sampler H(). No change here. The security of PKE1
relates to the security of PKE with [HHK17, Theorem 3.2] which states that for all IND-PCA

Secure Sampling of Constant-Weight Words – Application to BIKE 11

PKE0 :

KeyGen0 Output: (h0, h1) ∈ Hw, h ∈ R
(h0, h1)

$←Hw ; h← h1h
−1
0

Encrypt0 Input: h ∈ R, (e0, e1) ∈ Et
Output: s ∈ R
s← e0 + e1h

Decrypt0 Input: (h0, h1) ∈ Hw, s ∈ R
Output: e ∈ Et ∪ {⊥}
e← decoder(sh0, h0, h1)

PKE :

KeyGen0 Output: (h0, h1) ∈ Hw, h ∈ R
(h0, h1)

$←Hw ; h← h1h
−1
0

Encrypt Input: h ∈ R, m ∈M
Output: c ∈ R×M
(e0, e1)

$←Et ; c← (e0 + e1h,m⊕ L(e0, e1))

Decrypt Input: (h0, h1) ∈ Hw, (c0, c1)
Output: m ∈M∪ {⊥}
e← decoder(sh0, h0, h1)
if e = ⊥ then m← ⊥ else m← c1 ⊕ L(e)

PKE1 :

KeyGen0 Output: (h0, h1) ∈ Hw, h ∈ R
(h0, h1)

$←Hw ; h← h1h
−1
0

Encrypt1 Input: h ∈ R, m ∈M
Output: c ∈ R×M
(e0, e1)← H(m) ; c← (e0 + e1h,m⊕ L(e0, e1))

Decrypt1 Input: (h0, h1) ∈ Hw, c ∈ R×M, h ∈ R
Output: m ∈M∪ {⊥}
m← Decrypt((h0, h1), c)
if m 6= ⊥ and c 6= Encrypt1(h,m) then m← ⊥

Table 5: BIKE Encryption: PKE is randomized from PKE0 and PKE1 is derandomized from PKE

adversary B′ against PKE1, there exists an IND-CPA adversary A against PKE running in about
the same time such that

AdvOW-PCA
PKE1

(B′) ≤ qH · δ +
2 · qH + 1

|M|
+ 3 · AdvIND-CPA

PKE (A) (3)

where qH is the number of calls to the CWW sampler (viewed as an oracle) made by the adversary.
This part of the proof must be reengineered.

1. The first term qH · δ of the right-hand side of (3) relates to the correctness δ. It is an upper
bound for the probability that at least one of the error pattern sampled by H() will produce
a decoding failure. The value of δ must be such that

Pr[(e0, e1) 6= decoder(e0h0 + e1h1, h0, h1) | (h0, h1)
$←Hw, (e0, e1) D←Et] ≤ δ,

that is the DFR (Decoding Failure Rate) when e is sampled according to D (rather than
uniformly) in Et. It follows from (2) that, compared to the proof for the original scheme, the
DFR, that is the left-hand side of the above inequality, increases by a factor at most τmax.

2. The second term appears in the proof of [HHK17, Theorem 3.2] in relation with the proba-
bility of the event that H() is called with a specific input. The ouput distribution of H() is
irrelevant to bound this term. This part is unchanged.

12 Nicolas Sendrier

PKED :

KeyGen0 Output: (h0, h1) ∈ Hw, h ∈ R
(h0, h1)

$←Hw ; h← h1h
−1
0

Encrypt Input: h ∈ R, m ∈M
Output: c ∈ R×M
(e0, e1)

D←Et ; c← (e0 + e1h,m⊕ L(e0, e1))

Decrypt Input: (h0, h1) ∈ Hw, (c0, c1)
Output: m ∈M∪ {⊥}
e← decoder(sh0, h0, h1)
if e = ⊥ then m← ⊥ else m← c1 ⊕ L(e)

Table 6: Modified PKE with Non Uniform Error Pattern

3. The final term must be modified because the derandomization of PKE would not lead to PKE1.
Instead, we have to consider PKED, modified as in Table 6 with the error e sampled according
to D. The advantage in the rightmost term of (3) becomes AdvIND-CPA

PKED (A) which can be
viewed as a real-valued random variable over Et equipped with the distribution D. Again
from (2), this modified advantage cannot exceed the original one by a factor more than τmax.

So finally, for any adversary against BIKE’s KEM, its advantage in the IND-CCA game cannot
increase by more than a factor τmax when we replace the uniform CWW sampler by a biased
one. To state things crudely, because τmax is a constant close to 1, any adversary able to break
the scheme with a biased CWW sampler would be able to break the original scheme with about
the same computational effort.

	Secure Sampling of Constant-Weight Words – Application to BIKE

