
McEliece needs a Break – Solving McEliece-1284
and Quasi-Cyclic-2918 with Modern ISD

Andre Esser1, Alexander May2∗ , and Floyd Zweydinger2

1 Cryptography Research Center, Technology Innovation Institute, UAE
andre.esser@tii.ae

2 Ruhr University Bochum, Germany
{alex.may,floyd.zweydinger}@rub.de

Abstract. With the recent shift to post-quantum algorithms it becomes
increasingly important to provide precise bit-security estimates for code-
based cryptography such as McEliece and quasi-cyclic schemes like BIKE
and HQC. While there has been significant progress on information set
decoding (ISD) algorithms within the last decade, it is still unclear to
which extent this affects current cryptographic security estimates.
We provide the first concrete implementations for representation-based
ISD, such as May-Meurer-Thomae (MMT) or Becker-Joux-May-Meurer
(BJMM), that are parameter-optimized for the McEliece and quasi-cyclic
setting. Although MMT and BJMM consume more memory than naive
ISD algorithms like Prange, we demonstrate that these algorithms lead
to significant speedups for practical cryptanalysis on medium-sized in-
stances (around 60 bit). More concretely, we provide data for the record
computations of McEliece-1223 and McEliece-1284 (old record: 1161),
and for the quasi-cyclic setting up to code length 2918 (before: 1938).
Based on our record computations we extrapolate to the bit-security
level of the proposed BIKE, HQC and McEliece parameters in NIST’s
standardization process. For BIKE/HQC, we also show how to transfer
the Decoding-One-Out-of-Many (DOOM) technique to MMT/BJMM.
Although we achieve significant DOOM speedups, our estimates confirm
the bit-security levels of BIKE and HQC.
For the proposed McEliece round-3 parameter sets of 192 and 256 bit,
however, our extrapolation indicates a security level overestimate by
roughly 20 and 10 bits, respectively, i.e., the high-security McEliece
instantiations may be a bit less secure than desired.

Keywords: MMT/BJMM Decoding, Representation Technique, McEliece

1 Introduction

For building trust in cryptographic instantiations it is of utmost importance to
provide a certain level of real-world cryptanalysis effort. Code-based cryptography
∗ Funded by DFG under Germany’s Excellence Strategy - EXC 2092 CASA -

390781972.

https://orcid.org/0000-0001-5965-5675

is usually build on the difficulty of correcting errors in binary linear codes. Let C
be a binary linear code of length n and dimension k, i.e., C is a k-dimensional
subspace of Fn2 . We denote by H ∈ F(n−k)×n

2 a parity-check matrix of C, thus
we have Hc = 0 for all c ∈ C.

Let x = c + e be an erroneous codeword with error e of small known
Hamming weight ω = wt(e). Let s := Hx = He denote the syndrome of x. Then
decoding x is equivalent to the recovery of the weight-ω error vector from He = s.

Permutation-Dominated ISD – Prange. Let P ∈ Fn×n2 be a permutation
matrix. Then (HP)(P−1e) = H̄ ē = s is another weight-ω decoding instance with
permutated solution ē = P−1e.

Assume that ē = (e1, e2) with e2 = 0k. An application of Gaussian elimination
G ∈ F(n−k)×(n−k)

2 on the first n− k columns of H̄ yields

GH̄ ē = (In−kH ′)ē = e1 +H ′e2 = e1 = Gs. (1)

Thus, from wt(Gs) = ω we conclude that ē = (Gs, 0k) and e = P ē.
In summary, if we apply the correct permutation P that sends all weight

ω to the first n − k coordinates, then we decode correctly in polynomial time.
This is why the first n − k coordinates are called an information set, and the
above algorithm is called information set decoding (ISD). This ISD algorithm,
due to Prange [18], is the main tool for estimating the security of code-based
cryptography such as McEliece and BIKE/HQC.

We would like to stress that the complexity of Prange’s algorithm is mainly
dominated by finding a proper permutation P , which takes super-polynomial
time for cryptographic instances. All other steps of the algorithm are polynomial
time. This is why we call Prange a permutation-dominated ISD algorithm. A
permutation-dominated ISD performs especially well for small weight errors e
and large co-dimension n− k. More precisely, we have to find a permutation P
that sends all weight ω to the size-(n− k) information set, which happens with
probability

Pr[P good] =
(
n−k
ω

)(
n
ω

) = (n− k)(n− k − 1) . . . (n− k − ω + 1)
n(n− 1) . . . (n− ω + 1) .

Let ω = o(n), and let us denote C’s rate by R = k
n . Then Prange’s permutation-

based ISD takes up to polynomial factors expected running time

T = 1
Pr[P good] ≈

(
1

1−R

)ω
. (2)

Modern Enumeration-Dominated ISD – MMT/BJMM. The core idea
of all ISD improvements since Prange’s algorithm is to allow for some weight
p > 0 outside the information set. Thus we allow in Equation (1) that wt(e2) = p,
therefore we have to enumerate H ′e2. However, the cost of enumerating H ′e2
may be well compensated by the larger success probability of a good permutation

2

Pr[P good] =
(
n−k
ω−p
)(
k
p

)(
n
ω

) .

Indeed, modern ISD algorithms like MMT [15] and BJMM [6] use the represen-
tation technique to heavily speed up enumeration. In the large weight regime
ω = Θ(n), parameter optimization of MMT/BJMM yields that these ISD algo-
rithm do not only balance the cost of permutation and enumeration, but their
enumeration is so efficient that it eventually almost completely dominates their
runtime. This is why we call these algorithms enumeration-dominated ISD.

The large error regime ω = Θ(n) is beneficially for MMT/BJMM, since for
large-weight errors e it becomes hard to send all weight to the information set,
and additionally large-weight e introduces a large number of representations.
From a cryptographic perspective however it remains unclear if MMT/BJMM
also offer speedups for concrete cryptographic instances of interest.

Main question: How much improve modern enumeration-based ISD
algorithms cryptanalysis of code-based crypto in practice (if at all)?

What makes this question especially hard to answer is that as opposed to
permutation-based ISD, all enumeration-based ISD algorithms require a signifi-
cant amount of memory. Thus, even if enumeration provides significant speedups
it is unclear if it can compensate for the introduced memory access costs. As a
consequence, the discussion of enumeration-based ISD in the NIST standardiza-
tion process of McEliece already led to controversial debates [22,23]. We would
like to stress that up to our work, all decoding records on decodingchallenge.org
have been achieved either using Prange’s permutation-based ISD, or Dumer’s
first generation enumeration-based ISD [10].

In the asymptotic setting, Canto-Torres and Sendrier [21] showed that all
enumeration-dominated ISD approaches offer in the small-weight setting ω = o(n)
only a speedup from T in Equation (2) to T 1−o(1), i.e., the speedup asymptotically
vanishes. While this is good news for the overall soundness of our cryptographic
constructions, it tells us very little about the concrete hardness of their instantia-
tions.

Recently, Esser and Bellini [11] pursue a more practice-oriented approach by
providing a concrete code estimator, analogous to the successfully applied lattice
estimators [2]. The estimator also serves us as a basis for optimizing our ISD
implementations. However, such an estimator certainly fails to model realistic
memory access costs.

1.1 Our Contributions

Fast enumeration-dominated ISD implementation. We provide the first efficient,
freely available implementation of MMT/BJMM, i.e., a representation-based
enumeration-dominated ISD. Our implementation uses search-tree depth-2, which
seems to provide best results for the cryptographic weight regime. For the

3

http://decodingchallenge.org

cryptographic instances that we attack we used weight p = 4 for McEliece with
code length up to 1284, and p = 3 for BIKE/HQC. However, our benchmarking
predicts that McEliece with code length larger than 1350 should be attacked
with significantly larger weight p = 8. Our code is publicly available on GitHub.3

In comparison to other available implementations of (first-generation)
enumeration-based ISD algorithms, our implementation performs significantly
faster. Our experimental results demonstrate that in cryptanalytic practice even
moderately small instances of McEliece can be attacked faster using modern
enumeration-based ISD.

So far, our efforts to additionally speed up our enumeration-based ISD im-
plementations with localilty-sensitive hashing (LSH) techniques [8, 16] did not
succeed. We discuss the reasons in Section 3.3.

Real-world cryptanalysis of medium-sized instances. For building trust in the
bit-security level of cryptographic instances, it is crucial to solve medium-sized
instances, e.g. with 60 bit security. This gives us stable data points from which
we can more reliably extrapolate to high security levels. An example of good
cryptanalysis practice is the break of RSA-768 [13] that allows us to precisely
estimate the security of RSA-1024.

Before our work, for McEliece the record code length n = 1161 on de-
codingchallenge.org was reported by Narisada, Fukushima, Kiyomoto with an
estimated bit-security level of 56.0. We add two new records McEliece-1223 and
McEliece-1284 with estimated bit-security levels of 58.3 and 60.7, respectively.
These record computations took us approximately 5 CPU years and 22 CPU
years.

As a small technical ingredient to further speed up our new MMT/BJMM
implementation, we show how to use the parity of ω to increase the information
set size by 1, which saved us approximately 9% of the total running time.

For the quasi-cyclic setting we improved the previously best code length 1938
of Bossard [3] with 6400 CPU days to the five new records 2118, 2306, 2502,
2706, and 2918. The last has a bit-security level of 58.6, and took us (only) 1700
CPU days.

As a technical contribution for the quasi-cyclic setting, we show how to
properly generalize the Decoding-One-Out-of-Many (DOOM) strategy to the
setting of tree-based enumeration-dominated ISD algorithms. Implementing
our DOOM strategy gave us roughly a

√
n− k experimental speedup, where

n− k = n/2 is the co-dimension in the quasi-cyclic setting. This coincides with
our theoretical analysis, see Section 5.1.

Our real-world cryptanalysis shows that memory access certainly has to be
taken into account when computing bit-security, but it might be less costly
than suggested. More precisely, our ISD implementations support the so-called
logarithmic cost model, where an algorithm with time T and memory M has cost
T · log2 M .

3 https://github.com/FloydZ/decoding

4

http://decodingchallenge.org
http://decodingchallenge.org
https://github.com/FloydZ/decoding

Solid bit-security estimations for McEliece and BIKE/HQC. Based on our record
computations and further extensive benchmarking for larger dimensions, we
extrapolate to the proposed round-3 McEliece and BIKE/HQC instances. To
this end, we also estimate via benchmarking the complexity of breaking AES-128
(NIST Category 1), AES-192 (Category 3) and AES-256 (Category 5) on our
hardware.

For McEliece, we find that in the logarithmic cost model the Category 1
instance mceliece348864 achieves quite precisely the desired 128-bit security
level, where the instances of Category 3 (mceliece460896) and Category 5
(mceliece6688128 and mceliece6960119) fail to reach their security level by
roughly 20 and 10 bit, even when restricting our attacks to a memory upper limit
of M ≤ 280. Hence, these instances seem to overestimate security.

For BIKE/HQC, our extrapolation shows that the proposed round-3 instances
achieve their desired bit-security levels quite accurately.

Discussion of our results. In our opinion, the appearance of a small security
gap for McEliece and no security gap for BIKE/HQC is due to the different
weight regimes. Whereas BIKE/HQC use small weight ω =

√
n, McEliece relies

on Goppa codes with relatively large weight ω = Θ(n/ logn),
Both the BIKE/HQC and McEliece teams use the asymptotic formula from

Equation (2) to analyze their bit-security, which is the more accurate the smaller
the weight ω. Hence, while in the BIKE/HQC setting the speedups that we
achieve from enumeration-dominated ISD in practice are compensated by other
polynomial factors (e.g. Gaussian elimination), in McEliece’s (large) weight regime
the speedups are so significant that they indeed lead to measurable security losses.

Comparison to previous security estimates. Baldi et al. [4] and more recently
Esser and Bellini [11] already provide concrete bit security estimates for code-
based NIST candidates. Further, Esser and Bellini introduce new variations of the
BJMM and MMT algorithm based on nearest neighbor search, which however did
not result in practical gains for our implementation (see Section 3.3 for details).

Both works [4, 11] take into account memory access costs. While [4] uses a
logarithmic cost model, [11] considers three models (constant, logarithmic, and
square-root). As opposed to our work, [4,11] both solely rely on the computation
of runtime formulas.

Our work extends and specifies these estimates in the following way. For the
first time, we establish with our record computations solid experimental data
points for the hardness of instances with roughly 60 bits security. Moreover, our
implementation for the first time allows us to identify a proper memory access
model that closely matches our experimental observations. Based on our data
points, we extrapolate to NIST parameters of cryptographic relevance, using an
estimator like [11] with the right memory access model. This eventually allows
for a much more reliable security estimate.

5

2 The MMT/BJMM Algorithm

Let us briefly recap the MMT and BJMM algorithm. From an algorithmic point
of view both algorithms are the same. The benefit from BJMM over MMT
comes from allowing a more fine-grained parameter selection. In our practical
experiments, we mainly used the simpler MMT parameters. Therefore, we refer
to our implementation as MMT in the simple parameter setting and as BJMM
in the fine-grained parameter setting.

Main idea. Let He = s be our syndrome decoding instance with parity check
matrix H ∈ F(n−k)×n

2 , unknown error e ∈ Fn2 of known Hamming weight ω, and
syndrome s ∈ Fn−k2 .

As usual in information set decoding, we use some permutation matrix
P ∈ Fn×n2 to send most of the weight ω to the information set. Let H̄ = HP and
ē = P−1e. Then, obviously s = H̄ ē.

MMT/BJMM now computes the semi-systematic form as originally suggested
by Dumer [10]. To this end, fix some parameter ` ≤ n − k. Let ē = (e1, e2) ∈
Fn−k−`2 ×Fk+`

2 , and assume for ease of exposition that the first n− k− ` columns
of H̄ form a full rank matrix. Then we can apply a Gaussian elimination G ∈
F(n−k)×(n−k)

2 that yields

s̄ := Gs = GH̄ ē =
(
In−k−` H1

0 H2

)
= (e1 +H1e2, H2e2) ∈ Fn−k−`2 × F`2. (3)

Let s̄ = (s1, s2) ∈ Fn−k−`2 × F`2. From Equation (3) we obtain the identity
s2 = H2e2. MMT/BJMM constructs e2 of weight p satisfying s2 = H2e2. Notice
that for the correct e2 we directly obtain from Equation (3) that

e1 = s1 +H1e2. (4)

Since we know that wt(e1) = ω − p, MMT/BJMM checks for correctness of e2

via wt(s1 +H1e2) ?= ω − p.

Tree-based recursive construction of e2 using representations. For the tree-based
construction of e2 the reader is advised to closely follow Figure 1. Here, we
assume at least some familiarity of the reader with the representation technique,
otherwise we refer to [12,15] for an introduction.

We write e2 as a sum e2 = x1 +x2 with x1,x2 ∈ Fk+`
2 and wt(x1) = wt(x2) =

p1. In MMT we choose p1 = p/2, whereas in BJMM we allow for p1 ≥ p/2 s.t. a
certain amount of one-coordinates in x1,x2 has to cancel in their F2-sum.

The number of ways to represent the weight-p e2 as a sum of two weight-p1
x1,x2, called the number of representations, is

R =
(
p

p/2

)(
k + `− p
p1 − p/2

)
.

6

Level 2

Level 1

Level 0

L1 L2 L3 L4

./`1 ./`1

L
(1)
1 L

(1)
2

`1 `1

./`

L

`

y1 y2 y3 y4

x1 =
(y1,y2)

x2 =
(y3,y4)

e2 =
x1 + x2

Fig. 1: Search tree of the MMT algorithm. Striped areas indicate matching of the last
coordinates of Hxi or H(x1 + x2) with some predefined values.

However, it suffices to construct e2 from a single representation (x1,x2).
Recall from Equation (4) that we have

H2x1 = H2x2 + s2 ∈ F`2.

Notice that we do not know the value of H2x1. Let us define `1 := blog2(R)c.
Since there exist R representations (x1,x2) of e2, we expect that for any fixed
random target vector t ∈ F`1

2 and any projection π : F`2 → F`1
2 on `1 coordinates

(e.g. the last `1 bits), there is on expectation at least one representation (x1,x2)
that satisfies

π(H2x1) = t = π(H2x2 + s2).

We construct all x1 satisfying π(H2x1) = t in a standard Meet-in-the-Middle
fashion. To this end, we enumerate vectors of length k+`

2 and weight p2 := p1
2

in baselists L1, L2. Analogously, we find all x2 that satisfy π(H2x2 + s2) via a
Meet-in-the-Middle from baselists L3, L4, see Figure 1.

The resulting MMT/BJMM algorithm is described in Algorithm 1.

Runtime analysis. For every permutation P , MMT/BJMM builds the search
tree from Figure 1. P has to send weight ω − p to the information set of size
n− k − ` which happens with probability

q := Pr[P good] =
(
n−k−`
ω−p

)(
k+`
p

)(
n
ω

) . (5)

7

Algorithm 1: MMT Algorithm
Input : H ∈ F(n−k)×n

2 , s ∈ Fn−k
2 , w ∈ N

Output : e ∈ Fn
2 , He = s

1 begin
2 Choose optimal `, p, p2

3 Set `1 = b
(

p
p/2

)(
k+`−p
p1−p/2

)
c and p1 = 2p2

4 repeat
5 choose random permutation matrix P

6 H̄ =
(
In−k−` H1

0 H2

)
= GHP in semi-systematic form

7 s̄ = (s1, s2) = Gs
8 Compute

L1 = L3 = {(y1, H2y1) |y1 ∈ F(k+`)/2
2 × 0(k+`)/2, wt(y1) = p2}

L2 = {(y2, H2y2) |y2 ∈ 0(k+`)/2 × F(k+`)/2
2 , wt(y2) = p2}

L4 = {(y2, H2y2 + s2) |y2 ∈ 0(k+`)/2 × F(k+`)/2
2 , wt(y2) = p2}

9 Choose some random t ∈ F`1
2

10 Compute
L

(1)
1 = {(x1, H2x1) | π(H2x1) = t,x1 = y1 + y2} from L1, L2

L
(1)
2 = {(x2, H2x2 + s2) | π(H2x2 + s2) = t,x2 = y1 + y2} from L3, L411

12 Compute L = {e2 | H2e2 = s2, e2 = x1 + x2} from L
(1)
1 , L

(2)
2

13 for e2 ∈ L do
14 e1 = H1e2 + s1
15 if wt(e1) ≤ ω − p then
16 return P−1 (e1, e2)
17 end
18 end
19 end

The tree construction works in the time Tlist, which is roughly linear in the
maximal list size in Figure 1. Let |Li| denote the common list base size. Then it
is not hard to see that the overall expected runtime can be bounded by

T = q−1 · Õ (Tlist) , where Tlist = max
{
|Li|,

|Li|2

2`1
,
|Li|4

2`+`1

}
.

Part of the strength of our MMT/BJMM implementation in the subsequent
section is to keep the polynomial factors hidden in the above Õ (·)-notion small,
e.g. by using a suitable hash map data structure.

Locality-Sensitive Hashing (LSH). Most recent improvements to the ISD land-
scape [8,16] use nearest neighbor search techniques to speed-up the search-tree
computation. We also included LSH techniques in our implementation. However

8

for the so far benchmarked code dimensions, LSH did not (yet) lead to relevant
speedups. See Section 3.3 for further discussion on LSH.

3 Implementing MMT/BJMM Efficiently

In Section 3.1 we introduce an elementary, but at least for McEliece practically
effective decoding trick. We then detail our MMT/BJMM implementation in
Section 3.2

3.1 Parity Bit Trick

Let us introduce a small technical trick to speed up ISD algorithms, whenever
the weight of the error vector is known. Known error weight is the standard
case in code-based cryptography. The trick is so elementary that we would be
surprised if it was missed in literature so far, but we failed to find a reference, let
alone some proper analysis.

Let He = s be our syndrome decoding instance, where ω is the known error
weight of e. Then certainly

〈1n, e〉 = ω mod 2.

Thus, we can initially append to the parity-check matrix the row vector 1n, and
append to s the parity bit ω mod 2.

Notice that this parity bit trick increases the co-dimension by 1, and therefore
also the size of the information set. For Prange’s permutation-dominated ISD
this results in a speedup of(

n
ω

)(
n−k
ω

) · (n−k+1
ω

)(
n
ω

) =
(
n−k+1
ω

)(
n−k
ω

) .

The speedup for Prange with parity bit is the larger the smaller our co-
dimension n− k is. For McEliece with small co-dimension and our new record
instance (n = 1284, k = 1028, ω = 24) we obtain more than a 10% speedup, and
for the proposed round-3 McEliece parameter sets it is in the range 8-9 %. If
instead of Prange’s algorithm we use the MMT/BJMM variant that performed
best in our benchmarks then the speedup is still in practice a remarkable 9% for
the n = 1284 instance, and 6-7% for the round-3 parameter sets.

For BIKE and HQC with large co-dimension n − k = n
2 and way bigger n,

the speedup from the parity bit goes down to only 0.5-1%.

3.2 Implementation

Parameter Selection and Benchmarking. As seen in Section 3 and Algo-
rithm 1, the MMT/BJMM algorithm –even when limited to depth 2 search trees–
still has to be run with optimized parameters for the weights on all levels of
the search tree, and an optimized `. We used an adapted formula based on the

9

syndrome decoding estimator tool by Esser and Bellini [11] that precisely reflects
our implementation to obtain initial predictions for those parameters on concrete
instances. We then refined the choice experimentally.

To this end, we measure the number of iterations per second our cluster is
able to process for a specific parameter configuration. We then calculate the
expected runtime to solve the instance as the number of expected permutations
q−1 (from Equation (5)) divided by the number of permutations per second.
We then (brute-force) searched for an optimal configuration in a small interval
around the initial prediction that minimizes the expected runtime.

For instances with McEliece code length n ≤ 1350 we find optimality of the
most simple non-trivial MMT weight configuration with weight p2 = 1 for the
baselists L1, . . . , L4 on level 2, weight p1 = 2 in level 1, and eventually weight
p = 4 on level 0 in Figure 1. We refer to the weight configuration p2 = 1 in the
baselists as the low-memory configuration. Recall that for p2 = 0 MMT becomes
Prange’s algorithm, and therefore is a memory-less algorithm.

We call configurations with p2 ∈ {2, 3} high-memory configurations. The
choice p2 = 3 already requires roughly 40 gigabytes of memory. Increasing the
weight to p2 = 4 would increase the memory consumption by another factor of
approximately 211.

Gaussian Elimination. For the Gaussian elimination step we use an open
source version [1] of the Method of the four Russians for Inversion (M4RI), as
already proposed by Bernstein et al. and Peters [7,17]. According to [5] the M4RI
algorithm is preferable to other advanced algorithms like Strassen [20] up to
matrices of dimension six-thousand. We extended the functionality of [1] to allow
for performing a transformation to semi-systematic form, without fully inverting
the given matrix. Even for small-memory configurations the permutation and
Gaussian elimination step together only account for roughly 2-3% of our total
computation time. Therefore we refrain from further optimizations of this step
introduced in [7, 17].

Search Tree Construction. To save memory, we implemented the search tree
from Figure 1 in a streaming fashion, as already suggested by Wagner in [25].
See Figure 2 for an illustration showing that we have to store only two baselists
and one intermediate list.

Our implementation exploits that L1 = L3, and L2 and L4 only differ by
addition of s2 to the label H2y2. To compute the join of L1, L2 to L(1)

1 we hash
list L1 into a hashmap HL1 using π(H2y1) as an index. Then we search each label
π(H2y2) of list L2 in HL1 , and store all resulting matches in another hashmap
H
L

(1)
1

using the remaining `− `1 bits of label H2x2.
For the right half of the tree we reuse the hashmap HL1 and the list L2,

to which we add s2. The resulting matches from L
(1)
2 are directly processed

on-the-fly with H
L

(1)
1
, producing e2 ∈ L.The candidates e2 are again processed

on the fly, and checked whether they lead to the correct counterpart e1.

10

Level 2

Level 1

Level 0

HL1 L2 HL1

L2
+
s2

./`1 ./`1

H
L

(1)
1 L

(1)
2

./`

L

`

L1

Fig. 2: Streaming implementation of the MMT / BJMM search tree in depth two using
two physically stored lists and hashmaps. HL1 and H

L
(1)
1

denote the hashmaps, while
dashed lists and hashmaps are processed on the fly.

For speed optimization we worked with a single 64-bit register computation of
our candidate solutions throughout all levels of the tree. Even eventually falsifying
incorrect e1 can be performed within 64 bit most of the time. For construction
of the baselists L1, L2 we used a Gray-code type enumeration.

Parallelization of Low- and High-Memory Configuration. Recall that
ISD algorithms consist of a permutation and an enumeration part. In the low-
memory regime, we only perform a light enumeration with p2 = 1. The algorithmic
complexity is in this configuration dominated by the number of permutations.
Therefore, we choose to fully parallelize permutations, i.e., each thread computes
its own permutation, Gaussian elimination, and copy of the search tree.

In the high memory regime however, the number of permutations is drastically
reduced at the cost of an increasing enumeration complexity. Therefore for the
p2 = 2, 3 configurations we choose to parallelize the search tree construction.
To this end, we parallelize among N threads by splitting the baselist into N
chunks of equal size. To prevent race conditions, every bucket of a hashmap is

11

also split in N equally sized partitions, where only thread number i can insert
into partition i.

3.3 Other Benchmarked Variants – Depth 3 and LSH

It is known that asymptotically, and in the high error regime, an increased
search tree depth and the use of LSH techniques [8, 16] both yield asymptotic
improvements. We implemented these techniques, but for the following reasons
we did not use them for our record computations.

The estimates for depth 2 and 3 complexities are rather close, not giving clear
favor to depth 3. This explains why in practice the overhead of another tree level
outweighs its benefits.

LSH allows to save on some permutations at the cost of an increased complexity
of computing L from the level-one lists L(1)

1 , L
(2)
2 . Accordingly, the LSH savings

lie in the Gaussian elimination, the base list construction and the matching to
level one. Our benchmarks reveal that these procedures together only account
for 10-15% of the total running time in the low-memory setting. Moreover, LSH
is not well compatible with our streaming design. Therefore, LSH did not yet
provide speedups for our computations, but this will likely change for future
record computations, see the discussion in Section 4.2.

4 McEliece Cryptanalysis

In this section we give our experimental results on McEliece instances. Besides
giving background information on our two record computations, we discuss how
good different memory cost models fit our experimental data.

Moreover, we show that MMT reaches its asymptotics slowly from below,
which in turn implies that purely asymptotic estimates tend to overestimate bit
security levels. We eloborate on how to properly estimate McEliece bit security
levels in Section 7.

For our computations we used a cluster consisting of two nodes, each one
equipped with 2 AMD EPYC 7742 processors and 2 TB of RAM. This amounts
for a total of 256 physical cores, allowing for a parallelization via 512 threads.

4.1 Record Computations

Table 1 states the instance parameters of our records we achieved in the McEliece-
like decoding category of decodingchallenge.org.

McEliece-1223. We benchmarked an optimal MMT parameter choice of
(`, `1, p, p2) = (17, 2, 4, 1). With this low-memory configuration our computing
cluster processed 233.32 permutations per day, which gives an expected com-
putation time of 8.22 days, since in total we expect 236.36 permutations from
Equation (5). We solved the instance in 2.45 days only 30% of the expected

12

https://decodingchallenge.org

n k ω time (days) CPU years bit complexity

1223 979 23 2.45 1.71 58.3
1284 1028 24 31.43 22.04 60.7

Table 1: Parameters of the largest solved McEliece instances, needed wallclock time,
CPU years and bit complexity estimate.

running time. If we model the runtime as the geometrically distributed ran-
dom variable with parameter q = 2−36.36, then we succeed within 30% of the
expectation with probability 26%.

McEliece-1284. Our benchmarks identified the same optimal parameter set
(`, `1, p, p2) = (17, 2, 4, 1) as for the McEliece-1223. For this configuration our
estimator formula yields an expected amount of 238.49 permutations. We bench-
marked a total performance of 233.26 permutations per day, leading to an expected
37.47 days. We solved the challenge within 31.43 days which is about 84% of the
expected running time, and happens with probability about 57%.

64
0

69
5

75
1

80
8

86
5

92
3

98
2

10
41

11
01

11
61

12
23

12
84

13
47

14
09

14
73

15
36

10

20

30

40

n

C
P
U

tim
e
in

lo
g 2

s

experiments
expectation
records
interpolation

Fig. 3: Running time of experiments and records as well as interpolation for McEliece.

13

Experimental Results and Discussion. In Figure 3, we plot our record
computations as squares. Before we performed our record computations, we
heavily tested our implementation with smaller instances n < 1000. As before,
we computed the expected running time for every value of n, denoted as larger
open diamonds in Figure 3, via the quotient of expected permutations and
permutations per second on our cluster. The small diamonds depict the actual
data points which cluster around their expectation, as desired.

The runtime jumps from n = 695 to n = 751 and from n = 982 to n =
1041 can be explained by the instance generation method. For every choice
of n the parameters k and ω are derived on decodingchallenge.org as (see [3])
k =

⌈ 4n
5
⌉
and ω =

⌈
n

5dlogne

⌉
.

For most consecutive instances ω increases by one, but for n = 695 to n = 751
there is an increase of 2, whereas for n = 982 to n = 1041 there is a decrease of 1.
Besides these jumps, the instance generation closely follows the Classic McEliece
strategy.

Comparison with other Implementations. We also compare our implemen-
tation to those of Landais [14] and Vasseur [24]. These implementations were
used to break the previous McEliece challenges, with the only exception of the
n = 1161 computation by Narisada, Fukushima, and Kiyomoto that uses non-
publicly available code. We find that our implementation performs 12.46 and
17.85 times faster on the McEliece-1284 challenge and 9.56 and 20.36 times faster
on the McEliece-1223 instance than [14] and [24], respectively.

4.2 The Cost of Memory

Not very surprising, our experimental results show that large memory consump-
tion leads to practical slowdown. This is in line with the conclusion of the
McEliece team [9] that a constant memory access cost model, not accounting for
any memory costs, underestimates security. However, it remains answer how to
properly penalize an algorithm with running time T for using memory M . Most
prominent models use logarithmic, cube-root or square-root penalty factors, i.e.
costs of T · logM , T · 3

√
M or T ·

√
M , respectively.

In [11] it was shown that logarithmic costs do not heavily influence parameter
selection of enumeration-based ISD algorithms, whereas cube-root costs lets the
MMT advantage deteriorate. Thus, it is crucial to evaluate which cost model
most closely matches experimental data.

Break-Even Point for High-Memory Regime. Using our estimator formula
we find that under cube-root memory access costs the point where the low-memory
configuration p2 = 1 becomes inferior lies around n = 6000, falling in the 256-bit
security regime of McEliece. In contrast, the logarithmic cost model predicts the
break even point at n ≥ 1161.

By benchmarking the running time of our implementation in the range
n = 1101 to 1536 for different choices of p2, see Figure 4, we experimentally

14

https://decodingchallenge.org

11
01

11
61

12
23

12
84

13
47

14
09

14
73

15
36

25

30

35

40

n

C
P
U

tim
e
in

lo
g 2

s

expected time low-memory
expected time high-memory

Fig. 4: Estimated running times for low- and high-memory configurations.

find a break even point at n ≈ 1347. For n ≥ 1347 the choice p2 = 3 performs
best. The configuration p2 = 2 was experimentally always inferior to p2 = 1 and
p2 = 3 (which is consistent with our estimation). The reason is that as opposed
to p2 = 2 the configuration p2 = 3 does allow for a BJMM parameter selection
with p = 8 < 4p2, and also leads to a better balancing of list sizes in the search
tree.

In conclusion, the experimentally benchmarked break-even point is way closer
to the theoretical point of n = 1161 in the logarithmic cost model than to
n = 6000 in the cube-root model. This already supports the use of logarithmic
costs, especially when we take into account that many of our implementation
details heavily reward the use of low-memory configurations, such as:

– Large L3 Caches. Our processors have an exceptionally large L3 cache of 256
MB that is capable of holding our complete lists in low-memory configurations.

– Use of Hashmaps. As indicated in Section 3.2, our parallelization is less
effective e.g. for hashmaps in the large-memory regime.

– Communication complexity. As opposed to low-memory configurations the
high-memory regime requires thread communication for parallelization.

4.3 McEliece Asymptotics: From Above and from Below

It was analyzed in [21], that asymptotically all ISD algorithms converge for
McEliece instances to Pranges complexity bound(

1− k

n

)ω
, see Equation (2).

15

Since we have rate k
n = 0.8 for the decodingchallenge.org parameters, we expect

an asymptotic runtime of
T (n) = 22.32 n

log n . (6)

This asymptotic estimates supresses polynomial factors. Thus, in Prange’s algo-
rithm we have rather 22.32(1+o(1)) n

log n , and the algorithm converges to Equation (6)
from above. For other advanced ISD algorithms the asymptotics suppresses poly-
nomial runtime factors as well as second order improvements. Thus, they have
runtime 22.32(1±o(1)) n

log n , and it is unclear whether they converge from above or
below.

Let us take the interpolation line from our data in Figure 3, where we use for
the runtime exponent the model function f(n) = a · n

5 logn + b. This yields

a = 2.14 and b = −22.33,

where the negative b accounts for instances which can be solved in less than a
second. This experimentally demonstrates that the convergence is clearly from
below, even including realistic memory cost.

However, we still want to find the most realistic memory cost model. To this
end, we used our estimator for all instances from Figure 3 in the three different
memory access models, constant, logarithmic and cube-root. The resulting bit
complexities are illustrated in Figure 5 in a range n ∈ [640, 1536] for which in
practice we have optimal p2 ≤ 3. For each model we computed the interpolation
according to f(n) = a · n

5 logn + b. For a constant access cost we find a = 2.04,
for a logarithmic a = 2.13, and for the cube-root model we find a = 2.24. Hence,
again a logarithmic access cost most accurately models our experimental data.

Cryptographic Parameters. So far, we considered only instances with n ≤
1536. However, the current round 3 McEliece parameters reach up to code
length n = 8192. Thus, we also used our estimator to check the slopes a in this
cryptographic regime. We compared the ISD algorithms of Prange, Stern and our
MMT/BJMM variant. For all algorithms we imposed logarithmic memory access
costs T · logM and considered the three cases of unlimited available memory, as
well as 280-bit and 260-bit as memory limitation for M .

The results for the exponent model f(n) = a · n
5 logn + b are given in Table 2.

Prange Stern MMT

unlimited 2.438 2.297 2.075
M ≤ 280 2.438 2.299 2.207
M ≤ 260 2.438 2.308 2.287

Table 2: Slope of interpolation of bitcomplexities under logarithmic memory access costs
considering instances with n ≤ 8192 according to the model function f(n) = a· n

5 log n
+b.

16

https://decodingchallenge.org

64
0

69
5

75
1

80
8

86
5

92
3

98
2

10
41

11
01

11
61

12
23

12
84

13
47

14
09

14
73

15
36

40

50

60

70

80

n

bi
tc
om

pl
ex
ity

cube-root
logarithmic
consant

Fig. 5: Estimated bitcomplexities for different memory access cost models and corre-
sponding interpolations.

We observe that Prange does not quickly converge to Equation (2) from above.
For Stern and MMT however we are even in the most restrictive memory setting
below the exponent from Equation (2). This clearly indicates an overestimate of
McEliece security using Equation (2). We eloborate on this more qualitatively in
Section 7.

5 The Quasi-Cyclic Setting: BIKE and HQC

The proposals of BIKE and HQC –both alternate finalists of the NIST PQC
competition– use double circulant codes with coderate 1

2 , i.e., n = 2k. It has
been shown by Sendrier [19] that these codes allow for a speedup of Stern’s ISD
algorithm by a factor of up to

√
k. The basic observation is that the cyclicity

immediately introduces k instances of the syndrome decoding problem, where
a solution to any of the k instances is a cyclic rotation of the original solution.
Thus, this technique is widely known as Decoding One Out of Many (DOOM).

Let H1, H2 ∈ Fk×k2 be two circulant matrices satisfying(
H1 H2

)
(e1, e2) = s

with e1, e2 ∈ Fk2 . Let us denote by roti(x) the cyclic left rotation of x by i
positions. Then for any i = 0, . . . , k − 1 we have(

H1 H2
)

(roti(e1), roti(e2)) = roti(s) =: si.

17

This implies that a solution to any of the k instances (H1H2, si, ω) yields (e1, e2).
Note that in the special case of s = 0, thus, when actually searching for a

small codeword the instances are all the same, meaning there simply exist k
different solutions e. In this case any ISD algorithm obtains a speedup of k.

For s 6= 0 one usually assumes a speedup of
√
k in the quasi-cyclic setting,

referring to Sendrier’s DOOM result [19]. However, [19] only analyzes Stern’s
algorithm.

In the following section we adapt the idea of Sendrier’s DOOM to the
MMT/BJMM algorithm in the specific setting of double circulant codes, achieving
speedups slightly larger than

√
k both in theory and practical experiments.

5.1 Decoding one out of k (DOOMk)

To obtain a speedup from the k instances we modify the search tree of our
MMT/BJMM variant such that in every iteration all k syndromes are considered.
To this end, similar to Sendrier, we first enlarge list L4 (compare to Figure 2) by
exchanging every element (x, Hx) ∈ L4 by (x, Hx + s̄i) for all i = 1 . . . k, where
s̄i := Gsi denotes the i-th syndrome after the Gaussian elimination. This results
in a list that is k times larger than L4. To compensate for this increased list size
we enumerate in L4 initially only vectors of weight p2 − 1 rather than p2.

This simple change already allows for a speedup of our MMT/BJMM algorithm
of order

√
k, as shown in the following lemma.

Lemma 5.1 (DOOMk speedup). A syndrome decoding instance with double
circulant parity-check matrix, code rate k

n = 1
2 and error weight ω = Θ(

√
k)

allows for a speedup of the MMT/BJMM algorithm by a factor of Ω(
√
k).

Proof. First note, that since list L4 is duplicated for every syndrome si by the
correctness of the original MMT algorithm our modification is able to retrieve
any of the rotated solutions if permutation distributed the weight properly.

Let us first analyze the impact of our change on the size of the list L4. The
decrease of the weight of the vectors in L4 from p2 to p2 − 1 decreases the size
by a factor of

δL :=
((k+`)/2

p2

)((k+`)/2
p2−1

) =
k+`

2 − p2 + 1
p2

≈ k

2 · p2
,

since `, p2 � k. Thus, together with the initial blowup by k for every syndrome
we end up with a list that is roughly 2p2 times as large as the original list. Next
let us study the effect on the probability of a random permutation distributing
the error weight properly for anyone of the k error vector rotations, which is

δP :=
(
n−k−`
ω−p+1

)(
k+`
p−1
)
· k/
(
n
ω

)(
n−k−`
ω−p

)(
k+`
p

)
/
(
n
ω

) =
(
n−k−`
ω−p+1

)(
k+`
p−1
)
· k(

n−k−`
ω−p

)(
k+`
p

)
= (k − `− ω + p) · p · k

(ω − p+ 1)(k + `− p+ 1) = Ω(
√
k).

18

Instance log
(√

k
) Speedup

k ω Stern MMT

Challenge-1 451 30 4.41 4.88 4.96
Challenge-2 883 42 4.89 5.39 5.43
QC-2918 1459 54 5.26 5.77 5.77
BIKE-1 12323 134 6.79 7.58 7.47
BIKE-3 24659 199 7.29 8.00 7.55
BIKE-5 40973 264 7.66 8.32 8.06
HQC-1 17669 132 7.05 8.14 8.00
HQC-3 35851 200 7.56 8.55 8.39
HQC-5 57637 262 7.91 8.83 8.66

Table 3: Estimated DOOMk speedups for Stern and MMT in the quasi-cyclic setting
with double circulant codes (n = 2k).

Here the denominator states the probability of a permutation inducing the
correct weight distribution on any of the k syndromes, while the numerator
is the probability of success in any iteration of the MMT algorithm (compare
to Equation (5)). Observe that the last equality follows from the fact, that
ω = Θ(

√
k) and p� ω as well as `� k.

So far we showed, that our modification increases the list size of L4 by a
small factor of 2p2, while we enhance the probability of a good permutation for
any of the given k instances by a factor of Ω(

√
k). While in the case of Sterns’

algorithm this is already enough to conclude that the overall speedup in this
setting is Ω(

√
k), as long as p2 � k, for MMT/BJMM we also need to consider

the reduced amount of representations. Note that the amount of representations
decreases from an initial R to Rk, i.e., by a factor of

δR := Rk
R

=
(
p−1
p/2
)(
k+`−p+1
p1−p/2

)(
p
p/2
)(
k+`−p
p1−p/2

)
= (k + `− p+ 1) · p/2

(k + `− p/2− p1 + 1) · p = (k + `− p+ 1)
2(k + `− p+ 1− ε) ≈

1
2 ,

Here ε = p1 − p/2 is the amount of 1-entries added by BJMM to cancel
out during addition, which is usually a small constant. Hence `1 := logR in
Algorithm 1 decreases by one. This in turn increases the time for computing the
search-tree by a factor of at most two.

In summary, we obtain a speedup of δP = Ω(
√
k) on the probability while

losing a factor of at most δL
δR

= 4p2 in the construction of the tree. Hence, for
MMT/BJMM with p2 �

√
k this yields an overall speedup of Ω(

√
k) . ut

We included the DOOMk improvement in our estimator formulas for MMT as well
as Stern. Table 3 shows the derived estimated speedups computed as the difference

19

of the estimates including DOOMk and those not including the improvement.
The results show that both algorithms achieve comparable DOOM speedups
slightly larger than

√
k. Additionally, we performed practical experiments on the

instances listed as Challenge-1 and Challenge-2 to verify the estimates. Therefore,
we solved these instances with MMT with and without the DOOM technique.
Averaged over ten executions we find speedups of 4.99 and 5.40 respectively.

6 Quasi-Cyclic Cryptanalysis

In the quasi-cyclic setting we obtained five new decoding records on decodingchal-
lenge.org with our MMT implementation [3], see Table 4. Instances are defined
on [3] for every ω using parameters n = ω2 + 2 and k = n

2 , closely following the
design of BIKE and HQC.

n k ω time (days) CPU years bit complexity

2118 1059 46 0.08 0.05 50.5
2306 1153 48 0.22 0.15 52.5
2502 1459 50 0.30 0.21 54.6
2706 1353 52 1.18 0.83 56.6
2918 1459 54 3.33 2.33 58.6

Table 4: Parameters of the largest solved BIKE/HQC instances, needed wallclock time,
CPU years and bit complexity estimates.

QC-2918. The largest instance we were able to solve has parameters (n, k, w) =
(2918, 1459, 54), and took us 3.33 days on our cluster. The optimal identified
parameter set is (`, `1, p, p2) = (21, 1, 3, 1), for which we estimated 231.9 permu-
tations. We were able to perform 229.31 permutations per day, resulting in an
expected running time of 6.02 days. Our computation took only 55% of the
expected time, which happens with probability 42%.

Interpolation. In Figure 6 we give the expected running times that we obtained
via benchmarking, both with (diamonds) and without (triangles) our DOOMk

result from Section 5.1. Our five record computations are depicted as squares. All
record computations where achieved in a runtime closely matching the expected
values.

In the quasi-cyclic setting with rate k
n = 1

2 and ω =
√
n Prange’s runtime

formula from Equation (2) gives 2
√
n. An interpolation of our experimental data

points using the model f(n) = a
√
n+ b yields a best fit for

f(n) = 1.01
√
n− 26.42. (7)

20

https://decodingchallenge.org
https://decodingchallenge.org

90
2

10
26

11
58

12
98

14
46

16
02

17
66

19
38

21
18

23
06

25
02

27
06

29
18

5

10

15

20

25

30

35

n

C
P
U

tim
e
in

lo
g 2

s

DOOMk expectations
DOOMk interpolation
non-DOOMk expectations
non-DOOMk interpolation
records

Fig. 6: Estimated running times and interpolations for low- and high-memory configura-
tions.

Coefficient a = 1.01 shows how accurately our MMT implementation matches
the asymptotics already for medium sized instances, i.e., our MMT advantage
and the polynomial runtime factors cancel out.

Concrete vs Asymptotic. Similar to the McEliece setting in Section 4.3 and
in Table 2, we also performed for BIKE/HQC an interpolation of estimated
bit complexities in the logarithmic cost model using the algorithms of Prange,
Stern and our MMT/BJMM variant. We included instances up to code length
120, 000, reflecting the largest choice made by an HQC parameter set. As opposed
to Section 4.3 we do not need addtional memory limitations, since none of the
optimal configurations exceeds 260-bit of memory.

The interpolation with f(n) = a
√
n + b gave us slopes of 1.054, 1.019 and

1.017 for Prange, Stern and MMT, respectively, i.e., all slopes are slightly above
the asymptotic prediction of a = 1. Thus, as opposed to the McEliece setting our
MMT benefits are canceled by polynomial factors.

Verification of the DOOMk Speedup. From Figure 6, we can also experimen-
tally determine the speedup of our DOOMk technique inside MMT. Lemma 5.1
predicts a speedup of

√
k =

√
n/2. Let f(n) = 1.01

√
n − 26.42 as before, and

in addition take the model f(n) + c · log(n/2)
2 for non-DOOMk. The new model

should fit with c = 1.

21

The interpolation of our experimental non-DOOMk data, see the dashed line
in Figure 6, yields c = 1.17. Thus, in practice we obtain a DOOMk speedup of
k0.58, slightly larger than

√
k.

7 Estimating Bit-Security for McEliece and BIKE/HQC

Based on our record computations, let us extrapolate to the hardness of breaking
round-3 McEliece, BIKE and HQC. To provide precise statements about the
security levels of proposed parameter sets, we also need to compare with the
hardness of breaking AES. Recall that NIST provides five security level categories,
where the most frequently used categories 1, 3, and 5 relate to AES. Category
1,3, and 5 require that the scheme is as hard to break as AES-128, AES-192, and
AES-256, respectively.

For AES we benchmarked the amount of encryptions per second on our cluster
using the openssl benchmark software. The results for different key-lengths are
listed in Table 5. For AES-192 and AES-256, we increased the blocklength from
128 to 256 bit, such that on expectation only a single key matches a known
plaintext-ciphertext pair.

AES-128 AES-192 AES-256

109enc/sec 2.16 0.96 0.83
Table 5: Number of AES encryptions per second performed by our cluster.

From Table 5 we extrapolate the running time to break AES-128, AES-192,
and AES-256 on our hardware.

Extrapolation for McEliece and BIKE/HQC. Let us detail our extrapola-
tion methodology. We take as starting points the real runtimes of 22.04 = 24.46

CPU years for McEliece-1284 and 2.33 CPU years for QC-2918.
Then we estimate by which factor it is harder to break the round-3 instances,

and eventually compare the resulting runtime to the hardness of breaking AES.
Let us give a numerical example for McEliece-4608. Assume that we take 260-

bit memory limitation forM , and we are in the most realistic logarithmic memory
cost model. In this setting our estimator (without LSH) gives for n = 4608 a
bit complexity of 187.72, and for n = 1284 a bit complexity of 65.27. Thus, it
is a factor of 2122.45 harder to break McEliece-4608 than to break our record
McEliece-1284. Therefore, we conclude that a break of McEliece-4608 on our
hardware would require 24.46 · 2122.45 = 2126.91 CPU years.

In contrast, from Table 5 we conclude that breaking AES-192 on our hardware
requires 2145.24 CPU years. Thus, from our extrapolation McEliece-4608 is a
factor of 218.33 easier to break than AES-192. This is denoted by −18.33 in
Table 6.

22

McEliece Slightly Overestimates Security. For completeness, we consider
in Table 6 all three different memory-access cost models, constant, logarithmic
and cube-root, even though we identified the logarithmic model as most realistic
(compare to Section 4.2). Recall that in these models an algorithm with memoryM
suffers either no penalty (constant), a multiplicative factor of logM (logarithmic)
or even a 3

√
M factor penalty (cube-root).

Moreover, we also provide memory limitations for the constant and logarithmic
models. This is unnecessary in the cube-root model, in which no optimal parameter
configuration exceeds a memory bit complexity of 60.

McEliece Category 1
n = 3488

Category 3
n = 4608

Category 5a
n = 6688

Category 5b
n = 6960

Category 5c
n = 8192

unlimited 0.09 −24.86 −23.18 −23.80 6.10
constant M ≤ 280 1.54 −21.52 −11.67 −10.87 23.37

M ≤ 260 4.80 −19.12 − 3.86 − 3.80 32.70

unlimited 1.77 −23.11 −20.70 −21.29 8.84
logarithmic M ≤ 280 2.86 −20.41 −10.46 − 9.63 24.64

M ≤ 260 5.55 −18.33 − 3.46 − 3.40 33.16

cube-root 10.37 −12.27 0.82 1.38 38.22

Table 6: Difference in bit complexity of breaking McEliece and corresponding AES
instantiation under different memory access cost.

Let TMcEliece denote the extrapolated McEliece runtime, and let TAES be
the extrapolated AES runtime in the respective security category. Then Table 6
provides the entries log2(TMcEliece

TAES
). Thus, a negative x-entry indicates that this

McEliece instance is x bits easier to break than its desired security category.
Whereas the Category 1 instance McEliece-3488 meets its security level in

all memory models, Category 3 instance McEliece-4608 misses the desired level
by roughly 20 bits for constant/logarithmic costs. Even for cube-root costs
McEliece-4608 is still 12 bits below the required level.

The Category 5a and 5b McEliece instances are in the realistic logarithmic
model with 280-bit memory also 10 bits below their desired security level.

BIKE/HQC Accurately Matches Security. In Table 7 we state our results
for BIKE and HQC. As opposed to the McEliece setting we do not need memory
limitations here, since none of the estimates exceeded 260-bit of memory.

Note that for BIKE we need to distinguish an attack on the key and an attack
on a message. That is because recovering the secret key from the public key
corresponds to finding a low-weight codeword, whereas recovering the message
from a ciphertext corresponds to a syndrome decoding instance, where the

23

BIKE / HQC Category 1 Category 3 Category 5

BIKE message 2.44 2.50 3.49
constant key 3.88 2.13 5.87

HQC 1.24 4.28 2.23

BIKE message 2.86 3.04 4.10
logarithmic key 4.42 3.11 6.74

HQC 1.72 4.87 2.90

BIKE message 4.47 5.20 6.68
cube-root key 5.77 5.00 9.03

HQC 3.62 7.34 5.75
Table 7: Difference in bit complexity of breaking BIKE/HQC and corresponding AES
instantiation under different memory access cost.

syndrome is usually not the zero vector. Both settings allow for different speedups
as outlined in Section 5.

We observe that the BIKE as well as the HQC instances precisely match their
claimed security levels already in the conservative setting of constant memory
access costs. Introducing memory penalties only leads to slight increases in the
security margins.

References

1. Albrecht, M., Bard, G.: The M4RI Library. The M4RI Team (2021), http://m4ri.
sagemath.org

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

3. Aragon, N., Lavauzelle, J., Lequesne, M.: decodingchallenge.org (2019), http:
//decodingchallenge.org

4. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: A finite regime
analysis of information set decoding algorithms. Algorithms 12(10), 209 (2019)

5. Bard, G.V.: Algorithms for solving linear and polynomial systems of equations over
finite fields, with applications to cryptanalysis. University of Maryland, College
Park (2007)

6. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: How 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) Advances in Cryptology – EUROCRYPT 2012. Lecture Notes
in Computer Science, vol. 7237, pp. 520–536. Springer, Heidelberg, Germany, Cam-
bridge, UK (Apr 15–19, 2012). https://doi.org/10.1007/978-3-642-29011-4_31

7. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the mceliece cryp-
tosystem. In: International Workshop on Post-Quantum Cryptography. pp. 31–46.
Springer (2008)

24

http://m4ri.sagemath.org
http://m4ri.sagemath.org
http://decodingchallenge.org
http://decodingchallenge.org
https://doi.org/10.1007/978-3-642-29011-4_31

8. Both, L., May, A.: Decoding linear codes with high error rate and its impact for lpn
security. In: International Conference on Post-Quantum Cryptography. pp. 25–46.
Springer (2018)

9. Chou, T., Cid, C., UiB, S., Gilcher, J., Lange, T., Maram, V., Misoczki, R., Nieder-
hagen, R., Paterson, K.G., Persichetti, E., et al.: Classic McEliece: conservative
code-based cryptography 10 october 2020 (2020)

10. Dumer, I.: On minimum distance decoding of linear codes. In: Proc. 5th Joint
Soviet-Swedish Int. Workshop Inform. Theory. pp. 50–52 (1991)

11. Esser, A., Bellini, E.: Syndrome decoding estimator. IACR Cryptol. ePrint Arch.
2021, 1243 (2021)

12. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In:
Gilbert, H. (ed.) Advances in Cryptology – EUROCRYPT 2010. Lecture Notes in
Computer Science, vol. 6110, pp. 235–256. Springer, Heidelberg, Germany, French
Riviera (May 30 – Jun 3, 2010). https://doi.org/10.1007/978-3-642-13190-5_
12

13. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., et al.: Factorization of a 768-bit
rsa modulus. In: Annual Cryptology Conference. pp. 333–350. Springer (2010)

14. Landais, G.: Code of Grégory Landais (2012), https://gforge.inria.fr/
projects/collision-dec/

15. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) Advances in Cryptology – ASIACRYPT 2011.
Lecture Notes in Computer Science, vol. 7073, pp. 107–124. Springer, Heidel-
berg, Germany, Seoul, South Korea (Dec 4–8, 2011). https://doi.org/10.1007/
978-3-642-25385-0_6

16. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding
of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology
– EUROCRYPT 2015, Part I. Lecture Notes in Computer Science, vol. 9056, pp.
203–228. Springer, Heidelberg, Germany, Sofia, Bulgaria (Apr 26–30, 2015). https:
//doi.org/10.1007/978-3-662-46800-5_9

17. Peters, C.: Information-set decoding for linear codes over f q. In: International
Workshop on Post-Quantum Cryptography. pp. 81–94. Springer (2010)

18. Prange, E.: The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory 8(5), 5–9 (1962)

19. Sendrier, N.: Decoding one out of many. In: International Workshop on Post-
Quantum Cryptography. pp. 51–67. Springer (2011)

20. Strassen, V.: Gaussian elimination is not optimal. Numerische mathematik 13(4),
354–356 (1969)

21. Torres, R.C., Sendrier, N.: Analysis of information set decoding for a sub-linear
error weight. In: Post-Quantum Cryptography. pp. 144–161. Springer (2016)

22. Various: pqc-forum: Round 3 official comment: Classic mceliece (2021), available at:
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/EiwxGnfQgec

23. Various: pqc-forum: Security strength categories for code based crypto (and trying
out crypto stack exchange) (2021), available at: https://groups.google.com/a/
list.nist.gov/g/pqc-forum/c/6XbG66gI7v0

24. Vasseur, V.: Code of Valentin Vasseur (2020), https://gitlab.inria.fr/
vvasseur/isd

25. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) Advances in
Cryptology – CRYPTO 2002. Lecture Notes in Computer Science, vol. 2442, pp.
288–303. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22,
2002). https://doi.org/10.1007/3-540-45708-9_19

25

https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1007/978-3-642-13190-5_12
https://gforge.inria.fr/projects/collision-dec/
https://gforge.inria.fr/projects/collision-dec/
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-662-46800-5_9
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/EiwxGnfQgec
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/6XbG66gI7v0
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/6XbG66gI7v0
https://gitlab.inria.fr/vvasseur/isd
https://gitlab.inria.fr/vvasseur/isd
https://doi.org/10.1007/3-540-45708-9_19

	McEliece needs a Break – Solving McEliece-1284 and Quasi-Cyclic-2918 with Modern ISD

