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Abstract

Distributed key generation (DKG) is an important building block in designing many efficient dis-
tributed protocols. In this work, we initiate the study of communication complexity and latency of
distributed key generation protocols under a synchronous network in a point-to-point network. Our key
result is the first synchronous DKG protocol for discrete log-based cryptosystems with O(κn3) commu-
nication complexity (κ denotes a security parameter) that tolerates t < n/2 Byzantine faults among n
parties. We show two variants of the protocol: a deterministic protocol with O(t∆) latency and ran-
domized protocol with O(∆) latency in expectation where ∆ denotes the bounded synchronous delay.
In the process of achieving our results, we design (1) a gradecast protocol with optimal communication
complexity of O(κn2) for linear-sized inputs and latency of O(∆), (2) a primitive called “recoverable set
of shares” for ensuring recovery of shared secrets, (3) an oblivious leader election protocol with O(κn3)
communication and O(∆) latency , and (4) a multi-valued validated Byzantine agreement (MVBA) pro-
tocol with O(κn3) communication complexity for linear-sized inputs and O(∆) latency in expectation.
Each of these primitives may be of independent interest.

1 Introduction

The problem of distributed key generation (DKG) is to set up a common public key and its corresponding
secret keys among a set of participating parties without a trusted entity. DKG protocols are used to reduce
the amount of trust assumptions placed in other cryptographic protocols such as threshold signatures [10,47]
and threshold encryption schemes [16]. The latter can itself be used to implement random beacons [19],
reduce the complexity of consensus protocols [3, 50], in multiparty computation protocols [29, 30], or to
outsource management of secrets to multiple, semi-trusted authorities [20,35].

Given its widespread application, we need efficient solutions for DKG. An ideal solution for DKG would
have low communication complexity, low latency, optimal resilience, provide uniform randomness of generated
keys such that the generated keys can be useful in a wider class of cryptosystems while being secure. In
this work, we focus on the synchronous network setting where messages sent by a sender will arrive at a
receiver within a known bounded delay ∆. Synchronous protocols have the advantage of tolerating up to a
minority corruption. While a myriad of DKG protocols [13,26,28,41,44] have been proposed in this setting,
existing solutions fall short in one way or the other. For example, Pedersen’s DKG [44] produces non-uniform
keys in the presence of the adversary, the DKG protocol due to Gennaro et al. [26] has a high latency as
it requires additional secret sharing using Feldman’s VSS [22], and the protocol due to Gurkhan et al. [28]
does not generate keys for discrete log-based cryptosystems. In addition, all the DKG protocols considered
in the synchronous model assume a broadcast channel (that provides a consensus abstraction) and invoke
Ω(n) broadcasts, where n is the number of parties. Since the best known Byzantine consensus protocols
with optimal resilience incur at least O(κn3) communication where κ is a security parameter, instantiating
a broadcast channel with state-of-the-art Byzantine broadcast [1, 18] or Byzantine agreement [33] trivially
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Figure 1: Overview of sub-protocols and their dependencies

blows up the communication complexity to O(κn4)1. Moreover, due to the use of multiple broadcast channel
rounds, the latency of such protocols in a point-to-point network setting has not been explored. This leaves
us with the following open question:

Can we design a synchronous distributed key generation protocol supporting a wide class of cryptosystems
with o(κn4) communication complexity, good latency and tolerating a minority corruption?

We answer this question positively by showing two DKG protocols for discrete log-based cryptosystems
each with O(κn3) communication complexity. The first protocol is deterministic and has O(t∆) latency
whereas the second protocol is randomized and has O(∆) latency in expectation.

1.1 Key Technical Ideas and Results

Our DKG protocols do not use broadcast channels and use Byzantine consensus protocols in a non black-box
fashion to achieve O(κn3) communication. Compared to the broadcast channel-based DKG in the literature
which requires Ω(n) broadcasts over two or more rounds, our protocols requires a single invocation of
consensus instance. While DKG protocols [2,34] without broadcast channel assumption have been explored
in the asynchronous model, they either incur high communication [34] or do not generate keys for discrete
log-based cryptosystems [2]. In the synchronous model, we provide the first solutions to DKG without
broadcast channel with all the desirable properties with O(κn3) communication.

A typical approach among existing works is to perform n parallel verifiable secret sharings [22, 43] such
that all honest parties agree on a common set of qualified parties QUAL who correctly performed secret
sharing and then compute final public key and secret keys from the secret shares of all parties in QUAL. In
our protocols, we replace broadcast channels with weaker primitives such as multicast and gradecast [23,33].
Thus, parties first perform secret sharing by using these weaker primitives to identify a set of n− t parties
who correctly shared their secrets, where t is the fault tolerance. During the sharing phase, no consensus
primitives is invoked to agree on set of qualified parties. The downside of this approach is that different
honest parties may have different views regarding the acceptance of the shared secrets. As a result, different
honest parties obtain different subsets of at least n− t parties (say AcceptListi for party Pi) who they accept
to have performed secret sharing correctly. For DKG, it is required that all honest parties compute the final
public key and secret keys from a common set of parties. Thus, we need to agree on a common set of parties
too. Parties then use a Byzantine consensus primitive to agree on one common subset where the input is
their individual AcceptList. Once, the Byzantine consensus primitive terminates and outputs a common set

1Momose and Ren [39] gave a deterministic BA protocol with O(κn2) communication with sub-optimal resilience of t <
(1− ε)n/2 for a small constant ε. Using their BA protocol to instantiate broadcast channels will result in DKG protocols with
O(κn3) communication with sub-optimal resilience and linear round complexity.
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AcceptListk, the final public key and secret keys are computed from AcceptListk. Note that this approach
requires only a single instance of Byzantine consensus.

Key Building Blocks

Communication optimal weak gradecast. As a building block, we first provide a communication optimal
gradecast protocol satisfying the gradecast definition of Katz and Koo [33] who required a communication
complexity of O(κn3). (This definition is slightly weaker than the one presented by Feldman and Micali [23].)
Specifically, we show the following result:

Theorem 1 (Informal). Assuming a public-key infrastructure, there exists a gradecast protocol for an input
of size ` with O(n`+ (κ+w)n2) communication tolerating t < n/2 Byzantine faults, where κ is the security
parameter and w is the size of witness.2

Recoverable set of shares using weak gradecast. We use the gradecast primitive to perform commu-
nication efficient secret sharing. A consequence of using gradecast (instead of broadcast channels) is that
parties may have different views regarding the acceptance of the shared secrets. For instance, each party
Pi outputs a different set AcceptListi and this set may also contain Byzantine parties. However, we still
do guarantee that for any set output by any party (including Byzantine parties), there is a verifiable proof
vouching that all parties in the subset have correctly shared their secret and these secrets are thus recover-
able. We call this sub-protocol Recoverable set of shares. Using our communication efficient gradecast, our
recoverable set of shares protocol can be achieved in O(κn3) communication and constant latency.

Oblivious leader election. We design a communication efficient oblivious leader election (OLE) protocol
(aka, common coin) with O(κn3) communication and O(∆) latency. The OLE protocol elects a common hon-
est leader with probability at least 1

2 . Our OLE protocol uses Publicly Verifiable Secret Sharing scheme [14]
whose security is not known under an adaptive adversaryy. This improves upon the OLE protocol of Katz
and Koo [33] by a factor of n in communication at the cost of tolerating only static corruption. In particular,
we show the following:

Theorem 2 (Informal). Assuming a public-key infrastructure, there exists an oblivious leader election pro-
tocol with O(κn3) communication and O(∆) latency tolerating t < n/2 Byzantine faults, where κ is the
security parameter.

Agreeing on a recoverable set of shares using efficient multi-valued validated Byzantine agree-
ment. Our next goal is to agree on one such set output by one of the parties. We stress that due to the
proof associated with the output of the recoverable set of shares protocol, we can agree on the set output by
any party, including a Byzantine party. However, here, the size of the set and its proof is linear, which can
potentially worsen the communication complexity again. Thus, we need a consensus primitive that takes
long messages as inputs and outputs one of the “valid” input values. Such a primitive is called multi-valued
validated Byzantine agreement (MVBA) [12] in the literature.

MVBA was first formulated by Cachin et al. [12] to allow honest parties to decide on any externally valid
values. Recent works [4, 36] have given communication efficient protocols for MVBA. For long messages of
size `, the protocol due to Abraham et al. [4] incurs O((` + κ)n2) ommunication and the protocol due to
Luo et al. [36] incurs O(`n+ κn2). Both of these works assume a threshold setup. Without threshold setup
assumptions, the communication blows up by a factor of n in all the above protocols.

To the best of our knowledge, no MVBA protocols have been formulated in the synchronous model
tolerating t < n/2 Byzantine faults. A recent work [40] provides an efficient BA protocol for long messages.
However, since it is a BA protocol, they output a value only when all honest parties start with the same
large input. We give the first construction of MVBA protocol without threshold setup. Our MVBA protocol

2see Section 3 for details on witness.
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incurs expected O(`n2 + κn3) communication and expected 18∆ time. Specifically, we show the following
result:

Theorem 3 (Informal). Assuming a public-key infrastructure, there exists a multi-valued validated Byzantine
agreement protocol for an input of size ` with expected O(n2`+ (κ+w)n3) communication and expected 18∆
tolerating t < n/2 Byzantine faults, where κ is the security parameter and w is the size of witness.

Efficient distributed key generation. Using our recoverable set of shares protocol where parties output
different sets of size at least n − t parties and our MVBA protocol, honest parties can agree on a common
set from which the final public key and secret keys are computed. In particular, we obtain a randomized
DKG protocol with O(κn3) communication and expected 36∆ time.

Theorem 4 (Informal). Assuming public-key infrastructure and random oracle, there exists a randomized
protocol that solves secure synchronous distributed key generation tolerating t < n/2 Byzantine faults with
expected O((κ + w)n3) communication and expected 36∆ time, where κ is the security parameter and w is
the size of the witness.

Although the randomized DKG protocol terminates in constant expected time, it can take a linear time
in the worst case. In this case, the protocol incurs O(κn4) communication. As an alternative, we provide a
deterministic solution which incurs O(κn3) communication. A recent work RandPiper [9] provides a BFT
SMR protocol with O(κn2) communication per epoch even for O(n)-sized input. Here, an epoch is a period
which incurs some constant ∆ time. In our deterministic DKG protocol, we execute the BFT SMR protocol
for t+1 epochs with each epoch coordinated by a distinct leader. The leader proposes his set of n− t parties
along with the proof. Honest parties output the first committed set to compute the final public key and
secret keys. In particular, we obtain the following result:

Theorem 5 (Informal). Assuming a public-key infrastructure and random oracle, there exists a deterministic
protocol that solves secure synchronous distributed key generation tolerating t < n/2 Byzantine faults with
O((κ + w)n3) communication and 18∆ + (11(t + 1)∆), where κ is the security parameter and w is the size
of the witness.

A lower bound on the communication complexity of deterministic distributed key generation.
We formalize a communication lower bound for a deterministic DKG protocol. Specifically, we show the
following result:

Theorem 6. There does not exist a deterministic protocol for secure distributed key generation tolerating t
Byzantine parties with a communication complexity of at most t2/4 messages.

We remark that our deterministic DKG protocol incurs O(κn3) communication and thus, our results are
not tight. We leave open the problem of coming up with a better bound or designing a deterministic DKG
protocol with improved communication complexity.

Summary of contributions. To summarize, we make the following contributions in this work:

1. As a warm up, we first present a secure DKG protocol assuming broadcast channels with two broadcast
rounds in Section 4. This protocol lays a groundwork for our two DKG protocols which are the key
contributions.

2. We present a communication optimal weak gradecast protocol in Section 5.

3. We present a recoverable set of shares protocol that optimizes round and communication complexity
in the sharing phase in Section 6.

4. We present an oblivious leader election protocol in Section 7.

5. We present a multi-valued validated Byzantine agreement protocol in Section 8.
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Table 1: Comparison of related works on Distributed Key Generation

Network Resilience Communication Latency Sim Sec. Primitive Dlog.

Pedersen [44] sync. 1/2 O(κn4) O(t∆) 7 VSS X

Gennaro et al. [26] sync. 1/2 O(κn4) O(t∆) X VSS X

Neji et al. [41] sync. 1/2 O(κn4) O(t∆) 7 VSS X

ETHDKG [46] sync. 1/2 O(κn4) O(t∆) 7 VSS X

Gurkhan et al. [28] sync. logn O(κn3 logn) O(t∆) 7 PVSS 7

NIDKG [27] sync. 1/2 O(κn4) O(t∆) X PVSS X

Hybrid-DKG [31] psync. 1/3 O(κn4) O(t) rnds X VSS X

Kokoris et al. [34] async. 1/3 O(κn4) O(t) rnds 7 VSS X

Abraham et al. [2] async. 1/3 Õ(κn3) O(1) rnds 7 PVSS 7

Das et al. [15] async. 1/3 O(κn3 logn) O(logn) rnds X VSS X

Our work (rand.) sync. 1/2 O(κn3) O(∆) X∗ VSS X

Our work (deter.) sync. 1/2 O(κn3) O(t∆) X VSS X

κ is the security parameter denoting maximum of sizes of signatures, hashes, and other components used in the protocol.
Sim Sec. means the protocol maintains secrecy which can be proven via a simulator. Primitive refers the cryptographic

primitives used. Dlog. refers to the generation of keys for discrete log based cryptosystems. rnds. refers to rounds. Protocols
expressed in terms of rounds are run in either partial synchrony or asynchrony and their time complexity cannot be expressed

in terms of ∆. rand. implies randomized. deter. implies deterministic.
∗ Our common coin protocol uses PVSS whose simulation security is not known. While the simulator can use such a common

coin as a black box, the randomized DKG protocol itself may not be simulation secure.

6. Using above primitives, we provide two communication and round efficient DKG protocols in Section 9.

7. Finally, we formalize a communication lower bound for a deterministic DKG in Section 10.

Limitations. In this work, we assume that the adversary is static. We do not know any adaptive attacks on
our protocols, yet the existing proof techniques are insufficient to prove security against adaptive adversaries.
Canetti et al. [13] show how to build adaptively secure DKG protocols and several of our techniques could be
applicable in realizing their protocol in the point-to-point network setting. We also assume a q-SDH based
CRS (Common Reference String) setup. This assumption is only used for bilinear accumulators which could
be replaced with Merkle tree accumulators resulting in a log n multiplicative overhead in the communication
complexity. We make use of Publicy verifiable secret sharing (PVSS) to build a common coin protocol and
PVSS scheme is not known to be simulation secure. As a result, we are unsure of simulation security of our
randomized DKG protocol.

2 Related Work

2.1 Related Works in Distributed Key Generation Literature

We review the most recent and closely related DKG protocols. An overview of the closely related work
is provided in Table 1. While a myriad of DKG protocols [13, 21, 26–28, 41, 44, 46] have been proposed in
the synchronous model, all of these protocols assume a broadcast channel. All of these protocols invoke
Ω(n) parallel broadcasts. A natural choice to instantiate the broadcast channels is via Byzantine consensus
primitives such as Byzantine Broadcast [1,18] or Byzantine agreement [33]. To the best of our knowledge, all
deterministic Byzantine consensus protocols incur O(κn3) communication without threshold signatures and
t+1 rounds [6]. For randomized consensus protocols, the best known protocol with optimal resilience in this
setting is Katz and Koo [33] which incurs O(κn4) communication. Although, randomized consensus protocols
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terminate in expected constant rounds, n parallel instances of randomized consensus requires log n rounds to
terminate. For the sake of simplicity, we assign a communication of O(κn4) and O(t∆) rounds for the DKG
protocols that use broadcast channel in Table 1. Compared to all these protocols, our protocols do not use
broadcast channel and use Byzantine consensus protocols. In fact, our protocols require a single consensus
invocation and incurs O(κn3) communication and expected constant rounds for randomized protocol and
O(t∆) rounds for deterministic protocol. Our protocols are secure against static failures and generates
uniform keys for discrete logarithm based cryptosystems.

Pedersen [44] introduced the first efficient DKG protocol for discrete log cryptosystems in the synchronous
setting. Their protocol is based on n parallel invocations of Feldman VSS [22]. Gennaro et al. [26] showed
that Pedersen’s DKG protocol can be biased by an adversary to generate non-uniform keys. To remove
the bias, they proposed a new DKG protocol that requires additional secret sharing rounds; hence, is less
efficient. Canneti et al. [13] extended Gennaro et al.’s DKG to handle adaptive corruptions.

Neji et al. [41] presented an efficient DKG protocol to remove the bias without the additional secret sharing
round. However, in their protocol, honest parties still need to agree on whether to perform reconstruction for
a secret shared by a party which requires additional consensus invocation. While they provide a simulator
based proof to prove secrecy property of their protocol, we believe their protocol is not simulatable as an
adversary playing last can influence the distribution.

Gurkhan et al. [28] presented DKG protocol without a complaint phase by using publicly verifiable secret
sharing(PVSS) [14] scheme. However, they tolerate only log n Byzantine faults and does not generate keys
for discrete-logarithms based cryptosystems; reducing its usefulness.

Recently, Groth [27] presents a non-interactive DKG protocol with a refresh procedure that allows re-
freshing the secret key shares to a new committee. Erwig et al. [21] considers large scale non-interactive
DKG protocol and handles mobile Byzantine faults. Both of above protocols assume broadcast channels.

Several other works tackle the DKG problem from different angels. Kate et al. [32] reduced the size
of input to the broadcast channel from O(n) to O(1) by using polynomial commitments [32]. Tomescu et
al. [49] reduce the computational cost of dealings in Kate et al. [31] at the cost of a logarithmic increase in
communication cost. Schindler et al. [46] instantiate the broadcast channel with the Ethereum blockchain.
In Table 1, we replaced the Ethereum blockchain with Byzantine consensus primitives for fair comparison.

Kate et al. [31] gave the first practical DKG protocol in the partially synchronous communication model
which requires 3t + 2f + 1 parties to tolerate t Byzantine faults and f crash faults. Kokoris-Kogias et
al. [34] gave the first DKG protocol in asynchronous communication model with optimal resilience (t < n/3).
Their protocol has O(κn4) communication and O(t) rounds overhead. Recently, Abraham et al. [2] gave an
improved DKG protocol with O(κn3) communication and expected O(1) round complexity. However, their
protocol uses PVSS and hence does not generate keys for dlog-based cryptosystems. Concurrent to our work,
Das et al. [15] gave the dlog-based DKG protocol with O(κn3 log n) communication and expected O(log n)
round complexity in the asynchronous communication model.

2.2 Related Works in Byzantine Agreement Literature

There has been a long line of work in improving communication and round complexity of consensus proto-
cols [1, 4, 11,24,33,39,48,50]. We review the most recent and closely related works.

Multi-valued validated Byzantine agreement was first introduced by Cachin et al. [12] to allow honest
parties to agree on any externally valid values. Their protocol works in asynchronous communication model
and has optimal resilience (t < n/3) with O(`n2 + κn2 + n3) communication for input of size `. Later,
Abraham et al. [4] gave an MVBA protocol with optimal resilience and O(`n2 + κn2) communication in the
same asynchronous setting. Luo et al. [36] extended the work of Abraham et al. [4] to handle long messages of
size ` with a communication complexity of O(`n+κn2). All of these protocols assumed threshold signatures.
In the absence of threshold signatures, the communication complexity blows up by a factor of n in all of
these protocols.

To the best of our knowledge, no MVBA protocol has been formulated in the synchronous setting toler-
ating t < n/2 Byzantine faults. Our MVBA protocol incurs O(`n2 + κn3) for inputs of size ` and does not
assume threshold signatures and terminates in expected constant rounds.
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Table 2: Comparison of related works on MVBA with `-bit input

Network Res. Communication Latency Assumption

Cachin et al. [12] async. 1/3 O(`n2 + κn2 + n3) O(1) rnds Threshold setup

VABA [4] async. 1/3 O(`n2 + κn2) O(1) rnds Threshold setup

DUMBO-MVBA [36] async. 1/3 O(`n+ κn2) O(1) rnds Threshold setup

Our work sync. 1/2 O(`n2 + κn3) 36∆ (exp) PKI

κ is the security parameter denoting maximum of sizes of signatures, hashes, and other components used in the protocol. Res.
refers to the number of Byzantine faults tolerated in the system. rnds refers to rounds and exp stands for “in expectation”.

Our MVBA protocol can also be used for binary inputs as a Binary Byzantine Agreement (BBA) protocol
tolerating t < n/2 Byzantine faults and terminating in expected O(∆) rounds. Feldman and Micali [24] were
the first to give a BBA protocol that terminates in constant expected rounds. Their protocol works in
plain authenticated model without PKI and tolerates t < n/3 Byzantine faults (which is optimal). In
the authenticated setting, Katz and Koo [33] gave a BBA protocol tolerating t < n/2 Byzantine faults
terminating in expected constant rounds. Their protocol incurs O(κn4) communication and terminates in
expected 4 epochs. We extend the BBA protocol of Katz and Koo [33] and reduce its communication by
linear factor while handling multi-valued input by designing a communication optimal gradecast protocol.
We also reduce its round complexity by a factor of 2. A simple and efficient BBA tolerating t < n/3
Byzantine faults in the authenticated model was given by Micali [38]. Abraham et al. [1] reduced the round
complexity of BBA protocol to expected 10 rounds. However, their protocol required a threshold setup to
generate a perfect common coin; a perfect common coin ensures all honest parties output the same random
value. Compared to their work, our work does not require a threshold setup and executes with a weak
common coin while terminating in expected 14 rounds (equivalent of 18∆).

3 Model and Preliminaries

We consider a system consisting of n parties in a reliable, authenticated all-to-all network, where up to
t < n/2 parties can be Byzantine faulty. The model of corruption is static i.e., the adversary picks the
corrupted parties before the start of protocol execution. The Byzantine parties may behave arbitrarily. A
non-faulty party is said to be honest and executes the protocol as specified.

Messages exchanged between parties may take at most ∆ time before they arrive, where ∆ is a known
maximum network delay. To provide safety under adversarial conditions, we assume that the adversary is
capable of delaying the message for an arbitrary time upper bounded by ∆. In addition, we assume all
honest parties have clocks moving at the same speed. They also start executing the protocol within ∆ time
from each other. This can be easily achieved by using the clock synchronization protocol [1] once at the
beginning of the protocol.

∆ Synchrony Model. Our protocols are expressed in a ∆ synchrony model where all parties execute an
epoch for a certain amount of ∆ time and all honest parties enter and exit an epoch within ∆ time of each
other. Within an epoch, parties are allowed to execute protocol steps when events are triggered i.e., when
certain messages are received. This model differs from lock-step synchrony model [1, 18, 33] where honest
parties are synchronized in each round and parties execute protocol steps only at the start of the round. In
this regard, ∆ synchrony model requires lesser time to execute a protocol.

PKI. Each party Pi has a public key. The parties and their public keys are common knowledge. We make
use of digital signatures and PKI to prevent spoofing and replays and to validate messages. Message x sent
by a party Pi is digitally signed by Pi’s private key and is denoted by 〈x〉i. We denote H(x) to represent
invocation of the random oracle H on input x.
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Equivocation. Two or more messages of the same type but with different payload sent by a party is
considered an equivocation. In order to facilitate efficient equivocation checks, the sender sends the payload
along with signed hash of the payload. When an equivocation is detected, broadcasting the signed hash
suffices to prove equivocation by the sender.

Setup. Let p be a prime number that is poly(κ) bits long, and G be a group of order p such that it is
computationally infeasible except with negligible probability in κ to compute discrete log. Let Zp denote its
scalar field. Moreover, let g and h denote the generators of G where a ∈ Zp such that ga = h is not known
to any t subset of the nodes.

We make the standard computational assumption on the infeasibility to compute discrete logarithms
called the discrete-log assumption [26]. In particular, we assume that the adversary is unable to compute
discrete logarithms modulo large (based on the security parameter κ) primes.

3.1 Definitions

A distributed protocol DKG performed by n parties (P1, . . . , Pn) generates private outputs (x1, . . . , xn) called
the shares and a public output y.

Definition 3.1 (Secure Distributed Key Generation for Dlog based cryptosystems [26]). A dlog based DKG
protocol that distributes a secret x among n parties through shares (x1, . . . , xn) where xi is a share output to
party Pi is t-secure if in the presence of an adversary that corrupts up to t parties, the following requirements
for correctness and secrecy are maintained.

Correctness.

C1. All subsets of t+ 1 shares provided by honest parties define the same unique secret key x ∈ Zp.

C2. All honest parties have the same value of public key y = gx ∈ G, where x ∈ Zp is the unique
secret guaranteed by (C1).

C3. x is uniformly distributed in Zp (and hence y is uniformly distributed in G).

Secrecy. No information on x can be learned by the adversary except for what is implied by the value
y = gx.

More formally, the secrecy condition is expressed in terms of simulatability: for every (probabilistic
polynomial-time) adversary A that corrupts up to t parties, there exists a (probabilistic polynomial-time)
simulator S, such that on input an element y ∈ G, produces an output distribution which is polynomially
indistinguishable from A’s view of a run of the DKG protocol that ends with y as its public key output.

3.2 Primitives

In this section, we present several primitives used in our protocols.

Linear erasure and error correcting codes. We use standard (t+ 1, n) Reed-Solomon (RS) codes [45].
This code encodes t+ 1 data symbols into code words of n symbols using ENC function and can decode the
t+ 1 elements of code words to recover the original data using DEC function. More details on ENC and DEC
are provided in Appendix A.1.

Cryptographic accumulators. A cryptographic accumulator scheme constructs an accumulation value
for a set of values using Eval function and produces a witness for each value in the set using CreateWit
function. Given the accumulation value and a witness, any party can verify if a value is indeed in the set
using Verify function. More details on these functions are provided in Appendix A.2.

In this paper, we use collision free bilinear accumulators from Nguyen [42] as cryptographic accumu-
lators which generates constant sized witness. Note that bilinear accumulators of Nguyen [42] requires
q-SDH assumption. We can use Merkle trees [37] instead of q-SDH assumption at the expense of O(log n)
multiplicative communication complexity.
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Publicly Verifiable Secret Sharing – PVSS. A publicly verifiable secret sharing (PVSS) scheme allows
any party to verify the correctness of the shares distributed by the dealer. Here, we assume existence of an
aggregatable PVSS scheme which allows multiple PVSS sharing transcripts to be aggregated into a single
transcript. One such scheme is the enhanced PVSS scheme of Gurkhan et al. [28] which allows aggregating
linear number of PVSS transcripts to a single aggregated transcript whose size is still linear. Below, we
provide interfaces to an aggregatable PVSS scheme.

• PVSS.Setup(κ, aux): Generates the scheme parameters PVSS.pp. PVSS.pp is an implicit input to all
other algorithms.

• PVSS.Sh(s): A probabilistic algorithm run by party Pi that takes as input a secret s and outputs a
PVSS transcript pvss. The pvss also contains a description of the party who sent it.

• PVSS.ShVerify(pvss): A deterministic algorithm run by party Pi that returns 1 if it is convinced that
the transcript pvss of party Pj is valid.

• PVSS.Aggregate(D): An algorithm run by Party Pi that takes as input a set D containing at least t+1
PVSS transcripts from different parties and outputs a aggregated transcript agg pvss.

• PVSS.Verify(agg pvss): A deterministic algorithm that returns 1 if and only if the aggregated transcript
agg pvss contains PVSS transcript that pass verification from at least t+ 1 different parties. Returns
0 otherwise.

• PVSS.GetShare(agg pvss, ski): A probabilistic algorithm run by Party Pi that takes as input an aggre-
gated transcript, a secret key and returns its share sharei and a proof πi. The share also contains a
description of the party who sent it.

• PVSS.VerifyShare(agg pvss, sharej , πj): A deterministic algorithm run by party Pi that takes as input
aggregated transcript, a public key, a share, and a proof from Party Pj , and returns 1 to indicate
acceptance or 0 to indicate rejection.

• PVSS.Recon(R): Given a set R of t+ 1 valid secret shares, reconstruct the shared secret.

Non-Interactive Proof-of-Equivalence of Commitments [31]. Given commitments C〈g〉(s) = gs and
C〈g,h〉(s, r) = gshr to the same value s for generators g, h ∈ G and s, r ∈ Zp, a prover proves that she knows
s and r such that C〈g〉(s) = gs and C〈g,h〉(s, r) = gshr.

We denote this by NIZKPK≡Com(s, r, g, h, C〈g〉(s), C〈g,h〉(s, r)) = π≡Com ∈ Z3
p. A full construction of

NIZKPK≡Com is provided in Appendix A.3.

Normalizing the length of cryptographic building blocks. Let λ denote the security parameter,
κh = κh(λ) denote the hash size, κa = κa(λ) denote the size of the accumulation value and witness of
the accumulator and κv = κv(λ) denote the size of secret share and witness of a secret. Further, let
κ = max(κh, κa, κv); we assume κ = Θ(κh) = Θ(κv) = Θ(κa) = Θ(λ). Throughout the paper, we can use
the same parameter κ to denote the hash size, signature size, accumulator size and secret share size for
convenience.

4 Warm Up: Secure Distributed Key Generation with Two Broad-
cast Rounds

We first present a secure DKG protocol assuming a broadcast channel motivated from Gennaro et al.
DKG [26]. The presented DKG reduces the number of required rounds with broadcast to two, which is
a significant improvement over [26] requiring three broadcast rounds in the best case and five broadcast
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Sharing Phase

1. Deal. Each party (as a dealer) Pi selects two random polynomials fi(y), f ′i(y) over Zp of degree t:

fi(y) = ai0 + ai1y + · · ·+ aity
t, f ′i(y) = bi0 + bi1y + · · ·+ bity

t

Let si = ai0 = fi(0). Party Pi posts Cik = gfi(k)hf ′i(k) ∀k ∈ {1, . . . , n} on the broadcast channel. Party Pi

computes the secret shares sij = fi(j), s
′
ij = f ′i(j) and sends sij , s

′
ij privately to Pj ∀j ∈ [n].

2. Blame. Each party Pi verifies that the commitment vector contains a t degree polynomial (Equation (2)). For
j ∈ [n], check if

gsji · hs′ji = Cji (1)
n∏

k=1

CCodekjk = 1G, where {Code1, . . . ,Coden} ∈ C⊥ (2)

If the check fails for (dealer) party Pj , send 〈blame, j〉i to all parties and collect all the blames.

3. Forward blame. If more than t blame messages are collected for party Pj as the dealer in the previous step,
do not send anything for dealer Pj until the Decide step (Step 6).

Otherwise, for every 〈blame, j〉k received from party Pk, forward the blame messages to the dealer Pj .

4. Open. Each party Pi, who as a dealer, received 〈blame, i〉k from any party Pj , sends valid secret shares sik, s′ik
(that verifies Equation (1)) to party Pj .

5. Vote. If in Step 2, a party Pi received ≤ t 〈blame, j〉k messages and party Pj sent valid secret shares sjk, s′jk
for every 〈blame, j〉k it forwarded to party Pj , send a vote 〈vote, j〉i to party Pj . Forward the secret shares sjk,
s′jk to party Pk.

6. Decide. If party Pi, as a dealer, receives t + 1 〈vote, i〉 messages, post the vote-certificate on the broadcast
channel.

Each party Pi marks a party Pj qualified if it receives a vote-certificate for party Pj on the broadcast channel;
otherwise the party is disqualified. Party Pi builds a set of non-disqualified parties QUAL.

Generating Public key

7. Party Pi sets its share of the secret as xi =
∑

j∈QUAL sji, and computes x′i =
∑

j∈QUAL s
′
ji, C〈g〉(xi) = gxi ,

C〈g,h〉(xi, x′i) = gxihx′i and π≡Comi = NIZKPK≡Com(xi, x
′
i, g, h, C〈g〉(xi), C〈g,h〉(xi, x′i)). Party Pi sends (C〈g〉(xi),

π≡Comi) to all parties.

8. Upon receiving a tuple (C〈g〉(xj), π≡Comj), compute C〈g,h〉(xj , x′j) = gxjhx′j locally as follows:

gxjhx′j =
∏

m∈QUAL

Cmj (3)

Ensure π≡Comj verifies NIZKPK≡Com between C〈g〉(xj) and C〈g,h〉(xj , x′j).
9. Upon receiving t+ 1 valid gxj values, perform Lagrange interpolation in the exponent to obtain y = gx. Output

y as the public key and xi as the private key.

Figure 2: Secure distributed key generation in dlog-based cryptosystems
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rounds otherwise.3 In later sections, we replace the broadcast channel with our own Byzantine consensus
primitives to design communication and round efficient DKG protocols. Gennaro et al. [26] presented a
secure DKG protocol that produces uniform public keys based on Pedersen’s VSS [43].

In their protocol, each party, as a dealer, selects a secret uniformly at random and shares the secret
using Pedersen’s VSS protocol. Since Pedersen’s VSS provides information theoretic secrecy guarantees,
the adversary has no information about the public key and hence cannot bias it. At the end of the secret
sharing, a set of qualified parties QUAL who correctly shared their secret is defined. Once the set QUAL is
fixed, parties in set QUAL invoke an additional round of secret sharing using Feldman’s VSS [22] to generate
the final public key. While this approach ensures generation of uniform keys and maintains secrecy, it adds
additional overhead as it incurs more latency and communication to perform additional secret sharing. In
addition to the above overhead, Pedersen VSS requires three broadcast rounds. In particular, parties post
the commitment, complaints and secret shares corresponding to the complaints on to the broadcast channel
during the sharing phase.

We improve upon the DKG protocol of Gennaro et al. [26] in the following ways. The improved protocol
is described in Figure 2.

Improving latency in the sharing phase. We improve latency by reducing information posted on the
broadcast channel by using improved eVSS (iVSS) protocol [9] which requires only 2 broadcast rounds.4

Reducing the broadcast rounds greatly improves latency as broadcast channels are generally instantiated
using Byzantine broadcast or Byzantine agreement protocols which have worst-case linear round complexity.

In iVSS, the dealer posts commitments on the broadcast channel and privately sends the secret shares to
each party. Instead of posting the complaints on the broadcast channel, parties multicast blame message if
they receive invalid secret shares or receive no secret shares at all. Parties then forward all blame messages
to the dealer5. The dealer is expected to send secret shares corresponding to the blame messages (i.e., secret
shares sij , s

′
ij if a Pj sent blame message against dealer Pi). If the dealer sends all secret shares corresponding

to the blame message it forwarded, a party sends a vote message to the dealer. Upon receiving t + 1 vote
messages, the dealer posts a vote-certificate containing t + 1 vote messages. Honest parties consider the
dealer to be honest if they see the vote-certificate on the broadcast channel.

Observe that using iVSS scheme, the dealer posts only the commitment and vote-certificate on the
broadcast channel. This improves the sharing phase by one broadcast round.

Using commitments to evaluations instead of commitments to coefficients. In VSS such as Ped-
ersen’s VSS and Feldman’s VSS and thus in [26], commitments to the secret share are commitments to the
coefficients of the t-degree polynomial, which imply verifying a share requires O(t) computations. This results
in O(nt) computations per VSS instance in the complaint stage (where every node verifies opening of up to
t complaints) and during reconstruction. SCRAPE [14, Section 2.1] showed how to commit (using discrete
log commitments) to evaluations instead of coefficients of the polynomial and verify that the committed
evaluations are of a degree t polynomial by using the property of coding schemes: if C is the code space
for an (n, t) sharing, then by sampling a vector {Code1, . . . ,Coden} ∈ C⊥, we can check that the Pedersen’s
commitments to the evaluations are an (n, t) sharing (see Equation (1)). If λ is logg h, then commitments

to evaluations form a polynomial gfhf
′

= gf+λf
′

which is another (n, t) polynomial thereby allowing to use
the coding technique. This is an information-theoretic technique and therefore does not affect the security
of the underlying VSS.

Removing additional secret sharing while generating public key. We remove the additional secret
sharing performed using Feldman’s VSS by taking an alternate approach [31]. Instead of executing an addi-
tional secret sharing, assuming random oracle, we make use the NIZK proof of equivalence of commitments

3Using NIZK similar to us, the number of rounds for Gennaro et al. DKG [26] can be reduced to two in the best case
and three otherwise in a rather straightforward manner; however, reducing two broadcast rounds in all situations is the key
challenge here.

4Alternatively, we can use broadcast optimal VSS protocol of Backes et al. [7] which has 2 broadcast rounds. We prefer
iVSS protocol for its simplicity.

5In an implementation, we can only forward up to t blames instead of all the blames.
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NIZKPK≡Com to generate the public key. This approach does not require additional secret sharing via Feld-
man’s VSS. Once the sharing phase is completed, a set of qualified parties QUAL is finalized. Then, each party
Pi computes its share of the shared secrets i.e., xi =

∑
Pj∈QUAL sji and x′i =

∑
Pj∈QUAL s

′
ji along with com-

mitments C〈g〉(xi), C〈g,h〉(xi, x′i). It then multicasts commitment of its share C〈g〉(xi) and the corresponding
NIZKPK≡Com proof π≡Comi to prove Pi knows xi and x′i.

All parties can compute the commitment C〈g,h〉(xi, x′i) locally as shown in Equation (3) and verify the cor-
rectness of commitment C〈g〉(xi) using π≡Comi. The final public key Y is computed via Lagrange interpolation
in the exponent using t+ 1 distinct commitments C〈g〉(xi).

A proof of the following theorem is provided in Appendix B.1.

Theorem 7. Under discrete-log assumption, the protocol in Figure 2 is a secure protocol for distributed key
generation in dlog-based cryptosystem tolerating t < n/2 Byzantine faults.

5 Communication Optimal Weak Gradecast

One of the main tools in the design of our communication efficient protocols is our communication optimal
gradecast protocol. Gradecast (aka graded broadcast) is a relaxed version of broadcast introduced by Feldman
and Micali [23] which can be obtained in constant number of rounds. Feldman and Micali [23] provided a
gradecast protocol tolerating t < n/3 Byzantine faults in the plain authenticated model without PKI and
digital signatures. Later, Katz and Koo [33] provided a slightly weaker gradecast protocol in the authenticated
model tolerating t < n/2 Byzantine faults using PKI and digital signatures. The gradecast protocol of
Katz and Koo [33] incurs O(κn3) communication in the absence of threshold signatures. We present its
communication optimal counterpart with O(κn2) communication while propagating linear-sized input.

Definition 5.1 (Weak Gradecast [33]). A protocol with a designated sender Pi holding an initial input v is
a gradecast protocol tolerating t < n/2 Byzantine parties if the following conditions hold for any adversary
controlling at most t Byzantine parties:

1. Each honest party Pj outputs a value vj with a grade gj ∈ {0, 1, 2}.

2. If the sender is honest, each honest party outputs vi with a grade of 2.

3. If an honest party Pi outputs a value v with a grade of 2, then all honest parties output value v with a
grade of ≥ 1.

Our gradecast (refer Figure 4) implements weaker gradecast [33] (Definition 5.1) which relaxes grade-
cast [23] when no honest party outputs a grade of 2 and allows honest parties to output different values with
a grade of 1. In particular, when an honest party Pj outputs a value v with a grade of 1, our primitive allows
other honest parties to output a different value v′ with a grade of 1 as long as no honest party outputs a
value with a grade of 2. This weaker gradecast suffices for our purpose. In Appendix C, we show a quadratic
lower bound on the communication complexity of weak gradecast for completeness.

Deliver(mtype,m, ze, e) :

1. Partition input m into t+1 data symbols. Encode the t+1 data symbols into n code words (s1, . . . , sn) using ENC
function. Compute witness wj ∀sj ∈ (s1, . . . , sn) using CreateWit function. Send 〈codeword,mtype, sj , wj , ze, e〉i to
party j ∀j ∈ [n].

2. If party Pj receives the first valid code word 〈codeword,mtype, sj , wj , ze, e〉∗ for the accumulator ze, forward the
code word to all the parties.

3. Upon receiving t+ 1 valid code words for the accumulator ze, decode m using DEC function.

Figure 3: Deliver function

12



Deliver. As a building block, we first present a Deliver function (refer Figure 3) used by an honest party to
efficiently propagate long messages. This function is adapted from RandPiper [9] where linear-sized messages
are propagated among all honest parties with O(κn2) communication cost. The Deliver function enables
efficient propagation of long messages using erasure coding techniques and cryptographic accumulators. The
input parameters to the function are a keyword mtype, long message m, accumulation value ze corresponding
to message m and epoch e in which Deliver function is invoked. The input keyword mtype corresponds to
message type containing long message m sent by its sender. In order to facilitate efficient leader equivocation,
the input keyword mtype, hash of long message m, accumulation value ze, and epoch e are signed by the
sender of message m. We omit epoch parameter when the Deliver function is not invoked within an epoch.

Set oi = ⊥ and gi = ⊥. Set epoch-timer to 5∆ and start counting down. Each party Pi performs the following
operations:
1. If party Pj is the designated sender, then it multicasts its input value v in the form of 〈gcast, v, z〉j where z is
the accumulation value of v.

2. If epoch-timer ≥ 3∆ and party Pi receives pr := 〈gcast, v, z〉j , invoke Deliver(gcast, pr, z,⊥). Set grade-timer to
2∆ and start counting down. When grade-timer expires and no party Pj equivocation has been detected, set oi = v
and gi = 2.

3. When epoch-timer expires, let vi be the first value received. If vi = ⊥, set oi = ⊥ and gi = 0, else if oi = ⊥, set
oi = vi and gi = 1. Output (oi, gi).

4. (At any time) If equivocating hashes signed by party Pj are detected, multicast the equivocating hashes.

Figure 4: Weak Gradecast with O(`n+ (κ+ w)n2) communication.

The gradecast protocol is presented in Figure 4. In the protocol, the designated sender Pj sends value
v by multicasting 〈gcast, v, z〉j where z is the accumulation value for value v. We note that the size of
input value v can be large. To facilitate efficient equivocation checks, the sender Pj signs 〈gcast, H(v), z〉
and sends v separately. Whenever an equivocation by the sender is detected, multicasting signed hashes
suffices to prove equivocation by the sender. The reduction in communication is obtained via the use of
efficient erasure coding schemes [45], cryptographic accumulators [8] and broadcast of equivocating hashes
(if any). Broadcasting of equivocating hashes been explored in several efficient BFT protocols [3, 5, 48]. In
this protocol, we assume that parties start executing a protocol instance within ∆ time of each other. We
note that we embed the gradecast protocol directly in the following protocols without separately invoking
the primitive. We present it in Figure 4 for intuition.

Fact 8. If an honest party invokes Deliver at time τ for an object b sent by party Pj and no honest party has
detected a party Pj equivocation by time τ + ∆, then all honest parties will receive object b by time τ + 2∆.

Proof. Suppose an honest party Pi invokes Deliver at time τ for an object b sent by party Pj . Party Pi must
have sent valid code words and witness 〈codeword, mtype, sk, wk, ze, e〉i computed from object b to every
party Pk ∈ P at time τ . The code words and witness arrive at all honest parties by time τ + ∆.

Since no honest party has detected a party Pj equivocation by time τ + ∆, it must be that either honest
parties will forward their code word 〈codeword,mtype, sk, wk, ze, e〉 when they receive the code words sent
by party Pi or they already sent the corresponding code word when they either invoked Deliver for object
b or received the code word from some other party Pj . In any case, all honest parties will forward their
epoch e code word corresponding to object b by time τ + ∆. Thus, all honest parties will have received t+ 1
valid code words for a common accumulation value ze by time τ + 2∆ sufficient to decode object b by time
τ + 2∆.

Theorem 9. The protocol in Figure 4 is gradecast protocol satisfying Definition 5.1.

Proof. We first consider the case when an honest party Pi outputs a value vi with a grade of 2. If an honest
party Pi outputs a value vi with a grade of 2, then it must have received value vi at some time τ such that
its epoch-timer ≥ 3∆ and invoked Deliver to deliver value v, and set grade-timer to 2∆. In addition, party
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Pi did not detect any party Pj (the designated sender) equivocation by time τ + 2∆. This implies no other
honest party detected a party Pj equivocation by time τ + ∆. By Fact 8, all honest parties receive value
v by time τ + 2∆. In addition, since party Pi invoked Deliver at time τ , all honest parties receive a code
word for value v by time τ + ∆. Thus, value v is the first value received by all honest parties and all honest
parties output value v with a grade of ≥ 1.

Next, we consider the case when the designated sender (party Pj) is honest. Since, the sender is honest,
it sends its input value v to all honest parties such that their epoch-timer ≥ 3∆. Thus, all honest parties
invoke Deliver and set grade-timer to 2∆. Moreover, the honest sender does not equivocate. This implies all
honest parties output value v with a grade of 2.

The case where each honest party outputs a value with a grade ∈ {0, 1, 2} is trivial by design.

Lemma 10 (Communication Complexity). Let ` be the size of the input, κ be the size of accumulator, and
w be the size of witness. The communication complexity of the protocol in Figure 4 is O(n`+ (κ+ w)n2).

Proof. At the start of the protocol, the sender multicasts its value of size ` to all party Pj ∀j ∈ [n] along
with κ sized accumulator. This step incurs O(n` + κn). Invoking Deliver on an object of size ` incurs
O(n` + (κ + w)n2), since each party multicasts a code word of size O(`/n), a witness of size w and an
accumulator of size κ. Thus, the overall communication complexity is O(n`+ (κ+ w)n2).

6 Recoverable Set of Shares

In Section 4, we presented a secure DKG protocol by assuming broadcast channels in the sharing phase. In
general, broadcast channels are instantiated using Byzantine Broadcast (BB) or Byzantine agreement (BA)
protocols. To the best of our knowledge, all known BB and BA protocols tolerating t < n/2 Byzantine faults
incur O(κn3) communication in the absence of threshold signatures [1, 18, 33]. The secure DKG protocol
required 2n broadcasts. Thus, instantiating broadcast channel using BB or BA protocols for our secure
DKG protocol trivially incurs O(κn4) communication. In this section, we present a slightly weaker sharing
protocol by appropriately replacing the broadcast channel with multicast and our weak gradecast. This
protocol completes in constant rounds and acts as a building block towards constructing the DKG. We call
this protocol Recoverable Set of Shares.

In the sharing phase of our secure DKG protocol with broadcast channels (Figure 2), each honest party
outputs a common set QUAL consisting of size at least n−t parties such that the secrets shared by parties in set
QUAL can be reconstructed. In more detail, honest parties have a common decision on which parties correctly
shared their secret at the end of the sharing phase. Requiring this agreement was free in the presence of
broadcast channels; however, under a point-to-point network, it blows up communication complexity.

Thus, in our protocol, we instead rely on the use of weaker primitives such as multicast and gradecast
instead of consensus to share secrets. As a result, each honest party Pi may have a different view regarding
the acceptance of the shared secret. Thus, each honest party Pi outputs a possibly different subset AcceptListi
of size at least n − t parties which they accept to have shared the secret correctly i.e., party Pi observes
the secrets shared by parties in AcceptListi can be reconstructed. It is in this regard, we call our protocol
recoverable set of shares as the secret shared by parties in AcceptListi can be reconstructed independent of
whether these parties are present in AcceptListj for j 6= i.

We stress that in recoverable set of shares protocol, honest parties need not agree on a common set and
may output a different subset of size at least n− t parties which they believe have shared the secret properly.
To ensure that the final keys for DKG are generated for a common set, parties need to agree on one such
set. In the following section, we present a multi-valued validated Byzantine agreement protocol to agree on
a common set.

Protocol Details. Each honest party Pi starts the recoverable set of shares protocol (refer Figure 5) with its
epoch-timeri set to 16∆ and starts counting down. At the start of the protocol, each honest party Pi selects
two random t degree polynomials fi(y) =

∑
k aiky

k over Zp and f ′i(y) =
∑
k biky

k over Zp such that fi(0) = si
and f ′i(0) = s′i. Party Pi generates the commitment Cik = gfi(k)hf

′
i(k) ∀k ∈ {1, . . . , n}. Let VSS. ~Ci represent
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Set epoch-timeri to 16∆ and start counting down. Each party Pi performs following operation:

1. Distribute. Each party Pi selects two random polynomials fi(y), f ′i(y) over Zp of degree t:

fi(y) = ai0 + ai1y + · · ·+ aity
t, f ′i(y) = bi0 + bi1y + · · ·+ bity

t

Let si = ai0 = fi(0). Party Pi generates the commitment Cik = gfi(k)hf ′i(k) ∀k ∈ {1, . . . , n}. Let VSS. ~Ci

represent Cik ∀k ∈ {1, . . . n}. Party Pi multicasts its proposal 〈propose,VSS. ~Ci, zpi〉i. Part Pi computes the
shares sij = fi(j), s

′
ij = f ′i(j) and sends sij , s

′
ij to Pj ∀j ∈ [n].

2. Blame/Forward. If epoch-timeri ≥ 14∆ and party Pi receives commitment commj :=
〈propose,VSS. ~Cj , zpj〉j and valid secret share sji, s

′
ji (i.e., satisfy Equation (1) with VSS. ~Cj) and, then

invoke Deliver(propose, commj , zpj ,−). If no valid secret shares has been received from party Pj until
epoch-timer ≥ 13∆, multicast 〈blame, j〉i to all parties.

3. Request open. Wait until epoch-timeri ≥ 11∆. Collect all blames received so far. If up to t blame are
received for party Pj , forward the blame messages to party Pj . If more than t blames are received for party
Pj then do not send anything until 5. If no blames for party Pj or party Pj equivocation has been detected,
send 〈vote, H(commj)〉i to party Pj .

4. Open. Party Pi sends secret shares sik, s′ik to party Pj , for every blame 〈blame, i〉k received from party Pj .

5. Vote. Upon receiving valid secret shares sjk, s′jk for every 〈blame, j〉k it forwarded and no party Pj equivo-
cation has been detected, send 〈vote, H(commj)〉i to party Pj . Forward secret share sjk to party Pk for every
〈blame, j〉k it received.

6. Vote cert. Upon receiving t + 1 distinct vote messages for commi (denoted by C(commi)), multicast
〈vote-cert, C(commi), zvi〉i.

7. Grade. If epoch-timeri ≥ 5∆ and party Pi receives the first vcj := 〈vote-cert, C(commj), zvj〉j , invoke
Deliver(vote-cert, vcj , zvj ,−). Set accept-timer[j] to 2∆ and start counting down. When accept-timer[j] reaches
0, if no party Pj equivocation has been detected, set AcceptListi[j] = 2. Let C(commj,i) be the first vote
certificate received from party Pj . If C(commj,i) = ⊥, set AcceptListi[j] = 0, else if AcceptListi[j] 6= 2, set
AcceptListi[j] = 1.

8. Propose Grade. Wait until epoch-timeri ≥ 3∆. Multicast 〈accept-list,AcceptListi〉i.

9. Verify and Ack. Upon receiving 〈accept-list,AcceptListj〉j from party Pj , if the following conditions hold
send 〈ack, H(AcceptListj)〉i to party Pj .

(a) |{h |AcceptListj [h] = 2}| ≥ n− t
(b) If AcceptListj [h] = 2 then AcceptListi[h] ≥ 1 ∀h ∈ [n].

10. (Non-blocking) Equivocation. If equivocating hashes signed by party Pj are detected, multicast the
equivocating hashes.

Figure 5: Recoverable Set of Shares
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Cik ∀k ∈ {1, . . . n.}. Party Pi multicasts the commitment in the form of a proposal 〈propose,VSS. ~Ci, zpi〉i
where zpi is the accumulation value of VSS. ~Ci. In order to facilitate efficient equivocation checks, party Pi
signs 〈propose, H(VSS. ~Ci), zpi〉 separately and sends VSS. ~Ci separately. Party Pi also privately sends secret
share sij , s

′
ij to party Pj ∀j ∈ [n].

If a party Pj receives valid secret share sij , s
′
ij along with the proposal commi := 〈propose,VSS. ~Ci, zpi〉i in

a timely manner (such that its epoch-timerj ≥ 14∆), it invokes Deliver(propose, commi, zpi,−) to propagate

the commitment VSS. ~Ci; otherwise party Pj multicasts 〈blame, i〉j . Observe that we ignore the epoch e
parameter in Deliver as the current protocol is not executed in an epoch.

Party Pj waits to collect any blame messages sent by other parties. If no blame message or party Pi
equivocation have been detected within the waiting time, party Pj sends a vote 〈vote, H(commi)〉j to party
Pi. If up to t blame messages are received for Pi, Pj forwards the blame messages to party Pi. Party Pi then
privately sends secret shares sik, s′ik to party Pj , for every blame 〈blame, i〉k received from party Pj . Upon
receiving valid secret shares for all 〈blame, i〉k it forwarded, party Pj sends a vote 〈vote, H(commi)〉 to party
Pi and also forwards secret shares sik, s′ik to party Pk.

Party Pi then waits to collect t+ 1 vote messages for H(commi), denoted by C(commi). A certificate on
the commi implies that secret si shared by party Pi can be reconstructed later. Party Pi then “gradecasts”
〈vote-cert, C(commi), zvi〉i where zvi is the accumulation value of C(commi). Similar to the proposal, the
hash of the certificate is signed to allow for efficient equivocation checks. It is important to note that two
different certificates for the same commitment commi is still considered an equivocation.

Invocation of gradecast on C(commi) ensures that if the party Pi is honest, all honest parties output a
common C(commi) with a grade of 2 and if an honest party Pk output C(commi) with a grade of 2, all other
honest parties output the certificate with a grade of ≥ 1.

Note that all parties (at least all honest parties) are executing the secret sharing phase. Thus, at the end
of gradecast step, each honest party outputs at least n− t certificates with a grade of 2 and output at most t
values with a grade ≤ 2. We call the list of grades for party Pj as AcceptListj . This list is a set of parties which
party Pj observes to have shared their secret properly and each secret can be reconstructed. Party Pj then
multicasts its AcceptListj to all other parties. Party Pk then checks the validity of AcceptListj by checking if
(i) |{h |AcceptListj [h] = 2}| ≥ n− t, and (ii) if AcceptListj [h] = 2 then AcceptListk[h] ≥ 1 ∀h ∈ [n]. The first
check ensures that AcceptListj contains at least n − t entries with AcceptListj [h] = 2. This check trivially
satisfies for AcceptList sent by an honest party as each honest party receives at least n− t certificates with
a grade of 2. Later, the DKG protocols use secrets from parties in AcceptListj such that AcceptListj [h] = 2
to compute the final keys. This is required to ensure security of DKG protocol. The second check ensures
that all the secrets corresponding to AcceptListj [h] = 2 are recoverable; observe that if AcceptListj [h] = 2
then AcceptListk[h] ≥ 1 due to weak gradecast properties. This implies party Pk has received a C(commh)
from party Ph and C(commh) implies the secret shared by party Ph can be reconstructed. If the checks pass,
party Pk sends 〈ack, H(AcceptListj)〉k to party Pj . A set of t + 1 ack (ack-cert) messages for AcceptListj
(denoted by AC(AcceptListj)) implies at least one honest party has verified that all the secrets corresponding
to AcceptListj [h] = 2 can be recovered.

The idea of using gradecast to perform secret sharing has been explored before in the works of Feldman
and Micali [23, 24] to generate common source of randomness. Compared to their work, our protocols work
in authenticated model with t < n/2 resilience and invoke a single gradecast per secret sharing. Their
protocols work in unauthenticated model without PKI with t < n/4 [23] and t < n/3 [24] resilience and
involved multiple invocation of gradecast per secret sharing.

6.1 Security Analysis

Fact 11. If an honest party sends vote for a commitment comm, then (i) all honest parties receive comm,
(ii) all honest parties receive their valid secret shares corresponding to commitment comm.

Proof. Suppose an honest party Pi sends a vote for commitment commk := 〈propose,VSS. ~Ck, zpk〉k at time
τ . Party Pi must have received up to t blame messages for party Pk. This implies at least one honest
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party Pj received valid secret share sk,j and commitment commk when its epoch-timerj ≥ 14∆ and invoked
Deliver(propose, commk, zpk,−). Let τ ′ be the time when party Pj invoked Deliver(propose, commk, zpk,−).
The earliest party Pi sends a vote for commk is when it waits until its epoch-timeri ≥ 11∆ and does not
detect any equivocation by party Pk or any blame messages for party Pk.

Note that honest parties may start the protocol within ∆ time. Thus, when epoch-timeri = 11∆ for
party Pi, party Pj may have 10∆ ≤ epoch-timerj ≤ 12∆. In any case, the time when Pi waits until
epoch-timeri ≥ 11∆ corresponds to at least τ ′+ 2∆. Since party Pi did not detect party Pk equivocation by
time τ ′ + 2∆, no honest party detected party Pk equivocation by time τ ′ + ∆. By Fact 8, all honest parties
receive the commitment commk by time τ ′ + 2∆. This proves part (i) of the Lemma.

For part (ii), party Pi can send vote on two occasions: (a) when it does not detect a party k equivocation
or 〈blame, k〉 until its epoch-timeri ≥ 11∆, and (b) when party k sent valid secret shares for every 〈blame, k〉
message it forwarded and does not detect any party k equivocation by time τ .

In case (a), party Pi did not detect a party k equivocation or 〈blame, k〉 until its epoch-timeri ≥ 11∆
at time τ . Observe that all honest parties must have received valid secret shares corresponding to the
commitment commk when epoch-timer ≥ 14∆; otherwise party Pi must have received 〈blame, k〉 by time
τ (since honest parties start protocol with ∆ time difference and send 〈blame, k〉 if no valid secret shares
are received until epoch-timer ≥ 14∆). Thus, all honest parties receive valid secret shares corresponding to
commitment commk.

In case (b), party Pi receives valid secret shares from party Pk for every 〈blame, k〉 (up to t blame)
messages it forwarded and detected no party k equivocation by time τ . Observe that party Pi received f ≤ t
〈blame, k〉 messages and received valid secret shares for every 〈blame, k〉 message it forwarded. This implies
at least n− t− f honest parties have received valid shares for commitment commk from party Pk such that
epoch-timer ≥ 14∆; otherwise, party Pi would have received more than f 〈blame, k〉 message by the time its
epoch-timeri = 11∆. Since, party Pi forwards f received secret shares corresponding to f received 〈blame, k〉,
all honest parties receive valid secret shares corresponding to commitment commk.

Lemma 12. If an honest party sends an ack for a grade list AcceptListj, then all honest parties have valid
secret shares corresponding to commh for all h such that AcceptListj [h] = 2.

Proof. Suppose an honest party Pi sends an ack for a grade list AcceptListj . Then, it must be that if
AcceptListj [h] = 2 then AcceptListi[h] ≥ 1 ∀h ∈ [n]. Party Pi sets AcceptListi[h] ≥ 1 when it receives a vote
certificate C(commh). If there is a vote certificate C(commh) for value commh, then at least one honest party
(say party Pk) must have voted for commh. By Fact 11 part (ii), all honest parties have valid secret shares
corresponding to commitment commh. Thus, all honest parties have valid secret shares corresponding to
commh for all h such that AcceptListj [h] = 2.

Lemma 13 (Liveness). Each honest party Pi will receive an ack-cert for its grade list AcceptListi.

Proof. Consider an honest party Pi. Let τ be the time when party Pi starts the protocol. Party Pi will send
valid commitment VSS. ~Ci and secret share sij to party Pj ∀j ∈ [n] at time τ . All honest parties will receive
their valid secret shares sij and commitment commi by time τ + ∆. Since honest parties start the protocol
within ∆ time, all honest parties receive valid secret shares and commitment when their epoch-timer ≥ 14∆.
Thus, no honest party will send 〈blame, i〉.

Observe that up to t Byzantine parties can always send 〈blame, i〉. Honest parties wait until their
epoch-timer ≥ 11∆ to collect blame messages for any party. At worst, this time corresponds to τ + 6∆.
Honest parties forward 〈blame, i〉 to party Pi which party Pi receives by time τ + 7∆. Party Pi forwards
valid secret shares to party Pj for every 〈blame, i〉 message it received from party Pj which party Pj receives
by time τ + 8∆. Thus, party Pj will send vote for party Pi which party Pi receives by time τ + 9∆. This
implies party Pi collects t+ 1 distinct vote messages by τ + 9∆.

Party Pi send vote-cert message vci which all parties receive by time τ + 10∆. Thus, all honest parties
receive vci such that their epoch-timer ≥ 5∆ (since honest parties start the protocol within ∆ time). Thus,
all honest parties will invoke Deliver to deliver vci. Moreover, honest party Pi does not equivocate. Thus,
all honest parties set AcceptList[i] to 2.
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Observe that for an honest party Pi, all honest parties set AcceptList[i] to 2. Thus, for any honest party
Pj , all honest parties set AcceptList[j] to 2. This implies all honest parties will have |{h |AcceptListj [h] =
2}| ≥ n− t.

Next, we consider the case when a Byzantine party (say, party Pl) sends vote-cert message vcl to only
party Pi. If honest party Pi sets AcceptListi[l] = 2, it must be that party Pi invoked Deliver to propagate
vcl when its epoch-timeri ≥ 5∆ at some time τ ′ and did not detect any party Pl equivocation by time
τ ′ + 2∆. This implies no honest party detected party Pl equivocation by time τ ′ + ∆. By Fact 8, all honest
parties receive vote-cert for party Pl and set AcceptList[l] ≥ 1. Thus, for every AcceptListi[h] = 2 then
AcceptList[h] ≥ 1 for all honest parties.

Observe that party Pi multicasts AcceptListi when its epoch-timeri ≥ 3∆. At this time all honest
parties have epoch-timer ≥ 2∆ (Since honest parties start the protocol within ∆ time). Thus, all honest
parties will receive AcceptListi when their epoch-timer ≥ ∆ and since AcceptListi satisfies both the conditions
|{h |AcceptListi[h] = 2}| ≥ n − t and AcceptListi[h] = 2 then AcceptList[h] ≥ 1, all honest parties will send
ack for the grade list AcceptListi proposed by party Pi and party Pi will receive ack-cert for AcceptListi by
the time epoch-timeri expires.

Lemma 14 (Communication Complexity). Let ` be the size of commitment comm, κ be the size of secret
share and accumulator, and w be the size of witness. The communication complexity of the protocol is
O(n2`+ (κ+ w)n3) bits per epoch.

Proof. At the start of the protocol, each party Pi multicasts commi of size ` to all party Pj ∀j ∈ [n] and
sends secret share si,j to party Pj ∀j ∈ [n]. This step incurs O(n2` + κn3). In the Forward step, parties
invoke Deliver for the first commj from party Pj for j ∈ [n]. Invoking Deliver on an object of size ` incurs
O(n` + (κ + w)n2), since each party multicasts a code word of size O(`/n), a witness of size w and an
accumulator of size κ. Thus, invoking Deliver on n commitments incurs O(n2`+ (κ+ w)n3).

In the Blame step, honest parties may blame up to t Byzantine parties if they do not receive valid secret
shares. Multicast of t blame from each party incurs O(κtn2) communication. In addition, t Byzantine parties
always can blame honest parties. Honest parties forward up to t 〈blame, j〉 messages to party Pj . This incurs
O(κtn2) communication.

In the Private open step each party can send up to t secret shares to all other parties. This incurs O(κtn2)
for all parties. In the Vote cert step, each party multicasts O(n)-sized vote-cert to all other parties which
incurs O(κn3) in communication. Invoking Deliver on an O(n)-sized certificate incurs O(n2 + (κ + w)n2).
For n certificate, this step incurs O(n3 + (κ+ w)n3).

In the Propose grade step, each party multicast their grade list of size O(n). Multicast of O(n)-sized grade
list by n parties incursO(n3) communication. Thus, the total communication complexity isO(n2`+(κ+w)n3)
bits.

7 Oblivious Leader Election

In this section, we construct an oblivious leader election (OLE) (aka, common coin) protocol that outputs
a common honest leader with some constant probability called the fairness. Our OLE protocol follows the
same high level idea as prior common coin protocols [23, 33]. In summary, each party Pi selects n secrets
each for party Pj for j ∈ [n]. A coin value xj is assigned to party Pj which is a function of secrets shared
by at least t + 1 parties; this suffices to ensure the assigned coin value xj is random. A party having the
highest (or lowest) coin value is selected to be the leader.

Traditionally, the common coin was designed via n2 parallel invocations of weaker VSS primitives such as
graded VSS [23] or moderated VSS [33] which trivally incurs Ω(n4) communication. In this work, we build an
OLE protocol using Aggregatable PVSS [28]. Aggregatable PVSS allows a linear number of secret sharings
to be aggregated into a single transcript whose size is linear. Parties can publicly verify the correctness of the
aggregated PVSS transcript and verify the aggregated PVSS transcript contains a required threshold of PVSS
sharing instances. Moreover, the aggregated PVSS transcript can be efficiently propagated among parties
without blowing up communication. A recent work [2] also designs an OLE protocol using Aggregatable
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PVSS [28] for the asynchronous model. In their work, they additionally use threshold verifiable random
functions [2] obtained from Aggregatable PVSS to generate a verifiable common coin. Our aggrement
protocol in the following section does not require a verifiable common coin and can function with a coin
common with a constant probability. In this regard, our common coin protocol is simpler compared to the
common coin protocol of Abraham et al. [2].

Set Xi ← ∅, accepti[j]← ⊥ and valid sharesi ← ⊥.
Each party Pi sets epoch-timer to 6∆ and performs following operations:
1. Deal. Each party Pi randomly selects n secrets si,1, . . . si,n and generates PVSS transcripts
(pvssi,1, . . . , pvssi,n)← PVSS.Sh(si,1), . . . ,PVSS.Sh(si,n). Party Pi sends pvssi,j to party Pj ∀j ∈ [n].

2. Propose. Upon receiving t + 1 distinct pvssj,i such that PVSS.ShVerify(pvssj,i) = 1, each party Pi ag-
gregates them to obtain aggregated transcript agg pvssi using PVSS.Aggregate function. Party Pi multicasts
〈propose, agg pvssi, zpi〉i where zpi is the accumulation value for agg pvssi.

3. Deliver. If epoch-timer ≥ 3∆ party Pi receives the first valid aggregated transcript trj :=
〈propose, agg pvssj , zpj〉j from party Pj , invoke Deliver(propose, trj , zpj) for all aggregated transcripts from party
Pj for j ∈ [n] and set grade-timeri[j] to 2∆ and start counting down. When grade-timeri[j] expires, if no party j
equivocation has been detected, set accepti[j] = 2.

4. Evaluate. Upon receiving a valid aggregated transcript agg pvssj from party Pj , perform (sharej,i, πj,i) ←
PVSS.GetShare(agg pvssj , ski) for aggregated transcripts from party Pj for j ∈ [n]. Multicast 〈sharej,i, πj,i〉i.

5. Verify. Upon receiving the first 〈sharek,j , πk,j〉j from party Pj , if PVSS.VerifyShare(agg pvssk, sharek,j , πk,j) =
1, then valid sharesi[k] ← valid sharesi[k] ∪ {(sharek,j , πj,i)}. If |valid sharesi[k]| > t, perform (xk, πk) ←
PVSS.Recon(valid sharesi[k]) and Xi[k]← xk.

6. Output. When epoch-timer expires, perform `← argmaxk{Xi[k]|accepti[k] = 2}. Output `.

7. (Non-blocking) Equivocation. If equivocating hashes signed by any party Pj are detected, broadcast the
equivocating hashes.

Figure 6: Oblivious Leader Election using Aggregatable PVSS

Protocol Details. In our oblivious leader election protocol (refer Figure 6), each party Pj randomly selects
n secrets si,1, . . . , si,n and generates corresponding PVSS transcripts (pvssi,1, . . . , pvssi,n) by using PVSS.Sh
function. Party Pj then sends pvssi,j to party Pj ∀j ∈ [n].

Each party Pi then waits to receive t + 1 valid PVSS transcripts from different parties and aggregates
them to obtain an aggregated PVSS transcript agg pvssi whose size is still linear. The secrets shared in these
t + 1 PVSS transcripts determine the coin value xi assigned to party Pi. Ultimately, the value of this coin
is used to decide the winner of leader election. In our protocol, the party with the highest such coin value
is elected to be the leader. To prevent a Byzantine party from always selecting the best strategy, this coin
value is computed from the secrets shared by at least t + 1 parties out of which one party is guaranteed to
be honest. Since, an honest party randomly selects his secrets, the assigned coin value is truly random.

Party Pi then “gradecasts” its aggregated transcript agg pvssi. Gradecast of the transcript agg pvssi
ensures that if an honest party Pj assigns a grade of 2 for agg pvssi, all honest parties receive the transcript
and hence evaluate the transcript to get their secret shares. This in turn ensures that the secret shared in
the transcript agg pvssi can be reconstructed.

Upon receiving a valid aggregated transcript agg pvssk, honest parties Pj decrypts their secret share
sharej,k along with a proof πj and mulitcasts these to all parties. Upon receiving t+ 1 valid secret shares for
agg pvssk, parties reconstruct the secret xk shared via agg pvssk.

For aggregated PVSS transcripts agg pvssi shared by an honest party Pj , all honest parties will assign
a grade of 2. This implies all honest parties will at least have n − t entries in accept with a value of 2.
The secret shared in corresponding PVSS transcripts is guaranteed to be reconstructed. For aggregated
PVSS transcripts agg pvssh shared by a Byzantine party Ph, if an honest party Pj sets a grade of 2, all
honest receive the same aggregated PVSS transcript agg pvssh and all honest parties will evaluate the same
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transcript to obtain their secret shares. This ensures the reconstruction of secret xh.
Since, the coin value xi assigned to each party Pi is random, the probability that the coin value assigned

to an honest party is the maximum value is at least 1/2. Moreover, all honest parties have the coin values
assigned to all other honest parties. Thus, when the coin value assigned to an honest party is the global
maximum, all honest party output the common coin value and its corresponding party to be the common
leader.

Theorem 15. The protocol in Figure 6 is an oblivious leader election protocol with fairness at least 1/2.

Proof. By the properties of weak gradecast (refer Theorem 9), when the dealer is honest, all honest parties
output the value sent by the dealer with a grade of 2. Since, there are at least n− t honest parties and each
honest party Pk sends agg pvssk, all honest parties will output Pk with a grade of 2. In addition, the coin
value associated with an honest party can be reconstructed.

Since the coin value assigned to a party is computed from input contributions of at least t + 1 parties
and an honest party selects secrets uniformly at random, each coin value is uniform and random. Thus, with
probability at least n−t

n , the coin value assigned to a honest party will be global maximum. In addition, the
coin values of two parties can be common with probability 1

n2 . Thus, all honest parties output a common
leader with fairness n−t

n −
1
n2 ≥ 1

2 .

Lemma 16 (Communication Complexity). Let ` be the size of a PVSS transcript, κ be the size of accumu-
lator and w be the size of witness. The communication complexity of the protocol is O(n2`+ (κ+w)n3) bits
per epoch.

Proof. At the start of the protocol, each party Pi sends O(`)-sized PVSS transcript to all other parties.
This step incurs O(n2`) communication. In the Propose step, each party multicasts O(`)-sized aggregated
PVSS transcript which incurs O(n2`) communication. In the Deliver step, each party invoke Deliver for one
proposal from each party. Invoking Deliver on an object of size ` incurs O(n`+ (κ+w)n2), since each party
multicasts a code word of size O(`/n), a witness of size w and an accumulator of size κ. Thus, invoking
Deliver on n proposal incurs O(n2`+ (κ+ w)n3).

In the Evaluate step, each party multicasts κ-sized share and w-sized proof to all parties for each ag-
gregated PVSS transcript. For n aggregated PVSS transcripts, this step incurs (κ + w)n3. Thus, the total
communication complexity of the protocol is O(n2`+ (κ+ w)n3) bits per epoch.

8 Multi-Valued Validated Byzantine Agreement

In the previous section, we presented a recoverable set of shares protocol where each honest party Pi outputs
a (possibly different) set AcceptListi of size at least n − t and its ack-cert AC(AcceptListi)–both of which
are linear sized. For DKG, all honest parties need to agree on a common set of parties whose secret shares
are used to compute final secret keys and a public key. Thus, we need a consensus primitive that takes a
different O(n)-sized input from each party and outputs a common set which is valid. Here, a valid set is
accompanied by its certificate and can potentially also be the input of a Byzantine party. Such a consensus
primitive is called a multi-valued validated Byzantine agreement.

Multi-valued validated Byzantine agreement (MVBA) was introduced by Cachin et al. [12] to allow
honest parties to agree on any externally valid value. Recent works [4, 36] have proposed MVBA protocols
for the asynchronous communication model with reduced communication assuming t < n/3 Byzantine faults.
Abraham et al. [4] present a MVBA protocol with O(κn2) communication for small size inputs and Luo et
al. [36] present MVBA protocol for long message of size ` with O(n` + κn2) communication and constant
expected rounds. Both of the works assume threshold signatures to generate constant-sized certificates. In
the absence of threshold signatures, the communication blows up linearly in both protocols. In addition, to
the best of our knowledge, no MVBA protocol have been proposed in the synchronous communication model
for t < n/2 case. In this paper, we present a synchronous MVBA protocol tolerating t < n/2 Byzantine
faults with O(κn3) communication and expected constant rounds.
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Following Abraham et al. [4], we present an MVBA protocol with an external validity function ex-validation,
that determines whether a value is valid or not.

Definition 8.1 (Multi-valued Validated Byzantine Agreement [4, 36]). A protocol solves multi-valued vali-
dated Byzantine agreement if it satisfies following properties except with negligible probability in the security
parameter κ:

• Validity. If an honest party decides a value v, then ex-validation(v) = true.

• Agreement. No two honest parties decide on different values.

• Termination. If all honest parties start with externally valid values, all honest parties eventually
decide.

We extend the Binary Byzantine agreement (BBA) protocol of Katz and Koo [33] to MVBA for large
(` = Θ(n)) input. Their protocol tolerates t < n/2 Byzantine faults and terminates in expected 4 epochs.
They present two BBA protocols. The first protocol involves invoking n parallel gradecasts; with each
gradecast propagating small sized input. As mentioned before, their gradecast protocol incurs O(κn3)
communication; thus, their first protocol trivially incurs O(κn4) communication. Their second protocol
avoids the use of gradecast to reduce round complexity; however the protocol can output ⊥ if honest parties
do not start with the same input; which is not desired for our purpose. Thus, we make efficiency improvements
on their first protocol to obtain our MVBA protocol.

We replace their gradecast protocol with our communication optimal gradecast protocol from Section 5.
Our gradecast protocol incurs only O(κn2) communication while propagating O(n)-sized input. Using our
gradecast protocol allows BBA protocol of Katz and Koo [32] to handle large input while simultaneously
reducing the communication to O(κn3).

To circumvent the linear round lower bound for a deterministic BA protocol [6, 18], BA protocols use a
common source of randomness called common coin to achieve agreement in constant expected rounds. The
common coin is weak if honest parties may output different random values and outputs a common random
value with some constant probability. In Katz and Koo BBA, the weak common coin was obtained by
invoking n2 moderated VSS instances which incurs Ω(κn4) communication. We replace their common coin
protocol with our communication efficient OLE protocol from Section 7 which has O(κn3) communication.

Finally, as noted before, their BBA protocol terminates in expected 4 epochs. We reuse the idea of BA?

protocol of Micali [38] where parties terminate early by multicasting a special message before they terminate.
This allows our protocol to terminate in expected 2 epochs, i.e., improves the latency by a factor of two.
Moreover, our protocol is described in the ∆ synchrony model and requires fewer ∆ wait compared to round-
based protocol. The resulting protocol is an MVBA protocol with O(κn3) communication and expected 2
epochs to terminate where each epoch requires 9∆ time.

Now, we present our MVBA protocol (refer Figure 7). Our MVBA protocol is executed in epochs with
each epoch taking 9∆ time. Our MVBA protocol embeds the gradecast protocol from Section 5 directly.
The propose and forward steps mimic the invocation of gradecast. In the propose step, each party Pi
multicasts their input vi in the form of 〈propose, vi, zpe, e〉i where zpe is the accumulation value of vi. In
order to facilitate efficient equivocation checks, party Pi signs 〈propose, H(vi), e, zpe〉 and sends vi separately.
Similarly, when multicasting 〈propose2, vi, zpe2, e〉i (zpe2 is the accumulation value of vi), party Pi signs
〈propose2, H(vi), zpe2, e〉 and sends vi separately. In the terminate/advance epoch step, if locki = true, party
Pi output vi and multicasts a special message 〈terminate, vi, zte, e〉i (zte is the accumulation value of vi) to
signify party Pi terminates. In the following epochs, honest parties considers vi to be input of party Pi.

Exact Round Complexity. By Theorem 15, a common honest leader is elected with probability 1/2 and
all honest parties terminate in the next epoch. Thus, the expected number of epochs required is 2 epochs.

8.1 Analysis of MVBA

Fact 17. If an honest party sets lock to true with a value v in epoch e, then all honest parties adopt value
v in epoch e.
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Let vi be party Pi’s input and e be the current epoch. Each party Pi sets epoch-timere to 9∆ and locki ← false. In
each epoch e, party Pi waits until epoch-timere ≥ 7∆ and invokes OLE protocol (refer Figure 6). For each epoch e,
party Pi performs following operations.

1. Propose. Each party Pi multicasts 〈propose, vi, zpe, e〉i.

2. Forward. If epoch-timere ≥ 7∆ and party Pi receives the first party Pj proposal prj := 〈propose, vj , zpe, e〉j ,
invoke Deliver(propose, prj , zpe, e) and set grade-timere[j] to 2∆ and start counting down. When grade-timere[j]
expires and no party Pj equivocation has been detected, set gradei[j] = 2. If party Pi receives party j′s
proposal, set gradei[j] = 1.

3. Update. Wait until epoch-timere ≥ 5∆. Let vj,i be the value received from party Pj . Let Sv
i := {j : vj,i =

v ∧ gradei[j] = 2} and S̃v
i := {j : vj,i = v ∧ gradei[j] ≥ 1}.

(a) If |S̃v
i | > t, update vi ← v.

(b) If |Sv
i | > t, set locki ← true.

Multicast 〈propose2, vi, zpe2, e〉i.

4. Forward2. If epoch-timere ≥ 3∆ and party Pi receives the first pr2j := 〈propose2, vj , zpe2, e〉j from party
Pj , invoke Deliver(propose2, pr2j , zpe2, e) and set grade-timere[j] to 2∆ and start counting down. When
grade-timere[j] expires and no party Pj equivocation has been detected, set gradei[j] = 2. If party Pi re-
ceives party j′s proposal, set gradei[j] = 1.

5. Update2. Wait until epoch-timere ≥ ∆. Define Sv
i and S̃v

i as above. If |S̃v
i | > t, set vi ← v. Multicast vi.

6. Terminate/Advance Epoch. Let ` be the output of OLE protocol. When epoch-timere expires,

(a) If locki = true, output vi, multicast 〈terminate, vi, zte, e〉i and terminate.

(b) If locki = false, |Sv
i | ≤ t, v`,i 6= ⊥ and ex-validation(v`,i) = true, update vi ← v`,i. Advance to epoch

e+ 1, set epoch-timere to 9∆ and start counting down.

In all following epochs, if party Pi received 〈terminate, vj , zte, e〉j from party Pj , consider vj,i to be vj .

7. (Non-blocking) Equivocation. If equivocating hashes signed by party Pj are detected, multicast the
equivocating hashes.

Figure 7: MVBA with O(κn3) communication and expected 2 epochs.

Proof. Suppose an honest party Pi sets locki to true in epoch e. Party Pi must have received value v from
a set Q of at least t + 1 parties such that |Svi | > t i.e., Deliver for value v from parties in Q completed
without detecting an equivocation from all parties in Q. By Fact 8, all other honest parties receive value
v corresponding to parties in Q. Thus, all other parties set grade[j] ≥ 1 ∀j ∈ Q i.e. |S̃v| > t for all other
honest parties and all honest parties adopt value v in the Update step.

Once all honest parties adopt value v in the Update step, they send value v in the propose2 step. Since,
honest parties do not equivocate and send value v in a timely manner, all honest parties receive value v such
that grade[j] to 2. Thus, |S̃vi | > t and |Svi | > t. Since, |Svi | > t, no honest party will adopt value sent by the
leader ` chosen from the OLE protocol. Thus, all honest parties adopt value v in epoch e.

Lemma 18. If all honest parties start an epoch e with same input v, then all honest parties decide value v
and terminate at the end of epoch e.

Proof. Suppose all honest parties start an epoch e with the same input v. This includes honest parties
who have terminated with value v and sent terminate message. An honest party Pj that terminated sends
〈terminate, vi, zte, e− 1〉j to all other honest parties and all other honest parties consider value v as vj,i.

Let τ be the time when the first honest party starts an epoch. Since honest parties are synchronized
within ∆ time, all honest parties start epoch e by time τ + ∆. Observe that honest parties propose value
v at the start of an epoch. Thus, all honest parties propose value v by time τ + ∆ and all honest parties
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receive 〈propose, vi, e, zpe〉i by time τ + 2∆ such that epoch-timere ≥ 7∆. Thus, all honest parties will invoke
Deliver for the proposed value v from all other honest parties. Moreover, honest parties do not equivocate.
Thus, all honest parties will set grade[j] = 2 for all other honest parties. Thus, for value v, all honest parties
have |Svi | > t and |S̃vi | > t, and set lock to true for value v.

Similarly, all honest parties send propose2 for value v when their epoch-timere = 5∆. This implies all
honest parties receive propose2 for value v such that epoch-timere ≥ 3∆. Thus, all honest parties will invoke
Deliver for the proposed value v from all other honest parties. Since, honest parties do not equivocate, all
honest parties will set grade[j] = 2 for all other honest parties i.e., |Svi | > t and |S̃vi | > t for all honest parties.
Moreover, no honest party will adopt value sent by the leader ` chosen from OLE protocol in epoch e.

Note that all honest parties set lock to true. Thus, all honest parties output v and terminate at the end
of epoch e.

Theorem 19. The protocol in Figure 7 solves MVBA.

Proof. We first consider validity i.e., if an honest party decides a value v, then ex-validation(v) = true.
Observe that an honest party Pi decides a value v only when its sets locki = true. An honest party sets
locki = true only when it observes |Svi | ≤ t. Thus, at least one honest party Pj must have sent value v in
Propose step. Honest party Pj sends value v either when its input at the start of the protocol execution is
v in which case ex-validation(v) = true, or when its updates its value vj to v at the end of an epoch. In the
latter case, party Pj checks if ex-validation(v) = true.

Next, we consider agreement. Consider an epoch e and let P` be the common leader in epoch e elected
via OLE protocol. There are two cases to consider.
Case I. locki = true for at least one honest party Pi with a value v in some epoch e. By Fact 17, all honest
part adopt value v in epoch e and enter epoch e + 1 with same value v. By Lemma 18, all honest parties
output value v and terminate in epoch e+ 1.
Case II. locki = false for all honest parties in epoch e. If leader P` is honest, leader P` sends the same value
v` to all parties. If |Svi | ≤ t for all honest parties, then all honest parties adopt the value v` in epoch e.
By Lemma 18, all honest parties output value v and terminate in epoch e+ 1.

If |Svi | > t for at least one honest party Pi in the Update2 step, there exists a set Q of at least t+ 1 who
sent value v and party Pi did not detect equivocation from any party in set Q before its grade-timer expired.
By Fact 8, all honest parties receive value v from parties in Q i.e. |S̃vi | > t for all honest parties. Thus, all
honest parties including leader P` adopt value v in the Update2 step. If the leader P` is honest, it sends the
same value v to all parties. Honest parties with |Svi | ≤ t adopt value v sent by leader P` in epoch e which is
the same value adopted by party Pi with |Svi | > t. Thus, all honest parties have value v at the end of epoch
e. By Lemma 18, all honest parties output value v and terminate in epoch e+ 1.

Lemma 20 (Communication Complexity). Let ` be the size of input v for each party, κ be the size of
accumulator and w be the size of witness. The communication complexity of the protocol is O(n2`+(κ+w)n3)
bits per epoch.

Proof. At the start of the protocol, each party Pi multicasts O(`)-sized proposal to all other parties. This
step incurs O(n2`) communication. In the Forward step, each party invokes Deliver for one proposal from
each party. Invoking Deliver on an object of size ` incurs O(n` + (κ + w)n2), since each party multicasts
a code word of size O(`/n), a witness of size w and an accumulator of size κ. Thus, invoking Deliver on n
proposal incurs O(n2`+ (κ+ w)n3).

Similarly, in the Update step, each party multicasts O(`)-sized proposal to all other parties which incurs
O(n2`) communication. In the Forward2 step, each party invokes Deliver for one proposal from each party.
Thus, invoking Deliver on n proposal incurs O(n2`+ (κ+ w)n3).

In Update2 step, each party multicasts O(`)-sized value which incurs O(n2`) communication. Thus, the
total communication complexity of the protocol is O(n2`+ (κ+ w)n3) bits per epoch.
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9 Distributed Key Generation

Finally, we present two communication efficient DKG protocols with O(κn3) communication. The first
protocol is randomized and terminates in expected constant epochs while the second protocol is deterministic
and terminates in t+ 1 epochs. The DKG protocols in this section differs from the secure DKG protocol of
Section 4 in the following ways. First, we replace the broadcast channel with Byzantine consensus primitives
and requires a single invocation of consensus instance. Second, in the secure DKG protocol, the final public
key and secret keys are computed from the secret shares of all honest parties. In particular, all honest parties
belong to set QUAL and the public key and secret keys are computed from parties in QUAL. In contrast, the
DKG protocols in this section compute the final public key and secret keys from a common set of size at
least n − t where at least n − 2t parties are honest (i.e., at least one honest party when n = 2t + 1). This
suffices to ensure construction of a secure DKG protocol.

9.1 Randomized DKG

1. Deal. Each party Pi invokes recoverable set of shares protocol (refer Figure 5). Each party Pi outputs a set AcceptListi
with an ack-cert for AcceptListi (i.e., AC(AcceptListi)).

2. MVBA. Each party Pi invokes MVBA (refer Figure 7) with input (AcceptListi, AC(AcceptListi)). Let AcceptListk be the
output of all honest parties.

3. Generating keys. Let xi =
∑

j∈AcceptListk|AcceptListk[j]=2 sji and x′i =
∑

j∈AcceptListk|AcceptListk[j]=2 s
′
ji be the sum of secret

shares in AcceptListk. Compute C〈g〉(xi), C〈g,h〉(xi, x′i) and π≡Comi = NIZKPK≡Com(xi, x
′
i, g, h, C〈g〉(xi), C〈g,h〉(xi, x′i)).

- Multicast (C〈g〉(xi), π≡Comi) to all parties.

- Verify the received (C〈g〉(xi), π≡Comj) as shown in Equation (3).

- Upon receiving t + 1 valid C〈g〉(xi), interpolate them to obtain y = gx. Set y as the public key and xi as the private
key.

Figure 8: Randomized DKG with O(κn3) communication and expected O(∆) epochs

The randomized DKG protocol uses recoverable set of shares protocol (refer Figure 5) to perform secret
sharing. At the end of the recoverable set of shares, each honest party Pi outputs a (possibly different) set
of at least n− t parties (AcceptListi) which they observe to have correctly shared their secret along with an
ack-cert for AcceptListi (AC(AcceptListi)). The ack-cert for AcceptListi serves an external validity function to
the MVBA protocol i.e., if there is an AC(AcceptListi) for AcceptListi, then ex-validation(AcceptListi) = true.
Note that both AcceptListi and AC(AcceptListi) are linear sized. Each honest party Pi then invokes MVBA
protocol with (AcceptListi, AC(AcceptListi)) as input. At the end of MVBA protocol, each honest party
outputs a common set AcceptListk. The final secret key and public key is then computed using secret shares
shared by parties h such that AcceptListk[h] = 2 using the reconstruction protocol in Figure 2.

Latency and Communication Complexity. The recoverable set of shares protocol incurs a latency of
16∆ and O(κn3) communication. The MVBA protocol incurs expected 2 epochs (with each epoch being 9∆)
and O((κ+w)n3) communication where the size of input is O(κn). The reconstruction phase requires O(κn2)
communication and 2∆ time in the worst case. Thus, the protocol incurs O((κ+w)n3) communication and
expected 36∆.

9.2 Deterministic DKG

While the above randomized protocol terminates in expected 2 epochs in the best case, it has probabilistic
termination and may require a linear number of epochs in the worst case with a communication of O(κn4). As
an alternate solution, we present a deterministic DKG protocol with guaranteed termination in t+ 1 epochs
with O(κn3) communication. The deterministic DKG protocol is presented in Figure 9. In the protocol,
honest parties execute the recoverable set of shares protocol and each honest party Pi outputs a (possibly
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1. Deal. Each party Pi invokes recoverable set of shares protocol (refer Figure 5). Each party Pi output a set AcceptListi
with an ack-cert for AcceptListi.

2. BFT SMR. Each party Pi participates in BFT SMR (refer Figure 11) with input AcceptListi and AC(AcceptListi). The
BFT SMR protocol is executed in round-robin manner with first t+ 1 leaders. Let AcceptListk be the first committed value
of all honest parties.

3. Generating keys. Let xi =
∑

j∈AcceptListk|AcceptListk[j]=2 sji and x′i =
∑

j∈AcceptListk|AcceptListk[j]=2 s
′
ji be the sum of secret

shares in AcceptListk. Compute C〈g〉(xi), C〈g,h〉(xi, x′i)) and π≡Comi = NIZKPK≡Com(xi, x
′
i, g, h, C〈g〉(xi), C〈g,h〉(xi, x′i).

- Multicast (C〈g〉(xi), π≡Comi) to all parties.

- Verify the received (C〈g〉(xi), π≡Comj) as shown in Equation (3).

- Upon receiving t + 1 valid C〈g〉(xi), interpolate them to obtain y = gx. Set y as the public key and xi as the private
key.

Figure 9: Deterministic DKG with O(κn3) communication and t+ 1 epochs

different) set of at least n − t parties (AcceptListi) which they observe to have correctly shared their secret
along with an ack-cert for AcceptListi (AC(AcceptListi)). The tuple (AcceptListi, AC(AcceptListi)) is input
into a leader-based Byzantine fault tolerant state machine replication (BFT SMR) protocol of RandPiper [9]
to agree on a common set. We present a brief overview of the BFT SMR.

BFT SMR of RandPiper [9]. The BFT SMR protocol of RandPiper [9] (refer Figure 11) is a commu-
nication efficient rotating-leader SMR protocol with O(κn2) communication per epoch even for O(n)-sized
input. The BFT SMR protocol has optimal resilience i.e., tolerates t < n/2 Byzantine faults. The leaders
are rotated in each epoch; in their protocol, an epoch is a duration of 11∆. When the leader of an epoch
is honest, all honest parties commit the proposed value in the same epoch, whereas, when the leader of the
epoch is Byzantine, some honest parties may require linear number of epochs to commit the proposed value.
The BFT SMR utilizes the “block-chaining” paradigm i.e., each proposal is represented in the form of a
block which explicitly extends a block B proposed earlier by including hash of previous block B. In this
paradigm, when a block B is committed, all its ancestors are also committed. We refer the readers to the
RandPiper [9] for more details.

In this deterministic DKG protocol, we execute the BFT SMR protocol for t+ 1 epochs. In each epoch,
the epoch leader is expected to propose its (AcceptList, AC(AcceptList)). If the epoch leader is honest, all
honest parties commit the proposed set in the same epoch; otherwise honest parties may require linear
number of epochs when the leader is Byzantine to commit the proposed value or commit no value at all if
the Byzantine leader does not propose. Since the BFT SMR protocol is executed for t + 1 epochs, there is
will be at least one honest leader; thus all honest parties commit at least one set. Honest parties output the
first committed set and perform reconstruction using this set to generate the final secret key and public key.

Latency and Communication Complexity. The recoverable set of shares protocol incurs a latency of
16∆ and O(κn3) communication. The BFT SMR protocol incurs O(κn2) communication per epoch; O(κn3)
communication for t+1 epochs. The length of each epoch is 11∆. The reconstruction phase requires O(κn2)
communication and 2∆ time in the worst case. Thus, the protocol incurs O(κn3) communication and 18∆
+ ((t+ 1) ∗ 11∆) time.

10 A Lower bound on the Communication Complexity for Secure
Distributed Key Generation

In this section, we formalize a communication lower bound for a deterministic protocol for secure distributed
key generation. The proof of this lower bound is inspired by the well-known communication lower bound for
Byzantine broadcast by Dolev and Reischuk [17]. In the lower bound proof, we argue properties C1 and C2
(refer Definition 3.1) for a secure DKG protocol map to the agreement property in Byzantine broadcast and
properties C3 and secrecy (refer Definition 3.1) map to the validity property in Byzantine broadcast. We
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conclude a secure DKG protocol must incur Ω(t2/4) communication.

Theorem 21. There does not exist a deterministic protocol for distributed key generation tolerating t Byzan-
tine parties with a communication complexity of at most t2/4 messages.

Proof. Suppose for the sake of contradiction, there exists such a protocol. By secrecy property in Defini-
tion 3.1, the unique secret x has to be generated by the input contributions of a set Q of least t+ 1 parties;
otherwise, the adversary controlling t Byzantine parties can learn about the secret x. Moreover, the input
contribution by at least one honest party r ∈ Q is not predetermined and must be selected uniformly at
random; otherwise, t Byzantine parties can bias the unique secret x and violate correctness property (C3).
Since input contribution by the honest party r ∈ Q is chosen uniformly at random, with high probability,
there must be a unique secret v ∈ Zp (and corresponding public key) that honest parties do not decide if
they receive no messages. Consider the parties being partitioned into the following 2 sets – A: a set of dt/2e
parties, B: all remaining parties.

We consider two executions where correctness is violated in the last execution. In the first execution
(W1), all parties in A are Byzantine. Parties in A do not communicate with each other. Towards B, parties
in A execute honestly except they ignore the first dt/2e messages from parties in B. Since, the maximum
faults in W1 is dt/2e, the protocol decides and assume all honest parties decide a common public key y = gv

for some unique secret v.
Since the communication complexity of the protocol is at most t2/4, there must exist a party (say s) in

A that receives at most t/2 messages from parties in B; otherwise the communication complexity will be
more than t2/4. Let Bs be the set of all parties that send messages to party s in W1.

In the second execution (W2), all parties in A \ {s} are Byzantine and all parties in Bs are Byzantine.
The total number of Byzantine parties is (dt/2e−1)+dt/2e ≤ t which is within allowed fault threshold t. All
parties in Bs execute the protocol in the same way as in W1 except they do not send any messages to party
s. Parties in A\{s} execute the protocol in the same way as in W1. Party s in W1 behave as an honest party
which did not receive the first dt/2e messages which is similar to party s in W2 which receives no messages.
Thus, parties in B \Bs cannot distinguish W1 and W2. Thus, they decide the same common public key y.
Since, party s does not receive any messages in W2, it does not decide y. If it does not decide any public
key or decides any other public key y′ 6= y, the correctness property (C2) is violated. A contradiction.

Remark. We note that our lower bound and upper bound protocol are not tight. It is an intriguing open
question to either prove a cubic communication lower bound for a secure DKG or design a DKG protocol
with quadratic communication.
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A Extended Preliminaries

A.1 Linear erasure and error correcting codes.

• ENC. Given inputs m1, . . . ,mt+1, an encoding function ENC computes (s1, . . . , sn) = ENC(m1, . . . ,mt+1),
where (s1, . . . , sn) are code words of length n. A combination of any t + 1 elements of n code words
uniquely determines the input message and the remaining of the code word.

• DEC. The function DEC computes (m1, . . . ,mt+1) = DEC(s1, ..., sn), and is capable of tolerating up to c
errors and d erasures in code words (s1, . . . , sn), if and only if t ≥ 2c+ d.
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A.2 Cryptographic Accumulators.

Formally, given a parameter k, and a set D of n values d1, . . . , dn, an accumulator has the following compo-
nents:

• Gen(1k, n): This algorithm takes a parameter k represented in unary form 1k and an accumulation thresh-
old n (an upper bound on the number of values that can be accumulated securely), returns an accumulator
key ak. The accumulator key ak is part of the q-SDH setup and therefore is public to all parties.

• Eval(ak,D): This algorithm takes an accumulator key ak and a set D of values to be accumulated, returns
an accumulation value z for the value set D.

• CreateWit(ak, z, di,D): This algorithm takes an accumulator key ak, an accumulation value z for D and a
value di, returns ⊥ if di ∈ D, and a witness wi if di ∈ D.

• Verify(ak, z, wi, di): This algorithm takes an accumulator key ak, an accumulation value z for D, a witness
wi and a value di, returns true if wi is the witness for di ∈ D, and false otherwise.

A.3 Construction of NIZKPK≡Com.

NIZKPK≡Com is generated as follows:
- Pick v1, v2 ∈R Zp, and let t1 = gv1 and t2 = hv2 .
- Compute hash c = H≡Com(g, h, C〈g〉(s), C〈g,h〉(s, r), t1, t2), where H≡Com : G6 → Zp is a random oracle hash

function.
- Let u1 = v1 − c · s and u2 = v2 − c · r.
- Send the proof π≡Com = (c, u1, u2) along with C〈g〉(s) and C〈g,h〉(s, r).
The verifier checks this proof (given π≡Com, g, h, C〈g〉(s), C〈g,h〉(s, r)) as follows:

- Let t′1 = gu1C〈g〉(s)c and t′2 = hu2(
C〈g,h〉(s,r)
C〈g〉(s)

)c.

- Accept the proof as valid if c = H≡Com(g, h, C〈g〉(s), C〈g,h〉(s, r), t′1, t′2).

B Analysis of Secure DKG

We rely on the following Lemma of [43].

Lemma 22 ( [43]). Under the discrete-log assumption, Pedersen’s VSS satisfies following properties in the
presence of a polynomially bounded adversary that corrupts up to t parties.

(i) If the dealer is not disqualified during the sharing phase, then all honest parties hold secret shares
that interpolate to unique polynomial of degree t. In particular, any t + 1 of these shares suffice to
reconstruct the secret σ.

(ii) The protocol produces information (i.e., commitments Ck and secret shares σi) that can be used at
reconstruction time to test for the correctness of each secret share; thus, reconstruction is possible,
even in the presence of malicious parties, from any subset of shares containing at least t + 1 correct
secret shares.

(iii) The view of the adversary is independent of the value of the secret σ, and therefore the secrecy of σ is
unconditional.

Note that Lemma 22 also holds when using evaluations instead of coefficients as discussed in Section 9.
The coding check (see Equation (2)) ensures that the shared commitments to evaluations are indeed a t
degree polynomial except with 1/p probability in Zp. Since p is sufficiently large (poly(κ)), the probability
of the check failing is negligible in the security parameter.
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Fact 23. If a dealer Pi receives a vote-certificate, all honest parties must have received their corresponding
secret shares sij, s

′
ij.

Proof. Suppose a dealer Pi receives a vote-certificate i.e, t+1 vote messages. At least one of the vote message
is sent by an honest party (say Pj). An honest party Pj sends a vote message only when it receives no blame
messages or receives up to t blame messages and dealer Pi sent secret shares sik, s′ik for every 〈blame, i〉k
message it forwarded.

If party Pj received no blame messages, all honest parties must have received their corresponding secret
shares sij , s

′
ij ; otherwise honest parties would have sent blame messages. On the other hand, if party Pj

received f ≤ t blame messages, n− t−f honest parties must have received their corresponding secret shares;
otherwise, these honest parties would have sent blame messages and party Pj would have received more than
f blame messages. Since party Pj forwards secret shares sik, s′ik to party Pk for every 〈blame, i〉k message it
received, all honest parties must have received corresponding secret shares.

B.1 Proof of Theorem 7

Let B be the set of parties controlled by the adversary, and G be the set of honest parties (run by the simulator S).
Without of loss of generality, let B = [P1, Pt′ ] and G = [Pt′+1, Pn], where t′ ≥ t. Let Y ∈ G be the input public key
and H≡Com : G6 → Zp is a random oracle hash table for NIZKPK≡Com.
(1) Perform Step 1 through Step 6 on the behalf of the uncorrupted parties Pt′+1, . . . , Pn exactly as secure DKG
protocol (refer Figure 2) until set QUAL is finalized. At the end of Step 6, the following holds:

- Set QUAL is well-defined with at least one honest party in it.

- The adversary’s view consists of polynomials fi(y), f ′i(y) for Pi ∈ B, the secret shares sij , s
′
ij for Pi ∈

QUAL ∩ G, Pj ∈ B, and the commitments Ci for Pi ∈ QUAL.

- S knows all fi(y) and f ′i(y) for Pi ∈ QUAL as it knows n− t′ shares for each of those.

(2) Perform the following computations for each i ∈ {t+ 1, . . . , n} before Step 6 (refer Figure 2).

(a) Compute xj for party Pj ∈ B. Similarly, compute xj for party Pj ∈ [Pt′+1, Pt]. Interpolate in the exponent
(0, Y ) and (j, gxj ) for j ∈ [1, t] to compute C〈g〉(x∗i ) = gx

∗
i .

(b) Compute the corresponding NIZKPK≡Com by generating random challenges ci ∈ Zp and responses ui,1, ui,2 ∈
Zp, computing the commitments ti,1 = (gx

∗
i )cigui,1 and ti,2 =

C〈g,h〉(xi,x
′
i)

ci

C〈g〉(x∗i )
hui,2 and include entry

〈(g, h, C〈g〉(x∗i ), C〈g,h〉(xi, x′i), ti,1, ti,2), ci〉 in the hash table H≡Com so that π≡Com = (ci, ui,1, ui,2).

(3) In the end, x =
∑

Pi∈QUAL si such that Y = gx.

Figure 10: Simulator for Secure DKG

Proof. We first prove correctness of the protocol. Observe that all honest parties build the same set of
non-disqualified parties QUAL in Step 6. This is true because the commitment to the shared polynomials
and vote-certificates are posted on the broadcast channel and broadcast channel ensures all honest parties
output a common value.

Note that if a party Pj ∈ QUAL, it must have posted its commitment and vote-certificate on the broadcast
channel. By Fact 23, all honest parties have received secret shares shared by party Pj . This implies party
Pj is not disqualified during the sharing phase. By part (i) of Lemma 22, all honest parties hold correct
secret shares and any t + 1 of these secret shares suffices to reconstruct the secret sj . This is true for all
parties Pj ∈ QUAL. Since, the secret key x is sum of individual secret sj contributed by Pj ∈ QUAL and each
secret sj can be reconstructed using Lagrange interpolation via a combination of t+ 1 secret shares provided
by honest parties, the secret key x can be reconstructed via t + 1 shares provided by honest parties. This
proves property C1 of a secure DKG protocol.

By part (ii) of Lemma 22, there exists information (i.e., commitments) that can be used to verify
correctness of each secret share. Observe that each honest party Pj sends gxj and NIZKPK≡Com proof π≡Comj
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at the end of sharing phase. Each party Pi can verify correctness of C〈g〉(xj) by checking Equation (3). A
valid NIZKPK≡Com proof π≡Comj proves in zero knowledge that party Pj knows xj and x′j thus proving
the correctness of gxj . By using t + 1 valid gxj , honest parties can compute the same gx via Lagrange
interpolation in the exponent which is the public key. This proves property C2 of a secure DKG protocol.

Observe that the secret key x is the sum of secrets shared by parties in QUAL which contains at least one
honest party and honest parties select their secret uniformly at random. This suffices to prove property C3
of a secure DKG protocol.

We now prove secrecy. Our proof of secrecy is based on the proof of secrecy in earlier works [26, 31].
We provide a simulator S for our secure DKG protocol in Figure 10. Without loss of generality, we assume
the adversary A compromises parties P1, . . . , Pt′ , where t′ ≤ t, denoted by set B. The rest of the parties
Pt′+1, . . . , Pn, denoted by set G are controlled by the simulator.

Informally, the simulator S with input Y runs as follows. S will run on the behalf of the honest parties
G Step 1 until Step 6 following exactly the instructions. At this point, the set QUAL is well-defined and S
knows all fi(y) and f ′i(y) for Pi ∈ QUAL as it knows n− t′ shares for each of those. Observe that the view of
adversary A that interacts with S is identical to the view of A that interacts with honest parties in a regular
run of the protocol. In particular, A sees following distribution of data:

- Polynomials fi(y), f ′i(y) for Pi ∈ B

- Values fi(j), f
′
i(j) for i ∈ G, j ∈ B and values Ci for Pi ∈ QUAL

S will then change the secret shared by one honest party (say Pn) to “hit” the desired public key Y
such that the above data distribution observed by A remains identical. For parties Pi ∈ (G \ {Pn}), the
input polynomial fi(y) and f ′i(y) remains identical. Thus, their data distribution remains identical. For
party Pn, the input polynomial is modified such that gf

∗
n(0) = gs

∗
n = Y∏

Pj∈QUAL\{Pn} g
si

and f∗n(j) = snj for

j ∈ [1, t]. Define f ′∗(y) such that f∗n(y) + λf ′∗n (y) = fn(y) + λf ′n(y), where λ = logg(h). Observe that for
these polynomials, the evaluations and commitments seen by parties in B is identical to the real run of the
protocol.

Simulator S will then compute gxj for party Pj ∈ [P1, Pt] and interpolate in the exponent (0, Y ) and
(j, gxj ) for j ∈ [1, t] to compute C〈g〉(x∗i ) = gx

∗
i and the corresponding NIZKPK≡Com and publish these values.

Observe that these values pass the verification in the real run of protocol.
It remains to be shown that polynomials f∗i (y) and f ′∗i (y) belong to the right distribution. For QUAL \

(G \{Pn}), this is trivially true as they are defined identically to fi(y) and f ′i(y) which were chosen uniformly
at random. For f∗n, the polynomial evaluates to random values fn(j) at j ∈ [1, t] and evaluates to logg(s

∗
n)

required to hit Y . Finally, f ′∗n (y) is defined as f∗n(y) + λf ′∗n (y) = fn(y) + λf ′n(y), and since f ′n(y) is chosen
to be random, so is f

′∗
n (y).

C A Lower Bound on the Communication Complexity of Weak
Gradecast

In this section, we show a quadratic communication lower bound for the weak gradecast protocol. The proof
of this lower bound is a trivial extension of the communication lower bound for Byzantine broadcast by
Dolev and Reischuk [17].

Lemma 24. There does not exist a protocol for weak gradecast tolerating t Byzantine parties with a com-
munication complexity of at most t2/4 messages.

Proof. Suppose for the sake of contradiction, there exists such a protocol. Consider the parties being parti-
tioned into the following two sets: A: a set of dt/2e parties, and B: all remaining parties which includes the
designated sender r.

We consider two executions W1 and W2 where the third property of weak gradecast (i.e., if an honest
party outputs a value v with a grade of 2, all other honest parties output value v with a grade of ≥ 1)
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is violated in the W2. In the first execution (W1), all parties in A are Byzantine. Parties in A do not
communicate with each other. Towards B, parties in A execute honestly except they ignore the first dt/2e
messages from parties in B. The designated sender r ∈ A sends value v to all parties. Since, the maximum
faults in W1 is dt/2e and the designated sender is honest, all honest parties decide value v with a grade of 2.

Since the communication complexity of the protocol is at most t2/4, there must exist a party (say s) in
A that receives at most t/2 messages from parties in B; otherwise the communication complexity will be
more than t2/4. Let Bs be the set of all parties that send messages to party s in W1.

In the second execution (W2), all parties in A \ {s} are Byzantine and all parties in Bs are Byzantine
which includes the designated sender r. The total number of Byzantine parties is (dt/2e − 1) + dt/2e ≤ t
which is within allowed fault threshold t. The designated sender r sends value v. The parties in Bs execute
the protocol in the same way as in W1 except they do not send any messages to party s. Parties in A \ {s}
execute the protocol in the same way as in W1. Party s in W1 behave as an honest party which did not
receive the first dt/2e messages which is similar to party s in W2 which receives no messages. Thus, parties
in B \ Bs cannot distinguish W1 and W2. Thus, they decide value v with a grade of 2. Since, party s
does not receive any messages in W2, it does not decide v with a grade of ≥ 1. This violates the third
property of weak gradecast where all honest parties need to output a common value v with a grade of 2. A
contradiction.

Theorem 25. Let CC(`) be the communication complexity of weak gradecast for ` bit input. Then CC(`) =
Ω(n`+ n2)

Proof. Since each party must learn ` bit input, the protocol needs Ω(n`) bits (The argument follows
from [25]). From Lemma 24, weak gradecast requires Ω(n2) even for a single bit input. Thus, CC(`) =
Ω(n`+ n2) for ` bit input.

D BFT SMR from RandPiper [9]

Let e be the current epoch and Le be the leader of epoch e. For each epoch e, party Pi performs the following
operations:
1. Epoch advancement. When epoch-timere−1 reaches 0, enter epoch e. Upon entering epoch e, send highest
ranked certificate Ce′(Bl) to Le. Set epoch-timere to 11∆ and start counting down.

2. Propose. Le waits for 2∆ time after entering epoch e and broadcasts 〈propose, Bh, Ce′(Bl), zpe, e〉Le where Bh

extends Bl. Ce′(Bl) is the highest ranked certificate known to Le.

3. Vote. If epoch-timere ≥ 7∆ and party Pi receives the first proposal pe = 〈propose, Bh, Ce′(Bl), zpe, e〉Le where
Bh extends a highest ranked certificate, invoke Deliver(propose, pe, zpe, e). Set vote-timere to 2∆ and start counting
down. When vote-timere reaches 0, send 〈vote, H(Bh), e〉i to Le.

4. Vote cert. Upon receiving t+ 1 votes for Bh, Le broadcasts 〈vote-cert, Ce(Bh), zve, e〉Le .

5. Commit. If epoch-timere ≥ 3∆ and party Pi receives the first ve = 〈vote-cert, Ce(Bh), zve, e〉Le , invoke
Deliver(vote-cert, ve, zve, e). Set commit-timere to 2∆ and start counting down. When commit-timere reaches 0,
if no equivocation for epoch-e has been detected, commit Bh and all its ancestors.

6. (Non-blocking) Equivocation. Broadcast equivocating hashes signed by Le and stop performing epoch e
operations.

Figure 11: BFT SMR Protocol from RandPiper [9]
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