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Abstract

Non-malleable codes protect communications against adversarial tampering of data,

which can be seen as a relaxation of error-correcting codes and error-detecting codes. Re-

cently, Rasmussen and Sahai (ITC2020) explicitly constructed non-malleable codes in the

split-state model using expander graphs. In this paper we extend their construction by

means of bipartite expander graphs. The resulted codes can have flexible parameters and

reduce the encoding space cost in comparison with the explicit codes by Rasmussen and

Sahai.

1 Introduction

Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs [21, 22], are resilient

to adversarial tampering on arbitrary number of symbols which is beyond the scope of error-

correcting and error-detecting codes. Consider the following “tampering experiment”. A

message m ∈ M is encoded via a (randomized) encoding function enc : M → X , yielding

a codeword c = enc(m). However the codeword c is modified by an adversary using some

tampering function f ∈ F with f : X → X to an erroneous word c̃ = f(c). And c̃ is decoded

using a deterministic function dec, resulting m̃ = dec(c̃). In terms of the practical application,

the reliability m̃ = m is desired. An error-correcting code with minimum distance d can

guarantee the reliable communication with respect to the family F such that for f ∈ F the

Hamming distance between c̃ = f(c) and c is at most b(d− 1)/2c. However it is impossible to

achieve the reliability using error-correcting codes if the tampering family F is large. In order

to deal with this, Dziembowski et al. [21] proposed the non-malleable codes (with respect to
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F), which ensure that either the tampered codeword can be correctly decoded, i.e., m̃ = m,

or the decoded message m̃ is completely unrelated to the original message m. As remarked in

[21, 22], the concept of non-malleable codes is in a sprit of non-malleablity proposed by Dolev,

Dwork and Naor [17] in cryptographic primitives. Informally speaking, the non-malleability

in the context of encryption requires that given the ciphertext it is impossible to generate a

different ciphertext so that the respective plaintexts are related [17].

It is known that no non-malleable code exists if the tampering family F is the entire space

of functions. Thus the study on non-malleable codes has focused on the specific families F .

One typical tampering family is with the split-state model, which has also been investigated

in the context of leakage cryptography [14, 20]. Roughly speaking, this model assumes that

the encoded memory/state of the system is partitioned into two parts and adversaries can

arbitrarily tamper the data stored in each part independently. More precisely, each message is

encoded into a word c = (L,R) ∈ L×R and adversaries try to tamper it using some functions

g : L → L and h : R → R which change c to c̃ = (g(L), h(R)) ∈ L×R. Moreover, if |L| = |R|,
we call it an equally-sized split-state model.

Prior to a recent work [35], all known constructions of non-malleable codes for the split-

state model have relied on complex mathematical proofs based on two-source extractors and

additive combinatorics, see [1, 2, 3, 4, 5, 6, 12, 13, 18, 28, 29] for example. Moreover, Dziem-

bowski, Kazana and Obremski pointed out: “This brings a natural question if we could show

some relationship between the extractors and the non-malleable codes in the split-state model.

Unfortunately, there is no obvious way of formalizing the conjecture that non-malleable codes

need to be based on extractors” [18]. Very recently, Rasmussen and Sahai [35] discovered that

expander graphs could provide non-malleable codes for the split-state model and single-bit

messages. Their proof relies on the edge-counting technique for the underlying graph, together

with eigenvalue evaluation of its adjacency matrix, see Remark 8 and Appendix. However, their

non-malleable codes are only for equally-sized split-state model where the size of each part is

equal to the number of vertices of the underlying graph. We noticed that the construction in the

paper [35] cannot directly be transferred to the general split-state model since the symmetry of

two states is required in their proofs which, however, does not hold in the general case. Inspired

by this, we attempted to instantiate Rasmussen and Sahai’s construction based on bipartite

graphs, which are a typical class of expander graphs having been developed in various areas

such as coding theory, number theory and combinatorics, see e.g. [9, 10, 16, 25, 26, 38, 40, 44].

However, we noticed that the proofs in [35] cannot be used to verify the non-malleability if the

underlying graph is a bipartite graph in general (see Remark 8).

In this work, we establish a coding scheme based on bipartite graphs. In particular we

prove that when the underlying bipartite graph is an (r, s)-biregular graph with the second

largest eigenvalue µ, our coding scheme provides O
(µ3/2√

rs

)
-non-malleable codes for the split-
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state model which is not necessarily to be equally-sized. Our construction can be seen as an

extension of the construction in [35] in the sense that we could deduce the codes for equally-

sized split-state model in [35] as special cases (see Remark 16). As in [35] our proof is based

on edge-counting technique for the underlying biregular graph as well. However, we apply the

expander mixing lemma for biregular graphs, which is different from the fact used in [35]. Also

the analysis of non-malleability in [35] needs to be modified to deal with biregular graphs, see

Remark 21. Moreover, we instantiate our construction based on some specific bipartite graphs

(see Table 1), obtaining explicit non-malleable codes which reduce the encoding space cost in

comparison with the explicit codes in [35]. Specifically, for given 0 < ε < 1, our instantiation

provides explicit ε-non-malleable codes using 20 log(1/ε) +O(log log(1/ε)) space for encoding

each messeage, while the instantiation in [35] only gives explicit codes using 24 log(1/ε) +O(1)

space, see Example 17.

Ref. |L| |R| equally-sized? encoding space cost comments

[35, Section C] q3 q3 Yes 24 log(1/ε) +O(1) q = p2, p is a prime

Example 17 Θ(p5/2 log(p)) Θ(p5/2 log(p)) Yes 20 log(1/ε) +O(log log(1/ε)) p is a prime

Example 19 (q + 2)q2 q3 No 24 log(1/ε) +O(1) q is a prime power

Table 1: Parameters of explicit ε-non-malleable codes in this paper and [35]

The remainder of this paper is organized as follows. Section 2 briefly reviews non-malleable

codes and the basics in graph theory. Section 3 provides the coding scheme and shows the main

theorems in this paper (Theorems 12 and 13). Section 4 presents some explicit non-malleable

codes. Sections 5 and 6 prove the two main theorems respectively. Section 7 concludes this

paper. Finally Appendix proves a technical lemma used in Section 6 and briefly reviews the

code designed by Rasmussen and Sahai [35].

2 Preliminaries

In this section we recall the notion of non-malleable codes and some useful basics in graph the-

ory. Throughout this paper, let x← X denote that the random variable x sampled uniformly

from a set X . Let ⊥ denote a special symbol.

2.1 Non-malleable codes

A coding scheme is a pair of functions (enc, dec), where enc :M→ X is a randomized encoding

function, and dec : X → M∪ {⊥} is a deterministic decoding function. Assume that for all

m ∈M,

Pr[dec(enc(m)) = m] = 1,
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where the probability is taken over the randomness of enc.

Let A,B be two random variables over the same set X . Then the statistical distance

between A and B is defined as

∆(A,B) :=
1

2

∑
x∈X

∣∣∣Pr[A = x]− Pr[B = x]
∣∣∣.

Definition 1 (Split-state non-malleable codes). In the split-state model, assume X = L × R
is the product set of L and R. Let

F := {f = (g, h) : g : L → L, h : R → R},

and for each (L,R) ∈ L × R, f(L,R) := (g(L), h(R)). Then a coding scheme (enc, dec) such

that enc :M→ L×R and dec : L×R →M∪{⊥} is called an ε-non-malleable code with respect

to F if for every f = (g, h) ∈ F , there exists a distribution Df on M∪ {same∗,⊥} such that

for every m ∈M and the following two random variables Amf , B
m
f , we have ∆(Amf , B

m
f ) ≤ ε.

Amf :=

{
(L,R)← enc(m);

Output dec(g(L), h(R))

}
,

Bm
f :=

{
m̃← Df ;

If m̃ = same∗ output m, else output m̃

}
.

Hereafter, as in [18] and [35], the symbol “⊥” from Definition 1 will be dropped since it

usually denotes the situation when the decoding function detects tampering and outputs an

error message, which is not dealt in this paper.

This paper focuses on single-bit non-malleable codes, i.e., M = {0, 1}. It is shown by

Dziembowski, Kazana and Obremski [18] that single-bit non-malleable codes can also be for-

mulated as in the following Theorem 2.

Theorem 2 ([18, 19]). Let (enc,dec) be a coding scheme with enc : {0, 1} → X and dec : X →
{0, 1}. Let F be a set of functions from X to itself. Then (enc, dec) is an ε-non-malleable code

with respect to F if and only if it holds for every f ∈ F that

1

2

∑
b∈{0,1}

Pr
[
dec
(
f(enc(b))

)
= 1− b

]
≤ 1

2
+ ε

where the probability is taken over the randomness of enc.

2.2 Expander graphs

Throughout this paper, we assume that all graphs are undirected and simple, i.e., with no

multiple edges and loops. Let G = (V,E) denote a graph G with vertex set V and edge set
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E. Let G = (V1, V2, E) be a bipartite graph with a partition (V1, V2) of vertex set and edge

set E ⊂ {{v1, v2} : v1 ∈ V1, v2 ∈ V2}. For convenience, we identify G = (V1, V2, E) with an

orientation
−→
G = (V1, V2,

−→
E ) where

−→
E = {(v1, v2) : {v1, v2} ∈ E} ⊂ V1 × V2.

We call
−→
G the associated orientation of G.

A graph G is called a d-regular graph if every vertex of G connects exactly d edges. A

bipartite graph G = (V1, V2, E) is called an (r, s)-biregular graph if every vertex of V1 and V2

connects exactly r and s edges, respectively.

Lemma 3 (Handshaking lemma). For an (r, s)-biregular graph G = (V1, V2, E) and its asso-

ciated orientation
−→
G = (V1, V2,

−→
E ), it holds that

|E| = |
−→
E | = r|V1| = s|V2|.

Let G = (V,E) be a graph with n vertices. Then the adjacency matrix of G, denoted by

A(G), is an n×n binary matrix such that the (u,w)-entry is 1 if and only if {u,w} ∈ E. Clearly,

A(G) is a real symmetric matrix and thus has exactly n real eigenvalues with multiplicity,

denoted by λ1 ≥ λ2 ≥ · · · ≥ λn.

Lemma 4 (e.g. [11], [15]). Let G be a graph with n vertices.

1. If G is d-regular, then λ1 = d and λn ≥ −d, where λn = −d if and only if G is bipartite.

2. If G is (r, s)-biregular, then λ1 =
√
rs and λn = −

√
rs.

According to Lemma 4, the largest eigenvalue of a (bi-)regular graph is always determined.

However, the second largest eigenvalue usually has rich properties. For a d-regular graph G,

denote λ(G) := max
2≤i≤n

|λi|. For an (r, s)-biregular graph G, denote

µ(G) := max
2≤i≤n−1

|λi|.

An (r, s)-biregular graph G is a µ-spectral expander if µ(G) ≤ µ. It has the following nice

property.

Proposition 5 ([40]). Let G = (V1, V2, E) be an (r, s)-biregular graph which is a µ-spectral

expander. For a subset S ⊂ V1, define the neighbour of S as

N(S) := {u ∈ V2 : u is adjacent to some vertex in S},

and let ρ(S) := |S|
|V1| . Then for every subset S ⊂ V1,

|N(S)|
|S|

≥ r2

ρ(S)(rs− µ2) + µ2
.
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By Proposition 5, it is readily seen that if G is a µ-spectral expander with small µ, then G

has a good expansion property and thus we are interested in how µ(G) can be small.

Lemma 6 ([42]). Suppose that G is a sufficiently large graph. Then the followings hold.

(1) If G is d-regular, then λ(G) = Ω(
√
d).

(2) If G is (r, s)-biregular, then µ(G) = Ω(
√
r + s).

It is recently proved ([45]) that for s ≥ r with s = O(|V1|2/3), the random (r, s)-biregular

graphs with vertex set V1 ∪ V2 are O(
√
s)-spectral expanders with high probability, which are

optimal (up to a constant) with respect to Lemma 6. On the other hand, it is in general

non-trivial to explicitly construct such spectral expanders.

We will make use of the following lemma in our proofs.

Lemma 7 (Expander mixing lemma, [15], [23], [24]). Let G = (V1, V2, E) be an (r, s)-biregular

graph with n vertices, µ(G) = µ and
−→
G = (V1, V2,

−→
E ) be the associated orientation of G. For

any pair of subsets S ⊂ V1 and T ⊂ V2, let

E(S, T ) :=
∣∣{(s, t) ∈ −→E : s ∈ S, t ∈ T}

∣∣,
D(S, T ) :=

√
rs√

|V1||V2|
· |S||T | − E(S, T ).

(2.1)

Then we have

|D(S, T )| ≤ µ
√
|S||T |. (2.2)

Remark 8. The non-malleable codes from [35] used the following fact. Let G = (V,E) be a

d-regular (possibly non-bipartite) graph with λ(G) = λ. Then for any pair of subsets S, T ⊂ V ,∣∣∣∣dn |S||T | − e(S, T )

∣∣∣∣ ≤ λ√|S||T |. (2.3)

Here e(S, T ) denotes the number of edges between S and T . However, if G is a bipartite graph,

the estimation (2.3) cannot be used to prove the non-malleability for the coding schemes in [35]

(see Appendix) and the coding scheme in this paper (see Definition 10), since in this case

λ(G) = d (see Lemma 4), which only implies O(
√
d)-non-malleable codes. However we will see

in Theorem 13 that Lemma 7 can produce o(1)-non-malleable codes.

Remark 9. In the literature, extractors are the main pseudo-random objects applied for

constructing non-malleable codes, see [1, 4, 5, 6, 12, 13, 18, 28, 29] for example. It is worth

noting that extractors can provide bipartite graphs with “stronger” expansion properties (see

[37, 43]) than the one guaranteed in Proposition 5 based on spectral expanders. However

it turns out in Section 3 that the bipartite spectral expanders are in fact enough to obtain

non-malleable codes.
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3 Construction

In this section we provide a bipartite graph based coding scheme and show that it produces

non-malleable codes.

3.1 Candidate codes

First we propose a coding scheme based on bipartite graphs.

Definition 10 (Candidate codes). LetG = (V1, V2, E) be a bipartite graph and
−→
G = (V1, V2,

−→
E )

be the associated orientation of G. Then the associated graph code (encG, decG) consists of

the functions

encG : {0, 1} → V1 × V2, decG : V1 × V2 → {0, 1}

such that

encG(b) :=

(u,w)← (V1 × V2) \
−→
E if b = 0;

(u,w)←
−→
E if b = 1,

decG(v1, v2) :=

0 if (v1, v2) /∈
−→
E ;

1 if (v1, v2) ∈
−→
E .

Remark 11. In [35], Rasmussen and Sahai designed a coding scheme based on a graph G =

(V,E) so that the space of codewords is V × V (see Appendix), but it works only for equally-

sized split-state model with |L| = |R| = |V |. Note that here our scheme can be applied to a

more flexible split-state model in the sense that |L| = |V1| is not necessarily equal to |R| = |V2|.

3.2 Non-malleable codes from biregular graphs

In this subsection we aim to verify the non-malleability of the codes in Definition 10. First,

the following theorem, together with Theorem 2, shows that for a given (r, s)-biregular graph

G = (V1, V2, E), checking the non-malleability of the codes in Definition 10 can be done by the

edge-counting for each subgraph of G. In particular, this theorem will provide a feasible way

of using the expander mixing lemma (Lemma 7) to prove the non-malleability of the coding

scheme in Definition 10.

Theorem 12. Let G = (V1, V2, E) be an (r, s)-biregular graph and
−→
G = (V1, V2,

−→
E ) the

associated orientation of G. For given functions g : V1 → V1 and h : V2 → V2, define

f : V1 × V2 → V1 × V2 such that f(v1, v2) := (g(v1), h(v2)) for any (v1, v2) ∈ V1 × V2. Let

T :=
1

2

∑
b∈{0,1}

Pr
[
dec
(
f(enc(b))

)
= 1− b

]
.
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Then we have

T =
1

2
+ δ ·

∑
(v,w)∈

−→
E

D
(
g−1(v), h−1(w)

)
where

δ :=
|V2|

2r(|V2| − r)|V1|
=

|V1|
2s(|V1| − s)|V2|

.

The proof of Theorem 12 is deferred to Section 5. Applying Lemma 7 to Theorem 12, we

obtain the following theorem.

Theorem 13. Let G = (V1, V2, E) be a sufficiently large (r, s)-biregular graph which is a µ-

spectral expander. Suppose that |E| = Ω
(
(rs)2 log(rs)

µ

)
, equivalently,

√
|V1||V2| = Ω

(
(rs)

3
2 log(rs)
µ

)
.

Let F be the set of all functions f = (g, h) with g : V1 → V1 and h : V2 → V2. Then (encG, decG)

is an O
(
µ

3
2√
rs

)
-non-malleable code with respect to F .

The proof of Theorem 13 can be found in Section 6.

Remark 14. Suppose that G is an (r, s)-biregular graph with s ≥ r = ω(
√
s) and µ(G) =

O(
√
s). Then Theorem 13 guarantees that (encG, decG) is an O(s1/4/r1/2)-non-malleable code,

where s1/4/r1/2 = o(1) by the assumption on r and s. On the other hand, according to

Lemma 4, the quantity O(s1/4/r1/2) in Theorem 13 is best possible up to a constant.

The following corollary follows from Theorem 13 directly.

Corollary 15. Let G = (V1, V2, E) be a bipartite d-regular graph with |V1| = |V2| = n which

is a µ-spectral expander. Suppose that n = Ω
(
log(d)·d3

µ

)
and F is as in Theorem 12. Then

(encG,decG) is an O
(
µ3/2

d

)
-non-malleable code with respect to F .

As a special case of Theorem 13, Corollary 15, together with Lemma 3, guarantees the

non-malleability only for equally-sized split model.

Remark 16. Corollary 15 actually can deduce the non-malleable codes based on Cayley graphs

in [35, Section C]. In fact, for a finite abelian group X and a subset S of X, the Cayley graph

Cay(X,S) is an |S|-regular graph with vertex set X in which two vertices x and y are adjacent

if and only if xy−1 ∈ S. Note that from Cay(X,S), a bipartite |S|-regular graph can be easily

obtained as follows. Take two disjoint copies X1 and X2 of X and construct bipartite graph

so that x1 ∈ X1 and x2 ∈ X2 are adjacent if and only if x1x
−1
2 ∈ S; such a bipartite regular

graph is called a bi-Cayley graph [34]. For a prime p let Fp denote the p-element field and

q = p2. In [35], Rasmussen and Sahai constructed O(q−1/4)-non-malleable codes from a non-

bipartite graph Cay(F6
p, S) with some S ⊂ F6

p such that |S| = q. According to Corollary 15,

the corresponding bi-Cayley graph provides the same non-malleable code as in [35].
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4 Instantiation

In this section, for a given real number 0 < ε < 1, we present explicit ε-non-malleable codes

based on specific spectral expanders.

We note that in the presented codes below, both the encoding and decoding for each

message costs time O(log(1/ε)), which is same (up to a constant) as the explicit codes from [35,

Section C]. However, this work improves upon [35] in the following two folds. First, our codes

can reduce the encoding space cost in comparison of the explicit codes from [35, Section C].

Second, the parameters of our codes can be taken more flexibly (see Example 19).

We briefly explain the first improvement regarding the encoding space cost. Recall from

Corollary 15 that an ε-non-malleable code can be derived from a bipartite d-regular graph

G = (V1, V2, E) with d = Θ(1/ε)4, µ(G) = Θ(1/ε)2 and |V1| = |V2| = Θ(1/ε)10 log(1/ε),

assuming µ(G) = Θ(
√
d) which is optimal with respect to Lemma 6. Since |V1 × V2| =

Θ((1/ε)20(log(1/ε))2), in this scheme, encoding each bit uses 20 log(1/ε) + O(log log(1/ε))

space, which coincides to the observation in [35, Section 1.3]. However [35] only provided

explicit ε-non-malleable codes using encoding space 24 log(1/ε) + O(1) (see also Remark 16).

Here the following Example 17 can produce explicit ε-non-malleable codes achieving the en-

coding space cost 20 log(1/ε) + O(log log(1/ε)), by means of explicit bipartite (p + 1)-regular

graphs G with Θ(p5/2 log(p)) vertices and µ(G) ≤ 2
√
p, where p is a given prime.

Example 17 (LPS Ramanujan graphs). Let p1, p2 be two distinct primes such that p2 > 2
√
p1

and p1 is a quadratic non-residue modulo p2. Then in [32], Lubotzky, Phillips and Sarnak

explicitly constructed a bipartite (p1 + 1)-regular graph Xp1,p2 with p2((p2)
2 − 1) vertices and

µ(Xp1,p2) ≤ 2
√
p1.

Now for each sufficiently large prime p, by Bertrand’s postulate, there exists a prime p′ =

Θ(p5/6 log1/3(p)) > 2
√
p, which could be found in poly(p)-time. Note that for primes p and p′ =

Θ(p5/6 log1/3(p)), the adjacency list of Xp,p′ is computable in poly(log(p))-time, and hence the

graph can be constructed in poly(p)-time, see [33] for example. If p is a quadratic non-residue

modulo p′, then Xp,p′ is a bipartite (p + 1)-regular graph with Θ(p5/2 log(p)) vertices. Thus

according to Corollary 15 the graph Xp,p′ with p′ = Θ(p5/6 log1/3(p)) provides an O(p−1/4)-

non-malleable code for an equally-sized split-state model with |L| = |R| = Θ(p5/2 log(p)).

Remark 18. In Example 17, if p1 is a quadratic residue modulo p2, one can instead explic-

itly construct a non-bipartite (p1 + 1)-regular graph Y p1,p2 with p1((p1)
2 − 1)/2 vertices and

λ(Y p1,p2) ≤ 2
√
p1, see [32]. These graphs can be applied to the coding scheme in [35] (see

Appendix).

Next, to show the second improvement, we introduce a typical example of expander bireg-

ular graphs, see e.g. [31, 40, 42]. Note that for given 0 < ε < 1, these graphs provide ε-non-

malleable codes with encoding space cost 24 log(1/ε)+O(1), which is same as the instantiations
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in [35]. However, unlike the explicit codes from [35] which are only for equally-sized scenario,

these explicit non-malleable codes are valid for the non-equally-sized split state model as well.

Example 19 (Generalized quadrangles). A generalized quadrangle of order (α, β) is an (α +

1, β + 1)-biregular graph GQ(α, β) = (V1, V2, E) such that

1. For all x, y ∈ V1 ∪ V2, there exists a path of length ≤ 4 connecting x and y;

2. For all x, y ∈ V1 ∪V2, if the length of the shortest path connecting x and y is h < 4, then

there exists only one path of length h connecting x and y;

3. For every x ∈ V1 ∪ V2, there exists y ∈ V1 ∪ V2 such that there exists a path of length 4

connecting x and y.

It is known that |V1| = (α+ 1)(αβ+ 1), |V2| = (β+ 1)(αβ+ 1) and µ(GQ(α, β)) =
√
α+ β;

see [36, Section 1.2], [41, Corollary 1.5.5] and [40]. For every prime power q, there exists

an explicit GQ(q − 1, q + 1) (see [8, Sections 4 and 5]). Since |E| = r|V1| = Θ(q4) and
(rs)2 log(rs)

µ = Θ(q7/2 log q), we could conclude by Theorem 13 that (encG,decG) is an O(q−1/4)-

non-malleable code for a split-state model with |L| = (q + 2)q2 and |R| = q3.

5 Proof of Theorem 12

In Sections 5 and 6, we adopt the following notations. Let X, Y be two sets and f : X → Y

be a function. For each y ∈ Y , denote f−1(y) := {x ∈ X : f(x) = y}. For a subset S ⊂ Y ,

denote f−1(S) := ∪s∈Sf−1(s).
The proof here is analogous to the proof of [35, Proposition 6]. For b ∈ {0, 1}, let

Qb := Pr
[
decG

(
f(encG(b))

)
= 1− b

]
.

Notice that

Q0 = Pr
(v,w)←(V1×V2)\

−→
E

[
(g(v), h(w)) ∈

−→
E
]
,

Q1 = Pr
(v,w)←

−→
E

[
(g(v), h(w)) /∈

−→
E
]
,

and thus T = (Q0 +Q1)/2. Now we turn to compute Qb.

Case 1 (b = 0). For any e = (v, w) ∈
−→
E , the total number of non-edges of G mapped by f to

e is

|{(x, y) ∈ (V1 × V2) \
−→
E : f(x, y) = (g(x), h(y)) = (v, w)}|

= |g−1(v)||h−1(w)| − E
(
g−1(v), h−1(w)

)
.

10



Since Lemma 3 implies |(V1 × V2) \
−→
E | = (|V2| − r)|V1| = (|V1| − s)|V2|, we have

Q0 =

∑
(v,w)∈

−→
E

{
|g−1(v)||h−1(w)| − E

(
g−1(v), h−1(w)

)}
(|V2| − r)|V1|

. (5.1)

Case 2 (b = 1). For any e = (v, w) ∈ (V1 × V2) \
−→
E , the total number of edges of G mapped

by f to e is E
(
g−1(v), h−1(w)

)
. By Lemma 3, we have

Q1 =

∑
(v,w)/∈

−→
E
E
(
g−1(v), h−1(w)

)
r|V1|

=
|
−→
E | −

∑
(v,w)∈

−→
E
E
(
g−1(v), h−1(w)

)
r|V1|

= 1−

∑
(v,w)∈

−→
E
E
(
g−1(v), h−1(w)

)
r|V1|

,

(5.2)

where the last equality follows from Lemma 3.

Summing up (5.1) and (5.2) completes the proof.

6 Proof of Theorem 13

Let f = (g, h) : V1× V2 → V1× V2 be a given tampering function from F . Recall that for each

pair of 1 ≤ i 6= j ≤ 2 and each vertex v ∈ Vi, N(v) = {u ∈ Vj : u, v are adjacent in G}.
Now define the following partitions of V1 and V2.

G1 :=

{
v ∈ V1 : |g−1(v)| > |V1|

rs

}
, G2 :=

{
v ∈ V1 : |g−1(v)| ≤ |V1|

rs

}
,

H1 :=

{
w ∈ V2 : |h−1(w)| > |V2|

rs

}
, H2 :=

{
w ∈ V2 : |h−1(w)| ≤ |V2|

rs

}
.

For 1 ≤ i, j ≤ 2, let

Ri,j := δ ·
∑

(v,w)∈
−→
E∩(Gi×Hj)

D
(
g−1(v), h−1(w)

)
.

Since Theorem 12 shows that T = 1/2 +
∑

1≤i,j≤2Ri,j , it suffices to evaluate Ri,j for each pair

of 1 ≤ i, j ≤ 2.

Case 1 (i = 2) By the definition of D(S, T ) in (2.1),

R2,1 +R2,2 ≤ δ ·
∑

(v,w)∈
−→
E∩(G2×V2)

√
rs√

|V1||V2|
· |g−1(v)||h−1(w)|

≤ δ · s ·
∑
w∈V2

√
rs√

|V1||V2|
· |V1|
rs
· |h−1(w)|

11



≤ |V1|
2s(|V1| − s)|V2|

· s ·
√
rs√

|V1||V2|
· |V1|
rs
· |V2|

= O

(
1√
rs
·

√
|V1|
|V2|

)
= O

(1

r

)
where the second inequality follows from the definition of G2.

Case 2 (i = 1, j = 2) Similarly to Case 1, we have

R1,2 ≤ δ ·
∑

(v,w)∈
−→
E∩(G1×H2)

√
rs√

|V1||V2|
· |g−1(v)||h−1(w)|

≤ δ ·
∑

(v,w)∈
−→
E∩(V1×H2)

√
rs√

|V1||V2|
· |g−1(v)||h−1(w)|

≤ δ · r ·
∑
v∈V1

√
rs√

|V1||V2|
· |g−1(v)| · |V2|

rs

≤ |V2|
2r(|V2| − r)|V1|

· r ·
√
rs√

|V1||V2|
· |V1| ·

|V2|
rs

= O

(
1√
rs
·

√
|V2|
|V1|

)
= O

(1

s

)
.

Case 3 (i = j = 1) This is the most complicate case to evaluate Ri,j . Now take partitions of

G1 and H1 so that for each pair of 1 ≤ k, l ≤ dlog2(rs)e,

G1(k) :=
{
v ∈ G1 :

|V1|
2k−1

≥ |g−1(v)| ≥ |V1|
2k

}
,

H1(l) :=
{
w ∈ H1 :

|V2|
2l−1

≥ |h−1(w)| ≥ |V2|
2l

}
.

For each pair of 1 ≤ k, l ≤ dlog2(rs)e, let

Sk,l := δ ·
∑

(v,w)∈
−→
E∩
(
G1(k)×H1(l)

)D
(
g−1(v), h−1(w)

)
.

Since R1,1 =
∑

1≤k,l≤dlog2(rs)e Sk,l, the proof completes by showing that

∑
1≤k,l≤dlog2(rs)e

Sk,l = O
( µ 3

2

√
rs

)
. (6.1)

To that end, we discuss in the following cases.

Case 3-1 (k ≤ l) By applying Lemma 7,

δ−1Sk,l =
∑

v∈G1(k)

D

(
g−1(v),

⋃
w∈N(v)∩H1(l)

h−1(w)

)

12



≤
∑

v∈G1(k)

µ

√
|g−1(v)| ·

∑
w∈N(v)∩H1(l)

|h−1(w)|

≤ µ
√
|V1|
2k−1

· |V2|
2l−1

∑
v∈G1(k)

√
|N(v) ∩H1(l)|

≤ 2µ · 2−
l+k
2 ·

√
|V1||V2| ·

√
|G1(k)| ·

√
E
(
G1(k), H1(l)

)
≤ 2µ · 2−

l+k
2 ·

√
|V1||V2| ·

√
|G1(k)| ·

√ √
rs√

|V1||V2|
· |G1(k)||H1(l)|+ µ

√
|G1(k)||H1(l)|,

where the second and last inequalities follow from Lemma 7.

By Jensen’s inequality and Lemma 3, we obtain

Sk,l ≤ O
( µ√
|E|

)
· 2−

l+k
2 · |G1(k)| ·

√
|H1(l)|+O

( µ 3
2

√
rs

)
· 2−

l+k
2 ·

(
|G1(k)|3|H1(l)|

) 1
4
.

To complete the discussions for Case 3-1, we need the following lemma, which is proved in the

Appendix.

Lemma 20.

∑
1≤k≤l≤dlog2(rs)e

Sk,l = O
( µ 3

2

√
rs

)
. (6.2)

Case 3-2 (k > l) We deal with the following equation.

δ−1Sk,l =
∑

w∈H1(l)

D

( ⋃
v∈N(w)∩G1(k)

g−1(v), h−1(w)

)
.

By an analogous calculation as in Case 3-1 and Lemma 20, we have

∑
1≤l<k≤dlog2(rs)e

Sk,l = O
( µ 3

2

√
rs

)
. (6.3)

Combining (6.2) and (6.3) yields (6.1). This completes the proof.

Remark 21. The presented proof here is along with the analysis in [35]. However the discus-

sion in [35] relies on the symmetry of L and R, which does not hold for biregular graphs in

general by Lemma 3. This difference mainly involves the discussion of Case 3. Particularly,

compared to Case 3-1, the role of G(k) and H(l) for evaluating δ−1Sk,l needs to be switched

in Case 3-2.
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7 Conclusion, remarks and problems

In this paper, we proposed a coding scheme based on bipartite graphs as an extension of

the construction in [35]. In particular we showed that the non-malleability can be satisfied

if the underlying bipartite graph is a biregular µ-spectral expander with sufficiently small

µ. Moreover, we instantiated the coding scheme on specific spectral expanders and obtained

explicit and efficient non-malleable codes. Our results provide more evidence, other than the

work in [35], to that constructing non-malleable codes for the split-state model is not necessarily

based on extractors, which answers the question by Dziembowski, Kazana and Obremski [18].

We would like to mention that low-density parity-check (LDPC) codes can be applied to

construct non-malleable codes according to Theorem 13. In fact, an LDPC code is associated

to a Tanner graph. The Tanner graph of an LDPC code with parity-check matrix H = (hij)

is a bipartite graph I = (V1, V2, E), where V1 and V2 are indexes of rows and columns of H

respectively, and two vertices i ∈ V1 and j ∈ V2 are adjacent if and only if hij 6= 0, see [39].

On the one hand, it is known ([27, 38, 44]) that if a Tanner graph is an expander biregular

graph, the corresponding LDPC code has fast decoding algorithms. On the other hand, as

shown in [16, 25, 30], the algebraic or combinatorial constructions of LDPC codes often provide

Tanner graphs which are µ-spectral expanders with optimally small µ with respect to Lemma 6.

We remark that the generalized quadrangles in Example 19 also appear as Tanner graphs of

specific LDPC codes, see [25, 30, 40]. Thus if the Tanner graphs of LDPC codes are spectral

expanders, we can apply these graphs (accordingly LDPC codes) to construct non-malleable

codes by Theorem 13.

Finally in terms of practical applications, it is desirable to construct split-state non-

malleable codes for k-bit messages with k ≥ 1. As far as we know, there is no known graph-

theoretic constructions of non-malleable codes for the split-state model and k-bit messages. It

would be of interest to generalize the codes in this paper and [35] for k-bit messages in the

split state model.
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Verlag, Basel, 2010.

[32] A. Lubotzky, R. Phillips and P. Sarnak, “Ramanujan graphs,” Combinatorica, vol. 8, no.

3, pp. 261–277, 1988.

[33] S. Mohanty, R. O’Donnell and P. Paredes, “Explicit near-Ramanujan graphs of every

degree,” in 52nd Annual ACM Symposium on Theory of Computing (STOC 2020), pp.

510–523, 2020.

[34] B. Nica, A Brief Introduction to Spectral Graph Theory, European Mathematical Society
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A Proof of Lemma 20

This section proves Lemma 20, which is employed in the proof of Theorem 13 (see Case 3-1 in

Section 6). The proof here is an analogue of the discussion on [35, Theorem 10].

To bound
∑

1≤k≤l≤dlog2(rs)e Sk,l, let

L :=
∑

1≤k≤l≤dlog2(rs)e

2−
l+k
2 · |G1(k)| ·

√
|H1(l)|,

K :=
∑

1≤k≤l≤dlog2(rs)e

2−
l+k
2 ·

(
|G1(k)|3|H1(l)|

) 1
4
.

By the definitions of L and K,∑
1≤k≤l≤dlog2(rs)e

Sk,l = O
( µ√
|E|

)
· L+O

( µ 3
2

√
rs

)
·K. (A.1)

First we estimate L. Notice that for each k ≤ dlog2(rs)e,

|G1(k)| · 2−
k
2 ≤ 2

k
2 ≤ 2

√
rs. (A.2)

Then by the Cauchy-Schwartz inequality,

L ≤
∑

1≤k,l≤dlog2(rs)e

2−
l+k
2 · |G1(k)| ·

√
|H1(l)|,

≤ 2
√
rs ·

∑
1≤l≤dlog2(rs)e

√
2−l|H1(l)|

≤ O
(√

rs log(rs)
)
·
√ ∑

1≤l≤dlog2(rs)e

2−l|H1(l)|,

where the second inequality follows from (A.2). On the other hand, the definition of H1(l)

implies that

|h−1(H1(l))| ≥ |V2||H
1(l)|

2l
. (A.3)

Since H1(1), . . . ,H1(dlog2(rs)e) are disjoint subsets of V2, we have

L ≤ O
(√

rs log(rs)
)
·

√√√√ ∑
1≤l≤dlog2(rs)e

|h−1(H1(l))|
|V2|

= O
(√

rs log(rs)
)
, (A.4)
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where the last equation follows from (A.3).

Next we aim to bound K. Since we are assuming that k ≤ l, setting t = l − k, we obtain

K ≤
∑

1≤k≤l≤dlog2(rs)e

2
k−l
4

(|V1|3|V2|)
1
4

(
|g−1(G1(k))|3 · |h−1(H1(l))|

) 1
4

≤
dlog2(rs)e∑

t=0

2−
t
4

(|V1|3|V2|)
1
4

dlog2(rs)e∑
l=t

(
|g−1(G1(l − t))|3 · |h−1(H1(l))|

) 1
4
,

where the first inequality follows from (A.3) and the following inequality.

|g−1(G1(k))| ≥ |V1||G
1(k)|

2k
. (A.5)

By the definitions of G1(k) and H1(l), for each 0 ≤ t ≤ dlog2(rs)e, the sets g−1(G1(l − t))
and h−1(G1(l)), t ≤ l ≤ dlog2(rs)e, are disjoint subsets of V1 and V2, respectively. Then it

follows from Hörder’s inequality that

K ≤
dlog2(rs)e∑

t=0

2−
t
4

(|V1|3|V2|)
1
4

(dlog2(rs)e∑
l=t

(
|g−1(G1(l − t))|

) 3
4

·

(dlog2(rs)e∑
l=t

|h−1(H1(l))|

) 1
4

≤
dlog2(rs)e∑

t=0

2−
t
4 = O(1).

(A.6)

By (A.1), (A.4) and (A.6), we get

∑
1≤k≤l≤dlog2(rs)e

Sk,l = O
( µ√
|E|
·
√
rs log(rs)

)
+O

( µ 3
2

√
rs

)

= O
( µ 3

2

√
rs

)
,

where the last equality follows from the condition in Theorem 13 that |E| = Ω
(
(rs)2 log(rs)

µ

)
.

This completes the proof of Lemma 20.

We remark that one can also prove (6.3) for Case 3-2 in Section 6 by conducting a similar

discussion as the above proof for Lemma 20.

B The graph code by Rasmussen and Sahai

In this section, we briefly review the graph code proposed in [35]. To define it more rigorously,

we associate the underlying graph with a digraph as described below.
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Definition 22 ([35]). Let G = (V,E) be an undirected graph with no multiple edges (but each

vertex may have at most one loop). Let DG = (V,E′) be the associated symmetric digraph

with vertex set V and edge set E′ ⊂ V × V such that

E′ = {(u,w), (w, u) ∈ V × V : {u,w} ∈ E}.

Then the associated graph code (enc′G,dec′G) consists of the functions

enc′G : {0, 1} → V × V, dec′G : V × V → {0, 1}

such that

enc′G(b) :=

(u,w)← (V × V ) \ E′ if b = 0;

(u,w)← E′ if b = 1,

dec′G(v1, v2) :=

0 if (v1, v2) /∈ E′;

1 if (v1, v2) ∈ E′.

Theorem 23 ([35]). Let G = (V,E) be a d-regular graph with n vertices and λ(G) = λ.

Assume that n = Ω(d
3 log(d)
λ ). Let F be the set of all functions f = (g, h) with g : V → V and

h : V → V . Then (enc′G,dec′G) is an O
(
λ

3
2

d

)
-non-malleable code with respect to F .
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