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Abstract

BORON is a 64-bit lightweight block cipher based on the substitution-permutation network that supports an 80-bit (BORON-80)
and 128-bit (BORON-128) secret key. In this paper, we revisit the use of differential cryptanalysis on BORON in the single-key
model. Using an SAT/SMT approach, we look for differentials that consist of multiple differential characteristics with the same
input and output differences. Each characteristic that conforms to a given differential improves its overall probability. We also
implemented the same search using Matsui’s algorithm for verification and performance comparison purposes. We identified high-
probability differentials which were then used in key recovery attacks against BORON-80/128. We first show that the previous
differential cryptanalysis attack against 9-round of BORON was at most an 8.5 round attack due to the omission of the final block
XOR layer. Then, we used 8-round differentials with a probability of 2−58.156 and 2−62.415 in key recovery attacks against 9 and
10 rounds of BORON-80 and BORON-128 with time/data/memory complexities of 263.63/262/255 and 2100.28/264/271 respectively.
Our key recovery framework provides a more accurate estimate of the attack complexity as compared to previous work. The attacks
proposed in this paper are the best differential attacks against BORON-80/128 in the single-key model to date.
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1. Introduction

Block ciphers are ubiquitous cryptographic primitives found
in protocols such as Transport Layer Security (TLS) [1], OpenPGP
[2], and SSH Transport Layer Protocol [3]. They are symmetric-
key encryption algorithms that use one secret key, K to per-
form both encryption, EK(X) = Y and decryption, DK(Y) = X,
where X and Y represent the plaintext (message) and ciphertext
(encrypted message) respectively. Block ciphers can be used
as building blocks to construct random number generators (us-
ing the CTR mode of operation), message authentication codes
[4, 5] and authenticated encryption algorithms [6, 7]. Block ci-
phers are also expected to be secure in a post-quantum world,
with just the selection of larger keys or block sizes [8].

Recently, the design and analysis of lightweight cryptographic
algorithms have gained popularity among researchers, which
includes the ongoing standardization effort for lightweight cryp-
tography by the National Institute of Standards and Technology
(NIST)[9]. These lightweight algorithms are designed to have
reduced power and memory consumption to fulfill the require-
ments of resource-constrained applications such as RFID tags
and Internet of Things (IoT) devices [10]. Lightweight block
ciphers commonly have block sizes of 32 to 64 bits with key
sizes of 80 or 128 bits. Some well-studied lightweight block
ciphers include PRESENT [11], TWINE [12], LBlock [13], SI-
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MON/Speck [14] and KATAN/KTANTAN [15]. The block ci-
pher analyzed in this paper, BORON, is an example of a re-
cently proposed 64-bit lightweight block cipher [16].

A block cipher is considered secure enough for practical
use after it has undergone extensive third-party cryptanalysis.
One of the main techniques used to cryptanalyze block ciphers
is differential cryptanalysis [17]. Resistance against differential
cryptanalysis is widely considered a mandatory design crite-
rion for any block cipher. A successful differential attack relies
on finding a highly probable differential characteristic (propa-
gation of an input difference through the cipher to produce a
corresponding output difference) that will be used as a statisti-
cal distinguisher for key recovery. Identifying these differential
characteristics is a time-consuming and highly technical task,
which has been greatly simplified with the availability of search
algorithms such as Matsui’s branch-and-bound search, mixed-
integer linear programming (MILP) and Boolean satisfiability
(SMT/SAT) approaches.

One of the earliest automated differential search tools was
introduced by Matsui, whose branch-and-bound approach was
used to find differential and linear characteristics for DES [18].
The search algorithm was later modified by other researchers
to target other block ciphers, incorporate other types of bound-
ing requirements, time-data complexity trade-offs, and paral-
lel processing [19, 20, 21, 22]. The use of Matsui’s algorithm
requires sophisticated programming to adapt it to different ci-
phers. Later, Mouha et al. used MILP to perform differential
and linear cryptanalysis on a stream cipher, Encoro-128v2 and
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also count the number of active S-boxes for AES [23]. The
MILP approach was further enhanced by Sun et. al to automati-
cally enumerate differential or linear characteristics to construct
differentials or linear hulls [24]. Since then, MILP has been
widely used to aid differential cryptanalysis efforts of block ci-
phers such as GIFT [25], CRAFT [26], PRESENT, RECTAN-
GLE, LBlock and TWINE [27]. The general idea of the MILP
approach is to model a cipher as a series of linear inequalities
that involve (integer) decision variables that describe the vari-
ous operations of the cipher. Then, a mathematical program-
ming solver such as the IBM ILOG CPLEX Optimizer can be
used to solve the MILP model. The use and implementation of
the MILP approach are less complex as compared to Matsui’s
algorithm.

An alternative approach that models the differential search
problem as a Boolean satisfiability problem (SAT) was used
by Mouha and Preneel in their efforts to find optimal differ-
ential characteristics for addition-rotation-XOR (ARX) ciphers
[28]. Their SAT approach involved writing Boolean equations
that represent the operations of a cipher as well as the objec-
tive function (number of active S-boxes or differential proba-
bility). An SAT or satisfiability modulo theories (SMT) solver
such as CryptoMiniSat [29] or STP is then invoked to find a
solution. Ankele and Kölbl used the SAT/SMT approach to an-
alyze the security of various block ciphers (LBlock, Midori,
PRESENT, Prince, Rectangle, Simon, Skinny Sparx, Speck,
TWINE) against differential cryptanalysis, taking into consider-
ation the notion of differentials rather than single characteristics
to provide accurate security bounds [30]. More recently, Sun et
al. enhanced the standard SAT method by incorporating Mat-
sui’s bounding criteria as additional Boolean constraints, which
greatly accelerated the search for optimal differential character-
istics [31]. They were not only able to provide the complete
bounds for various lightweight block ciphers, but also provided
empirical evidence that their SAT approach outperforms MILP.
The previous cryptanalysis attempt against BORON also uti-
lized an SMT solver [32].

1.1. Contribution
In this paper, we take an in-depth look at BORON’s resis-

tance against differential cryptanalysis in the single-key model,
using the SMT method to automatically enumerate differentials
rather than just relying on a single optimal characteristic. To
date, there has only been one prior cryptanalysis attempt [32].
We are interested to further cryptanalyze BORON due to its
unique design which supposedly maximizes the number of ac-
tive S-boxes in fewer rounds as compared to a regular bitwise
permutation. By having more cryptanalysis results, its security
strength and potential for real-life application would be better
understood.

Finding BORON differentials. We investigate BORON’s se-
curity against differential cryptanalysis by considering the no-
tion of differentials rather than a single differential character-
istic. We search for high-probability differentials based on dif-
ferential characteristics identified using an SMT model. By in-
cluding additional constraints to the SMT model, we restrict the

search to a specific input and output difference before adding
more constraints to block solutions (characteristics) that have
already been found. This allowed us to find the high-probability
differentials for BORON. A detailed look at several of these dif-
ferentials is provided in Section 3.4.

Comparison of differential search approaches. We imple-
ment the same differential search using a variant of Matsui’s
branch-and-bound search [20] for performance comparison pur-
poses. Without considering parallelization, the SMT approach
was found to be more efficient than Matsui’s. Notably, finding
a differential for 9 rounds of BORON required less than half an
hour while Matsui’s algorithm required over two days.

New key recovery attacks. We propose new key recovery at-
tacks against round-reduced BORON-80 and BORON-128 with
more accurate estimates of the attack complexity in Section 4.
We show that the previous attack proposed in [32] is at best
an 8.5-round attack as it omits the final linear layer. We then
provide a more accurate estimate of a full 9-round attack on
BORON-80 by using the same differential characteristic as the
previous authors. Next, by using an improved 8-round differ-
ential with a probability of 2−58.156, our best attack against 9
rounds of BORON-80 has a time/memory/data complexity of
263.63/262/255. We also attack 10 rounds of BORON-128 using
a different 8-round differential with a probability of 2−62.415 to
achieve a time/memory/ data complexity of 2100.28/264/271. A
summary of differential cryptanalysis results for BORON in the
single-key model is provided in Table 1.

Software The SMT model used to find differentials is publicly
available at https://github.com/jesenteh/boron-smt.

1.2. Outline

Section 2 first introduces BORON, differential cryptanal-
ysis, and automated differential search approaches. Then in
Section 3, we describe our differential search strategy based on
SMT solvers and provide the high-probability differentials cor-
responding to various rounds of BORON. A performance com-
parison between SMT and Matsui approaches is also provided
in the same section. Finally, Section 4 details the key recov-
ery attacks against BORON-80/128. We conclude the paper in
Section 5 with some final remarks and future work.

2. Preliminaries

2.1. Notations

In this paper, we adopt the convention of numbering the
rightmost bits or blocks as 0, and increment the index as we
move from right to left. Also, plaintext and ciphertext differ-
ences are represented as hexadecimal values. The following
notations and symbols are used throughout the paper:

1. ⊕: Binary exclusive OR (XOR) operation
2. x <<< i: Left rotation (circular shift) of x by i bits
3. S i[x]: i-th 4-bit S-box with a 4-bit input, x
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Table 1: Differential cryptanalysis results for BORON in the single-key model

Reference Rounds Version Time Data Memory Success Probability
[32] 8.5 BORON-80 256 263 224 0.841

Section 4.2 9 BORON-80 265.63 264 255 0.8647
Section 4.3 9 BORON-80 263.63 262 255 0.9992
Section 4.4 10 BORON-128 2100.28 264 271 0.7769

4. 80/128-bit secret key, K = {k79/127, k78/126, ..., k1, k0}

5. 64-bit plaintext, X = {x63, x62, ..., x1, x0}

6. 64-bit ciphertext, Y = {y63, y62, ..., y1, y0}

7. 64-bit r-th round key, RKr = {rkr,63, rkr,62, ..., rkr,1,
rkr,0}

2.2. BORON Revisited

BORON is a 64-bit lightweight block cipher with 25 rounds,
based on the substitution-permutation network (SPN) proposed
by Bansod et al. [16]. It supports key sizes of 80 and 128
bits, which we will refer to as BORON-80 and BORON-128
respectively. It consists of a key addition (XOR) layer, substi-
tution layer of 16 S-boxes, and a linear layer that consists of a
block shuffle, bitwise rotation, and block XOR operations. The
four blocks involved in the linear layer are 16 bits each. The
designers claimed that BORON’s linear layer activates many
S-boxes in fewer rounds as compared to its peers apart from
having low area and power requirements, and high throughput.
These properties would make BORON a great alternative to ex-
isting lightweight block ciphers if more third-party cryptanal-
ysis work was available to analyze its security. One round of
BORON is shown in Figure 1. The substitution layer uses the
same S-box depicted in Table 2 in hexadecimal format.

The key schedule generates a total of 26 64-bit round keys,
RKr where r = {0, 2, ..., 25}. Taking RK0 as the whitening key,
the remaining keys are used for each of the remaining rounds.
Each round, the 64-bit round key will be XOR-ed with the en-
tire 64-bit block of data before proceeding to the substitution
and linear layer. The 128-bit key is as follows:

1. RKr={kr,63, rkr,62, ..., rkr,1, rkr,0}

2. RKr <<< 13
3. [rkr,3 rkr,2 rkr,1 rkr,0]← S [rkr,3 rkr,2 rkr,1 rkr,0]
4. [rkr,7 rkr,6 rkr,5 rkr,4]← S [rkr,7 rkr,6 rkr,5 rkr,4]
5. [rkr,63 rkr,62 rkr,61 rkr,60 rkr,59]←

[rkr,63 rkr,62 rkr,61 rkr,60 rkr,59] ⊕ RCi,

where RCi is a round counter. The 80-bit key schedule is exactly
the same as the 128-bit key schedule with Step 4 omitted.

2.3. Differential Cryptanalysis and Automated Differential Search

The goal of an attacker when using differential cryptanaly-
sis is to identify a differential or differential characteristic that
holds with sufficiently high probability, which is then used as a
statistical distinguisher to recover key bits. An r-round differ-
ential denoted by

∆X
r
−→ ∆Y (1)

has an input difference, ∆X = X′ ⊕ X′′ and corresponding out-
put difference, ∆Y = Y ′ ⊕ Y ′′, where (X′, X′′) and (Y ′,Y ′′)
are known as plaintext and ciphertext pairs respectively. The
r-round propagation of ∆X to ∆Y can be represented as a se-
quence of intermediate differences δxr,

∆X → δx1 → δx2 → ...→ δxr−2 → δxr−1 → ∆Y. (2)

Each sequence corresponding to a unique set of intermediate
differences is known as a differential characteristic. Thus, a
differential can consist of more than one differential character-
istic that has the same endpoints ∆X,∆Y but differs in terms of
their intermediate differences.

The difference propagation of a differential characteristic is
probabilistic due to the interactions between the round subkeys
and nonlinear layers (such as the substitution layer). For block
ciphers that use S-boxes, a probability penalty of 2−p is incurred
for each active S-box (S-boxes that receive nonzero differences
as inputs). The value of p depends on the differential distribu-
tion table (DDT) of the S-box. For more details about how to
derive the DDT for an S-box, readers can refer to [17]. The
product of these probability penalties results in the probability
of a single characteristic. The overall differential probability,
Pr(∆X

r
−→ ∆Y) can be obtained by summing up the individ-

ual probabilities of each characteristic that forms the differen-
tial. This concept of differentials was first put forward by Lai
et al. based on the assumption that an iterated block cipher is
Markov, whose round subkeys are independent, and the output
differences of each round form a Markov chain [33].

2.3.1. The SAT/SMT Approach
To use an SAT or SMT solver to search for differential char-

acteristics or differentials, a cryptanalyst needs to develop an
SAT or SMT model of the cipher. This involves representing
all possible intermediate states of each round as variables, then
use them to form constraints that describe the differential be-
havior of the cipher. The objective functions (target differential
probability or the number of active S-boxes) also need to be
encoded as constraints. Then, a solver is invoked to check for
the satisfiability of these constraints. SMT solvers are consid-
ered more powerful and are easier to use for block ciphers be-
cause they support both bitwise and word-based operations. An
SMT solver first encodes the constraints using languages such
as CVC or SMTLIB2 before invoking an underlying SAT solver
to check for satisfiability. We utilize the SMT solver known as
STP for our cryptanalysis task [34].
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Table 2: 4-bit BORON S-box

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S [x] E 4 B 1 7 9 C A D 2 0 F 8 5 3 6

𝑅𝑅𝐾𝐾𝑟𝑟−1 Key XOR

𝑆𝑆15 𝑆𝑆14 𝑆𝑆13 𝑆𝑆12 𝑆𝑆11 𝑆𝑆10 𝑆𝑆9 𝑆𝑆8 𝑆𝑆7 𝑆𝑆6 𝑆𝑆5 𝑆𝑆4 𝑆𝑆3 𝑆𝑆2 𝑆𝑆1 𝑆𝑆0

<<<9 <<<7 <<<4 <<<1

16 16 16 16

𝑅𝑅𝐾𝐾𝑟𝑟 Key XOR

Figure 1: The round function of BORON.

2.3.2. Matsui’s Branch-and-Bound Algorithm
Matsui’s branch-and-bound algorithm can be used to iden-

tify the best differential or linear characteristics for a block ci-
pher. Generally, Matsui’s algorithm traverses all possible dif-
ferential trails for a cipher, then bounds (cuts off) trails that are
unlikely to lead to an improved differential probability. This is
performed by bounding trails that have probabilities less than
Bn, which is the best probability that has been found so far. Bn

is constantly updated during the algorithm execution to further
limit the differential search space. In this paper, we compare
our SMT-based approach to a variant of the Matsui algorithm
proposed by Chen et al., which was proposed to efficiently enu-
merate all characteristics corresponding to a given differential
[20].

3. New Differentials for BORON

3.1. Finding the Best Differential Characteristic

The same SMT model described in [32] (available at http
s://github.com/CatherineLiang/Cryptanalysis-of

-BORON) was used to find the single best differential character-
istics. Variables were created to represent intermediate states,
which include the inputs and outputs of every encryption oper-
ation (substitution, block shuffle, rotation, and block XOR). For
the convenience of the reader, we provide a summary of all the
variables relevant to the differential search:

1. be f ore sbox value1 i j: Input value of the j-th S-box of
the i-th round for the first input of the difference pair

2. a f ter sbox value1 i j: output value of the j-th S-box of
the i-th round whose input value is be f ore sbox value1 i j

3. be f ore sbox value2 i j: Input value of the j-th S-box of
the i-th round for the second input of the difference pair

4. a f ter sbox value2 i j: output value of the j-th S-box of
the i-th round whose input value is be f ore sbox value1 i j

5. be f ore sbox di f f erence i j =

be f ore sbox value1 i j ⊕ be f ore sbox value2 i j
6. a f ter sbox di f f erence i j =

a f ter sbox value1 i j ⊕ a f ter sbox value2 i j
7. be f ore rotation di f f erence i i: Difference of the j-th

block before performing bit rotation in the i-th round
8. a f ter rotation di f f erence i i: Difference of the j-th block

after performing bit rotation in the i-th round
9. a f ter blockxor di f f erence i j: Difference of the j-th block

after performing the block XOR operation
10. probability i j: Probability parameter of the j-th S-box

of the i-th round, set based on BORON’s DDT
11. total probability: Sum of all probability i j to obtain the

weight of the differential characteristic (objective func-
tion)

Using the SMT model is a straightforward process - Set the
number of rounds to search for and target weight (total probability),
then run a script that prints all the constraints in a format (CVC)
that can be understood by the SMT solver. The weight of a dif-
ferential is defined as

total probability = − log2(Pr(∆X
r
−→ ∆Y)). (3)
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To identify the best differential characteristic for a particular
round, an attacker will need to try all possible weights starting
from a initial value, and increment the weight until the con-
straints are satisfiable. If the optimal number of active S-boxes
is known, it can be used to derive the initial weight value for the
search (2× the number of active S-box). More details about the
basic SMT model can be found in [32].

3.2. Finding the Best Differential
To find the best differential, we include additional constraints

to the SMT model to fix the input and output differences (which
is straightforward to encode), and exclude differential charac-
teristics that have already been found. When excluding differ-
ential characteristics that have already been found, we need to
ensure that only characteristics that have the same set of inter-
mediate differences (Eq. 2) will be excluded. If one of the inter-
mediate differences is distinct, a new differential characteristic
has been found.

To exclude characteristics that have already been found, we
used a sum of modulo approach. For each difference going
into the S-box, we perform a modulo operation with interme-
diate differences that have been found so far. At the end of
the search, the results of all modulo operations (corresponding
to a particular differential characteristic) are summed up. This
is performed for all of the differential characteristics that have
been found so far. If all sums of modulo values are larger than
1, a new differential characteristic has been found. The interme-
diate differences for this new differential characteristic will be
encoded into the SMT model and the search is executed again.
This is repeated until the constraints are no longer satisfiable.
New variables that need to be encoded are as follows:

1. inter c i j: Parameter to store the intermediate difference
for the j-th S-box of the i-th round of the c-th differential
characteristic

2. mod c i j: Parameter to store the result of all modulo
operations

3. total mod c: Parameter to store the sum of modulo val-
ues for the c-th characteristic

The pseudocode for finding differential characteristics corre-
sponding to a given differential is detailed in Algorithm 1.

3.3. General Differential Search Strategy using SMT Solvers
To enumerate high probability differentials for BORON, the

following steps were performed:
1. Run the SMT solver (STP) to identify the single best dif-

ferential characteristic for round r (Sec. 3.1).
2. Encode the differential characteristic as the starting points

of the differential search
3. Encode the intermediate differences of the characteristic

into the differential search (Sec. 3.2)
4. Find a new differential characteristic corresponding to the

initial differences specified in Step 2.
5. Repeat steps 3 and 4 until no more characteristics can be

found.
6. Reduce the target weight by 1.
7. Repeat steps 3 to 6 until the desired differential probabil-

ity has been achieved.

3.4. Performance Comparison and Verification of Correctness

All experiments were performed on a computer with an In-
tel Core i7-9700K 3.60GHz CPU and 32GB RAM. For the best
differential characteristic with a weight of wbest, we find all
other characteristics up to wbest + 5 for verification purposes.
Several examples of differentials found using the proposed ap-
proach are illustrated in Table 3. Three of the best characteris-
tics from each differential (with the variations in intermediate
differences highlighted in bold) are shown in Tables 4, 5, 6,
and 7. We were unable to find a valid 9-round differential even
when increasing the search space to wbest+20. 9-round differen-
tial characteristics with probabilities ranging between 2−82 and
2−90 were found but barely contribute to improving the over-
all differential probability. This finding supports BORON’s de-
signer’s claims that its linear layer is effective in maximizing
the number of active S-boxes in fewer rounds as compared to a
conventional bitwise permutation.

To verify the correctness of the differentials that were found,
we implemented the same search using Matsui’s algorithm. We
adapted an enhanced version from [20] to BORON’s structure,
which includes a meet-in-the-middle time-memory trade-off to
optimize efficiency. To further speed up the search, we reduce
the number of operations required by simplifying BORON’s
linear layer. This was performed by combining the block shuf-
fle and bitwise rotation operations into a single bitwise permu-
tation. The simplification of the linear layer is as shown in Fig-
ure 2. We compare both Matsui and SMT approaches in terms
of computational time required to find the same 9-round differ-
ential described in Table 3. Matsui’s algorithm and the SMT
approach required approximately 186243.599s and 1589.071s
respectively to find all 8 characteristics of the target differen-
tial. The SMT approach was found to be faster than Matsui’s
algorithm by a factor of approximately 117.2x when applied to
9 rounds of BORON.

4. New Key Recovery Attacks on BORON

In this section, we provide a detailed key recovery frame-
work with a more accurate estimate of the attack complexity.
We take a quick look at the previous attack on BORON and
show that the attack proposed by the authors is in fact an 8.5-
round attack rather than a full 9-round attack. We then calculate
the complexity of attacking the full 9 rounds of BORON using
a single differential characteristic before describing improved
attacks on 9 rounds of BORON-80 and 10-rounds of BORON-
128 using differentials.

4.1. Previous 8.5-round Attack on BORON-80

In [32], the authors described an attack on BORON-80 us-
ing an 8-round differential characteristic, 0000 0800 0010 0000
→ 0041 0041 0008 0009 that holds with a probability of 2−62.
They omit the final linear layer of the 9th round and recover
24 bits of RK9 corresponding to the active S-boxes of their out-
put difference, including rk9,0, rk9,1, rk9,2, rk9,3, rk9,16, rk9,17,
rk9,18, rk9,19, rk9,32, rk9,33, rk9,34, rk9,35, rk9,36, rk9,37, rk9,38,
rk9,39, rk9,48, rk9,49, rk9,50, rk9,51, rk9,52, rk9,53, rk9,54, and rk9,55.
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Table 3: Best Differentials for BORON limited to a weight of wbest + 5

Rounds Input Difference Output Difference Probability Number of Characteristics
7 00 0b 00 0a 06 30 00 00 09 03 3d 02 34 c1 34 c3 2−50.42 2
8 00 00 30 00 00 0b 00 06 a0 00 a0 00 00 00 a0 00 2−62.415 8
8 00 00 00 08 a0 00 00 00 8e 03 8e 03 70 00 7e 00 2−58.74 36
9 00 00 30 00 00 0B 00 06 A1 E0 21 E0 80 00 81 E0 2−68.42 8

Table 4: Differential characteristics from the 7-round 2−50.42 differential

Round Characteristic 1 Characteristic 2
0 00 0b 00 0a 06 30 00 00 00 0b 00 0a 06 30 00 00
1 00 00 00 02 00 e0 00 e0 00 00 00 02 00 c0 00 c0
2 80 00 80 00 00 01 00 00 80 00 80 00 00 01 00 00
3 00 00 60 00 00 00 00 00 00 00 60 00 00 00 00 00
4 50 00 50 00 00 00 00 00 50 00 50 00 00 00 00 00
5 00 00 60 00 60 00 60 00 00 00 60 00 60 00 60 00
6 41 00 41 00 08 00 09 00 41 00 41 00 08 00 09 00
7 09 03 3d 02 34 c1 34 c3 09 03 3d 02 34 c1 34 c3

Probability 2−51 2−52

Table 5: Differential characteristics from the 8-round 2−62.415 differential

Round Characteristic 1 Characteristic 2 Characteristic 3
0 00 00 30 00 00 0b 00 06 00 00 30 00 00 0b 00 06 00 00 30 00 00 0b 00 06
1 00 00 00 00 10 00 00 00 00 00 00 00 10 00 00 00 00 00 00 00 10 00 00 00
2 00 00 00 00 0a 00 0a 00 00 00 00 00 06 00 06 00 00 00 00 00 0e 00 0e 00
3 00 08 00 08 00 e0 00 e8 00 08 00 08 00 e0 00 e8 00 08 00 08 00 70 00 78
4 0c 00 0c 06 00 00 0c 01 0c 00 0c 06 00 00 0c 01 0c 00 0c 06 00 00 0c 01
5 00 80 0c 80 0c 00 00 02 00 80 0c 80 0c 00 00 02 00 80 0c 80 0c 00 00 02
6 00 00 00 60 00 00 06 00 00 00 00 60 00 00 06 00 00 00 00 60 00 00 06 00
7 00 00 00 00 00 00 00 10 00 00 00 00 00 00 00 10 00 00 00 00 00 00 00 10
8 a0 00 a0 00 00 00 a0 00 a0 00 a0 00 00 00 a0 00 a0 00 a0 00 00 00 a0 00

Probability 2−64 2−65 2−66

Table 6: Differential characteristics from the 8-round 2−58.74 differential

Round Characteristic 1 Characteristic 2 Characteristic 3
0 00 00 00 08 a0 00 00 00 00 00 00 08 a0 00 00 00 00 00 00 08 a0 00 00 00
1 00 06 00 06 0f 00 0f 00 00 06 00 06 0f 00 0f 00 00 06 00 06 0f 00 0f 00
2 00 07 00 17 00 60 00 70 00 07 00 17 00 f0 00 e0 00 04 00 14 00 f0 00 e0
3 00 70 00 78 00 00 80 00 00 70 00 78 00 00 80 00 00 70 00 7e 00 00 80 00
4 00 0e 00 ce 00 c0 00 00 00 0e 00 ce 00 c0 00 00 00 0c 00 cc 00 c0 00 00
5 00 00 00 0c 00 00 00 00 00 00 00 0c 00 00 00 00 00 00 00 0c 00 00 00 00
6 00 06 00 06 00 00 00 00 00 06 00 06 00 00 00 00 00 06 00 06 00 00 00 00
7 00 00 00 04 00 04 00 04 00 00 00 04 00 04 00 04 00 00 00 04 00 04 00 04
8 8e 03 8e 03 70 00 7e 00 8e 03 8e 03 70 00 7e 00 8e 03 8e 03 70 00 7e 00

Probability 2−62 2−62 2−62
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Algorithm 1 Finding differential characteristics with corresponding to ∆X
r
−→ ∆Y .

1: r: Number of rounds
2: ch: Number of characteristics being excluded
3: for c← 0 to ch − 1 do
4: for i← 0 to r − 1 do
5: for j← 0 to 15 do
6: mod c i j← be f ore sbox di f f erence i j ⊕ inter c i j
7: end for
8: end for
9: end for

10: for c← 0 to ch-1 do
11: for i← 0 to r − 1 do
12: for j← 0 to 15 do
13: total mod c← total mod c + mod c i j
14: end for
15: end for
16: end for
17: if total mod c = 0 for all values of c then
18: No new differential characteristic has been found
19: else
20: Output solution as a new differential characteristic
21: end if

Table 7: Differential characteristics from the 9-round 2−68.42 differential

Round Characteristic 1 Characteristic 2 Characteristic 3
0 00 00 30 00 00 0b 00 06 00 00 30 00 00 0b 00 06 00 00 30 00 00 0b 00 06
1 00 00 00 00 10 00 00 00 00 00 00 00 10 00 00 00 00 00 00 00 10 00 00 00
2 00 00 00 00 0a 00 0a 00 00 00 00 00 06 00 06 00 00 00 00 00 0e 00 0e 00
3 00 08 00 08 00 e0 00 e8 00 08 00 08 00 e0 00 e8 00 08 00 08 00 70 00 78
4 0c 00 0c 06 00 00 0c 01 0c 00 0c 06 00 00 0c 01 0c 00 0c 06 00 00 0c 01
5 00 80 0c 80 0c 00 00 02 00 80 0c 80 0c 00 00 02 00 80 0c 80 0c 00 00 02
6 00 00 00 60 00 00 06 00 00 00 00 60 00 00 06 00 00 00 00 60 00 00 06 00
7 00 00 00 00 00 00 00 10 00 00 00 00 00 00 00 10 00 00 00 00 00 00 00 10
8 a0 00 a0 00 00 00 a0 00 a0 00 a0 00 00 00 a0 00 a0 00 a0 00 00 00 a0 00
9 a1 e0 21 e0 80 00 81 e0 a1 e0 21 e0 80 00 81 e0 a1 e0 21 e0 80 00 81 e0

Probability 2−70 2−71 2−72

𝑆𝑆15 𝑆𝑆14 𝑆𝑆13 𝑆𝑆12 𝑆𝑆11 𝑆𝑆10 𝑆𝑆9 𝑆𝑆8 𝑆𝑆7 𝑆𝑆6 𝑆𝑆5 𝑆𝑆4 𝑆𝑆3 𝑆𝑆2 𝑆𝑆1 𝑆𝑆0

Figure 2: Simplified linear layer of BORON.

7



If the final linear layer is taken into consideration, just guessing
these 24 bits will not be sufficient to recover the expected output
difference of their distinguisher due to the bitwise mixing that
occurs due to the block XOR operation. In fact, a total of 55
bits are actually involved in the recovery of the expected output
difference as shown in Figure 3. Thus, their attack on BORON-
80 is in fact only valid for 8.5 rounds of BORON. In the next
subsection, we take the full linear layer into consideration when
attacking 9 rounds of BORON.

4.2. 9-round attack on BORON-80 with a Single Characteristic
The best 8-round differential characteristic used in [32],

0000 0800 0010 0000 → 0041 0041 0008 0009 holds with a
probability of 2−62. After encrypting an input difference
0000 0800 0010 0000 for 8 rounds, the resulting ciphertext dif-
ference is equal to 0041 0041 0008 0009. After the substitution
layer and block shuffle of the 9th round, the expected output
difference is **00 **00 0*00 0*00, where * represents all pos-
sible output differences of the S-box. Based on BORON’s DDT,
input differences of 1, 4, 8, and 9 all have 6 possible values for
*. Thus, each “**00” block can take on 62 possible 16-bit val-
ues whereas each “0*00” block can take on 6 possible 16-bit
values. This will be used as a filter to eliminate wrong pairs.

As the number of active S-boxes in the first round is 2, we
can construct 2N−8 structures that contain 28 plaintexts each,
where the overall data complexity is 2N . Each structure has
22×8−1 = 215 pairs to consider at the beginning. Out of these
215 pairs, we expect 215−8 = 27 pairs to fulfil the expected
input difference. Thus, there are 2N−8 × 27 = 2N−1 possible
plaintext pairs in total that satisfies the required input differ-
ence. Each pair will be encrypted 9 rounds for the attack. We
then perform a 1-round decryption for all 2N−1 pairs without
guessing subkeys for RK9 and check whether the resulting dif-
ference fulfils the expected difference of **00 **00 0*00 0*00.
The expected number of remaining pairs in each structure is
27× 36

216 ×
36
216 ×

6
216 ×

6
216 = 27×2−10.83 ×2−10.83×2−13.415×2−13.415

= 2−41.49. The total number of remaining pairs is 2N−8 × 2−41.49

= 2N−49.49.
We guess the 55 bits required to recover the output differ-

ence of the distinguisher and complete the partial decryption.
As depicted in Figure 3, this includes all bits of RK9 except
rk9,13, rk9,14, rk9,15, rk9,23, rk9,24, rk9,41, rk9,42, rk9,43, and rk9,48.
We check if the result of the partial decryption matches the out-
put of the distinguisher. If it does, a counter corresponding to
the subkey guess is incremented. A total of 255 counters are
required for the attack. The candidate subkey with the high-
est counter value is taken as the right subkey. The overall time
complexity calculation is as follows:

• To produce the required plaintext-ciphertext pairs, we re-
quire 2N 9-round BORON encryptions to obtain the cor-
responding 2N ciphertexts. One round of decryption is
required to filter pairs, which has a time complexity of
1
9 × 2N = 2N−3.1699 9-round BORON encryptions.

• When guessing each subkey, we perform 1 round of de-
cryption for each pair of ciphertexts, which has a com-
plexity of 1

9 = 2−3.1699 9-round BORON encryptions.

This is performed for every valid pair and candidate key,
which results in a time complexity of 2N−49.49 × 2−3.1699×

255 = 2N+2.3401.

• To recover the entire 80-bit master key, the remaining 25
bits of the key register can be brute-forced, which incurs
a time complexity of 225.

To obtain 262 pairs as suggested in [32], 262 = 2N−1, N = 63.
The resulting time complexity of the attack is 263 + 263−3.1699+

263+2.3401 + 225 ≈ 264.6263. The memory and data complexity
are 255 and 263 respectively. To calculate the expected success
probability for the attack, we adopt the same approach as [35],
which estimates the probability of success as a function of the
differential probability and total number of candidate pairs. The
expected success probability for the attack on BORON is ap-
proximately 1 − (1 − 2−62)262

≈ 1 − e−2−0.000000000000002
≈ 0.6321.

To achieve a success probability of above 80%, setting N = 64
will result in an expected success probability of approximately
1−(1−2−62)263

≈ 1−e−21
≈ 0.8647. This increases the time and

data complexities to 264 + 264−3.1699 + 264+10.3401 + 225 ≈ 265.6263

and 264 respectively.

4.3. 9-round Attack on BORON-80 with an Improved Differen-
tial

To perform our improved attack, we perform a differen-
tial search for the same differential characteristic used in Sec-
tion 4.2. We found a total of 111 differential characteristics that
conform to the given differential, improving the overall differ-
ential probability from 2−62 to 2−58.156. By using the same key
recovery framework, we can achieve an expected success prob-
ability of 1− (1−2−58.156)261

≈ 1−e−21.844
≈ 0.9992 with N = 62

when recovering 55 subkeys of RK9. This results in time and
data complexities of 262 + 262−3.1699 + 262+10.3401 + 225 ≈ 263.6263

and 262 respectively.

4.4. 10-round Attack on BORON-128

To attack 10 rounds of BORON-128, we search for a valid
8-round differential that has a low number of active S-boxes in
the output difference. We found an 8-round differential char-
acteristic, 0000 3000 000b 0006→ a000 a000 0000 a000 that
holds with a probability of 2−64. A total of 8 differential charac-
teristics conform to the given differential, improving the overall
differential probability from 2−64 to 2−62.415. After the substi-
tution layer and block shuffle of the 9th round, the expected
output difference is 00*0 00*0 0000 00*0, where * represents
all possible output differences of the S-box. We encrypt this
expected output difference until after the substitution layer and
block shuffle of the 10th round, resulting in an expected output
difference of **** ***0 *00* ****. Each “****”, “***0”, and
“*00*” block can take on 64, 63, and 62 possible 16-bit values
respectively. This will be used as a filter to eliminate wrong
pairs.

As the number of active S-boxes in the first round is 3, we
can construct 2N−12 structures that contain 212 plaintexts each,
where the overall data complexity is 2N . Each structure has
22×12−1 = 223 pairs to consider at the beginning. Out of these
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<<<9 <<<7 <<<4 <<<1

16 16 16 16

0 0 4 1 0 0 4 1 0 0 0 1 0 0 0 1

0 0 * * 0 0 * * 0 0 0 * 0 0 0 *

* * 0 0 * * 0 0 0 * 0 0 0 * 0 0

* denotes all possible differences

𝑅𝑅𝐾𝐾9 Key XOR

Figure 3: Key propagation for round 9 of BORON (∆Y = 0041 0041 0008 0009)

223 pairs, we expect 223−12 = 211 pairs to fulfil the expected
input difference. Thus, there are 2N−12 × 211 = 2N−1 possi-
ble plaintext pairs in total. Each pair will be encrypted 10
rounds for the attack. We then perform a 1-round decryption
for all 2N−1 pairs without guessing subkeys for RK10 and check
whether the result fulfils the expected difference of **** ***0 *00*
****. The expected number of remaining pairs in each structure
is 211× 64

216 ×
63

216 ×
62

216 ×
64

216 = 211×2−5.66×2−8.245 ×2−10.83×2−5.66 =

2−19.395. The total number of remaining pairs is 2N−12 × 2−19.395

= 2N−31.395.
For the full 10 rounds, all 64 bits of RK10 are required to

check if a given pair fulfills the expected **** ***0 *00* ****
10-round difference. Then, another 28 RK9 subkey bits are
needed to check if the given pair fulfills the 00*0 00*0 0000 00*0
round-9 difference as shown in Figure 4. We only need to guess
7 of these 28 RK9 bits as the rest can be derived based on the key
schedule. Thus, a total of 71 subkey bits need to be guessed.
This includes all 64 bits of RK10, rk9,63, rk9,62, rk9,61, rk9,56,
rk9,55, rk9,54, and rk9,53. We check if the result of the partial
decryption matches the output of the distinguisher. If it does,
a counter corresponding to the subkey guess is incremented. A
total of 271 counters are required for the attack. The candidate
subkey with the highest counter value is taken as the right sub-
key. The overall time complexity calculation is as follows:

• To produce the required plaintext-ciphertext pairs, we re-
quire 2N 10-round BORON encryptions to obtain the cor-
responding 2N ciphertexts. One round of decryption is
required to filter pairs, which has a time complexity of
1

10 × 2N = 2N−3.3219 10-round BORON encryptions.

• When guessing each subkey, we perform two rounds of
decryption for each pair of ciphertexts, which has a com-
plexity of 2

10 = 2−2.3219 10-round BORON encryptions.
This is performed for every valid pair and candidate key,
which results in time complexity of 2N−31.395 × 2−2.3219 ×

271 = 2N+37.2831.

• To simplify calculations, we assume that each operation

(S-box, rotation, XOR) in the key schedule is equivalent
in terms of computational cost. In total, there are 4 op-
erations performed for each iteration of the key schedule.
Each BORON round has 25 operations in total. Thus, the
computational cost of one key schedule iteration is ap-
proximately 4

25×10 = 2−5.9658 10-round BORON encryp-
tions. This is performed for every valid pair and candi-
date key, which results in time complexity of
2N−31.395−5.9658+71 = 2N+33.6392.

• To recover the entire 128-bit master key, the remaining 57
bits can be brute-forced, which incurs a time complexity
of 257.

When N = 64, we have 264−1 = 263 pairs. The resulting
time complexity of the attack is 264 + 264−3.3219 + 264+37.2831 +

264+33.6392 +257 ≈ 2100.2832 10-round BORON encryptions. The
memory and data complexity are 271 and 264 respectively. The
expected success probability for the attack on BORON-128 is
approximately 1 − (1 − 2−62.415)263

≈ 1 − e−20.585
≈ 0.7769.

5. Conclusion

In this paper, we examined the security of the lightweight
block cipher BORON against differential cryptanalysis in the
single-key model. To obtain a more accurate estimation of its
security margin against differential cryptanalysis, we use dif-
ferentials rather than a single optimal differential characteris-
tic when attacking the cipher. This allowed us to improve the
overall distinguishing probability by finding multiple differen-
tial characteristics that conform to the same input and output
differences. Notably, we found 8-round differentials of BORON
with probabilities of 2−58.156 and 2−62.415 that were used to per-
form key recovery attacks against 9 rounds of BORON-80 and
10 rounds of BORON-128 respectively. The attack against 9
rounds of BORON-80 has a time/data/memory complexity of
263.63/262/255 while the attack against 10 rounds of BORON-
128 has a time/data/memory complexity of 2100.28/264/271. These
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16 16 16 16
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0 0 * 0 0 0 * 0 0 0 0 0 0 0 * 0

* denotes all possible differences

𝑅𝑅𝐾𝐾9 Key XOR

Figure 4: Key propagation for round 9 of BORON (∆Y = a000 a000 0000 a000)

are the best differential attacks to date against BORON in the
single-key model. We also found that there is no valid 9-round
differential (with a probability > 2−64) for BORON even when
multiple characteristics are taken into consideration. This sup-
ports the designers’ claims that BORON’s linear layer is effec-
tive in activating many S-boxes in fewer rounds. Although our
attacks do not yet threaten the security of the full 25 rounds
of BORON, it provides a detailed look at the cipher’s secu-
rity against differential cryptanalysis. Future work includes im-
proving the time complexity of the key recovery attack against
BORON-128 by adopting a divide-and-conquer strategy when
guessing the final round subkeys. The differential search can
also be applied to related-key or boomerang attacks against
BORON to potentially attack more rounds of the cipher.
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