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Differential Cryptanalysis of WARP
Je Sen Teh* and Alex Biryukov

Abstract—The proliferation of resource-constrained
Internet-of-Things (IoT) devices that transmit sen-
sitive data on a daily basis has led to the need
for lightweight ciphers with minimal computational
requirements. WARP is an energy-efficient lightweight
block cipher that is currently the smallest 128-bit
block cipher in terms of hardware. It was proposed
by Banik et al. in SAC 2020 as a lightweight re-
placement for AES-128 without changing the mode of
operation. This paper proposes key-recovery attacks
on WARP based on differential cryptanalysis in single
and related-key settings. We searched for differential
trails for up to 20 rounds of WARP, with the first
19 having optimal differential probabilities. We also
found that the cipher has a strong differential effect,
whereby 16 to 20-round differentials have substan-
tially higher probabilities than their corresponding
individual trails. A 23-round key-recovery attack was
then realized using an 18-round differential distin-
guisher. Next, we formulated an automatic boomerang
search using SMT that relies on the Feistel Boomerang
Connectivity Table to identify valid switches. We
designed the search as an add-on to the CryptoSMT
tool, making it applicable to other Feistel-like ciphers
such as TWINE and LBlock-s. For WARP, we found a
21-round boomerang distinguisher which was used in
a 24-round rectangle attack. In the related-key setting,
we describe a family of 2-round iterative differential
trails, which we used in a practical related-key attack
on the full 41-round WARP.

Index Terms—Constrained Devices, IoT,
Symmetric-key, Block ciphers, Differential
cryptanalysis, Boomerang distinguisher, Rectangle
attack, Related-key, WARP, GFN

I. INTRODUCTION

Lightweight cryptography is currently one of
the most heavily researched areas in recent years
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[1]. This is due in part to the widespread use
of resource-constrained devices such as smart or
IoT devices which transmit sensitive information
on a daily basis. Compared to other symmetric-key
primitives, lightweight block ciphers have received
the most attention in terms of development and
cryptanalytic efforts. Although most lightweight
block ciphers have block sizes of 64 bits there
were a number of 128-bit block ciphers with lower
area and/or power requirements than AES such
as MIDORI [2] and GIFT-128 [3]. These 128-
bit lightweight block ciphers are usually based on
the Substitution-Permutation Network (SPN) design
paradigm which generally takes up more hardware
space due to the inversion of their confusion and
diffusion layers.

To overcome this hurdle, Banik et al. adopted
the Type-2 Generalized Feistel Network [4] in
their 128-bit block cipher called WARP which
was proposed in SAC 2020 [5]. The design team
consisted of the minds behind multiple well-known
lightweight block ciphers such as GIFT, MIDORI
and TWINE [6]. The motivation behind designing
WARP as a 128-bit cipher with a 128-bit key was to
realize a direct replacement for AES-128 without
having to change the underlying mode of operation.
By adopting MIDORI’s S-box (for reduced latency
and area) and a simple alternating key schedule,
the designers found that WARP only requires 763
Gate Equivalents (GE) for a bit-serial encryption-
only circuit and has better energy consumption than
MIDORI, which is widely considered the current
state-of-the-art in terms of 128-bit low-energy ci-
phers.

Related Work. To the best of our knowledge,
the only prior third-party cryptanalysis result for
WARP was an attack described in an IACR ePrint
[7]. By using an 18-round differential trail, the au-
thors were able to perform a key recovery attack on



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

21 rounds. WARP’s designers analyzed its security
against differential and linear cryptanalysis, based
on the number of active S-boxes. They found that
WARP has more than 64 active S-boxes after 19
rounds. They also found a 21-round impossible
differential distinguisher and a 20-round integral
distinguisher for the cipher. A meet-in-the-middle
attack is expected to be feasible for at most 32
rounds of WARP. Although no concrete attacks
were described, 41 rounds of WARP is expected
to be secure against these attacks.

Our Contributions. In this paper, we cryptan-
alyze WARP using differential cryptanalysis. By
using an SMT-aided differential search, we found
differential trails for up to 20 rounds of WARP,
with the first 19 guaranteed to be optimal. These
differential trails confirm that the lower bounds
provided by the designers cannot be improved. We
then performed a differential cluster search for each
of these trails and found that WARP has a strong
differential effect from round 13 onward.

Next, we implemented an automatic search for
boomerang (or more specifically, rectangle) dis-
tinguishers which includes the Feistel Boomerang
Connectivity Table (FBCT) [8]. The boomerang
search was written as a new module for the Cryp-
toSMT tool [9] rather than one that was specifically
catered to WARP1. We showcase its flexibility by
also applying it to TWINE and LBlock-s [10].
Using our tool, we were able to find a 21-round
boomerang distinguisher for WARP with a differ-
ential probability, DP = 2−121.11.

We also performed a search for related-key dif-
ferential trails for WARP. As a result, we found that
WARP has a family of 2-round iterative related-key
differential trails with low weight. These iterative
trails can be concatenated to form distinguishers
for the full 41-round WARP with DP = 2−40.
These trails exist due to the interaction between the
cipher’s nibble-wise permutation, simple alternating
key schedule and subkey XOR operation performed
after the S-box. The interaction between these de-

1The implementation is publicly available under
an open-source license at https://github.com/jesenteh/
cryptosmt-boomerang, along with other supplementary codes
for this paper.

R Method Time Data Mem Ref.

21 SK Diff. 2113 2113 272 [7]
23 SK Diff. 2106.68 2106.62 2106.62 IV-A
24 SK Rect. 2125.18 2126.06 2127.06 IV-B
41 RK Diff. 237∗ 237 29.59 V-B
∗Time complexity to recover 60 bits of the key

TABLE I
SUMMARY OF KEY-RECOVERY ATTACKS ON WARP (SK/RK

DENOTES SINGLE-KEY/RELATED-KEY)

sign elements also led to another interesting obser-
vation whereby knowledge of the input difference
for a Feistel-subround can be propagated to the next
round without having to guess its corresponding
subkey. This property was leveraged in all of our
key recovery attacks to target specific subkeys.

Finally, we proposed key-recovery attacks on
WARP based on the differential distinguishers
that were found. In the single-key setting, we
have a 23-round differential attack using an
18-round differential distinguisher that has time
T , data D and memory M complexities of
(T,D,M) = (2106.68, 2106.62, 2106.62), followed
by a 24-round rectangle attack using a 21-
round boomerang distinguisher with (T,D,M) =
(2125.18, 2125.06, 2126.06). In the related-key setting,
we formulated a 25-round attack using a 19-round
related-key differential distinguisher for the purpose
of computational verification. 16 bits of the se-
cret key were recovered within 2.5 minutes. We
extended the same key-recovery framework and
introduced a practical attack on all 41 rounds of
WARP using a 35-round related-key distinguisher
with (T,D,M) = (237, 237, 29.59). Our cryptana-
lytic results are summarized in Table I.

II. PRELIMINARIES

Notations and abbreviations used in this paper
are summarized in Table II. The rightmost (least
significant) bits or nibbles have an index of 0.

A. Differential Cryptanalysis

A block cipher maps a set of plaintexts to a set of
ciphertexts using a key-dependent round function,

https://github.com/jesenteh/cryptosmt-boomerang
https://github.com/jesenteh/cryptosmt-boomerang
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Symbol Meaning

n Block size in bits
k Key size in bits
∆P Plaintext XOR difference
∆C Ciphertext XOR difference
α, β, δ, γ n-bit input and output
αj
i The i-th nibble of an n-bit XOR dif-

ference, α in round j
Xj

i The i-th nibble of an n-bit binary vari-
able, X in round j

#AS Number of active S-boxes
⊕ Binary exclusive-OR (XOR)
|| Binary concatenation
DP Differential probability
R Number of rounds
DDT (x, y)/
FBCT (x, y)

An entry in the DDT/FBCT for an
input x and output y

TABLE II
SYMBOLS AND NOTATION

fj , where j ∈ R. The goal of differential cryptanal-
ysis is to find pairs of plaintexts (P1, P2) and ci-
phertexts (C1, C2) with a strong correlation between
their differences α = P1 ⊕ P2 and β = C1 ⊕ C2.
The propagation pattern of an input difference α to
an output difference β is known as a differential
characterisitic or trail. A differential trail consists
of a sequence of differences,

α
f1−→ α1 f2−→ ...

fR−2−−−→ αR−2 fR−1−−−→ β. (1)

An adversary must find a differential trail with
sufficiently high differential probability,

DP = Pr(α f1−→ ...
fR−1−−−→ β). (2)

Based on the Markov assumption [11] which al-
lows treating a cipher’s rounds independently, the
differential probability can be computed as

DP ≈
R-1∏
j=1

Pr(αj−1 fj−→ αj), (3)

where α0 = α and αR-1 = β. A better estimate
of the differential probability can be obtained by

collecting differential trails that share the same
input and output differences,

DP = Pr(α → β) =
∑

α1...αR-2

(α
f1−→ ...

fR−1−−−→ β).

(4)
When cryptanalyzing a block cipher, an adversary
maximizes the probability of the differential by
enumerating as many differential trails as possible,
which can be automated using methods such as
Matsui’s algorithm [12], MILP [13], boolean sat-
isfiability problem (SAT) and satisfiability modulo
theory (SMT) solvers [14] .

In the related-key setting, an adversary is allowed
to also have a difference in the encryption key, and
not only in the plaintext. However, the adversary
cannot specify the value of the key itself and the
attack must be valid for any pair of keys with the
given difference. In the past, there have been practi-
cal attacks that rely on the related-key property [15].
Ciphers that are vulnerable to related-key attacks
are not recommended for use in protocols where
key integrity is not guaranteed [16].

B. Boomerang and Rectangle Attacks

The boomerang attack is a variant of differential
cryptanalysis that concatenates two shorter differ-
entials to form a longer distinguisher. The classical
boomerang attack involves decomposing a target
cipher, E into two subciphers, E = E1 ◦ E0. The
input and output differences of E0 are denoted as
α and β while for E1, they are denoted as γ and
δ. The probability that α E0−−→ β is p and γ

E1−−→ δ
is q. The boomerang attack was later reformulated

Fig. 1. Sandwich attack
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as a chosen plaintext attack called the rectangle
attack [17], [18] by encrypting many pairs with
the input difference α and searching for a quartet
which satisfies C1 ⊕ C3 = C2 ⊕ C4 = δ when
P1 ⊕ P2 = P3 ⊕ P4 = α. Although the probability
of a quartet to be a right quartet is reduced to
2−np2q2, counting over all possible β’s and δ’s
as long as β ̸= δ improves the probability to
2−np̂2q̂2, where p̂ = (

∑
i Pr2(α E0−−→ βi)

1
2 and

q̂ = (
∑

j Pr2(γ E1−−→ δj))
1
2 .

With the introduction of the sandwich attack [19],
[20], the boomerang connectivity table (BCT) [21]
and its Feistel counterpart [8], we can system-
atically enumerate these trails while guaranteeing
their compatibility. The sandwich attack (Figure 1)
decomposes the cipher into 3 components, E =
E1 ◦ Em ◦ E0, where Em is the middle transition
round with a switching probability, r that can be
calculated using BCT or FBCT. The connectivity
tables already the various switches that have been
used in the past to improve the probability of
boomerang distinguishers such as the ladder, S-
box and Feistel switches [19]. The probability of
obtaining a right quartet is

p̂2q̂2 =
∑
i,j

(p̂i
2q̂j

2ri,j), (5)

where p̂i = Pr(α E0−−→ βi), q̂j = Pr(γj
E1−−→ δ) and

ri,j = Pr(βi
Em−−→ γj).

C. Specification of WARP

The block cipher WARP is a 41-round, 128-bit
block cipher with a 128-bit key designed based on a
32-nibble Type-2 GFN. The i-th round’s state is di-
vided into 32 nibbles, Xi = Xi

31||Xi
30||...||Xi

1||Xi
0,

where Xi
j ∈ {0, 1}4. It has a simple key schedule

x 0 1 2 3 4 5 6 7

S(x) C A D 3 E B F 7

x 8 9 A B C D E F

S(x) 8 9 1 5 0 2 4 6

TABLE III
WARP 4-BIT S-BOX

that first divides the secret key into two 64-bit round
keys, K = K1||K0, then alternates between them
(starting from K0). Each 64-bit round key is di-
vided into 16 nibbles, Ki = Ki

15||Ki
14||...||Ki

1||Ki
0,

where Ki
j ∈ {0, 1}4, i ∈ {0, 1}. The round

function is illustrated in Figure 2 while the S-box
and permutation pattern, π are shown in Tables III
and IV respectively. Apart from using the inverse
permutation, π−1, the decryption algorithm is the
same.

To avoid the complement property of Feistel-type
ciphers [22], the designers of WARP opted for the
key XOR operation to be after the S-box. However,
this design decision leads to the following property:

Property 1 (Subround Filters). Since XOR with
the key is done after the S-box in the Feistel-
subround which works on two nibbles, it allows to
partially decrypt and propagate the knowledge of
the difference to the next round. This can be done
for both the top and bottom rounds.

Based on Figure 3, we can see that partially en-
crypting P1 and P2 that correspond to the input
difference, α allows to immediately check if the
given pair is valid if the left nibble of the output
difference, βL is known. We can do this without
having to guess the corresponding key nibble, Kj

i

because the output difference of the S-box, which
we denote as γ, can be directly computed from the

Fig. 2. Round Function of WARP
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x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π(x) 31 6 29 14 1 12 21 8 27 2 3 0 25 4 23 10
π−1(x) 11 4 9 10 13 22 1 30 7 28 15 24 5 18 3 16

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

π(x) 15 22 13 30 17 28 5 24 11 18 19 16 9 20 7 26
π−1(x) 27 20 25 26 29 6 17 14 23 12 31 8 21 2 19 0

TABLE IV
WARP PERMUTATION

Fig. 3. Difference propagation for a pair of nibbles

known values of x1
R and x2

R. Thus, we can check
if αL ⊕ γ = βL because the effect of the round
key has been negated by the XOR operation. The
same property exists for the bottom rounds whereby
partially decrypting known values of C1 and C2

when αL is a known difference allows to check if
βL⊕ γ = αL. We will use these subround filters in
our key recovery attacks.

III. SEARCHING FOR WARP DISTINGUISHERS

A. Differential Distinguishers

We use CryptoSMT [9] to search for both dif-
ferential trails and differentials for WARP. First,
a script was written to generate the SMT model
that describes its differential propagation. Then, we
enumerate the optimal differential trails for each
round and perform differential clustering. Our find-
ings are summarized in Table VI where #AS refers
to the number of active S-boxes and the weight of
a differential trail is calculated as W = − log2 DP.
For up to 19 rounds, we verified that the minimum
number of active S-boxes mentioned in WARP’s
design specification was indeed the lower bound
and also found the optimal differential trails for

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 2 4 0 2 2 2 0 2 0 0 0 0 0 2 0

2 0 4 0 0 4 0 0 0 0 4 0 0 4 0 0 0

3 0 0 0 0 2 0 4 2 2 2 0 0 0 2 0 2

4 0 2 4 2 2 2 0 0 2 0 0 2 0 0 0 0

5 0 2 0 0 2 0 0 4 0 2 4 0 2 0 0 0

6 0 2 0 4 0 0 0 2 2 0 0 0 2 2 0 2

7 0 0 0 2 0 4 2 0 0 0 0 2 0 4 2 0

8 0 2 0 2 2 0 2 0 0 2 0 2 2 0 2 0

9 0 0 4 2 0 2 0 0 2 2 0 2 2 0 0 0

A 0 0 0 0 0 4 0 0 0 0 4 0 0 4 0 4

B 0 0 0 0 2 0 0 2 2 2 0 4 0 2 0 2

C 0 0 4 0 0 2 2 0 2 2 0 0 2 0 2 0

D 0 0 0 2 0 0 2 4 0 0 4 2 0 0 2 0

E 0 2 0 0 0 0 0 2 2 0 0 0 2 2 4 2

F 0 0 0 2 0 0 2 0 0 0 4 2 0 0 2 4

TABLE V
WARP’S DIFFERENTIAL DISTRIBUTION TABLE

each of these rounds. The time required to find
differential trails increased sharply with the number
of rounds, compounded with the fact that we are
dealing with a 128-bit block size. Finding a trail
for Round 17 onward would take up to half a day,
longer if a trail did not exist for a particular weight.
We managed to find a differential trail for 20 rounds
of WARP with a weight of 140 but could not verify
its optimality.

Next, we clustered these differentials with a time
limit of 24 hours. The results in Table VI show
that for the first 12 rounds, all differentials either
had 1 or very few trails each. From Round 13
onward, however, there was a sharp increase in
the number of trails. We managed to find all trails
for the 13-round to 15-round differentials, which
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Trail Differential

R #AS Wopt α β Wdiff #Trails

1 0 0 0000 0000 0000 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 0000 0100 0000 0 1
2 1 2 0000 0000 0000 0000 0000 0000 4000 0000 0000 4000 0000 0000 0000 0000 0000 0200 2 1
3 2 4 0000 2000 0021 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0200 0000 0000 4 1
4 3 6 0000 0000 002C 0000 0000 0000 0000 0000 0000 0000 0000 0400 000C 2000 0000 0000 6 1
5 4 8 0000 A000 00AA 0000 0000 0000 0000 0000 F000 0000 0000 0000 0A00 0000 0F00 0000 8 1
6 6 12 0092 0000 0000 0000 0000 0000 9000 0042 0000 0000 0000 9002 0000 0002 0000 0000 12 1
7 8 16 0000 7DA0 FF00 0000 0000 0000 0000 0000 0000 0000 0000 A005 000A 000F 0000 00F0 16 1
8 11 22 0000 00FA 5A00 0000 00A0 0000 0000 0000 0000 0000 0000 A705 000A 500A 0000 A005 22 1
9 14 28 0000 0000 0000 1000 0000 C2C0 4200 0012 2900 0020 0000 0000 0120 0000 0104 0001 28 1
10 17 34 E000 00EE EE00 0000 00E0 00EE 0000 0000 E000 0000 0E0E 0000 0E0E 00E0 0E00 E00E 33.19 7
11 22 44 0012 0000 1000 1290 1212 0000 1000 0042 2000 0000 0101 0000 0101 0020 0100 2004 43.19 7
12 28 56 1212 0000 4000 0042 0012 0000 4000 4240 0200 0202 0212 0200 1002 0212 4040 0010 55.42 5
13 34 68 0020 2000 0024 2000 0000 0020 2121 0021 0010 0202 1000 0000 1200 0240 4000 1202 62.37 1600
14 40 80 0000 0010 1292 0012 0010 1000 0042 C000 0000 1002 0200 4202 40C0 0002 C002 4202 72.14 21528
15 47 94 0000 00A0 5A5A 005A 00A0 5000 0057 5000 A500 A005 000A 0700 0AA5 55A5 057A 0AA0 85.54 497248
16 52 104 A000 5AAA 0000 0000 0000 A05A 005A 0000 0A00 000A 000A 0000 0057 0A50 005A 500A 90.52 800152
17 57 114 0000 A000 0000 0075 0000 A500 0000 7000 000A 5000 0550 0000 AA00 000A 0000 0A00 95.66 734494
18 91 122 0000 A0AF 005A 0000 A000 AA75 0000 0000 000A 5000 0AA0 0000 5A00 000A 0000 0A00 104.62 626723
19 66 132 5000 A55A 0000 0000 0000 70AA 00A5 0000 0500 0050 00A0 0A00 00A5 A00A 5007 000A 118.07 594111
20 70* 140* 0000 50AA 0057 0000 F000 5AAF 0000 0000 0A00 A000 0000 500A 0000 050A 0000 F50A 122.71 545045

*Number of active S-boxes and/or differential probability not confirmed to be optimal

TABLE VI
WARP DIFFERENTIALS FOR ROUNDS 1 TO 20

ranged from 1600 to just under 500000 trails. The
remaining cluster sizes were bounded by the time
limit. The results show that WARP has a significant
differential effect at higher rounds, whereby rounds
16 to 20 have an improvement to their differential
probabilities by a factor of at least 213.48.

B. Boomerang Distinguishers

To find boomerang distinguishers for WARP, we
formulated an automatic boomerang search based
on CryptoSMT’s differential search functionality.
The overall goal of the automatic search is to
maximize p̂2q̂2 =

∑
i,j(p̂i

2q̂j
2ri,j) by finding as

many E0 and E1 trails that are compatible. The
compatibility of the upper and lower trails is deter-
mined using the FBCT2. WARP’s FBCT shown in
Table VII. The proposed boomerang search proce-
dure is as follows:

1) Search for an E0 trail with RE0
rounds for

up to a weight limit of Wupper.
2) Search for an E1 trail with RE1 rounds for up

to a weight limit of Wlower. Limit the search
to only compatible trails by propagating β
from E0 through Em, then including blocking
constraints in the SMT model for each of its

2For more information about the FBCT, readers can refer to
the work by Boukerrou et al. [8]

S-boxes based on entries in the FBCT. If a
valid E1 trail is found then:

a) If this is the first iteration, fix the input
and output differences of the boomerang
distinguisher to α and δ for all future
iterations.

b) Calculate the switching probability, ri,j
based on β, γ, the linear layer, π and
FBCT as

ri,j =∏
k =

{2, 4, ...,
28, 30}

FBCT (βk, π
−1(γk)− 1)

16
.

(6)

c) For the clustering process, limit the
search to Winit +

n
l where Winit is the

weight of the initial trail and l controls
the upper limit of the search, e.g. for
l = 64, the upper weight limit of the
clustering process is Winit + 2. Set in-
dividual limits for E0 and E1.

d) Perform differential clustering for E0 if
it has not yet been done. Denote the
resulting differential probability as p̂i.

e) Perform differential clustering for E1.
Denote the resulting differential proba-
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0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

1 16 16 4 4 0 0 0 0 0 0 0 0 0 0 0 0

2 16 4 16 4 4 0 4 0 0 4 0 4 4 0 4 0

3 16 4 4 16 0 0 0 0 0 0 0 0 0 0 0 0

4 16 0 4 0 16 0 4 0 0 0 0 0 0 0 0 0

5 16 0 0 0 0 16 0 0 0 0 8 0 0 0 0 8

6 16 0 4 0 4 0 16 0 0 0 0 0 0 0 0 0

7 16 0 0 0 0 0 0 16 0 0 8 0 0 8 0 0

8 16 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0

9 16 0 4 0 0 0 0 0 0 16 0 4 0 0 0 0

A 16 0 0 0 0 8 0 8 0 0 16 0 0 8 0 8

B 16 0 4 0 0 0 0 0 0 4 0 16 0 0 0 0

C 16 0 4 0 0 0 0 0 0 0 0 0 16 0 4 0

D 16 0 0 0 0 0 0 8 0 0 8 0 0 16 0 0

E 16 0 4 0 0 0 0 0 0 0 0 0 4 0 16 0

F 16 0 0 0 0 8 0 0 0 0 8 0 0 0 0 16

TABLE VII
WARP’S FEISTEL BOOMERANG CONNECTIVITY TABLE

bility as q̂j
f) Update the current boomerang probabil-

ity with p̂i
2q̂j

2ri,j .
g) Add blocking constraints to the SMT

model to prevent the current E1 trail
from being found again, then repeat Step
2.

3) If no more valid E1 trails can be found,
clear all blocking constraints for E1, add
constraints to the SMT model to block the
current E0 trail from being found again, then
repeat Step 1.

The search itself is generic to Feistel-like ciphers
and can be adapted to other design paradigms such
as SPN. Several examples of boomerang distin-
guishers for TWINE and LBlock-s found using the
automated search are shown in Table VIII3. The best
boomerang distinguishers that found for WARP are
summarized in Table IX.

C. Related-key Differential Distinguishers

Although its designers do not claim any security
in the related-key setting, WARP could possibly
be used to design other primitives such as hash
functions or used in certain applications for which
resilience against related-key attacks are important4.
We found that WARP has a family of 2-round
iterative related-key differential trails:

Property 2 (2-round Related-key Trails). Let i be
an odd-numbered index (1,3,...,29,31) of a nonzero
nibble in the input difference and x be the nibble’s
difference. The input difference α consists of all
zero nibbles except αi = x. When K1

π−1(i)
2

= y,

K0
(π−1)2(i)−1

2

= x and K0
i−1
2

= x, we have a 2-

round related-key differential trail from α → α with
DP = DDT (x,y)

16 .

Depending on the DDT (Table V), these trails can
either have a differential probability of 4

16 = 2−2

or 2
16 = 2−3. Figure 4 illustrates two examples of

trails described in Property 2. For a more concrete
example, we set i = 3, x = 1 and y = 2 and have
the following differential propagation that follows
the red trail in Figure 4:

0000...0000000000001000
2r−−→
2−2

0000...0000000000001000,

where the key difference is ∆K =
{∆K1 = 0000000000200000,∆K0 =
0000000010000010}. The trail’s differential
probability is DDT (1,2)

16 = 2−2. We can then
concatenate this iterative related-key differential
trail 20.5 times to construct a 41-round distinguisher
DP = 2−40.

IV. DIFFERENTIAL ATTACKS ON WARP

We denote an R-round cipher, E as E = Ef ◦E′◦
Eb, where E′ is our differential distinguisher. The

3These distinguishers only serve to showcase the flexibility
of the proposed boomerang search, and may not be the best
boomerang distinguishers found for these ciphers.

4Other block ciphers such as GIFT have also been extensively
cryptanalyzed using related-key attacks despite not claiming any
security in this setting [23], [24].
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Cipher R (RE0
+ REm

+ RE1
) α δ

∑
i,j(p̂i

2 q̂j
2ri,j)

TWINE 15 (7+1+7) 3890 0000 0097 0000 0DB0 0010 0D00 0C00 2−58.92

TWINE 16 (8+1+7) A250 0000 0056 0000 A000 0702 0050 0002 2−61.62

LBlock-s 15 (7+1+7) 0420 0004 0600 0004 6600 0000 4020 0004 2−58.64

TABLE VIII
BOOMERANG DISTINGUISHERS FOR OTHER CIPHERS

R (RE0
+ REm

+ RE1
) α δ p2q2r

∑
i,j(p̂i

2 q̂j
2ri,j)

20 (9+1+10) 0000 0000 0000 1000 0000 C2C0 4200 0012 0202 0040 0200 1002 4000 0000 0202 0000 2−124 2−114.24

21 (10+1+10) E000 00EE EE00 0000 00E0 00EE 0000 0000 2000 0000 0104 0000 0404 0020 0100 2004 2−142 2−121.11

TABLE IX
BOOMERANG DISTINGUISHERS FOR WARP

Fig. 4. Two examples of the 2-round iterative related-key differential trails for WARP where i = 3 and i = 1 are represented by
the red and blue trails respectively (Property 2)

Rb-round Eb and Rf -round Ef are rounds added
before and after the distinguisher, respectively. The
input difference of Eb and the output difference of
Ef are denoted as ∆P and ∆C. We denote the
number of active or unknown bits of ∆P as rb while
the n−rb inactive or fixed bits are denoted as r̂b and
r̄b for 0s and 1s, respectively. Analogously, these
bits are denoted as rb, r̂b and r̄b for ∆C. We adopt
a targeted approach for the key counting procedure
by strategically guessing and filtering m bits of keys
involved in subround filters described in Property 1.

A. 23-round Attack using 18-round Differential
We use the 18-round differential from Table VI

with DP = 2−104.62 to mount an attack on 23-round
WARP by adding 2 rounds at the beginning and 3
rounds at the end. The 23-round key recovery model
is depicted in Table X, where we have (rb = 56,
r̂b = 56, r̄b = 16) and (rf = 72, r̂f = 46,
r̄f = 10). We guess a total of m = 56 subkey

R Input Difference (∆P ) ???? A000 A0?? ???A ?F?? 0000 A0A0 ??50

1 After S-box (∆X1 ) 0?0? A000 A07? 0?0A 0F0? 0000 A0A0 0?50

After π (∆Y 1 ) 00?7 00?A F000 00?A A0?A 00?A ?500 0000

2 After S-box (∆X2 ) 00A7 000A F000 000A A00A 000A 5500 0000

After π (∆Y 2 ) 0000 A0AF 005A 0000 A000 AA75 0000 0000

Differential distinguisher, 0000 A0AF 005A 0000 A000 AA75 0000 0000
20 α → β 000A 5000 0AA0 0000 5A00 000A 0000 0A00

21 After S-box (∆X21 ) 00?A 5000 ?AA0 0000 ?A00 00?A 0000 ?A00

After π (∆Y 21) 00AA A00? A00? 0005 0?00 0?A0 00A0 0?00

22 After S-box (∆X22 ) 00?A A0?? A0?? 00?5 ??00 ??A0 00A0 ??00

After π (∆Y 22) 00?? 000A ??0? 0??A 5?0A ??A0 0000 ?A0?

23 After S-box (∆X23 )/ 00?? 00?A ???? ???A ???A ??A0 0000 ?A??
Output Difference (∆C)

Additional Notes: ? denotes an undetermined nibble. Red text denotes subround filters based on
Property 1.

TABLE X
THE 23-ROUND KEY RECOVERY MODEL FOR WARP USING

AN 18-ROUND DIFFERENTIAL

bits, corresponding to K0
i and K1

j , where i =
{0, 1, 4, 5, 7, 8, 9, 11, 14} and j = {2, 4, 11, 13, 14}.

Data Preparation. We let s = 2 and collect
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y = 2 · 2−56 · 2
2−104.62 ≈ 250.62 structures of 256

plaintexts each. The plaintexts traverse all possible
values for the active rb bits while the r̂b and r̄b bits
are assigned suitable constants. Notably, half of the
plaintexts should have the r̄b bits set to 0 while the
other half has these set to 1. We encrypt all 256

plaintexts to obtain 256 corresponding ciphertexts
of all structures that are stored in a hash table H ,
according to the 46 r̂f bits set to 0. For each pair
of structures, we have 2111 pairs at the beginning.

Key Recovery. We initialize a list of 256 counters
then:

1) We filter wrong pairs using inactive bits of
∆C, leaving 2111−56 = 255 pairs per struc-
ture or 250.62+55 = 2105.62 pairs in total.

2) The number of filters (Property 1) in the first
and final rounds are vb = 8 and vf = 6,
respectively as indicated in red in Table X.
Thus, the number of valid pairs would be
reduced to 2105.62−4×8−4×6 = 249.62.

3) In Round 23: We can propagate knowledge
of the output difference to Round 22 without
having to guess any keys (Property 1).

4) In Round 22: In this round, guess and fil-
ter subkeys for each remaining pair based
on Property 1. For example, guess K0

14 to
partially decrypt ∆X23

29 to calculate ∆X22
2 =

∆Y 22
29 , . Directly compute ∆X22

3 = ∆Y 22
14 =

∆X23
14 from the ciphertext pairs. Check if

∆X22
3 ⊕ S(∆X22

2 ) = ∆Y 21
3 = 0. If the

equality holds, keep the guessed value of K0
14

and the pair, otherwise discard them. There
will be around 249.62 · 24 · 2−4 = 249.62

combinations of the remaining pairs associ-
ated with the guessed K0

14 values. We have 6
more of these filters in Round 22, for which
we can guess and filter K0

1 , K0
4 , K0

5 , K0
7 ,

K0
8 and K0

11 candidates. We expect to have
249.62 combinations of the remaining pairs
associated with 28-bit key candidates.

5) In Round 21: Guess K1
14, K1

11 and K1
4 to

calculate ∆X21
2 , ∆X21

14 and ∆X21
28 respec-

tively, while the remaining differences can be
calculated based on the previous key guesses.
After going through these filters, there will
be 249.62 combinations of the remaining pairs

associated with 40-bit key candidates. For
the remaining two filters, guess (K0

9 ,K1
13) to

calculate ∆X21
8 and (K0

0 ,K1
2 ) to calculate

∆X21
22 . Since there are 28 possible subkey

candidates involved in each of these 4-bit
filters, this will increase the number of com-
binations to 249.62 · 24×2 = 257.62 pairs
associated with 56-bit keys.

6) In Round 1: For all the remaining pairs, we
propagate knowledge of the input difference
to Round 2.

7) In Round 2: Differences ∆Y 1
6 and ∆Y 1

24 can
be calculated using K0

0 and K0
11 candidates

already associated with each remaining pair.
∆Y 1

7 and ∆Y 1
25 can be calculated from the

plaintext pairs. We then discard combinations
of pairs and keys based on the known dif-
ferences, ∆X2

7 = 5 and ∆X2
25 = 0 due to

Property 1. This reduces the number of pos-
sible combinations to 257.62−4×2 = 249.62.

8) Increment the key counters based on the
249.62 remaining combinations of pairs asso-
ciated with the 56 bits of guessed keys. We
expect 2 pairs to vote for the right key while
the remaining pairs will vote for a random
key with a probability of 249.62−56 = 2−6.38.

9) We select the top 2m−a = 256−52 = 16 hits
in the counter to be candidates that deliver
an a-bit or higher advantage [25], then brute-
force the 72 remaining bits of the secret key.

Complexity Estimation. The data and memory
complexities are N = 250.62 · 256 ≈ 2106.62

plaintexts and 2106.62 + 256 · 56
128 ≈ 2106.62 128-bit

blocks, respectively. The time complexity of the key
recovery is dominated by the final round filtering in
Step 2, in which the 2105.62 pairs need to be par-
tially decrypted. This requires 2105.62 · 2

23 ≈ 2102.09

23-round WARP encryptions. The brute force com-
plexity is 2128−a = 276 Therefore, the time com-
plexity of the 23-round differential attack, including
data preparation, is about 2106.62 +2102.09 +276 ≈
2106.68 23-round WARP encryptions when a = 52.

Success Probability. We calculate the probability
of success, PrS of our attack based on the method



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

R Input Difference (∆P ) 00?E 0000 E000 ?EE0 ?E?E 0000 E000 00?E

1 After S-box (∆X1 ) 000E 0000 E000 0EE0 0E0E 0000 E000 000E

After π (∆Y 1 ) E000 00EE EE00 0000 00E0 00EE 0000 0000

Boomerang distinguisher, E000 00EE EE00 0000 00E0 00EE 0000 0000
22 α → δ 2000 0000 0104 0000 0404 0020 0100 2004

23 After S-box (∆X23) 2000 0000 ?1?4 0000 ?4?4 0020 ?100 20?4

After π (∆Y 23 ) 400? 024? 4010 0040 0200 0?0? 0?1? 0200

24 After S-box (∆X24)/ 40?? ?2?? 4010 0040 ?200 ???? ???? ?200
Output Difference (∆C)

? denotes an undetermined nibble. Red text denotes subround filters based on Property 1.

TABLE XI
24-ROUND KEY RECOVERY MODEL OF THE RECTANGLE

ATTACK USING A 21-ROUND (10+1+10) DISTINGUISHER

proposed by Selçuk [25]:

PrS = Φ

(√
s · SN − Φ−1(1− 2−a)√

SN + 1

)
, (7)

where the signal-to-noise ratio is calculated as
SN = DP

2−n . With a = 52, the probability that the
attack succeeds is 92.09%.

B. 24-round Rectangle Attack using 21-round
Boomerang Distinguisher

We use the 21-round boomerang distinguisher
from Table IX where RE0

= 10, RE1
= 10 and∑

i,j p̂i
2q̂j

2ri,j) = 2−121.11 to mount a rectangle
attack on 24-round WARP by appending 1 round at
the beginning and 2 rounds at the end. The 24-round
key recovery model is depicted in Table XI, which
has (rb = 20, r̂b = 84, r̄b = 24) and (rf = 60,
r̂f = 61, r̄f = 7). The number of subkey bits that
will be guessed are mf = 16, corresponding to K1

j

where j = {2, 8, 10, 15}. Details of our rectangle
attack are as follows:

Data Preparation. For s = 2 right quartets,
collect y =

√
2·264−20

√
2−121.11

= 2105.06 structures of
220 plaintexts each. The plaintexts are assigned all
possible combinations of the rb active bits while the
other bits are assigned suitable constants. Encrypt
220 plaintexts of each structure to obtain 220 cor-
responding ciphertexts, which are stored in a hash
table, H1 indexed by the rb bits of the plaintext.

Key Recovery. Initialize a list of 216 counters
then:

1) Construct a set S = {(P1, C1, P2, C2) :
Eb(P1) ⊕ Eb(P2) = α} without having to
guess any keys in Eb as follows:

a) For every plaintext P1 in a structure,
determine the known r̂b + r̄b bits in P2

by calculating P2 = P1 ⊕∆P .
b) The unknown nibbles in P2, which

are all left input nibbles to Feistel-
subrounds, can be calculated from their
corresponding right input nibbles. Let
the pairs of nibbles for P1 and P2 be
denoted as (x1

L, x1
R) and (x2

L, x2
R) re-

spectively (see Figure 3). We already
know the values for the right halves (x1

R,
x2
R) after Step 1(a) and we also know

the value of x1
L from P1. We can then

calculate the remaining unknown value
as

x2
L = x1

L ⊕ S(x1
R)⊕ S(x2

R).

c) After calculating all the unknown bits of
P2, check H1 to find the corresponding
plaintext-ciphertext pair indexed by the
rb bits of P2. Since vb = 5, we expect
220×2−1 · 2−4×vb = 219 pairs in S.

2) The size of S is N = 2105.06 · 2(19+1)×2−1

=
2115.06 chosen plaintexts. Insert S into a hash
table H2 indexed by the 61 r̂f bits of C1

and C2. For each element of S, check H2

to find (P1, C1, P2, C2) where (C1, C3) and
(C2, C4) collide in the r̂f + r̄f = 68 known
bits. There will be (2115.06)2·2−2×68 = 294.12

quartets remaining.
3) Since the number of subround filters is vf =

9, the number of valid quartets would be
reduced to 294.12−8×9 = 222.12. The filtering
effect due to Property 1 is twofold since it is
applicable to both pairs in a quartet.

4) In Round 24: Propagate the knowledge of the
output difference to Round 23 (Property 1).

5) In Round 23: Perform the guess-and-filter
procedure for subkeys in Round 23. For
example, ∆X23

0 can be directly computed
from the ciphertext pairs.Guess K1

15 and par-
tially decrypt (C1, C3) and (C2, C3) to obtain
∆X23

1 for each pair. Check if each pair in the
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quartet fulfills ∆X23
1 ⊕ S(∆X23

0 ) = δ1 = 0.
If the equality holds for both pairs in the
quartet, keep the guessed key and the quartet,
otherwise, discard them. There will be around
222.12 · 24 · 2−8 = 218.12 combinations of
the remaining quartets associated with the
guessed K1

15 values. Guess and filter 3 more
subkeys, K1

2 , K1
8 and K1

10, which leaves
218.12 ·2−4×3 = 26.12 combinations of the re-
maining quartets associated with the guessed
keys.

6) Increment the key counters based on the 26.12

remaining combinations of quartets associ-
ated with the 16 bits of guessed keys. On
average, 2 quartets will vote for the right key
while the remaining quartets will vote for a
random key with a probability of 26.12−16 =
2−7.88.

7) Select the top 216−12 = 16 hits in the counter
and brute force the 112 remaining bits of the
secret key.

Complexity Estimation. The data complexity of
the attack is N = 2105.06 · 220 ≈ 2125.06 chosen
plaintexts. The memory complexity includes the
space required to store the hash tables and the key
counters, which is 2 · 2125.06 + 224 · 24

128 ≈ 2126.06

128-bit blocks. To prepare the quartets, we require
around 2125.06 24-round encryptions and 2N mem-
ory accesses, for which we make a conservative
assumption is equivalent to 1 encryption round. The
time complexity of the key recovery is dominated
by the final round filtering in Step 3, which is
approximately θ = 294.12 · 4

24 ≈ 291.54. The
overall time complexity of the 24-round attack is
2125.06 + 2 · 2125.06 · 1

24 + 293.54 + 2116 ≈ 2125.18

24-round WARP encryptions when a = 12.
Success Probability. When a = 12 and SN =∑
i,j(p̂i

2q̂j
2ri,j)

2−n = 2−121.11, the probability that the
attack succeeds is 86.2%.

V. RELATED-KEY DIFFERENTIAL ATTACKS ON
WARP

A. 25-round Related-key Differential Attack

We concatenate 9 instances of the 2-round it-
erative related-key differential trail described in

R
(∆K)

0−r RK distinguisher, 0000 0000 0000 0000 0000 0000 0000 1000
α → β 0000 0000 0000 0000 0000 0100 0000 0000

r +1 After S-box (∆Xr+1 ) 0000 0000 0000 0000 0000 ?100 0000 0000

(∆K1 ) After π (∆Y r+1 ) 0000 0000 0000 0000 0000 0000 0000 100?

r +2 After S-box (∆Xr+2 ) 0000 0000 0000 0000 1000 0000 0000 00??

(∆K0 ) After π (∆Y r+2 ) ?000 0000 0000 0000 0000 0100 0?00 0000

r +3 After S-box (∆Xr+3 ) ?000 0000 0000 0000 0000 ?100 ??00 0000

(∆K1 ) After π (∆Y r+3 ) 0000 0?00 00?0 0000 0000 000? 0000 100?

r +4 After S-box (∆Xr+4 ) 0000 ??00 00?0 0000 1000 00?? 0000 00??

(∆K0 ) After π (∆Y r+4 ) ?00? ?000 0000 ?00? 0000 0100 0?00 0?00

r +5 After S-box (∆Xr+5 ) ?0?? ?000 0000 ?0?? 0000 ?100 ??00 ??00

(∆K1 ) After π (∆Y r+5 ) 0??0 0?00 0??? 000? ??00 00?? 0000 100?

r +6 After S-box (∆Xr+6 ) ???0 ??00 ???? 00?? ??00 00?? 0000 00??
(∆K0 ) Output Difference (∆C)

? denotes an undetermined nibble. Red text denotes subround filters based on Property 1.

TABLE XII
KEY RECOVERY MODEL USING AN r-ROUND RELATED KEY

DISTINGUISHER WHERE r ∈ {3, 5, ..., 31}

subsection III-C and append 1 more round to form
a 19-round distinguisher with DP= 2−18. After
appending 6 rounds to the end of this distinguisher,
we have a 25-round key-recovery model depicted
in Table XII where r = 19. We guess a total
of 16 subkey bits, corresponding to K0

i where
i = {4, 7, 10, 14}. Although it may be possible to
guess more key bits to reduce the computational
complexity of the final brute force step, we stick
with 16 bits so we can computationally verify the
attack efficiently.
Data Preparation. Encrypt 219 pairs of plaintexts,
(P1, P2) using a pair of related keys, (K,K⊕∆K).
We expect s = 2 right pairs. There is a strong
filtering effect at the output difference ∆C, which
has 60 inactive bits and 5 subround filters (Prop-
erty 1). The probability of a wrong pair surviving
is 220 · 2−60 · 2−4×5 = 2−60, which implies that
only the right pairs remain.

Key Recovery. For all the remaining (right) pairs:

1) In Round 25: Propagate knowledge of the
output difference to Round 24 without having
to guess any keys (Property 1).

2) In Round 24: Guess K0
14 to calculate 2242 ,

then derive 2243 from the ciphertext pairs.
Since all pairs are valid, each pair will be
associated with at least one possible 4-bit key
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candidate. Guess K0
10, K0

7 and K0
4 associated

with the remaining subround filters.
Complexity Estimation. The data complexity of

the attack is N = 2 · 219 = 220 chosen plaintexts
and it finds correctly 16-bits of the key, which is
sufficient for verification of the attack correctness.
The memory requirement of the attack is negligible.

Computational Verification. We first calculated
the average probability of the 19-round distin-
guisher. Using 10 randomly selected keys and plain-
text pairs, the average differential probability was
218.1. We then execute the 25-round attack 10 times
on a PC with an Intel Core i7-9700K 3.60GHz
processor and 32GB of RAM. The correct subkey
always has the highest count of s. The correct 16-
bit key will be among the top 2 candidates 70% of
the time. On average, the attack completes in under
2.5 minutes using an unoptimized implementation.

B. 41-round (Full) Related-key Differential Attack

The key recovery model for a 41-attack using a
35-round distinguisher with DP = 2−34 is depicted
in Table XII where r = 35. We generate 235 pairs
and expect 2 right pairs. From Round 40 to Round
36, we guess a total of 60 subkey bits (16 in
Round 40, 12 in Round 39, 16 bits in 38, 12 in
Round 37 and 4 in Round 36). There are subround
filters in Rounds 37 and 38 that require guessing
12 key bits, key counters that can accommodate 212

possibilities are required. The memory requirement
is (6 ·24 · 4

128 +2 ·212 · 12
128 ) ≈ 29.59 128-bit blocks.

The time complexity for the guess-and-determine
procedure is negligible, therefore recovering 60 bits
of the key comes mainly from encrypting the 236

chosen plaintexts. We can either brute force the
remaining 68 bits, which would then dominate the
time complexity or use faster auxiliary techniques
to find the rest of the key.

VI. CONCLUSION

This paper described cryptanalytic attacks on the
lightweight block cipher WARP. We show that its
first 20 rounds have high-probability differentials
due to a strong differential effect. Then, by using
an automatic search for boomerang distinguishers,

boomerang distinguishers for up to 21 rounds were
found. We also described a family of 2-round itera-
tive related-key trails which can be concatenated to
form a full 41-round distinguisher for WARP. Key-
recovery attacks were then demonstrated using the
identified distinguishers. In the single-key setting,
we attacked 23 and 24 rounds of WARP using an
18-round differential and 21-round boomerang dis-
tinguisher, respectively. Next, we computationally
verified a 25-round related-key attack on WARP
using a 19-round distinguisher, where 16 subkey
bits were recovered in 2.5 minutes. Using the same
framework, a practical related-key attack on the
full WARP was introduced. All attack complexities
were summarized in Table I. To the best of our
knowledge, these are the best 3rd party cryptanaly-
sis results for WARP.
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