
Pushing the Limits: Searching for
Implementations with the Smallest Area for

Lightweight S-Boxes

Zhenyu Lu, Weijia Wang, Kai Hu, Yanhong Fan, Lixuan Wu, and
Meiqin Wang(B)

1 School of Cyber Science and Technology, Shandong University, Qingdao, Shandong,
266237, China

2 Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, Qingdao, Shandong, 266237, China

{luzhenyu,hukai,fanyh,lixuanwu}@mail.sdu.edu.cn,
{wjwang,mqwang}@sdu.edu.cn

Abstract. The area is one of the most important criteria for an S-box
in hardware implementation when designing lightweight cryptography
primitives. The area can be well estimated by the number of gate equiv-
alent (GE). However, to our best knowledge, there is no efficient method
to search for an S-box implementation with the least GE. Previous ap-
proaches can be classified into two categories, one is a heuristic that aims
at finding an implementation with a satisfying but not necessarily the
smallest GE number; the other one is SAT-based focusing on only the
smallest number of gates while it ignored that the areas of different gates
vary. Implementation with the least gates would usually not lead to the
smallest number of GE.

In this paper, we propose an improved SAT-based tool targeting opti-
mizing the number of GE of an S-box implementation. Given an S-box,
our tool can return the implementation of this S-box with the smallest
number of GE. We speed up the search process of the tool by bit-sliced
technique. Additionally, our tool supports 2-, 3-, and 4-input gates, while
the previous tools cover only 2-input gates. To highlight the strength of
our tool, we apply it to some 4-bit and 5-bit S-boxes of famous ciphers.
We obtain a better implementation of RECTANGLE’s S-box with the
area of 18.00GE. What’s more, we prove that the implementations of
S-boxes of PICCOLO, SKINNY, and LBLOCK in the current litera-
ture have been optimal. When using the DC synthesizer on the circuits
produced by our tool, the area are much better than the circuits con-
verted by DC synthesizers from the lookup tables (LUT). At last, we use
our tool to find implementations of 5-bit S-boxes, such as those used in
KECCAK and ASCON.

Keywords: Lightweight ciphers · S-box implementations · Gate equiv-
alent complexity · SAT-solvers

2 Zhenyu Lu et al.

1 Introduction

Lightweight cryptographic primitives are deployed more and more in the source-
constraint devices that manipulate sensitive data. The National Institute of
Standards and Technology (NIST) has initiated a competition to call for a new
lightweight cryptography standard for constrained environments [12]. The de-
signer of lightweight cryptography needs to consider both the security property
and implementation performance. The hardware implementation performance
includes many criteria, e.g., throughput, area, energy, power, and latency, where
the area is a crucial criterion for the implementation of lightweight ciphers.

Since the area cost of different gates depends on the technology library, mea-
suring and comparing the area cost of implementations requires a standard unit.
A gate equivalent usually stands for the unit of measure which allows specifying
manufacturing-technology-independent complexity of digital electronic circuits.
Practically, the NAND constitutes the unit area commonly referred to as a gate
equivalent while the GE of other gates are measured based on the NAND gates.
For example, in the library of UMC 180nm [8], the GE of some gates are listed
in Table 1.

Table 1. Area cost of typical cell gates under UMC 180nm library [8]. The values are
given in GE.

Techniques
AND

NOT
NAND XOR NAND3 XOR3

MAOI1 MOAI1
OR NOR XNOR NOR3 XNOR3

UMC 180nm 1.33 0.67 1.00 3.00 1.33 4.67 2.67 2.00

To predict the area of a hardware implementation of a given S-box, we com-
monly compute the number of GE of this implementation. As a result, to find
an optimal implementation of an S-box with the smallest area, we need to find
the optimal combination of a set of gates whose number of GE is the smallest.

Before this work, no approach is suitable to find the implementation of an
S-box with the smallest area directly. Here we briefly introduce two main-stream
methods to find the implementation of an S-box.

Heuristic search. In the domain of logic synthesis, several heuristic algorithms
provide satisfactory solutions, such as BOOM [7] and ESPRESSO [13] which
are probably implemented in many commercial synthesizers. An automated tool
LIGHTER proposed by Jean et al. [9] uses a graph-based meet-in-the-middle search
algorithm under the assumption that every instructions is invertible. Despite of
the efficiency and practical applicability for different S-boxes, these algorithms
rely on some heuristics and are infeasible to prove that their results are optimal
implementation of S-box circuits.

Searching for Implementations with the Smallest Area 3

SAT-based search. At FSE 2016, Stoffelen models the problem of finding an
efficient implementation of a lightweight S-box as a SAT problem [15]. Then with
a SAT solver, this tool can find the implementation of S-box with the smallest
number of gates. However, as Table 1 shows, the area costs of different gates are
different. The smallest number of gates will still lead to a large number of GE.

Our Contributions. In this paper, we give the first method to search for the
optimal area implementation of small S-boxes by SAT solver. The main contri-
butions are shown below.
A New Searching Algorithm. Based on the SAT method [15], we propose
an algorithm to find the optimal implementation of a lightweight S-box focusing
on the area. We reduce the search space by a pre-computed algorithm. This
algorithm first searches for the optimal implementation in the terms of number
of gates, then it calculates the lower and upper bounds of the number of gates
and area.

Within this range, we find out the optimal implementation by querying the
SAT solver. The number of variables in the SAT model has a great dependence
on the types and the number of gates. As the number of variables increases,
the efficiency would be lower. Consequently, we use the bit-sliced technique to
reduce the number of variables and then speed up the model.
A Generalization to 2-, 3-, 4-input Gates. In [1], the authors have shown
that replacing several simple gates with two inputs complex gates with multiple
inputs can save the area significantly. Insipred by this, on the basis of the 2-input
gate model [15], our model includes complex gates. Our model gives a unified
expression that can describe gates with 2 inputs, 3 inputs(e.g., XOR3, XNOR3,
OR3, NOR3, AND3, and NAND3) and 4 inputs (e.g., MOAI1 and MAOI1).
Better S-box Implementations. We apply our method to many 4- and 5-bit
S-boxes of popular ciphers such as RECTANGLE [17], PICCOLO [14], SKINNY
[2], LBLOCK [16], KECCAK [3] and ASCON [5].

We manage to find an improved circuit of RECTANGLE’s S-box with 18.00
GE cost which is better than LIGHTER’s and we can verify that the circuits of
PICCOLO, SKINNY and LBLOCK’s S-boxes have the optimal area cost under
the 2-, 3- and 4-input gates we considered. In addition, due to the bit-sliced
technique, our model is also useful in finding the implementation of the 5-bit
S-boxes.

Organization of the paper. In Section 2, we first introduce some prelimi-
nary notions and recall some previous works on the implementation of S-box.
We introduce our new model with the pre-computed algorithm and bit-sliced
technique to search the optimal area implementation of an S-box in Section 3.
In Section 4, we provide an comparison between our results and previous works.
At the end, we conclude the paper in Section 5.

4 Zhenyu Lu et al.

2 Preliminaries

In this section, we first present some definitions and notions used in this paper.
Then, we briefly recall Stoffelen’s SAT-based tool in [15].

2.1 Notations

Table 2. List of Boolean operators implemented by standard cell gates from the li-
braries. ∧,∨,⊕,¬ stand for logical and, or, exclusive or, not [9], respectively.

Operation Function Operation Function

NAND (a, b)→ ¬(a ∧ b) XOR (a, b)→ a⊕ b

NOR (a, b)→ ¬(a ∨ b) XNOR (a, b)→ ¬(a⊕ b)

AND (a, b)→ a ∧ b NAND3 (a, b, c)→ ¬(a ∧ b ∧ c)

OR (a, b)→ (a ∨ b) NOR3 (a, b)→ ¬(a ∨ b ∨ c)

NOT a→ ¬a XOR3 (a, b, c)→ (a⊕ b⊕ c)

MAOI1 (a, b, c, d)→ ¬((a ∧ b) ∨ (¬(c ∨ d))) XNOR3 (a, b, c)→ ¬(a⊕ b⊕ c)

MOAI1 (a, b, c, d)→ ¬((a ∨ b) ∧ (¬(c ∧ d)))

The combinatorial cell gates implement classical Boolean operations, whose
functional behavior is shown in Table 2. In this paper, we use logical connectives
to denote the types of operations, i.e., let ∧, ∨, ⊕, ¬ denote AND, OR, XOR,
NOT, respectively, and let ↑, ↓, ↔ denote NAND, NOR, XNOR, respectively.
The notations used in this paper are listed in Table 3.

2.2 Stoffelen’s SAT-based Tool

The Boolean satisfiability problem (SAT) is the problem of determining whether
there exists an evaluation for the binary variables such that the value of the given
Boolean formula equals one. Through translating a problem into a SAT problem,
we could then take the off-the-shelf solvers to solve this SAT problem, and finally
get the corresponding answer to the original problem.

Since our tool can be regarded as an improved version of Stoffelen’s SAT-
based tool [15] that aims at finding the implementation with smallest number
of GE rather than only the number of gates, we introduce the basic methods
used in his tool. In [15], Stoffelen explores the feasibility of applying SAT solvers
to optimize implementations of small S-boxes for the criteria including of the
number of gates. He proposed a binary model to solve the following decision

Searching for Implementations with the Smallest Area 5

Table 3. List of notations in this paper.

Notations Definitions
K K represents the number of gates.
G G represents the area cost of a circuit.

xi (resp. yj) Boolean variables, represent S-box inputs (resp. outputs).
q2i The i-th gate input , q2i ∈ F2.
ti The i-th gate output, ti ∈ F2.

ai
Coefficient variables ai ∈ F2 represent wiring between gates. (More
details can refer to example 1.)

bi
Variables bi ∈ F2 determine the types of gates. (More details can
refer to example 1.)

Cost[i] The array Cost[i] represents the cost of different gate operations.

problem: Is there a circuit that implements an S-box S : Fn
2 → Fm

2 and that uses
at most K logic operations?

He uses a method in [4, 11] to transform the decision problem into a model.
This model encodes each gate as an Algebraic Normal Form (ANF) equation
and can judge the existence of solutions when given the number of gates. To get
the smallest number of gates, it should exhaust K until finding the smallest one
that there exists an implementation of an S-box.

As an example, we give a model of a decision problem whether there is a
circuit implements an 2-bit toy S-box with 2 gates.

Example 1. Given a 2-bit S-box in Table 4 and we encode the model of this
S-box as follows.

Table 4. Lookup table of the 2-bit S-box.

x 0 1 2 3
S(x) 3 2 0 1

Encode the input and output of the S-box.We encode the S-box as Boolean
variables xi and yi.

x0 = 0, x1 = 0, y0 = 1, y1 = 1; //denote S(0) = 3

x2 = 0, x3 = 1, y2 = 1, y3 = 0; //denote S(1) = 2

x4 = 1, x5 = 0, y4 = 0, y5 = 0; //denote S(2) = 0

x6 = 1, x7 = 1, y6 = 0, y7 = 1; //denote S(3) = 1

6 Zhenyu Lu et al.

Then, for each x and S(x), this model needs one set of equations as follows to
represent a circuit with K gates and there are a total of 22 sets.

Encode a decision of choosing two inputs of a gate. The Boolean variables
qi represent the inputs of a gate. For example, q0 and q1 are two inputs of the
gate t0, while q2 and q3 are two inputs of the gate t1.

q0 = a0 · x0 + a1 · x1

q1 = a2 · x0 + a3 · x1

q2 = a4 · x0 + a5 · x1 + a6 · t0
q3 = a7 · x0 + a8 · x1 + a9 · t0

One qi must come from one of the S-box’s inputs or the output of a previous
gate. This constraint can be described as that only one of the variables ai in an
equation can be equal to 1.

a0 · a1 = 0.

a2 · a3 = 0.

a4 · a5 = 0 AND a4 · a6 = 0 AND a5 · a6 = 0.

a7 · a8 = 0 AND a7 · a9 = 0 AND a8 · a9 = 0.

Encode the decision of choosing a type of gate. The variables bi determine
what kind of gate the ti will represent, as can be seen in Table 5. When the
value of the pattern b3i||b3i+1||b3i+2 is different, ti represents different kind of
gate, such as AND, OR, XOR, NAND, NOR, and XNOR.

t0 = b0 · q0 · q1 + b1 · q0 + b1 · q1 + b2

t1 = b2 · q2 · q3 + b3 · q2 + b3 · q3 + b4

There are a total of K variables ti to represent K different gates.
Encode the decision of choosing the output of the circuit. The Boolean
variables yi also represent the outputs of the circuit.

y0 = a18 · x0 + a19 · x1 + a20 · t0 + a21 · t1
y1 = a22 · x0 + a23 · x1 + a24 · t0 + a25 · t1

Similar to qi, one yi must come from one of the S-box’s inputs or the output of
a gate. This constraint can be described as that only one of the variables ai in
an equation can be equal to 1 too.

3 Optimizing Implementations for S-boxes

We measure the gate sizes in terms of Gate Equivalent (GE), which is a normal-
ized ratio using the area of a 2-input NAND gate as a common reference.

Searching for Implementations with the Smallest Area 7

Table 5. Encoding of different types of gates.

b3i||b3i+1||b3i+2 Operations Gate function

0 0 0 0 0

0 0 1 1 1

0 1 0 XOR q2i ⊕ q2i+1

0 1 1 XNOR q2i ↔ q2i+1

1 0 0 AND q2i ∧ q2i+1

1 0 1 NAND q2i ↑ q2i+1

1 1 0 OR q2i ∨ q2i+1

1 1 1 NOR q2i ↓ q2i+1

3.1 Main Idea of Our Model

In this section, we introduce how to improve Stoffelen’s tool for optimizing the
area of an S-box. Stoffelen’s model can produce an implementation with a set of
K gates and we denote this set as I. We can add the cost of each gate up to obtain
the area of this implementation. Let G denote the area of the implementation,
we have

G =
∑
gi∈I

Costgi , (1)

where Costgi is the area of the gate gi in I. Since we want to search for an
implementation of the S-box with G area, Equation 1 is naturally the objective
function of our new model together with all equations in Stoffelen’s model. This
model can determine whether a circuit can implement an S-box with K gates
and G area.

However, even if there exists a circuit, the area is not the smallest one. It
needs to exhaust K and G and encode the corresponding decision problem to
find the smallest area implementation by querying the SAT solver.

In this term, there are three limitations of Stoffelen’s tool. Firstly, the NOT
operation is not considered, because in his model a NOT gate is always redundant
for it can always be incorperated into a new combinatorial gate. For example, a
NOT gate and an AND gate can be combined into a NAND gate. However, if we
want to consider the area, our model cannot ignore the NOT gate. In addition,
his tool only covers 2-inputs gates, while the complex gates such as 3- and 4-
inputs gates have a great effect on implementations. Secondly, the area costs of
different gates are different and his model could not find the smallest number
of GE of an S-box’s implementation. Finally, as the number of gates increases,
Stoffelen’s model needs more variables, which results in a lower efficiency and
the model does not work for 5-bit S-boxes and even some 4-bit S-boxes.

8 Zhenyu Lu et al.

To overcome these limitations, we first re-encode the ANF equation of an
gate including the NOT gate and 2-, 3-, 4-input gates. Then, we propose a new
decision problem: is there a circuit that implements an S-box so that the area
cost at most G? To solve this problem, we set an array to denote the area cost of
different gates and give an algorithm to determine the upper and lower bounds
of the K and G. In the end, we use a technique called bit-sliced to reduce the
variables in our model and speed up the search.

3.2 Encode the NOT gate and Complex Gates

In this section, we re-encode the equation of a gate to include the NOT gate
and 2-, 3-, 4-input gates. The 3-input gates include the AND3, OR3, XOR3,
NAND3, NOR3 and XNOR3 gates while the MAOI1 and MOAI1 gates are two
4-input gates.

NOT gate. Firstly, we re-encode the gates equation from Stoffelen’s model as
follows to add the NOT gate.

t = b0 · q0 · q1 + b1 · q0 + b1 · q1 + b2 · q0 + b3 (2)

In this equation, when b2 = 0, the patterns b0||b1||b3 represent the same gates
to the patterns Stoffelen’s model, which can be seen in Table 6.

Table 6. Improve the encoding of different types of gates.

b0||b1||b2||b3 Operations Gate function
0 0 1 1 NOT ¬q0
0 1 0 0 XOR q0 ⊕ q1
0 1 0 1 XNOR q0 ↔ q1

0 1 1 1 NOT ¬q1
1 0 0 0 AND q0 ∧ q1
1 0 0 1 NAND q0 ↑ q1
1 1 0 0 OR q0 ∨ q1
1 1 0 1 NOR q0 ↓ q1

From Table 6, the patterns b0||b1||b2||b3 do not cover the whole space of F4
2.

For example, when b2 equals to 1, b3 should equal to 1 and b0 equal to 0. We
describe this case as a constraint in our model to make sure that each pattern
is corresponding to one gate.

Cst1 = {b3 = 1 and b0 = 0|b2 = 1}.

However, more complex gates, such as 3-input and 4-input operations have a
great effect on the number of GE. For example, two consecutive XOR gates can

Searching for Implementations with the Smallest Area 9

be replaced by a XOR3 gate and the XOR3 gate cost 4.67 GE which is smaller
than two XOR gates.

3-input gates. We improve the Equation (2) to add the 3-input gates, such as
AND3, NAND3, OR3, NOR3, XOR3, and XNOR3.

t =b0 · q0 · q1 · q2 + b1 · q0 · q1 + b1 · q0 · q2 + b1 · q1 · q2+
b1 · q0 + b1 · q1 + b1 · q2 + b2 · q0 + b2 · q1 + b2 · q2+
b3 · q0 · q1 + b4 · q0 + b4 · q1 + b5 · q0 + b6.

(3)

This equation adds three bi and one qi to encode the 3-input gates. We propose
the detail of the gate in Table 7.

Table 7. Encoding of different types of 2-input and 3-input gates.

b0||b1||b2||b3||
b4||b5||b6

Operations Gate function

0 0 0 0 0 1 1 NOT ¬q0
0 0 0 0 1 0 0 XOR q0 ⊕ q1
0 0 0 0 1 0 1 XNOR q0 ↔ q1

0 0 0 0 1 1 1 NOT ¬q1
0 0 0 1 0 0 0 AND q0 ∧ q1
0 0 0 1 0 0 1 NAND q0 ↑ q1
0 0 0 1 1 0 0 OR q0 ∨ q1
0 0 0 1 1 0 1 NOR q0 ↓ q1
1 0 0 0 0 0 0 AND3 q0 ∧ q1 ∧ q2
1 0 0 0 0 0 1 NAND3 ¬(q0 ∧ q1 ∧ q2)
1 1 0 0 0 0 0 OR3 q0 ∨ q1 ∨ q2
1 1 0 0 0 0 1 NOR3 ¬(q0 ∨ q1 ∨ q2)
0 0 1 0 0 0 0 XOR3 q0 ⊕ q1 ⊕ q2
0 0 1 0 0 0 1 XNOR3 ¬(q0 ⊕ q1 ⊕ q2)

Similarly, the patterns b0||b1||b2||b3||b4||b5||b6 of this equation do not cover the
whole space of F7

2. When b0 = b1 = b2 = 0, the patterns b3||b4||b5||b6 represent
the gates are the same as the 2-input ones. To make sure each pattern represents
one gate, we add the following constraints in our model.

Cst1 ={b6 = 1 and b3 = 0|b5 = 1}.
Cst2 ={b2 = b3 = b4 = b5 = 0|b0 = 1}.
Cst3 ={b0 = 1|b1 = 1}.
Cst4 ={b0 = b1 = b3 = b4 = b5 = 0|b2 = 1}.

10 Zhenyu Lu et al.

4-input gates. The gate functions of the MAOI1 and MOAI1 4-input gates are
listed in Table 8. It is easy to know thatMAOI1(a, b, c, d) = ¬MOAI1(a, b, c, d).
We further improve Equation (3) to add the 4-input gates into our model. Firstly,
we decompose the function of MAOI1 gate as follows

MAOI1(a, b, c, d)

=¬((a ∧ b) ∨ (¬(c ∨ d)))

=(¬(a ∧ b)) ∧ (c ∨ d)

=(b0 · a · b+ b0) · (b1 · c · d+ b1 · c+ b1 · d)
=b0b1 · abcd+ b0b1 · abc+ b0b1 · abd+ b0b1 · cd+ b0b1 · c+ b0b1 · d
=b∗ · abcd+ b∗ · abc+ b∗ · abd+ b∗ · cd+ b∗ · c+ b∗ · d.

(4)

Then, we add one bi and one qi to encode all 2-, 3- and 4-input gates.

t =b0 · q0 · q1 · q2 · q3 + b0 · q0 · q1 · q2+
b0 · q0 · q1 · q3 + b0 · q2 · q3 + b0 · q2 + b0 · q3+
b1 · q0 · q1 · q2 + b2 · q0 · q1 + b2 · q0 · q2 + b2 · q1 · q2+
b2 · q0 + b2 · q1 + b2 · q2 + b3 · q0 + b3 · q1 + b3 · q2+
b4 · q0 · q1 + b5 · q0 + b5 · q1 + b6 · q0 + b7.

(5)

In Table 8, we propose the details of the 4-input gate. Besides, to make sure

Table 8. Encoding of different types of 4-inputgates.

b0 || b1||b2||b3||
b4||b5||b6||b7

Operations Gate function

1 0 0 0 0 0 0 0 MAOI1 ¬((q0 ∧ q1) ∨ (¬(q2 ∨ q3)))
1 0 0 0 0 0 0 1 MOAI1 ¬((q0 ∨ q1) ∧ (¬(q2 ∧ q3)))

each pattern represents one gate, we add one more constraint in our model.

Cst5 ={b1 = b2 = b3 = b4 = b5 = b6 = 0|b0 = 1}.

In summary, Figure 1 gives the framework of our model and the number of
the input variables qi corresponding to each gate ti in the model has become to
4 and a set of equations has a total of 4K inputs variables qi.

We also use the decision problem whether there is a circuit implements an
2-bit toy S-box and that uses at most 3 logic operations as an example. The set
of the equation re-encode as

q0 =a0 · x0 + a1 · x1

q1 =a2 · x0 + a3 · x1

Searching for Implementations with the Smallest Area 11

x0

x1

x2

x3

y0

y1

y2

y3

tK-1

q4K-4

q4K-3

q4K-2

q4K-1

t1
q4

q5

q6

q7

t0
q0

q1

q2

q3

2-, 3- or 4-input gate

Fig. 1. Illustration of our model.

q2 =a4 · x0 + a5 · x1

q3 =a6 · x0 + a7 · x1

t0 =b0 · q0 · q1 · q2 · q3 + b0 · q0 · q1 · q2+
b0 · q0 · q1 · q3 + b0 · q2 · q3 + b0 · q2 + b0 · q3+
b1 · q0 · q1 · q2 + b2 · q0 · q1 + b2 · q0 · q2 + b2 · q1 · q2+
b2 · q0 + b2 · q1 + b2 · q2 + b3 · q0 + b3 · q1 + b3 · q2+
b4 · q0 · q1 + b5 · q0 + b5 · q1 + b6 · q0 + b7.

. . .

y0 =a36 · x0 + a37 · x1 + a38 · t0 + a39 · t1 + a40 · t2
y1 =a41 · x0 + a42 · x1 + a43 · t0 + a44 · t1 + a45 · t2

It can be seen from the set of equations, the number of variables including ai,
qi and bi which has grown a lot.

3.3 Searching for the Implementation with the Smallest Area

As mentioned before, we propose a new decision problem: is there a circuit
that implements an S-box with the area cost at most G GE? At first glance, it
seems easy to solve this problem by slightly adjusting Stoffelen’s tool. However,
Stoffelen’s SAT-based model needs to encode the problem based on a determined
K. It could not determine the number of variables in a set of equations without
knowing the K. On the other hand, it is simple to solve a sub-problem, whether
a circuit can implement an S-box that uses determined K logic operations with
G GE.

12 Zhenyu Lu et al.

In this section, we first solve this sub-problem by Algorithm 1. Then we
propose Algorithm 2 to determine the range of the search space to find the
smallest number of GE step by step.

For the first step, to solve the sub-problem, we encode the area cost of dif-
ferent gates as an array Cost[] in our model according to Table 1, Table 7 and
Table 8. The indexes of the array are the different types of gates represented by
the patterns Gatei = b7i||b7i+1||b7i+2||b7i+3||b7i+4||b7i+5||b7i+6. Meanwhile, the
entries of the array represent the number of GE of different types of gates. Note
that the Boolean vector can only represent integers, so we expand all the number
of GE by 3 times simultaneously. For example, the AND gate costs 1.33GE, so
Cost[0bin00001000] = 0bin0100. Next, we sum the cost of all gates and denote
it as G = Cost[Gate0] +Cost[Gate1] + ...+Cost[GateK−1] in our model. Seeing
the pseudo-code of this model in Algorithm 1. Note that this algorithm could
only solve the decision problem and return 0 or 1 when given the target area
cost G and the number K of gates.

Even if there is a solution when giving the number of gates K and the target
area cost G, it could not be the smallest number of GE. The second step is to
determine the search space V(K,G) where the (Kopt, Gopt) of the global optimal
implementation lie in. We can use the model in Section 3.2 to find an implemen-
tation with the smallest number of gates Klow, then we give a proposition.

Proposition 1. Klow represents the smallest number of gates of an S-box’s im-
plementation. We set the area cost Gup of this implementation as the upper bound
of the number of GE. Then, the range of V(K,G) is Klow ≤ K ≤ Gup/1.00GE
and 1.00GE ×Klow ≤ G ≤ Gup.

Proof. 1.00GE represents the lower area cost of the non-linear operation (e.g.
NAND). Every implementation of an S-box needs several non-linear operations.
Assuming that all Klow gates of an implementation are NAND, the area of
this implementation must be the smallest one. Thus, the lower bound of G is
1.00GE ×Klow. In the same way, if the number of gates in an implementation
exceeds Gup/1.00GE, its area must be greater than Gup. ut

Finally, we propose Algorithm 2 and utilize the Proposition 1 to find a circuit
implementing an S-box with the smallest number of GE.

3.4 Bit-sliced technique

Bit-sliced techniques are widely used in the implementation and optimization
of cryptographic primitives [2, 5, 6, 10, 17]. We transplanted the idea of bit-sliced
into our model and provide a natural way to optimally encode the relation be-
tween inputs and outputs of the S-boxes.

As can be seen from Example 1, our model needs 2n sets of equations to en-
code each input x and output S(x) for an n-bit S-box. Although the coefficient
variables a and b of each set of equations are the same, which determine the
implementation circuit, more intermediate variables q and t are needed. To re-
duce the number of variables and then speed up our model, we use the bit-sliced
technique as follows.

Searching for Implementations with the Smallest Area 13

Algorithm 1: Solve the sub-problem: whether a circuit can implement
an S-box uses determined (K) logic operations with (G) GE.
Input: K : Number of gates

G : Target area cost
Sbox[] : an n-bit to n-bit S-box

Output: If the sub-problem has a solution, it returns "1" and the
implementation of this S-box or other case returns "0".

1 //Encode this sub-problem as an SAT-model with equtions.
2 Counterq ← 2K · 2n
3 Countert ← K · 2n
4 Countera ← 2× (n+ (n+K − 2))×K/2 + n2 + n ·K
5 Counterb ← 4K
6 Cost[24]← each area cost of operations in Table 1
7 for x← 0 to 2n − 1 do
8 x = x0||x1||...||xn−1;
9 y = S(x) = y0||y1||...||yn−1;

10 for i← 0 to K − 1 do
11 q2i ← one of S-box’s inputs or outputs of previous gates;
12 q2i+1 ← one of S-box’s inputs or outputs of previous gates;
13 q2i+2 ← one of S-box’s inputs or outputs of previous gates;
14 q2i+3 ← one of S-box’s inputs or outputs of previous gates;
15 ti = ...;
16 end
17 for i← 0 to n− 1 do
18 yi ← only one of S-box inputs or outputs of previous gates t;
19 end
20 end
21 totalcost ← sum of all the gates’ area cost;
22 //Here is the end of the model.
23 if Solve the model by STP, it returns "No Solution" then
24 return 0;
25 end
26 else
27 return 1 and the implementations of this S-box;
28 end

Example 2. We give RECTANGLE’s S-box and its corresponding truth table in
Table 9.

Firstly, we re-encode every variables as a 16-bit Boolean vectorial variables
instead of Boolean variables. For example, we use x0, x1, . . . , x63 to encode the
inputs of the S-box and y0, y1, . . . , y63 to encode the outpus of the S-box in our
original model. We re-encode them and only use 8 variables as

X0 = 0x00ff, X1 = 0x0f0f, X2 = 0x3333, X3 = 0x5555;
Y0 = 0x369c, Y1 = 0xe616, Y2 = 0x96c5, Y3 = 0x4bb4;

14 Zhenyu Lu et al.

Algorithm 2: find the implementation of an S-box with the smallest
number of GE.
Input: Klow : Gates’ number of the optimal gate complexity implementation.

Gup : Total area cost of the optimal gate complexity implementation.
Sbox[] : an n-bit to n-bit S-box.

Output: The optimal GEC implementation and its area cost.
1 Kup ← Gup

2 Glow ← Klow

3 for K ← Klow to Kup do
4 for G← Gup to Glow do
5 if call the Algorithm 1 return 0 with the input (K,G,S) then
6 Gup = G+ 1
7 Kup = Gup

8 break;
9 end

10 end
11 end
12 return (Kup, Gup)

Table 9. Truth table of RECTANGLE S-box.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Hex
S(x) 6 5 12 10 1 14 7 9 11 0 3 13 8 15 4 2 -

x0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0x00ff
x1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0x0f0f
x2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0x3333
x3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0x5555

y0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0x369c
y1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0xe616
y2 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0x96c5
y3 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0x4bb4

Then, we also use 16-bit vectorial Boolean variables Ai, Qi, Bi and Ti to re-
encode the Boolean variables ai, qi, bi and ti.

Q0 =A0 ·X0 +A1 ·X1 +A2 ·X2 +A3 ·X3

Q1 =A4 ·X0 +A5 ·X1 +A6 ·X2 +A7 ·X3

Q2 =A8 ·X0 +A9 ·X1 +A10 ·X2 +A11 ·X3

Q3 =A12 ·X0 +A13 ·X1 +A14 ·X2 +A15 ·X3

Searching for Implementations with the Smallest Area 15

T0 =B0 ·Q0 ·Q1 ·Q2 ·Q3 +Q0 ·Q0 ·Q1 ·Q2+

B0 ·Q0 ·Q1 ·Q3 +B0 ·Q2 ·Q3 +B0 ·Q2 +B0 ·Q3+

B1 ·Q0 ·Q1 ·Q2 +B2 ·Q0 ·Q1 +B2 ·Q0 ·Q2 +B2 ·Q1 ·Q2+

B2 ·Q0 +B2 ·Q1 +B2 ·Q2 +B3 ·Q0 +B3 ·Q1 +B3 ·Q2+

B4 ·Q0 ·Q1 +B5 ·Q0 +B5 ·Q1 +B6 ·Q0 +B7.

. . .

In this set of equations, we add more constraints on coefficient variables Ai and
Bi as follows

Ai ∈0x0000 , 0x1111,
Bi ∈0x0000 , 0x1111.

In conclusion, we only need 1 set of equations to encode RECTANGLE’s S-
box instead of 24 sets of equations in our original model above. The bit-sliced
technique would immediately reduce the number of Qi, Ti, Xi, and Yi by a
factor of 2n and speed up the search. For more details about our model before
and after the re-encoding, please refer to the code which are available online at
https://github.com/Zhenyulu-cyber/Sample_implementation.

4 Applications to lightweight S-boxes

We now give our results related to small S-boxes. Our goal is to find the smallest
circuits implementing those S-boxes with respect to the overall area. All of our
experiments are running on AMD EPYC 7302 CPU 3.0Hz with 8-core. We use
our tool and provide the details on the implementation of RECTANGLE’s S-
box in Table 10. In addition, some implementations of 4-bit and 5-bit S-boxes
from well-known ciphers, such as PICCOLO, SKINNY, LBLOCK, KECCAK,
and ASCON, are listed in Appendix A.

To highlight the strength of our tool, we compare our results with previous
works in [9] and [15] under the UMC 180nm library which is a technology used in
[9]. In Table 11, it can be seen that all of our results are better than Stoffelen’s
and this is expected as Stoffelen’s tool simply minimizes the number of gate.
Meanwhile, we find a circuit of RECTANGLE’s S-box with 18.00GE cost which is
better than LIGHTER’s and we can verify that the circuits of PICCOLO, SKINNY
and LBLOCK’s S-boxes have the optimal area cost under the 2-, 3- and 4-input
gates we considered. In addition, due to the bit-sliced technique, our model can
be used to find the implementation of 5-bit S-box. However, due to the expansion
of the search space, we cannot guarantee that the searched implementation of
5-bit S-box is the optimal one.

Moreover, we also use the state-of-the-art synthesis tool Synopsys Design
Compiler (DC) to synthesize lookup table (LUT) based implementation and

16 Zhenyu Lu et al.

Table 10. The implementation of RECTANGLE’s S-box.

a b c d Operations

q0 = x0; q1 = x1; q2 = 0; q3 = 0; t0 = NOR(a, b);

q4 = x3; q5 = t0; q6 = x3; q7 = t0; t1 =MOAI1(a, b, c, d);

q8 = x2; q9 = t1; q10 = 0; q11 = 0; t2 = NOR(a, b);

q12 = x0; q13 = t2; q14 = x0; q15 = t2; t3 =MOAI1(a, b, c, d);

q16 = x1; q17 = t3; q18 = x1; q19 = t3; t4 =MOAI1(a, b, c, d);

q20 = x1; q21 = x2; q22 = x1; q23 = x2; t5 =MOAI1(a, b, c, d);

q24 = t1; q25 = t5; q26 = 0; q27 = 0; t6 = AND(a, b)

q28 = t5; q29 = t1; q30 = t5; q31 = t1; t7 =MOAI1(a, b, c, d);

q32 = t4; q33 = t7; q34 = 0; q35 = 0; t8 = NAND(a, b);

q36 = t6; q37 = t3; q38 = t6; q39 = t3; t9 =MOAI1(a, b, c, d);

q40 = t8; q41 = t1; q42 = t8; q43 = t1; t10 =MOAI1(a, b, c, d);

y0 = t7; y1 = t9; y2 = t4; y3 = t10; GEC=18.00GE

equation based implementation circuits from three tools (e.g. ours, Stoffelen’s
[15] and LIGHTER [9]). We set the compiler being specifically instructed to
optimize the circuit for area under the TSMC 90nm library. By comparing the
output results of these algorithms, we measure the quality of the synthesis in
the setting where area only should be minimized. We list the results in Table 12.

When using the DC synthesizer on the circuits produced by our tool (equation
based implementation), the area is much better than the circuits produced by
Stoffelen’s tool (equation based implementation) and the circuits converted by
DC synthesizers from the LUT. Especially the performance on RECTANGLE’s
S-box, the results from our tool is much better than LIGHTER.

Note that the choice of standard cell libraries used is almost irrelevant for our
work as we are mainly interested in the quality of the area-optimized synthesis
itself.

Table 11. Comparison of area-optimized on the UMC 180nm.

Sbox
LIGHTER [15] Ours
Area Area Area Gate number Optimal Time

PICCOLO 13.00GE 16.66GE 13.00GE 8
√

1min
SKINNY 13.33GE 16.33GE 13.33GE 8

√
3min

RECTANGLE 18.33GE 25.66GE 18.00GE 11 - 43min
LBLOCK S0 16.33GE 23GE 16.33GE 10

√
12min

KECCAK - - 17.66GE 13 - 6.66h
ASCON - - 28.66GE 15 - 4.66h

Searching for Implementations with the Smallest Area 17

Table 12. Comparison of area-optimized on the TSMC 90nm.

Sbox
TSMC 90nm Logic Process

DC
(from LUT)

DC
(from Ours)

DC
(from [15])

DC
(from LIGHTER)

PICCOLO 18.25GE 11.25GE 11.25GE 11.25GE
SKINNY 23.00GE 11.00GE 11.00GE 11.00GE

RECTANGLE 23.00GE 16.25GE 18.25GE 18.00GE
LBLOCK S0 17.50GE 14.25GE 14.75GE 14.25GE
KECCAK 17.00GE 16.50GE - -
ASCON 27.75GE 27.00GE - -

5 Conclusion and Future Work

In this article, we have described a new method to improve the implementation
of lightweight cipher S-boxes. Our tool based on SAT-model could search for the
optimal area implementation with 2, 3, and 4 inputs gates. It is very practical
for cryptographic designers. There are still some weakness and future works that
deserve to consider. For example, our tool can only apply to small S-boxes, e.g.,
4-bit and 5-bit S-boxes. When the implementation of an S-box is complex, it is
difficult to find the optimal implementation. The efficiency of our tool depends
heavily on the size and complexity of S-boxes. So, a future work is to reduce the
search space and speed up finding the optimal implementation.

Acknowledgements

We thank the anonymous reviewers for their valuable comments and suggestions
to improve the quality of the paper. This work is supported by the National
Natural Science Foundation of China (Grant No. 62032014), the National Key
Research and Development Program of China (Grant No. 2018YFA0704702),
the Major Scientific and Technological Innovation Project of Shandong Province,
China (Grant No. 2019JZZY010133), the Major Basic Research Project of Natu-
ral Science Foundation of Shandong Province, China (Grant No. ZR202010220025),
the Program of Qilu Young Scholars (Grant No. 61580082063088) of Shan-
dong University, and National Natural Science Foundation of China (Grant No.
62002204).

18 Zhenyu Lu et al.

Appendix A Implementation of Some S-boxes

In this section, we give the implementations of several Sboxes mapped on the
UMC 180nm standard cell libraries used in this paper.

Table 13. The implementation of PICCOLO’s S-box.

a b c d Operations

q0 = x2; q1 = x3; q2 = 0; q3 = 0; t0 = OR(a,b);
q4 = x0; q5 = t0; q6 = x0; q7 = t0; t1 = MOAI1(a,b,c,d);
q8 = x1; q9 = t1; q10 = 0; q11 = 0; t2 = NOR(a,b);
q12 = x1; q13 = x2; q14 = 0; q15 = 0; t3 = OR(a,b);
q16 = x2; q17 = t2; q18 = x2; q19 = t2; t4 = MOAI1(a,b,c,d);
q20 = x3; q21 = t3; q22 = x3; q23 = t3; t5 = MOAI1(a,b,c,d);
q24 = t1; q25 = t5; q26 = 0; q27 = 0; t6 = OR(a,b)
q28 = x1; q29 = t6; q30 = x1; q31 = t6; t7 = MOAI1(a,b,c,d);
y0 = t7; y1 = t4; y2 = t5; y3 = t1; GEC=13.00GE

Table 14. The implementation of SKINNY’s S-box.

a b c d Operations

q0 = x2; q1 = x3; q2 = 0; q3 = 0; t0 = OR(a,b);
q4 = x1; q5 = x2; q6 = 0; q7 = 0; t1 = OR(a,b);
q8 = x3; q9 = t1; q10 = x3; q11 = t1; t2 = MOAI1(a,b,c,d);
q12 = x0; q13 = t0; q14 = x0; q15 = t0; t3 = MOAI1(a,b,c,d);
q16 = x1; q17 = t3; q18 = 0; q19 = 0; t4 = OR(a,b);
q20 = t2; q21 = t3; q22 = 0; q23 = 0; t5 = OR(a,b);
q24 = x1; q25 = t5; q26 = x1; q27 = t5; t6 = MOAI1(a,b,c,d);
q28 = x2; q29 = t4; q30 = x2; q31 = t4; t7 = MOAI1(a,b,c,d);
y0 = t6; y1 = t7; y2 = t2; y3 = t3; GEC=13.33GE

Searching for Implementations with the Smallest Area 19

Table 15. The implementation of LBLOCK’s S-box.

a b c d Operations

q0 = x2; q1 = x3; q2 = 0; q3 = 0; t0 = OR(a,b);
q4 = x0; q5 = t0; q6 = x0; q7 = t0; t1 = MOAI1(a,b,c,d);
q8 = x1; q9 = t1; q10 = x1; q11 = t1; t2 = MOAI1(a,b,c,d);
q12 = x2; q13 = t2; q14 = 0; q15 = 0; t3 = NAND(a,b);
q16 = x0; q17 = t3; q18 = x0; q19 = t3; t4 = MOAI1(a,b,c,d);
q20 = x3; q21 = t4; q22 = x3; q23 = t4; t5 = MOAI1(a,b,c,d);
q24 = t2; q25 = t5; q26 = 0; q27 = 0; t6 = NOR(a,b)
q28 = x3; q29 = t6; q30 = x3; q31 = t6; t7 = MOAI1(a,b,c,d);
q32 = t5; q33 = t7; q34 = 0; q35 = 0; t8 = NAND(a,b);
q36 = x2; q37 = t8; q38 = x2; q39 = t8; t9 = MOAI1(a,b,c,d);
y0 = t2; y1 = t5; y2 = t9; y3 = t7; GEC=16.33GE

Table 16. The implementation of KECCAK’s S-box.

a b c d Operations

q0 = x2; q1 = 0; q2 = 0; q3 = 0; t0 = NOT(a);
q4 = x4; q5 = 0; q6 = 0; q7 = 0; t1 = NOT(a);
q8 = x1; q9 = 0; q10 = 0; q11 = 0; t2 = NOT(a);
q12 = x3; q13 = t1; q14 = 0; q15 = 0; t3 = OR(a,b);
q16 = x2; q17 = t3; q18 = x2; q19 = t3; t4 = MOAI1(a,b,c,d);
q20 = x3; q21 = t0; q22 = 0; q23 = 0; t5 = NAND(a,b);
q24 = x0; q25 = t2; q26 = 0; q27 = 0; t6 = OR(a,b)
q28 = x4; q29 = t6; q30 = x4; q31 = t6; t7 = MOAI1(a,b,c,d);
q32 = x1; q33 = t5; q34 = x1; q35 = t5; t8 = MOAI1(a,b,c,d);
q36 = x2; q37 = t2; q38 = 0; q39 = 0; t9 = NAND(a,b);
q40 = x0; q41 = t9; q42 = x0; q43 = t9; t10 = MOAI1(a,b,c,d);
q44 = x0; q45 = t1; q46 = 0; q47 = 0; t11 = NAND(a,b);
q48 = x3; q49 = t11; q50 = x3; q51 = t11; t12 = MOAI1(a,b,c,d);
y0 = t10; y1 = t8; y2 = t4; y3 = t12; y4 = t7; GEC=17.66GE

References

1. Banik, S., Funabiki, Y., Isobe, T.: More results on shortest linear programs. Cryp-
tology ePrint Archive, Report 2019/856 (2019), https://ia.cr/2019/856

2. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sas-
drich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency vari-
ant MANTIS. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part II. Lecture Notes in Computer Science,

20 Zhenyu Lu et al.

Table 17. The implementation of ASCON’s S-box.

a b c d Operations

q0 = x1; q1 = x2; q2 = x1; q3 = x2; t0 = MOAI1(a,b,c,d);
q4 = x0; q5 = x4; q6 = x0; q7 = x4; t1 = MOAI1(a,b,c,d);
q8 = x1; q9 = t0; q10 = 0; q11 = 0; t2 = NOR(a,b);
q12 = x3; q13 = x4; q14 = x3; q15 = x4; t3 = MAOI1(a,b,c,d);
q16 = t1; q17 = t2; q18 = t1; q19 = t2; t4 = MOAI1(a,b,c,d);
q20 = x3; q21 = t0; q22 = 0; q23 = 0; t5 = NAND(a,b);
q24 = x1; q25 = t5; q26 = x1; q27 = t5; t6 = MOAI1(a,b,c,d)
q28 = x0; q29 = t3; q30 = 0; q31 = 0; t7 = NOR(a,b);
q32 = x4; q33 = t3; q34 = 0; q35 = 0; t8 = AND(a,b);
q36 = t0; q37 = t8; q38 = t0; q39 = t8; t9 = MAOI1(a,b,c,d);
q40 = x1; q41 = t4; q42 = 0; q43 = 0; t10 = NOR(a,b);
q44 = t0; q45 = t7; q46 = t0; q47 = t7; t11 = MAOI1(a,b,c,d);
q48 = t3; q49 = t10; q50 = t3; q51 = t10; t12 = MOAI1(a,b,c,d);
q51 = t4; q52 = t12; q53 = t4; q54 = t12; t13 = MAOI1(a,b,c,d);
q55 = t4; q56 = t6; q57 = t4; q58 = t6; t14 = MAOI1(a,b,c,d);
y0 = t12; y1 = t14; y2 = t9; y3 = t11; y4 = t13; GEC=28.66GE

vol. 9815, pp. 123–153. Springer (2016). https://doi.org/10.1007/978-3-662-53008-
5_5, https://doi.org/10.1007/978-3-662-53008-5_5

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Annual interna-
tional conference on the theory and applications of cryptographic techniques. pp.
313–314. Springer (2013)

4. Courtois, N., Mourouzis, T., Hulme, D.: Exact logic minimization and multiplica-
tive complexity of concrete algebraic and cryptographic circuits

5. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1. 2. Submission
to the CAESAR Competition (2016)

6. Goudarzi, D., Jean, J., Kölbl, S., Peyrin, T., Rivain, M., Sasaki, Y.,
Sim, S.M.: Pyjamask: Block cipher and authenticated encryption with
highly efficient masked implementation. IACR Trans. Symmetric Cryp-
tol. 2020(S1), 31–59 (2020). https://doi.org/10.13154/tosc.v2020.iS1.31-59,
https://doi.org/10.13154/tosc.v2020.iS1.31-59

7. Hlavicka, J., Fiser, P.: Boom-a heuristic boolean minimizer. In: IEEE/ACM In-
ternational Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM
Digest of Technical Papers (Cat. No.01CH37281). pp. 439–442 (2001).
https://doi.org/10.1109/ICCAD.2001.968667

8. Inc., V.S.: 0.18µm vip standard cell library tape out ready, part number:
Umcl18g212t3, process:umc logic 0.18 µm generic ii technology: 0.18µm (July 2004)

9. Jean, J., Peyrin, T., Sim, S.M., Tourteaux, J.: Optimizing implemen-
tations of lightweight building blocks. IACR Trans. Symmetric Cryp-
tol. 2017(4), 130–168 (2017). https://doi.org/10.13154/tosc.v2017.i4.130-168,
https://doi.org/10.13154/tosc.v2017.i4.130-168

10. Kwon, H., Koleva, B., Schnädelbach, H., Benford, S.: "it’s not yet A
gift": Understanding digital gifting. In: Lee, C.P., Poltrock, S.E., Barkhuus,

Searching for Implementations with the Smallest Area 21

L., Borges, M., Kellogg, W.A. (eds.) Proceedings of the 2017 ACM
Conference on Computer Supported Cooperative Work and Social Com-
puting, CSCW 2017, Portland, OR, USA, February 25 - March 1,
2017. pp. 2372–2384. ACM (2017). https://doi.org/10.1145/2998181.2998225,
https://doi.org/10.1145/2998181.2998225

11. Mourouzis, T.: Optimizations in algebraic and differential cryptanalysis. Ph.D.
thesis, UCL (University College London) (2015)

12. NIST.: Submission requirements and evaluation criteria for the lightweight cryptog-
raphy standardization process (2018), https://csrc.nist.gov/projects/lightweight-
cryptography

13. Rudell, R.L.: Multiple-valued logic minimization for pla synthesis. Tech. Rep.
UCB/ERL M86/65, EECS Department, University of California, Berkeley (Jun
1986), http://www2.eecs.berkeley.edu/Pubs/TechRpts/1986/734.html

14. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shi-
rai, T.: Piccolo: An ultra-lightweight blockcipher. In: Preneel, B., Tak-
agi, T. (eds.) Cryptographic Hardware and Embedded Systems - CHES
2011 - 13th International Workshop, Nara, Japan, September 28 - Octo-
ber 1, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6917,
pp. 342–357. Springer (2011). https://doi.org/10.1007/978-3-642-23951-9_23,
https://doi.org/10.1007/978-3-642-23951-9_23

15. Stoffelen, K.: Optimizing s-box implementations for several criteria using
SAT solvers. In: Peyrin, T. (ed.) Fast Software Encryption - 23rd In-
ternational Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 9783,
pp. 140–160. Springer (2016). https://doi.org/10.1007/978-3-662-52993-5_8,
https://doi.org/10.1007/978-3-662-52993-5_8

16. Wu, W., Zhang, L.: Lblock: A lightweight block cipher. In: López, J., Tsudik, G.
(eds.) Applied Cryptography and Network Security - 9th International Confer-
ence, ACNS 2011, Nerja, Spain, June 7-10, 2011. Proceedings. Lecture Notes in
Computer Science, vol. 6715, pp. 327–344 (2011). https://doi.org/10.1007/978-3-
642-21554-4_19, https://doi.org/10.1007/978-3-642-21554-4_19

17. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECT-
ANGLE: a bit-slice lightweight block cipher suitable for multiple platforms. Sci.
China Inf. Sci. 58(12), 1–15 (2015). https://doi.org/10.1007/s11432-015-5459-7,
https://doi.org/10.1007/s11432-015-5459-7

