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Abstract. This paper uses RISC-V vector extensions to speed up lattice-
based operations in architectures based on HW/SW co-design. We an-
alyze the structure of the number-theoretic transform (NTT), inverse
NTT (INTT), and coefficient-wise multiplication (CWM) in CRYSTALS-
Kyber, a lattice-based key encapsulation mechanism. We propose 12 vec-
tor extensions for CRYSTALS-Kyber multiplication and four for finite
field operations in combination with two optimizations of the HW/SW
interface. This results in a speed-up of 141.7, 168.7, and 245.5 times
for NTT, INTT, and CWM, respectively, compared with the baseline
implementation, and a speed-up of over four times compared with the
state-of-the-art HW/SW co-design using RV32IMC.
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1 Introduction

Currently, the confidentiality and integrity of communication channels between
multiple parties are greatly supported by public-key cryptography (PKC) algo-
rithms. However, with the arrival of quantum computers, these PKC algorithms
are not secure anymore. The main mathematical problems they rely on, the
factorization of big integers and the calculation of discrete logarithms, can be
solved in polynomial time using Shor’s algorithm [12].

Therefore, post-quantum cryptography (PQC) algorithms, which are resis-
tant to traditional and quantum computer attacks, are proposed. The National
Institute of Standards and Technology (NIST) has initiated a post-quantum
cryptography standardization process worldwide since 2016 [10]. On July 22,
2020, NIST announced the 15 candidates for Round three [10]. Among these
PQC algorithms, lattice-based algorithms occupy seven places. Thanks to its
security and efficiency, lattice-based cryptography can be used for many secu-
rity applications such as key-encapsulation mechanisms (KEMs), identity-based



2

encryption (IBE) [20], and Fully Homomorphic Encryption (FHE) [9]. The im-
plementation of lattice-based algorithms is a prominent research area. There are
three types of strategies: pure hardware (HW) design, pure software (SW) de-
sign, and hardware/software (HW/SW) co-design [1]. Among those, HW/SW
co-design combines the advantages of the other two, which are high-speed and
flexibility, by partitioning the whole design into two parts: the hardware part
implemented on FPGA or ASIC, and the software part in one or more processors
that can be embedded in the FPGA or ASIC.

Lattice-based algorithms work with many costly polynomial operations with
a high degree. Especially polynomial multiplication is believed to be one of the
bottlenecks in lattice-based implementations [1]. The number-theoretic trans-
form (NTT), a specialized form of the Discrete Fourier Transform (DFT) [7], is
used by some lattice-based algorithms such as CRYSTALS-Kyber, CRYSTALS-
Dilithium, and Fully Homomorphic Encryption. Even though NTT can reduce
the time complexity fromO(n2) (for traditional DFT algorithms) toO(nlog(n)),
the algorithm is still very time-consuming.

Polynomial operations are suitable for working in a data-parallel operation
mode through vector architectures, also called Single-Instruction-Multiple-Data
(SIMD) architectures. One crucial requirement to implement SIMD processors
is to have a vector instruction set architecture (ISA) that is preferably free and
open-source. Fortunately, vector extensions for the RISC-V ISA are available.
The most recent version is RVV1.0, the 1.0 version of the RISC-V vector exten-
sions (RVV). To our knowledge, there is only one work [13] that adopts RVV for
the implementation of PQC. In [13], the authors use RVV in Classic McEliece,
a PQC algorithm based on code-based cryptography. For lattice-based cryptog-
raphy, performance improvements using RVV are still unexplored.

To fill in the gap, we use RISC-V vector extensions to improve the efficiency
of lattice-based operations based on HW/SW co-design. We first realize a scal-
able SIMD processor written in SystemVerilog to support RVV1.0. Then, we
analyze the structure of the number-theoretic transform (NTT), inverse NTT
(INTT), and coefficient-wise multiplication (CWM) in CRYSTALS-Kyber, a
lattice-based key encapsulation mechanism. Later, we propose two optimiza-
tions of the HW/SW interface and 16 vector extensions: 12 for CRYSTALS-
Kyber multiplication and four for finite field operations. Our contributions are
the following:

– We realize a scalable SIMD processor supporting RISC-V vector extensions
and implement it on a Xilinx Alveo U250 accelerator card.

– We propose two HW/SW interface optimizations and 16 vector extensions
for CRYSTALS-Kyber multiplication and finite field operations. Our results
show a speed-up of 141.7, 168.7, and 245.5 times for NTT, INTT, and CWM,
respectively, compared with the baseline implementation, and a speed-up of
over four times compared with the state-of-the-art HW/SW co-design using
the RV32IMC ISA.
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2 Notation and background information

We use lower-case italic letters like p to denote polynomials, while lower-case
bold letters like p are used to denote vectors of polynomials, and upper-case
bold letters like P denote matrices of polynomials. Furthermore, we use p̂, p̂,
and P̂ to represent these variables in the corresponding NTT domain. Further,
let vT be the transpose of the vector v and AT be the transpose of the matrix
A. We define v[i] to denote a vector v’s i-th entry (where i starts from zero),
and A[i][j] to denote the entry in row i and column j in a matrix A. We define
polynomial rings Rq as Zq[X]/ϕ(x). Here, ϕ(x) is (Xn + 1), q is a prime, and
n is a power of two. We use NTT, NTT−1, and CWM for the corresponding
functions. We use · to denote integer and polynomial multiplication, and use ◦
to denote coefficient-wise multiplication. For two vectors of polynomials, f and
g, the product f ·g can be computed efficiently as NTT−1(NTT(f)◦NTT(g)).
Finally, we denote messages as m, ciphertexts as ct, public keys as pk, and secret
keys as sk.

2.1 CRYSTALS-Kyber

CRYSTALS-Kyber is a lattice-based cryptosystem of which the security is based
on the hardness of the Module Learning With Errors (MLWE) problem, with q
equal to 3 329 and n 256 [2]. Its public-key encryption scheme (Kyber.CPAPKE)
features indistinguishability under chosen plaintext attack (IND-CPA) and in-
cludes three steps: key generation (KeyGen), encryption (Enc), and decryp-
tion (Dec) [2]. These three steps can be summarized as follows, assuming that

Â ∈ Rk×k
q is generated through uniform sampling, and s ∈ Rk

q , e ∈ Rk
q , r ∈ Rk

q ,

e1 ∈ Rk
q and e2 ∈ Rq are generated through centered-binomial-distribution sam-

pling [2,3]:

KeyGen: pk := Â ◦NTT(s) +NTT(e), sk := NTT(s).

Enc: ct := (u, v), with u = (NTT−1(ÂT ◦NTT(r))+e1 and v = NTT−1(pkT ◦
NTT(r)) + e2 +m.
Dec: m := v −NTT−1(ŝT ◦NTT(u)).

2.2 Number-theoretic Transform

For the number-theoretic transform (NTT), when ϕ(x) is of form xn+1, the nega-
tive wrapped convolution [14] is used to directly compute polynomial multiplica-

tion with coefficients inRq. For a vector f =
∑n−1

i=0 fix
i, its NTT operation trans-

form is f̂ = NTT(f) =
∑n−1

i=0 f̂iX
i with f̂i =

∑n−1
j=0 ψ

jfjω
ij(mod q) for i =

0, 1, . . . , n− 1. ω is the twiddle factor, defined as the n-th root of unity, with the
conditions that ∀i < n, ωi ̸= 1(mod q) and ωn ≡ 1(mod q). ψ =

√
ω. Similarly,

the corresponding inverse (INTT) operation is defined as f = NTT−1(f̂) =∑n−1
i=0 fiX

i with fi = n−1ψ−i
∑n−1

j=0 f̂jω
−ij(mod q) for i = 0, 1, . . . , n− 1.

The negative wrapped convolution technique dramatically improves the work
efficiency of NTT and INTT by eliminating the doubling of the sizes of inputs



4

with zero padding and a separate polynomial reduction operation by ϕ(x) [14].
However, it adds pre-processing and post-processing by multiplying with ψj

or ψ−i. Since Round 2 of the NIST PQC competition, the parameter q in
CRYSTALS-Kyber has been reduced from 7 681 to 3 329, eliminating the need
for pre-processing and post-processing operations. The new NTT operation re-
quires an early termination and generates 128 polynomials with a degree of two.
Analogously, the INTT operation processes 128 degree-2 polynomials, and an
extra coefficient-wise multiplication (CWM) is required to multiply two degree-
2 polynomials in Zq[x]/

(
x2 − ωi

)
. In [19] and [17], the authors use a technique,

named DIVby2, to eliminate the multiplication with n−1(mod q) after the but-
terfly structure of the INTT operation. That is, when x is even, x/2(mod q)
equals (x≫ 1), while when x is odd, x/2(mod q) = (x≫ 1)+x[0]× ((q+1)/2).
The three algorithms are shown in Algorithms 1, 2, and 3, respectively, where
brl−1(·) is the bit-reversal operation for a word size of l − 1 [16,17].

Algorithm 1 NTT Algorithm in CRYSTALS-Kyber
Input: f(x) ∈ Rq, ωn ∈ Zq, n = 2l.

Output: f̂(x) ∈ Rq

1: k ← 1
2: for i from 1 by 1 to l − 1 do
3: m← 2l−i

4: for s from 0 by m to n do
5: for j from s by 1 to s+m do
7: a,b,w← f [j], f [m+ j], ωbrl−1(k) mod q
8: t← (w · b) mod q
9: e,o← (a+ t) mod q, (a− t) mod q
10: end for
11: k ← k + 1
12: end for
13: end for

Algorithm 2 INTT Algorithm in CRYSTALS-Kyber

Input: f̂(x) ∈ Rq, ω
−1
n ∈ Zq, n = 2l

Output: f(x) ∈ Rq

1: k ← 0
2: for i from l − 1 by −1 to 1 do
3: m← 2l−i

4: for s from 0 by m to 2l do
5: for j from s by 1 to s+m do

6: a,b,w← f̂ [j], f̂ [j +m], ωbrl−1(k)+1 mod q
7: e,o← (a+ b) mod q, (a− b) ·w mod q

8: f̂ [j], f̂ [j +m]← DIVby2 (e), DIVby 2(o)
9: end for
10: k ← k + 1
11: end for
12: end for
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Algorithm 3 CWM Algorithm in CRYSTALS-Kyber

Input: f̂(x), ĝ(x) ∈ Rq, ω ∈ Zq

Output: ĉ(x) ∈ Rq

1: for i from 0 by 1 to 2l−1 do
2: w← ωbrl−1(i)+1 mod q

3: a0,a1 ← f̂ [2i], f̂ [2i+ 1]
4: b0,b1 ← ĝ[2i], ĝ[2i+ 1]
5: ĉ[2i]← (a0 · b1 + a1 · b0) mod q
6: ĉ[2i+ 1]← (a1 · b1 ·w + a0 · b0) mod q
7: end for

3 System Design

3.1 SIMD Processor Design

Similar to [11] and [18], the proposed SIMD processor in our paper contains two
parts, as illustrated in Figure 1: a scalar core (top) and a vector processing unit
(bottom). To accelerate the design process, we use the existing RISC-V core,
Ibex [8], as the scalar core. Ibex is a two-stage, 32-bit open-source core, written
in SystemVerilog [8]. The two parts interface with each other through vector
instructions, scalar registers, and memory data.

The vector unit consists of four modules: Vector Instruction Interface
(VecISAInterface), Vector Load and Store Unit (VecLSU), Vector Register
File (VecRegfile), and Vector Operation Execution (VecOpExec), as shown in
Figure 1. The VecISAInterface module decodes the vector instructions, which
are fetched and transferred from the scalar core. It decouples these instructions
into configuration-setting instructions, memory instructions, and vector arith-
metic instructions. Then, the configuration-setting instructions are processed in-
side the VecISAInterface module; the memory instructions are sent to the Ve-
cLSU module, and vector arithmetic instructions are sent to the VecOpExec
module. In the VecLSU module, the memory instructions are decoupled into
vector load instructions and vector store instructions. In the VecOpExec mod-
ule, the vector arithmetic instructions are decoded further into different opera-
tions by the Arithmetic Operation Pre-Processing (ArithOpPrepro) submod-
ule, according to the two fields of funct3 and funct6 in the instruction. And then,
the exact instructions are sent to the execution modules, all of which are in the
same Execution Lane (ExLane) sub-module. The lane number (LaneNum) pa-
rameter defines the number of ExLane sub-modules instantiated in the SIMD
architecture.

Vector Register File Besides the scalar register file inside the Ibex core, an-
other vector register file is foreseen inside the vector processing unit. According
to the RVV1.0 specification, there should be in total 32 vector registers [15]. In
each vector register, there are several vector elements. The width of every element
is defined by the parameter ELEN. To be compatible with the Ibex core, ELEN
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Fig. 1: The architecture of the SIMD RISC-V based Processor.

is fixed to 32-bit in this work. The width of the vector registers is defined by
the parameter VLEN. Consequently, LaneNum is determined by VLEN /ELEN.
That is, a vector register is viewed as being divided into VLEN /ELEN ele-
ments [15]. VL and LMUL are two other important parameters in RVV1.0. VL
is the vector length and specifies the number of elements to be operated on in
parallel within a vector extension. It can be less or greater than LaneNum. When
VL is less than LaneNum, all elements are put in the same vector register. When
VL is greater than LaneNum, several vector registers are grouped. RVV1.0 [15]
defines the parameter LMUL, the vector length multiplier, to specify the number
of vector registers that are grouped. As defined in the RVV specification, the
maximum value of LMUL is 8.

Figure 2 shows an example with LaneNum = 4 and VL = 8. In this case,
LMUL should be set to 2. Two registers are working for each operand. For the
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instruction: {vadd.vv v0,v0,v2}, the base address of v0 is zero, while the base
address of v2 is two. The VecISAInterface module takes care of the address
allocation.

Fig. 2: Vector register file and address allocation.

Vector Load and Store The vector unit shares the same datapath as the
scalar core to read and write scalar registers and load and store memory data.
The data from the two read ports in the scalar register file are always ready.
The writing to the scalar register file is only enabled when a configuration-
setting instruction is processed. For vector load and store instructions, our SIMD
processor supports all three different types of address modes as specified in the
RVV1.0, including vector unit-stride mode, vector constant-strided mode, and
vector indexed mode [15]. Vector unit-stride mode accesses contiguous elements
in memory, starting from the base address. Vector constant-strided mode accesses
memory elements with a constant address space bigger than the width of one
element in memory, starting from the base address. The vector indexed mode
accesses several elements with their address offset value given by a vector and
the base address provided by a scalar register.

The vector load and store instructions are the only ones that cannot do data-
parallel implementations because only one RAM address can be set, and only one
RAM element can be accessed. Thus, these memory instructions are the most
time-consuming in the SIMD processor. When the store instruction is triggered,
theVecLSUmodule first reads all elements from the first vector register address.
It then sends these elements to Data RAM one by one corresponding to the
lane order from zero to {LaneNum - 1}. Then, all elements from the following
vector data registers belonging to the same vector will be fetched in sequence
and sent to RAM through the procedure mentioned above. The process of the
load instruction is the reverse process of the store instruction. The required data
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will be fetched from RAM with the address order defined by the three different
modes. All readout data will be sent directly to the vector register file.

Vector Execution In the VecOpExec module, the ArithOpPrepro sub-
module further decodes the vector arithmetic instructions based on the three-
bit funct3 and six-bit funct6 fields. The funct3 field is to specify sub-categories
of arithmetic instructions: whether the two operands are vector-vector (.vv),
vector-immediate (.vi), or vector-scalar (.vx), and whether the corresponding
operations are integer operations, multiply/division (MULT/DIV) operations, or
fixed-point operations. The funct6 field specifies the operation type, for example,
whether the operations are addition, shift, multiplication, etc.

As shown in Figure 2, after the instruction {vadd.vv v0,v0,v2} is sent to the
VecOpExec module, it is recognized as an integer operation with two operands
to be vector-vector (.vv), and the operation code to be an addition. Then the two
vectors: v0 and v2, will be read from the vector register file, with the vectors’
base addresses set to zero and two, respectively. All elements from the first
vector register are read out at the same time. Elements from the vector v0 and
v2 in Figure 2, with the same index number (or lane order), will be sent to
the same ExLane sub-module for the addition operation. After the addition
operation finishes, the result from every ExLane sub-module will be sent to
vector v0 according to the index number. Then, all elements from v1 and v3
will be fetched. Again, two elements with the same index number will be sent
to their corresponding ExLane sub-module, and the result from every ExLane
sub-module will be written back to vector v1. The parameter LMUL defines the
total number of operations.

3.2 NTT Design

We propose two HW/SW interface optimizations to improve the performance of our
architecture: register pooling and automatic index generation. Further, we propose
custom vector instructions for NTT and for finite field arithmetic operations.

Register Pooling We use the term register pool for multiple registers doing the
same job. Unlike RAM, where there is often only one address that can be set, the
data in the same register pool operate independently, and multiple data can be read
and written simultaneously. The purpose of applying register pooling is to increase the
loading and storing throughput in every loop of NTT, INTT, and CWM and eliminate
the time lost when exchanging data with the Data RAM. Three types of register pools
are proposed in this design to support the parallel computation of the NTT, INTT,
and CWM algorithms in CRYSTALS-Kyber.

The first register pool, named coeff data, is used to store coefficient data. There
are two register sub-pools in coeff data, called coeff data0 and
coeff data1, respectively, in which there are 256 12-bit registers to store all polyno-
mial coefficients in one NTT vector. coeff data0 serves as temporary storage for the
coefficient data of the NTT and INTT algorithms, and for the first coefficient data
in the CWM algorithm. coeff data1 serves as temporary storage for the second co-
efficient data in the CWM algorithm. The second register pool, called poly index, is
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used to store the index number for each loop. There are three register sub-pools in
poly index, called poly indexa and poly indexb, and poly indexw, respectively,
in which there are 128 7-bit registers to store the index number of a, b and w in
Algorithms 1, 2, and 3. The third register pool, named tw, has 128 12-bit registers to
store the twiddle factors. The initial value of all twiddle factors is pre-calculated and
stored in bit-reversal order, and updated to different values according to the type of
algorithms.

Automatic Index Generation Before the three algorithms get started, all poly-
nomials in one vector are stored in the register pool coeff data. That is, the result of
the previous operation is not sent back to the Data RAM but stored here in coeff data.
Our design keeps the outer loop structure and unloops the inner two loop structures
(Algorithms 1 and 2). Customized vector extensions control the loop number of the
outermost layer. The register pool poly index changes automatically according to the
loop number. In Figure 3, we illustrate the processing of a vector in NTT with the
polynomial number, the index and the loop number equal to 16, 8 and 3, respectively.

Fig. 3: Automatic index generation for a, b, and w in NTT

In each loop, vector a and vector b are read from register pool coeff data, and
vector w is read from register pool tw. Their polynomial order is changed according
to register pool poly indexa, poly indexb, and poly indexw, respectively. Later,
the re-ordered vectors a, b and w are stored in the destination vector registers for
the consecutive arithmetic operations. After all operations in one loop are finished,
the order of polynomials in vectors a and b will be changed back to their initial
order according to poly indexa and poly indexb, and written back to register pool
coeff data. Note that vector w is not sent to tw because it does not change with the
loop number. The whole process is illustrated in Figure 4, where all parameters are the
same as in Figure 3.

Customized Vector Instructions for NTT There are usually three methods to
extend instructions in RISC-V: 1) using custom instructions; 2) modifying the compiler;
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Fig. 4: The polynomial order changes according to the loop number in NTT.

3) rewriting unused existing instructions. In [1] and [5], the authors use the first method,
while the second method is adopted in [4]. Modifying the compiler is often too time-
consuming and inflexible because the toolchain needs to be configured whenever one
instruction changes. In this paper, we use the first and third methods.

To realize the above mentioned operations in 3.2, we use custom instructions, in-
cluding custom 0 and custom 1, to extend the specific vector extensions for multipli-
cation in CRYSTALS-Kyber, see Table 1. In our design, all these vector extensions are
R-Type [1,5]. The two source operands and the destination operand can be scalar reg-
isters or vector registers. We design 12 customized Vector extensions for NTT, which
belong to six categories.

Polynomial Load Extensions include vlpolye8, vlpolye16, and vlpolye32. They are
used to load data from Data RAM to the vector register file with a data width of 8-bit,
16-bit, and 32-bit, respectively.
Polynomial Store Extensions include vspolye8, vspolye16, and vspolye32. They are
used to store data from the vector register file to Data RAM with a data width of
8-bit, 16-bit, and 32-bit, respectively.
Multiplication Configuration Extensions include vnttcfg, vinttcfg, and vcwcfg.
They configure the multiplication to NTT, INTT, and CWM, respectively. They also
set the loop number.
Polynomial Read Extension includes vreadpoly. It is used to read a polynomial
from coeff data to the vector register file.
Polynomial Write Extension includes vwritepoly. It is used to write polynomials
from the vector register file to coeff data.
Twiddle Factor Read Extension includes vreadtw. It is used to read twiddle factors
from tw to the vector register file.

Optimization for finite field arithmetic operations In this work, we also
extend four vector extensions for finite field operations using the third method men-
tioned in 3.2, including vaddmod, vsubmod, vmod, vdivby2, as listed in Table 1. We
define vaddmod for finite field addition, vsubmod for finite field subtraction, vmod for
modular reduction, and vdivby2 for x/2 mod q after the INTT operation, as described
in Section 2.2. What is worth mentioning here is the modular reduction operation,
vmod. We adopt the technique proposed in [17] to reduce the latency to one clock cycle
by utilizing the property that 212 ≡ 29 + 28 − 1(mod 3329).
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4 Experimental Results

We first develop the scalable SIMD processor using SystemVerilog and select a Xilinx
Alveo U250 Data Center accelerator card for FPGA evaluation. The Alveo U250 has
rich resources to support multiple lanes, within a total of 1 728K LUTs, 791K LU-
TRAM, 3 456K flip-flops, 2 688 BRAM, 12 288 DSP, 676 IO, 1 344 BUFG, and 32 PLL.
After completing the behavioral simulations using Vivado 2019.2, we set LaneNum to
4, 8, 16, and 32, respectively. The four different architectures and the original IBex
core (zero lanes) are synthesized and implemented through Vivado 2019.2 using the
Alveo U250 card. The resource usage is shown in Table 2, where the LUT, LUTRAM,
FF, BRAM, and DSP usage is compared.

Table 2: Resource usage for SIMD Processor supporting CRYSTAL-Kyber mul-
tiplication.

Lane Num LUT LUTRAM FF BRAM DSP

0 2.4K 48 890 16 4

4 45.5K 48 13.3K 16 26

8 93.2K 48 17.9K 16 42

16 166.1K 48 27.2K 16 74

32 318.2K 48 46.0K 16 138

Table 3: Execution time for different values of LaneNum in our SIMD processor
and comparisons with the baseline implementation and [4].

Test
[4]

C-baseline
(Ibex )

Our SIMD Processor
Lane4 Lane8 Lane16 Lane32

Cycles Cycles Cycles Speedup Cycles Speedup Cycles Speedup Cycles Speedup
NTT 1 935 54 261 3 022 18 1 538 35.3 796 68.2 383 141.7
INTT 1 930 76 413 3 582 21.3 1 818 42 936 81.6 453 168.7
CWM — 28 228 926 30.5 466 60.6 236 119.6 115 245.5

The next step is to optimize the NTT, INTT, and CWM algorithms. We use the
RISC-V GNU Compiler Toolchain (rvv version)5. Similar to [4], we set the optimization
flag to ‘O3’ to compile the code and the baseline implementations to the clean C-code of
the PQ-M4 project [6]. First, we run the baseline code on the pure IBex core, the clock
cycle count for the three algorithms are 54 261, 76 414, and 28 228, respectively. Then
we optimize these three algorithms using RV32IMC, RVV1.0, and customized vector
extensions for CRYSTALS-Kyber multiplication and finite field operations. Again, we
set the LaneNum to 4, 8, 16, and 32 and then count the clock cycles for the NTT, INTT,
and CWM algorithms. All results are shown in Table 3. From the results, we can see
that the execution time of NTT, INTT, and CWM in our design is optimized by 141.7,
168.7, and 245.5 times respectively, compared to the baseline when the LaneNum is
set to 32. When compared with relevant related work in [4], which is a RISC-V based

5 https://github.com/riscv-collab/riscv-gnu-toolchain/

https://github.com/riscv-collab/riscv-gnu-toolchain/
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HW/SW co-design written in SystemVerilog using the RV32IMC ISA, the execution
times of NTT and INTT are optimized by nearly 5.1 and 4.3 times, respectively.

5 Conclusions and Future Work

In this paper, we explore RISC-V vector extensions to improve the efficiency of lattice-
based operations based on HW/SW co-design. We first realize a scalable SIMD proces-
sor written in SystemVerilog to support RVV1.0. And then, we analyze the structure
of the three polynomial multiplication algorithms in CRYSTALS-Kyber, namely NTT,
INTT, and CWM. We propose two techniques, called register pooling and automatic
index generation, to optimize the HW/SW interface and design 12 vector extensions
for CRYSTALS-Kyber multiplication and 4 for finite field operations. Our results show
a speed-up of 141.7, 168.7, and 245.5 times for NTT, INTT, and CWM, respectively,
compared with the baseline implementation, and a speed-up of over four times com-
pared with state-of-the-art HW/SW co-design using RV32IMC. In future work, we
will focus on the vectorization of the Keccak core and the whole CRYSTALS-Kyber
cryptosystem. Additionally, we will also consider countermeasures against side-channel
attacks on SIMD architectures. We will publish all our code to facilitate follow-up
research.
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