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Abstract

Set membership proofs are an invaluable part of privacy preserving systems. These proofs allow a
prover to demonstrate knowledge of a witness w corresponding to a secret element x of a public set,
such that they jointly satisfy a given NP relation, i.e. R(w, x) = 1 and x is a member of a public set
{x1, . . . , x`}. This allows the identity of the prover to remain hidden, eg. ring signatures and confidential
transactions in cryptocurrencies.
In this work, we develop a new technique for efficiently adding logarithmic-sized set membership proofs
to any MPC-in-the-head based zero-knowledge protocol (Ishai et al. [STOC’07]). We integrate our
technique into an open source implementation of the state-of-the-art, post quantum secure zero-knowledge
protocol of Katz et al. [CCS’18]. We find that using our techniques to construct ring signatures results
in signatures (based only on symmetric key primitives) that are between 5 and 10 times smaller than
state-of-the-art techniques based on the same assumptions. We also show that our techniques can be
used to efficiently construct post-quantum secure RingCT from only symmetric key primitives.

1 Introduction

Zero-knowledge proofs and arguments of knowledge1[GMW91] allow a prover to convince a verifier that
they possess a witness for an NP statement, without revealing anything about the witness itself. The
flexibility and power of zero-knowledge protocols have made these primitives a key building block in larger
privacy-preserving protocols, supporting a wide array of practical applications. This has spurred interest in
the development of more concretely efficient protocols that can improve the performance characteristics of
deployed applications.

An important sub-component of many practically useful NP statements is set membership. Proving
set membership consists of demonstrating that a secret element x is a member of a publicly-known set
{x1, x2, . . . , x`}, i.e. there exists a 1 ≤ j ≤ ` such that x = xj . This sub-component allows a prover to
then demonstrate some property of the value x without revealing which element x is. The prover will then
prove that it has some witness w such that R(x,w) = 1, where R is a public NP relation. For example,
ring signatures [RST01] can be formulated as a proof in which the signer’s task is to convince the verifier
that it knows a signature that verifies against some public key pk that is part of a “ring” of public keys
{pk1, . . . , pk`}. In this case, the proof is composed of demonstrating membership of the chosen public key in
the correct set and demonstrating that the prover knows a valid signature under this public key.

Membership proofs are an invaluable part of privacy preserving systems. Standard zero-knowledge proofs
hide the witness from the verifier, but this may not be sufficient to hide the identity of the prover. Consider
the case where it is well-known that only the prover holds a witness to a certain statement. In this case, any
verifying proof can be directly linked back to the prover. A privacy-conscious prover can use membership

1In this work we will use the terms proofs and arguments interchangeably, as has become commonplace for practically
oriented work in this area.
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proofs to “hide in the crowd,” proving that it knows a witness from a large set of relevant statements, each
of which relates to someone else. Ring signatures are the quintessential example of this paradigm, as the
verifier only learns that the signer is a member of a set. This anonymity property has recently been leveraged
by privacy-focused cryptocurrencies, like Monero [Noe15] and ZCash [MGGR13], to protect the identities
of payers, even when all transactions are recorded in a public ledger. Evaluating a function represented as
a lookup table can also be represented as a set membership problem: selecting the correct output value o
given an input value i from a set of mappings {(i1, o1), . . . , (i`, o`)}.

Given the importance of set membership proofs, finding efficient set membership proving techniques is a
critical research direction. While there are generic techniques to prove such statements, generic approaches
often result in concretely inefficient constructions. To be of practical interest, membership proofs should
satisfy the following properties: (1) The set membership must compose well with a larger zero-knowledge
proof. This is because simply proving membership alone is not interesting; the prover will likely want to use
the values in the set as input to some other arbitrary relation R. (2) The communication complexity of set
membership proofs must not grow quickly with the size of the set, as large sets are what provide provers
meaningful anonymity. Ideally, the proof size should be logarithmic in the set size with small concrete
constants. (3) Because of the use in blockchain applications, set membership proofs should be amenable
to non-interactivity transformations like Fiat-Shamir [FS87]. And finally, (4) It would be desirable for any
techniques to be plausibly post-quantum secure so that privacy cannot be violated by future adversaries
with access to quantum computation. The recent NIST PQC competition has demonstrated the importance
that new cryptographic techniques adapt to the post-quantum setting.

In this work we design a novel technique for seamlessly integrating membership proofs into generic MPC-
in-the-head [IKOS07] zero-knowledge proofs. While memberships have a long research history, they have
largely been overlooked in the context of efficient and versatile MPC-in-the-head protocols.2

The most significant benefit of focusing on MPC-in-the-head protocols is the ease with which the set
membership proof can be integrated with another NP relation. Because the MPC protocol being used
can easily operate over any domain, there is no need to “match” the set membership approach and the
NP relation, which could result in either a less efficient membership proof or less efficient representation
of the relation. Additionally, our membership proofs introduce only a logarithmic (in the size of the set)
communication overhead to the cost of proving the relation circuit R, they are Fiat-Shamir friendly, and
post-quantum secure. Applying our techniques is highly efficient, producing the smallest post-quantum
ring signatures from symmetric key primitives when used in conjunction with the signature scheme initially
proposed by Chase et al. [CDG+17].

Applications. We integrate our membership proof technique into an open source implementation of the
MPC-in-the-Head protocol proposed by Katz et al. [KKW18]. We use our implementation to implement
the smallest post-quantum ring signatures from symmetric key assumptions. The signature sizes are ap-
proximately 42KB + 1.5KB × log(`), where ` is the ring size. This is dramatically smaller than previous
ring-signature constructions from similar assumptions, and is competitive with lattice-based ring signature
constructions (see Table 1 for a comparison of ring signature sizes).

Additionally, there has recently been a sequence of work showing how to leverage lattice-based cryptogra-
phy to create post-quantum secure RingCT, the technique used to create privacy preserving cryptocurrency
transactions for Monero [TSS+18, TKS+19, TSSK20, EZS+19]. In our work, we show how to efficiently
instantiate RingCT using our set membership proofs. Our construction is elegant, simple, and efficient, with
the same asymptotic size as the lattice-based constructions, but different constants. Our construction also
illustrates the benefits of an efficient set membership proof that naturally integrates with a generic zero-
knowledge proof system: no technical difficulties arise when getting different parts of the statement to fit
together. For instance, our construction requires no range proofs, which are necessary when subcomponents
are arithmetizatized for compatibility.

2As we discuss later, Katz et al. [KKW18] is one of the few works to address this shortfall; they construct ring signatures
using MPC-in-the-head by adding a Merkle tree membership check to the circuit, a sub-component that dominates the overall
circuit size.
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Ring size: 27 210 213 Assumption
Derler et al. [DRS18] 982 KB 1352 KB 1722 KB Symmetric Key
Katz et al. [KKW18] 285 KB 388 KB 492 KB Symmetric Key

This Work 52 KB 56 KB 60 KB Symmetric Key

Ring size: 23 26 212 Assumption
Libert et al. [LLNW16] 52 MB 94 MB 179 MB SIS
Torres et al. [TSS+18] > 124 KB > 900 KB 61 MB Ring-SIS
Esgin et al. [ESLL19] 41 KB 58 KB 256 KB M-LWE & M-SIS
Esgin et al. [EZS+19] 29 KB 34 KB 148 KB M-LWE & M-SIS

Lyubashevsky et al. [LNS21] < 16 KB < 18 KB < 19 KB Ex-M-LWE & M-SIS
This Work 46 KB 50 KB 59 KB Symmetric Key

Table 1: Performance of our post-quantum ring signature scheme compared to prior works, all for 128 bits of
post-quantum security. The performance of the lattice-based signatures come from [ESLL19]; these bodies
of literature use different benchmarks, so we include both. Our ring signatures outperform the best known
work relying on symmetric key assumptions by a factor of 5 to 8 and is competitive with the best known
lattice-based approaches.

1.1 Our Contributions

We now give an overview of the contributions we present in this work.

Efficient Set Membership Proofs using MPC-in-the-head. We present an efficient, novel set mem-
bership proof that can be used with any MPC-in-the-head [IKOS07] protocol. Our protocol introduces a
input-independent pre-processing phase to the simulated MPC protocol (similar to the work of Katz et
al. [KKW18]3) in which the simulated parties prepare secret shares of the elements in the set. Composing a
membership proof for a set of size ` with an MPC-in-the-head proof increases the communication complexity
by only O(log(`)) and increases computation complexity by O(`).

Implementation. We integrate our techniques into Reverie [git20], an open source implementation of the
Katz et al. [KKW18] MPC-in-the-head protocol. In our implementation, membership proofs only incur an
additional communication overhead of around 1.5KB × log(`) + |x| at 128 bits of post-quantum security,
where |x| is the size of the elements of the set.

Post-Quantum Ring Signatures. We use our modified version of Reverie to implement post-quantum
ring signatures. Our ring signatures, based on the post-quantum signatures presented in [CDG+17, KKW18,
KZ20], are the smallest known post-quantum ring signatures from symmetric key assumptions, and can be
nearly an order of magnitude smaller than those based on the same assumptions generated in [KKW18].

Post-Quantum RingCT. We give a simple and elegant construction of post-quantum RingCT based on
symmetric key primitives and MPC-in-the-head. Due to our efficient set membership proofs, we are able to
make use of generic zero-knowledge and still arrive at an efficient construction. Our work diversifies the as-
sumptions from which we now know efficient post-quantum RingCT, minimizing the reliance on lattice-based
primitives. Our construction is more efficient than prior work for the most important kind of transaction:
small numbers of inputs and outputs, but a large sender anonymity set. This offers a different tradeoff from
prior work, which scales poorly with the size of the anonymity, but better with the numbers of inputs and
outputs.

1.2 Technical Overview

As discussed earlier, we make use of the MPC-in-the-head paradigm introduced by Ishai et al. [IKOS07].
Since its inception, a sequence of papers including (but not limited to) ZKBoo [GMO16], ZKB++ [CDG+17],
and the work of Katz et al. [KKW18] have developed new techniques in this regime to construct concretely

3See Section 1.3 for a full comparison of our work at that of Katz et al.
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efficient zero-knowledge proofs. In this section, we begin by briefly recalling some of these techniques, and
then discuss our main ideas.

MPC-in-the-Head. MPC-in-the-head [IKOS07] is a technique used for designing three-round, public-coin,
zero-knowledge proofs of knowledge using MPC protocols (also called Σ-protocols). At a high level, the
prover simulates an n-party MPC protocol Π virtually on the relation circuit R(x, ·), that has the statement
hard-wired in it. The input to this MPC is the witness w (which is shared among the virtual parties)
corresponding to the statement x, such that R(x,w) = 1. In the first round of the protocol, the prover
commits to the views of all the parties in this MPC execution. In the second round, an honest verifier then
selects a random subset of the views to be opened. In the third round, the prover opens to the views of
the selected players. The verifier then verifies that those views are consistent with each other and with an
honest execution, where the output of Π is 1.

The computation and communication complexity of such a protocol depends on the complexity of the
underlying MPC protocol which depends on the size of the relation circuit |R(x, ·)|. Since this technique
yields a public-coin honest verifier zero-knowledge (HVZK) protocol, it can be made non-interactive, in the
Random Oracle Model via the Fiat-Shamir transformation [FS87]. This approach was first made practical
using MPC protocols with very few parties — e.g. in ZKBoo [GMO16] and ZKB++ [CDG+17] — which
require many parallel iterations to achieve negligible soundness error.

Set Membership using MPC-in-the-head. A näıve use of this approach for set membership will result
in a protocol where the prover simulates an MPC execution for the following circuit, that takes witness w
as input:

(R(x1, w) = 1) ∨ . . . ∨ (R(x`, w) = 1)

Here x1, . . . , x` are elements of the publicly known set and R is the relation circuit. Complexity of the
resulting Σ-protocol in this case is dependent on `× |R(·, ·)|, which is highly inefficient.

It would be far better to treat both w and x as part of the witness, so R need only be executed once.
However, in this case, the chosen value of x remains hidden. To guarantee that x used in the proof is indeed
valid, we can explicitly check its membership using the underlying MPC protocol. In other words, consider
the following circuit that takes an element x and a witness w as input:

(R(x,w) = 1) ∧ (x = x1 ∨ . . . ∨ x = x`)

It is easy to see that the complexity of an MPC-in-the-head protocol for this relation is dependent on
|R(·, ·)| + `|x|. While this is a significant asymptotic improvement, it still has a linear dependence on the
size of the set. As discussed in the introduction, it would be ideal to design a protocol where the proof size
is logarithmic in the size of the set.

Logarithmic Dependence on Size of the Set. Linear dependence on the size of the set in the previous
approach is a result of the explicit membership check done inside the MPC protocol. A simple idea to
optimize this check is to use known techniques such as using a Merkle hash to succinctly accumulate all the
members of the set and using a logarithmic sized Merkle proof to prove membership. While the size of such
a membership proof is asymptotically logarithmic in the size of the set, the computation and communication
is concretely very high. This is because verifying a Merkle proof inside the MPC requires expressing the
hash function as a circuit, adding a significant number of gates to the simulated MPC. This approach can
easily dominate the communication cost of the overall protocol. For example, Katz et al. [KKW18] use this
approach for constructing ring signatures; the circuitry to verify the Merkle proof in their construction is
bigger than the actual relation circuit R(·, ·) by a multiplicative factor of log(`).

Our Idea. To reduce the practical cost of this Merkle proof, we aim to move the Merkle proof verification
outside the MPC protocol. In other words, use MPC-in-the-head approach to only prove that ∃x,w, such
that R(x,w) = 1 and give a separate (cleartext) Merkle proof to prove that x ∈ {x1, . . . , x`}. This would
accomplish two goals: First, the communication complexity of the resulting proof would no longer rely on
the circuit representation of the hash function. Second, verifying the Merkle proof could be done directly on
hardware, making both prover time and verification time faster.

However, in order to securely implement this idea, we need to overcome the following obstacles:
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• Soundness: We need to tie the two proofs together to make sure that the same x is used in the Merkle
proof as well as in the MPC-in-the-head protocol.

• Zero-Knowledge: Moreover, we need to make sure that the Merkle Proof does not leak x.

To overcome the first issue, recall that the inputs to the MPC in an MPC-in-the-head protocol are (secret)
shared amongst the parties. The prover must convince the verifier that the shares of input x correspond to a
valid sharing of one of the elements in the set {x1, . . . , x`}. Therefore, instead of simply accumulating the set
{x1, . . . , x`} using a Merkle tree (or any accumulator), the prover first computes shares of these set elements,
accumulates these shares and commits to the accumulated value. It can then use the Merkle proof to show
that the shares of x assigned to the parties whose views were opened in the MPC-in-the-head protocol are
members of the accumulated values. While this idea helps create a dependency between the shares used
inside the MPC and the Merkle proof, it does not guarantee that the shares committed inside the Merkle
tree were indeed honestly computed shares of the set {x1, . . . , x`}.

We observe that the privacy-free nature of {x1, . . . , x`} can be leveraged to use the well-known cut-and-
choose technique to ensure that the prover computes the shares honestly. In more detail, the prover computes
multiple copies of the Merkle tree. The verifier then chooses to open a subset of these. Because the verifier
already knows x1, . . . , x`, they can check whether or not the x′is were honestly secret shared and committed.
The remaining task is to selectively assign shares of the correct x to the parties without revealing its index.

This can be solved by allowing the prover to accumulate the shares in a random order. In particular, the
prover selects an independent random permutation for the secret sharings of x1, . . . , x` for each iteration.
This permutation is revealed during cut-and-choose, so the verifier can check that the shares are still honest.
When the simulated parties now use shares from the actual x, the random permutation prevents the verifier
from detecting the value to which the shares correspond.

Adapting To Concrete MPC-in-the-head Protocols. For the sake of simplicity, we kept the above
discussion oblivious to the exact specifications of the MPC-in-the-head protocol and its underlying MPC
protocol (e.g. privacy threshold, number of “input-bearing” parties, etc. . . ). However, the particularities of
concrete MPC-in-the-head protocols may impact the efficiency of the above techniques. As such, we design
ways to ensure that our techniques are flexible and widely applicable.

In a generic MPC-in-the-head protocol, the prover shares the witness among the input-bearing parties
using an additive sharing. The soundness argument of the resulting protocol relies on the verifier’s ability
to identify a cheating computational party, but is agnostic to the behavior of the input-bearing parties.
Therefore, the number of input-bearing parties relative to the protocols privacy threshold is irrelevant. In
our case, however, the verifier must check that the input parties act honestly with respect to their inputs.
Thus, the soundness error also depends on the probability with which the verifier catches a misbehaving
input-bearing party. Using additive secret sharing in this case results in very poor soundness, as a single
malicious input party can effectively change the MPC inputs. To improve soundness, we secret share the
statement x amongst the input-bearing parties using a threshold secret sharing, where the threshold is the
same as the privacy threshold of the underlying MPC.4 This allows the soundness error of our techniques to
only depend on the soundness error of the underlying MPC-in-the-head protocol and on the failure probability
of the cut-and-choose step.

Concrete MPC-in-the-head protocols often require different numbers of parallel repetition to amplify
soundness. The number of repetitions, which we denote τ , can vary from 1 to a linear function of the
security parameter. The most direct—if wasteful—way to extend the above approach for repetitions would
be to run the above set membership idea separately for each of the τ repetitions. We instead propose a more
flexible approach: the prover can independently decide the value of τ and the number of Merkle trees (say
M) that it must generated for set membership, based on the soundness required in each phase. In order to
minimize the failure probability of cut and choose, the verifier then randomly asks to open M/2 Merkle trees
(to check for correctness). The prover can then run a separate online phase using each of the remaining M/2

4We however, note that this optimization can only be applied when the number of input-bearing parties is higher than the
privacy threshold of the underlying MPC. While this assumption is not universal, it is extremely common among proposed
MPC-in-the-head protocols.

5



unopened Merkle Trees. However, if M/2 > τ this approach leads to unnecessary repititions in the online
phase. To avoid this, our idea is to use multiple Merkle trees for a single online phase execution and check
that all selected values are the same in each Merkle Tree, within the MPC circuit of the underlying protocol.
On the other extreme, if the number of unopened preprocessings remaining after the cut-and-choose phase
is τ , a single preprocessing can be used for each MPC emulation.

Communication Complexity. Using some simple additional optimizations such as deriving the random-
ness used for secret sharing and for accumulation from a small seed using PRGs and using compressive
commitments, the above techniques will yield a proof size5 of O(n|x| + log(`)) + CCΣ(R), where n are the
number of parties used in the emulation of the MPC protocol and CCΣ(R) is the communication complexity
of the underlying MPC-in-the-head protocol when used to prove the relation circuit R. We discuss this in
detail in Section 3. Finally, we note that while we described the high level idea using Merkle trees, we note
that any accumulator can be used.

Round Complexity. The above approach results in a 5 round protocol, where the first two-rounds are used
for cut-and-choose (henceforth, we will refer to the generation each set of shares for the cut-and-choose as a
pre-processing) and the next three rounds are for executing the MPC-in-the-head protocol. However, note
that this is still a public-coin proof and can be made non-interactive in the random oracle model using the
Fiat-Shamir transform. We also note that in many circumstances it would be possible to use our approach to
construct a three-round protocol in the plain model with slightly higher communication costs. We elaborate
more on this in the technical sections.

Implementation and Applications. We integrate our membership proof techniques into Reverie, an
open source, Rust implementation of Katz et al. [KKW18]. Our implementation supports both boolean and
arithmetic circuits. We use this implementation to evaluate the concrete efficiency of our techniques in two
contexts: post-quantum ring signatures and post-quantum RingCT.

We implement post-quantum ring-signatures based on the post-quantum signatures of [CDG+17]. These
signatures use only symmetric key primitives to achieve post-quantum security. In short, the signer’s public
key is PRF(K, 0) where K is the signer’s private key. Signatures are non-interactive proofs that the signer
knows K that are tightly bound to the signed message m. The size of our signatures can be seen in Table 1.
For a signer set of 213, our signatures are only 60 KB, 8 times smaller than [KKW18] and 5 times smaller
than [ESLL19].

Additionally, we present a simple construction of post-quantum RingCT [Noe15, NMRL16, SALY17,
YSL+20, TSS+18, TKS+19, EZS+19, TSSK20] based on symmetric key primitives. Our technique replaces
the ring signatures, balance proof, and range proofs common in prior approaches with a single zero-knowledge
proof that provides assurances of all the necessary properties at once. We note that this approach is only
efficient when the prover has access to an efficient set membership proof that can easily integrate into a
larger proof. The resulting transaction sizes are competitive with prior work, while removing the need for
lattice-based assumptions. Specifically, our construction is more efficient when there are few inputs and
outputs, but the spender wants a large anonymity set.

1.3 Comparison to Prior Work

Comparison to Katz et al. [KKW18]. Katz et al. [KKW18] design an efficient MPC-in-the-head
NIZK protocol and use it to build ring signatures. While [KKW18] made significant contributions to the
state of MPC-in-the-head NIZKs, their work does not substantially contribute to the state-of-the-art in set
membership (as this was not their goal). Their signatures are direct descendants of the NIZK-based signatures
that Chase et al. [CDG+17] constructed from symmetric-key primitives. To avoid linear dependence on the
ring size, [KKW18] embed a Merkle tree inside the relation circuit, a technique established in prior work
(eg. [ST99]). This non-black box use of the hash function produces a massive subcircuit that dwarfs the
size of the base signature. Our approach is black box in the hash function, improving inefficiency. Another

5Here we are ignoring linear multiplicative factor in the security parameter for simplicity. A more detailed calculation of our
complexity appears in Section 3
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benefit of our work is that we are able to us standard hash functions with large multiplicative complexity
(eg. SHA256) instead of a poorly analyzed hash function with low multiplicative complexity (Davies-Meyer
on LowMC).

Set Membership Proofs. Camenisch et al. [CCs08] achieve set membership by having the verifier sign the
set such that the prover need only show that it knows a signature over the element. More recently Benarroch
et al. [BCFK19] build SNARKs for set membership and set non-membership proofs. To our knowledge,
there has been no work looking at optimizing set membership proofs in the context of MPC-in-the-head
techniques. Set membership is also a subset of disjunctive statements, for which there has recently been
significant work on zero-knowledge [HK20, BMRS20, GGHAK21]. The key improvement of these works is
that the communication complexity of the resulting proof system is proportional to the size of (the relation
circuit corresponding to) the largest clause in the disjunction, but the proof computation and verification
times in these systems still depend on the size of all the clauses.

Ring Signatures and RingCT. We focus on applying our set membership techniques to post-quantum
ring signatures and post-quantum RingCT. Ring Signatures were initially proposed by Rivest, Shamir and
Tauman [RST01] and have been the subject of a significant body of research [CWLY06, BK10, BCC+15].
More recently, post-quantum ring signatures have been proposed from plausibly post-quantum assumptions
like symmetric key primitives [DRS18, KKW18] and lattice-based assumptions [LLNW16, TSS+18, ESLL19,
EZS+19, BCOS20, LNS21]. Post-quantum RingCT has also been the focus of recent work [TSS+18, TKS+19,
EZS+19, TSSK20] as enthusiasm for post-quantum cryptography grows. We give a more in-depth comparison
of our techniques in Section 6.

Generic Zero Knowledge. There has been a tremendous amount of recent work on concretely effi-
cient zero-knowledge proof systems, e.g. [JKO13, GGPR13, Gro16, GMO16, CDG+17, KKW18, BBB+18,
AHIV17, BCR+19, MBKM19, COS19, XZZ+19, Set20]. Broadly, these constructions can be classified
either as (1) systems where the proof is succinct i.e., sublinear in the length of the witness (e.g. ZK-
SNARKs [PHGR13, GGPR13, Gro16]) and (2) systems where the proof size is a function of the size of
the relation circuit (e.g. [JKO13, GMO16, CDG+17, KKW18, AHIV17]). Succinct proof systems generally
suffer from prohibitively large computation times. On the other hand, concretely efficient non-succinct proof
systems have communication and computation complexity that are both dependent on the size of the rela-
tion circuit. This is prohibitive for set membership proofs, as membership is a heavy-weight primitive when
explicitly represented as a circuit.

2 MPC-in-the-Head Based Σ-Protocols

In this section, we recall the template of an MPC-in-the-Head Σ-protocol [IKOS07] and establish some
notation that will be useful in future sections.

Let Π be an n-party MPC protocol. Let P be the set of parties. Let Vi be the view of a party Pi ∈ P in
Π. Let Pinp ⊆ P be the set of input-bearing parties in this MPC. Let C be the set of all admissible corrupt
party sets. Let L be an NP-language and R be the corresponding NP-relation. An MPC-in-the-head style
zero-knowledge protocol, where both parties get a statement x ∈ L and the prover gets a witness w, s.t.
R(x,w) = 1 proceeds as follows:

• Round 1: The prover additively secret shares w amongst the virtual parties in Pinp. Let {wi}i∈Pinp

be this set of shares. It then emulates an execution of Π in its head for the following function:
F({wi}i∈Pinp) = R(x,

⊕
i∈Pinp

wi). Let {Vi}i∈[n] be the views of the respective parties in this execution.

The prover computes Com = Commit({Vi}i∈[n]) and sends Com to the verifier. Depending on the
efficiency requirements, Commit here could be any generic or a specific tailor-made commitment scheme.

• Round 2: The verifier randomly selects a set of parties from the set of all admissible corrupt party
sets, i.e., I ∈ C and sends it to the prover.

• Round 3: The prover sends an opening Open to the verifier, that would enable the verifier to only
obtain the {Vi}i∈I .

7



• Verify: The verifier computes {Vi}i∈I using Com and Open. It then checks if these views are consistent
amongst each other. If the checks succeed, the verifier outputs 1, else it outputs 0.

Zero-Knowledge. In order to argue the zero-knowledge property, we must show existence of a PPT
simulator that outputs a transcript (without knowledge of the witness w) that is indistinguishable from the
transcript obtained in a real protocol. The simulator works by sampling a random I ∈ C. Assuming this set
to be the set of corrupt parties, It then uses the simulator of the underlying MPC protocol to simulate views
{Vi}i∈I for this set of parties using random inputs {wi}i∈I∩Pinp . It sets Vi = 0 for the remaining parties
i /∈ I. It then proceeds to commit to all these views and compute an opening that only enables recovery of
{Vi}i∈I . Indistinguishability of this simulated transcript from the real transcript follows from privacy of the
underlying MPC protocol and from the hiding property of the commitment scheme, that ensures that the
views of the parties i /∈ I are not leaked.

Soundness. Soundness relies heavily on the corruption threshold and the robustness guarantees of the
underlying MPC protocol. Informally speaking, robustness puts an upper-bound on the number of parties
that are allowed to act maliciously, such that they are unable to impact the output of the protocol. For
instance, a semi-honest protocol may or may not be robust against any number of players, but a maliciously
secure protocol is bound to be robust against at least t-parties, where t is the number of corrupt parties
against which it also guarantees privacy. Therefore, depending on the security of the underlying MPC
protocol Π, a single iteration of the above protocol may or may not yield negligible soundness error. In those
cases, the above protocol may need to be repeated to amplify soundness. The verifier in that case accepts
only if the outcome of all repetitions is 1. We refer the reader to [IKOS07] for a more detailed proof and
discussion.

3 Set Membership using MPC-in-the-head

In this section, we describe our generic compiler that transforms any MPC-in-the-head style Σ-protocol into
a five round public coin protocol for set membership with only an additive overhead in the communication
complexity that is logarithmic in the size of the set. As discussed in the introduction, we first present an
optimized version for the case where the number of input parties in the underlying MPC protocol is more
than its privacy threshold and later discuss how it can be extended for any MPC-in-the-head protocol.

Notation and Building Blocks. Let κ be a tunable security parameter. We use ‖ to denote concatenation.
We will use φ to denote a permutation. We will denote the number of parallel repetitions of the preprocessing
(i.e., generation of shares of the set) by M . Let {x1, . . . , x`} be the publically known set and R be an NP-
relation. The prover wants to convince the verifier that there exists an element x ∈ {x1, . . . , x`} and a
witness w such that R(x,w) = 1. Let xα denote the active element in the set, i.e., the element for which
the prover has a corresponding witness.

Our protocol uses the following primitives: (1) Pseudorandom generator PRG : {0, 1}κ → {0, 1}poly(κ)

(used implicitly to sample random values), (2) An Accumulator (Acc.Gen,Acc.Eval,Acc.Proof,Acc.Verify) (see
Appendix A.3), (3) A hiding and binding non-interactive commitment scheme Com(m; r), (4) a threshold
secret sharing scheme (Share(m,n, t; r),Recon({si}i∈[n], n, t)) [Sha79], and (5) An MPC-in-the-head based
Σ-protocol (see Section 2)

For simplicity, we assume that all parties in the MPC protocol used in Σ are input-bearing parties.
Looking ahead, it will be obvious from context, that this protocol can be trivially extended to accommodate
scenarios where only a subset of the parties might be input-bearing.

Overview. As discussed in the technical overview, the proof proceeds in two phases: (1) demonstrating
correctness of the witness independent preprocessing of the public set {x1, . . . , x`} using cut-and-choose,
and (2) demonstrating that the MPC-in-the-head protocol has been executed honestly with respect to the
preprocessing. For succinctness, as much information as possible is generated by expanding small seeds
using a PRG. The protocol is split over two figures; first, the prover and verifier participate in an interactive
protocol described in Figure 1, and then the verifier runs the algorithm from Figure 2 to verify validity of
the transcript obtained from Figure 1.
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Set Membership Proof using MPC-in-the-Head

Public Inputs: Statements x1, . . . , x`, Accumulator Parameters pp
Prover Inputs: Active Statement xα, Witness w
Protocol Parameters: Number of Preprocessings M , Number of MPC Parties n, MPC Corruption Threshold t, Number of
Online Phases τ , Numer of Preprocessings Consumed by Each Online Phase η

• Round 1: For each j ∈ [M ], the prover computes the following:

– Share a Random Mask Among the Players:

1. Sample a random mask maskj
$←− F.

2. For each k ∈ [`], compute ∆j,k = xk −maskj ∈ F.

3. Share the mask: r
(share)
j

$←− {0, 1}κ; [maskj ]1, . . . , [maskj ]n ← Share(maskj , n, t; r
(share)
j ).

– Committing to Shares and Deltas:

1. For each i ∈ [n], commit to the share: r
(mask-com)
j,i

$←− {0, 1}κ; com
(mask)
j,i = Com([maskj ]i; r

(mask-com)
j,i ).

2. Sample r
(∆-com)
j

$←− {0, 1}κ and compute {r(∆-com)
j,k }k∈[`] ← PRG(r

(∆-com)
j ).

3. For each k ∈ [`] commit to the delta: com
(∆)
j,k = Com(∆j,k; r

(∆-com)
j,k ).

– Permuting and Accumulating Delta Commitments:

1. Randomly sample a permutation φj from the space of all permutations of size `.

2. Accumulate permuted commitments: (auxj , accj) = Acc.Eval(pp, com
(∆)
j,φj(1)

, . . . , com
(∆)
j,φj(`)

).

3. Let Rj = (com
(mask)
j,1 , . . . , com

(mask)
j,n , accj)

Finally, send (R1, . . . ,RM ) to the verifier.

• Round 2: The verifier randomly partitions [M ] into (τ + 1) subsets: C1, . . . , Cτ and S such that |Ci| = η for i ∈ [τ ] and
|S| = M − τη.

• Round 3: The prover (1) opens all repetitions in S, and (2) runs the MPC for the remaining repetitions:

1. For each j ∈ S, the prover sends ({r(mask-com)
j,i }i∈[n], r

(∆-com)
j , r

(share)
j ,maskj , φj) to the verifier.

2. For each i ∈ [τ ]:

(a) Additively secret share w: pick random [w]1, . . . , [w]n st. w =
∑
m∈[n][w]m

(b) Additively secret share xα: pick random [xα]1, . . . , [xα]n st. xα =
∑
m∈[n][xα]m

(c) Let {∆j,α}j∈Ci be (public) constants in the MPC protocol, each party Pm is assigned input
({[maskj ]m}j∈Ci , [xα]m, [w]m). The prover computes the ‘MPC-in-the-head’ for the following relation:

F
(
{{[maskj ]m}j∈Ci , [xα]m, [w]m}m∈[n]

)
:=

R
(∑

m∈[n][xα]m,
∑
m∈[n][w]m

)
∧ ∀j ∈ Ci : Recon

(
{[maskj ]m}m∈[n], n, t

)
+ ∆j,α =

∑
m∈[n][xα]m

Let Vi,m be the resulting view of party Pm.

(d) For each m ∈ [n], commit to each view: r
(view-com)
i,m

$←− {0, 1}κ; com
(view)
i,m = Com(Vi,m; r

(view-com)
i,m )

(e) For j ∈ Ci compute the membership proof for ∆j,α: πj ← Acc.Proof(pp, accj , com
(∆)
j,φj(α)

, auxj).

(f) Send {(πj ,∆j,α, r
(∆-com)
j,α )}j∈Ci , and {com(view)

i,m }m∈[n] to the verifier.

• Round 4: For each i ∈ [τ ], the verifier picks a random t-sized subset of the parties Ii ⊆t [n].

• Round 5: The prover opens the parties specified in I1, . . . , Iτ . For each i ∈ [τ ]:

1. Send {Vi,m, r
(view-com)
i,m , {r(mask-com)

j,m }j∈Ci}m∈Ii to the verifier.

Figure 1: A general compiler to obtain an efficient set membership proof from any MPC-in-the-head based
Σ-protocol.
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Verification for the Set Membership Proof

The verifier proceeds as follows:

• Verifying Correctness of Opened Preprocessing: For each j ∈ S, compute the following:

1. Receive ({r(mask-com)
j,i }i∈[n], r

(∆-com)
j , r

(share)
j ,maskj , φj) from the prover.

2. Compute {r(∆-com)
j,k }k∈[`] ← PRG(r

(∆-com)
j ).

3. Compute [maskj ]1, . . . , [maskj ]n ← Share(maskj , n, t; r
(share)
j ).

4. For each i ∈ [n], recompute the commitments to the shares com
(mask)
j,i

′
= Com([maskj ]i; r

(mask-com)
j,i ).

5. For each k ∈ [`], recompute the deltas ∆j,k = xk −maskj ; com
(∆)
j,k

′
= Com(∆j,k; r

(∆-com)
j,k )

6. Recompute the accumulator ( , acc′j) = Acc.Eval(pp, com
(∆)

j,φj(1)

′
, . . . , com

(∆)

j,φj(`)

′
).

7. Perform the following checks: ∀i ∈ [n], com
(mask)
j,i

?
= com

(mask)
j,i ; ∀k ∈ [`], com

(∆)
j,k

?
= com

(∆)
j,k

′
; accj

?
= acc′j .

• Verify Consistency of MPC-in-the-head Execution and Delta Memberships: For each i ∈ [τ ]:

1. Receive ({(πj ,∆j , r
(∆-com)
j )}j∈Ci , {com

(view)
i,m }m∈[n], {Vi,m, r(view-com)

i,m , {r(mask-com)
j,m }j∈Ci}m∈Ii) from the prover.

2. Recompute commitment to provided delta: com
(∆)
j = Com(∆j ; r

(∆-com)
j )

3. Recompute commitments to the opened views, for m ∈ Ii: com
(view)
i,m

′
= Com(Vi,m; r

(view-com)
i,m )

4. Verify commitments to player views: Check, for m ∈ Ii: com
(view)
i,m

′ ?
= com

(view)
i,m

5. Verify the accumulator inclusion proofs: Check ∀j ∈ Ci : Acc.Verify(pp, accj , com
(∆)
j , πj)

?
= 1.

6. Verify commitments to opened player’s masks: Check, for m ∈ Ii, j ∈ Ci: com
(mask)
j,m =

Com([maskj ]m; r
(mask-com)
j,m ), where [maskj ]m is part of Vi,m.

7. Check consistency of the opened MPC views against the function:

F
(
{{[maskj ]m}j∈Ci , [xα]m, [w]m}m∈[n]

)
:=

R
(∑

m∈[n][xα]m,
∑
m∈[n][w]m

)
∧ ∀j ∈ Ci : Recon

(
{[maskj ]m}m∈[n], n, t

)
+ ∆j =

∑
m∈[n][xα]m

Parameterized by the constants {∆j}j∈Ci .

If all the above checks succeed, the verifier outputs 1, else it outputs 0.

Figure 2: Verification algorithm for our Set Membership Proof from Figure 1.

For each of the M parallel iterations of the preprocessing step, the prover begins by sampling a random
mask. It then uses a threshold secret sharing scheme to compute shares of this mask using the privacy
threshold t of the underlying MPC protocol. It also computes the ∆s between the random mask and every
element in the set, where we denote the ∆ corresponding to the kth element in the jth iteration by ∆j,k.
The prover then computes commitments to these n shares of the random mask (one for each party) and the
` ∆ values (one for each element in the set). It then randomly permutes the commitments to the ` ∆ values
and accumulates these permuted commitments using an accumulator. Finally, it computes a hash of the
accumulated value and the n commitments to the respective seeds assigned to each party. This hash value
is sent over to the verifier.

The verifier then partitions the M preprocessings into two types: (1) a subset S that will be opened and
checked for correctness, and (2) preprocessings that will be used to execute the MPC-in-the-head protocol.
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The verifier further subdivides this second type of preprocessing into τ equally sized subsets C1, . . . , Cτ , each
of which will be used to execute a single MPC-in-the-head instance. Note that value of τ comes directly from
the number of repetitions required by the underlying MPC-in-the-head protocol, and is not a newly variable
introduced by our techniques. For example, if the MPC-in-the-head protocol does not require repetition,
then the prover can simply set τ = 1.

In the third round, the prover responds with all the randomness used to compute the preprocessings in S.
Then the prover runs τ parallel copies of the the underlying MPC-in-the-head protocol using the remaining
“unopened” preprocessing. In particular, for each copy, the prover computes random additive shares for the
witness w and a random additive secret sharing for the statements xα. the witness shares and random mask
shares (computed in the preprocessing phase) form the inputs of the parties. The prover computes the views
of all the virtual parties in the underlying MPC for the following functionality:

F
(
{{[maskj ]m}j∈Ci , [xα]m, [w]m}m∈[n]

)
:=

R

 ∑
m∈[n]

[xα]m,
∑
m∈[n]

[w]m

 ∧ ∀j ∈ Ci : Recon
(
{[maskj ]m}m∈[n], n, t

)
+ ∆j,α =

∑
m∈[n]

[xα]m

This functionality contains the following parts:

(1) reconstructs the additive secret sharings of the active statement xα and witness w supplied as input;

(2) executes the relation circuit R(xα, w); and

(3) ensures that statement encoded in each preprocessing is the same and matches xα.

We assume w.l.o.g., that the reconstruction algorithm Recon outputs ⊥ if all the n input shares are not
consistent. The prover commits to these resulting views exactly as it would in the underlying protocol.

Finally, the verifier chooses a subset of the parties for each execution of the MPC. The prover responds
by sending the views of those parties (which include the inputs assigned to those parties). The prover
additionally sends the ∆ value corresponding to the active element in the unopened preprocessing and the
randomness used to commit to it. It then gives a proof of inclusion (using the accumulator) to prove that
this commitment was part of the accumulated values.

Completeness of the protocol follows trivially from the correctness of the underlying primitives used in
this protocol. We argue zero-knowledge and soundness of this protocol in Appendix B.

Remark. Since the above approach requires us to secret share the mask amongst all the input-bearing
parties using the privacy threshold of the underlying MPC protocol, this approach only works if the number
of input-bearing parties is more than the privacy threshold in the underlying MPC protocol. For all other
protocols, we can simply use an additive secret sharing scheme to secret share the masks. However, as
discussed in the introduction, the soundness error of the resulting protocol in this case will depend both on
the soundness error of the underlying MPC-in-the-head protocol and on the number of parties.

Complexity Analysis. Let CCΣ(F) be the communication complexity of a single run underlying MPC-in-
the-head protocol when used to give a proof for the relation circuit F . Then the communication complexity
of a single run of the protocol described in Figure 1 is: M(n+1)κ+(nκ+3κ+ |x|)(M−τη)+τηκ(log `+2)+
CCΣ(F) = O(Mn(κ+ |x|) +Mκ log `) + CCΣ(F) The computation complexity of this protocol is O(Mn(κ+
|x|) + (κ+ |x|)M`) + CCΣ(F), where CCΣ(F) is the computation complexity of a single run of the underlying
MPC-in-the-head protocol when used to give a proof for the relation circuit F .

Set Membership for Multiple Values. It is easy to see that the above ideas can be trivially extended
to obtain a set membership proof for multiple values (say k values), i.e., where the prover would want to
prove that ∃x′1, . . . , x′k, w such that {x′1, . . . , x′k} ⊂ {x1, . . . , xn} and R(x′1, . . . , x

′
k, w) = 1. This can be done

using the above protocol with the only modification that the underlying MPC-in-the-head protocol will be
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used to prove the relation

F
(
{{[maskj ]m}j∈Ci , [x1]m, . . . , [xk]m, [w]m}m∈[n]

)
:=

R

 ∑
m∈[n]

[x1]m, . . . ,
∑
m∈[n]

[xk]m,
∑
m∈[n]

[w]m

∧∀j ∈ Ci and β ∈ [k] : Recon
(
{[maskj ]m}m∈[n], n, t

)
+∆j,β =

∑
m∈[n]

[xβ ]m

where ∆j,β are public constants for β ∈ [k] and the prover will be required to give a proof of inclusion in the
accumulator for each ∆j,β value. Looking ahead, this will be useful in our construction of RingCT.

3.1 Optimizations.

We now discuss some optimizations to improve the communication of the above protocol.

Secret Sharing Based Protocols: In the above protocol we use the underlying MPC protocol to ad-
ditionally run the reconstruction algorithm of the threshold secret sharing scheme in order to reconstruct
shares of the masks. However, if the underlying MPC protocol itself is based on a threshold secret sharing
scheme (e.g. [BH05, GMW87]), then this explicit reconstruction can be avoided. This is because most such
protocols maintain an invariant that all the parties hold secret shares of all the intermediate wire values
in the circuit that they are evaluating. As a result, we can simply have the parties compute the following
function inside the MPC, assuming that they already have a secret sharing of the mask.

F
(
{maskj}j∈Ci , [xα]m, [w]m}m∈[n]

)
:= R

 ∑
m∈[n]

[xα]m,
∑
m∈[n]

[w]m

∧∀j ∈ Ci : maskj+∆j,α =
∑
m∈[n]

[xα]m

Round Complexity: Recall that our five-round protocol is a public-coin protocol, since the verifier is only
required to send random values. Such a protocol can be easily made non-interactive in the random oracle
model using the Fiat-Shamir transform in both the classical setting [FS87] and the quantum setting [LZ19,
DFMS19].

Additionally, notice that in the case where η = 1 (i.e. |Ci| = 1),6 the above protocol can also be slightly
modified to obtain a three-round protocol in the plain model. This can be done by requiring the prover
to compute the first round messages in the underlying MPC-in-the-head protocol for all M repetitions of
the pre-processing phase and committing to them in the first round itself. In the second round, the verifier
chooses a random S ⊂ [M ]. In the third round, the prover only send the third round messages of the
MPC-in-the-head protocol for the executions not in S. Put another way, the prover pessimistically runs
the full MPC-in-the-head protocol for each preprocessing, and reveals only the preprocessing for S and only
the MPC-in-the-head protocol for the remainder. If we use a compressing commitment to commit to all
the first round messages, this modification will not increase the communication complexity by a lot, but it
does significantly increase the computation time, since the prover needs to execute the first round of the
underlying MPC-in-the-head protocol M times.

Using Tree based PRGs: Instead of sampling an independent random seed for each repetition of the pre-
processing phase, we could simply sample a “master seed” and derive all the other seeds using a Tree-based
PRG. When the verifier asks to open all but one pre-processings, the prover can simply send a punctured
master seed (which is only logarithmic in the number of the leaves in the tree) that allows the verifier to
derive all but one seed. However, if one of the above optimizations are used, where only a small subset of the
pre-processings are opened, we will have to puncture the seed on multiple indices (which increases the size
of the punctured seed). In that case, one might have to carefully decide if it’s still worth using a Tree-based
PRG or if sampling an independent seed for each iteration is better.

6As we will see in Section 4, this case matches the KKW MPC-in-the-head protocol, and is thus of practical importance.
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Similarly, if the underlying MPC protocol is in the dishonest majority setting, we can again use a Tree-
based PRG to derive the seeds used to commit to the shares of parties in each pre-proprocessing. When the
verifier asks to open the views of all but one party, the prover can simply send a punctured seed.

Finally, we note that all of the above optimization suggestions only try to cover some broad categories
of MPC-in-the-head protocols. Given the wide variety of MPC-in-the-head protocols, it is impossible to
suggest a general technique that gives the best efficiency with all protocols. Indeed, if one is willing to use
the underlying MPC-in-the-head protocol in a non-black box way, it might be possible to further customize
some of these optimizations. In the next section, we explore some of these choices in more detail when our
compiler is used in conjunction with the protocol of Katz et al. [KKW18].

4 Compiling Non-Standard MPC-in-the-head Protocols

The compiler described in the previous section works seamlessly with any MPC-in-the-head based Σ protocol
that follows the template presented in Section 2. However, some recent protocols in this regime slightly
deviate from this template in order to get better efficiency. In this section, we demonstrate the versatility
of our main ideas by showing how they can extend to two such protocols. Additionally, we implement our
compiler as applied to the second example.

4.1 Integrating Into Ligero [AHIV17]

Ligero is a MPC-in-the-head protocol with sub-linear communication complexity that leverages a highly
non-traditional MPC protocol. In the first phase, a special “sender” party evaluates the relation circuit
using the witness in the clear, and computes

√
|C| packed secret sharings of the values induced on all the

intermediate wires of this relation circuit, where |C| is the size of the circuit and each sharing holds a block
of
√
|C| values. These sharings are distributed to n virtual servers. In the second phase, the servers obtain

a public random string r sampled via a coin flipping oracle, and perform only local computation. Finally,
each server sends a single message to a “receiver.”

In the 5 round MPC-in-the-head protocol based on this MPC protocol, the verifier supplies the value r
and chooses to see a subset of the views of the servers and the verifier, but is not allowed to see the sender’s
view, as this would trivially violate zero-knowledge. At a high level, the first phase of the underlying MPC
protocol transforms the circuit into a set of polynomial encodings. The verifier then uses the second phase
of the MPC to check that these encodings satisfy low degree constraints derived from the structure of the
relation circuit.

The Ligero protocol does not require repetition, as a single iteration of the protocol already has negligible
soundness error. Thus, when instantiating our set membership techniques with Ligero, we set τ=1 and
η = M/2. Because the sender party’s view cannot be opened, the inputs for xα must be provided to the
servers instead and be appropriately encoded into packed secret shares. The remaining protocol can be run
without further modification.

4.2 Integrating Into Katz et al. [KKW18]

Katz et al. [KKW18] presented an efficient zero-knowledge protocol using MPC-in-the-head technique. The
goal of their approach is to increase the number of virtual players participating in the MPC protocol (and
thereby reduce the number of parallel repetitions required for soundness) without increasing the size of
resulting proofs. To accomplish this, they design a special-purpose MPC protocol consisting of two phases:
(1) a circuit dependent pre-processing phase that is independent of the parties’ inputs to the MPC and (2) an
online phase that depends on the output of the pre-processing phase and the parties’ inputs. Using several
clever optimizations, the size of the resulting proof is (mostly) independent of the number of virtual players.

A straightforward way to integrate our set membership proof techniques into a Katz et al. proof would be
to use their protocol in a black-box way inside our compiler (Figure 1), computing η based on the value of τ
used in Katz et al. However, this ignores the shared structure of our compiler and Katz et al.’s protocol: both
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have an input-independent pre-processing phase, followed by an evaluation phase over secret inputs. A more
natural approach would be to run our set membership in parallel with Katz et al.’s protocol. Specifically,
during the pre-processing phase, the prover generates both correlated randomness and secret shares of the
set (as in the compiler) and sets η = 1. The correctness of both can be verified using a cut-and-choose
approach. During the online phase, the virtual parties run the MPC protocol in Katz et al. leveraging the
correlated randomness, using the secret shares of the secret element directly.

The benefits of this approach is that there is no need to add extra rounds to the protocol.7 Moreover,
since their MPC protocol works in the dishonest majority, as discussed in the previous section, instead
of sampling a different seed for every party, we can use a tree-based PRG to derive randomness for the
parties to further reduce the communication complexity. This protocol is only based on symmetric key
primitives and is therefore post-quantum secure. The total communication complexity of this protocol is
O(κ log n+ |R|+ |x|+ |w|+ κ log `).

Implementing Set Membership Proofs for Katz et al. We implemented this optimized integration
of set membership techniques on top of Reverie, the only public general purpose implementation of the
Katz et al. protocol. The entire code base is written in Rust and supports parallel computation, proof
streaming, and bit slicing, and is freely available under the GPLv3.8 Throughout our evaluation, we use this
implementation.

Our implementation automatically applies Fiat-Shamir to the three-round variant of [KKW18]. Because
the input from the set membership proof needs to be treated differently than standard input, we separate
the input into two tapes. Circuits are specified in the Bristol format; whenever the prover encounters an
INPUT gate, it reads from the first (witness) tape and whenever it encounters a BRANCH gate it reads from
the (second) membership proof tape.

The code base instantiates the cryptographic primitives with ChaCha12[Ber08] and Blake3[OANWO20] as
follows: The PRG is implemented with ChaCha12, including as the length-doubling PRG inside the TreePRG.
We use Blake3 as the collision resistant hash function and to instantiate the random oracle (in KDF mode)9.
We instantiate our commitments with hash-based commitments, also using Blake3 in keyed mode. We use
Blake3 without keying when committing to high entropy values, as in Katz et. al [KKW18], but note that
this particular optimization cannot be applied when committing to the shares in the set membership proof,
as they are correlated. Our implementation is generic: allowing instantiation of the NIZKPoK with any ring
and taking any algebraic circuit over said ring. We use this to optimize the ring signature circuit for the
particular PRF instantiation as described below.

5 Post-Quantum Ring Signatures

Ring signatures are a privacy preserving version of signatures introduced by Rivest, Shamir, and Tau-
man [RST01]. Ring signatures give the signer k−anonymity, in that a signature can only be linked back
to a set (or ring) or public keys. We now show how to leverage our efficient set membership techniques
for MPC-in-the-head to get the smallest constructions of post-quantum ring signatures from symmetric key
assumptions.

5.1 Definition of Ring Signatures

We provide formal definitions for ring signatures here.

Definition 1 A ring signature scheme consists of a tuple of three probabilistic polynomial-time algorithms
(Gen,Sign,Verify) defined as follows:

7Indeed, this five-round protocol for set-membership can then be compressed into a three-round protocol (in the plain model)
using the ideas from [KKW18]

8Code is available at https://github.com/trailofbits/reverie/tree/stacked-ikos.
9To provide domain separation from the CRH.
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• Gen(1λ) → (pk, sk): The key-generation algorithm Gen takes as input the security parameter λ and
generates public key pk and the associated signing key sk.

• Sign({pki}i∈[`], sk,M)→ σ: The signing algorithm Sign takes as input a set (or “ring”) R = {pki}i∈[`]

of distinct public keys, a secret key sk corresponding to one of the public keys in R, and a message M .
It outputs a signature σ.

• Verify({pki}i∈[`],M, σ)→ b The verification algorithm Verify takes as input a ring R of distinct public
keys, a message M , and a signature σ. It outputs a single bit b indicating acceptance or rejection.

We proceed to define three properties of ring signatures: correctness, unforgeability and anonymity. These
definitions (adapted from [BKM09]) are taken verbatim from [KKW18].

Correctness. Correctness requires that for any collection of keys {(pki, ski)}i∈[`] output by Gen, any message
M , and any j ∈ [`], we have

Verify({pki}i∈[`],M, Sign({pki}i∈[`], skj ,M)) = 1.

Unforgeability. Intuitively, unforgeability means that an adversary not in R should not be able to generate
a valid signature σ on a message M relative to a ring R unless some honest user in R had previously signed
M (relative to the same ring).

Definition 2 Ring signature scheme (Gen,Sign,Verify) is unforgeable if, for any PPT adversary A and any
polynomial `, the probability that A succeeds in the following experiment is negligible in λ:

1. Keys {(pki, ski)}i∈[`] are generated by Gen(1λ). The public keys S = {pki}i∈[`] are given to A.

2. A may query an oracle Sign′(·, ·, ·), where Sign′(R, i,M) (with pki ∈ R) outputs Sign(R, ski,M). (Note
that we do not require R ⊆ S.)

3. A may also query a corruption oracle corrupt that on input i returns ski. If A queries corrupt(i) then
we say that pki is corrupted. We let C be the set of corrupted public keys at the end of the experiment.

4. A outputs M∗, R∗, σ∗. It succeeds if (1) Verify(R∗,M∗, σ∗) = 1, (2) R∗ ⊆ S \ C and (3) A never
queried Sign′(R∗, ·,M∗).

Security. We now prove security of this construction. We show that if this construction is not unforgeable,
then either there is a hash collision or the our NIZK PoK is not sound or it does not satisfy zero-knowledge.
Let us assume for contradiction that there exists an adversary who can break the unforgeability of this
construction.

• If σ∗ = σ: If σ∗ = σ, then the challenge on which the prover computes must also be identical in the
two proofs. Since the challenge computed by HRO depends on the message and the ring. However, we
know that either M∗ 6= M or R∗ 6= R. From collision resistance of hash function, it follows that the
two challenges cannot be identical in this case, except with some negligible probability.

• If σ∗ 6= σ: From soundness of our NIZKPoK, we know that we can extract the witness corresponding
to an accepting proof, which in this case is ski. Since ski /∈ C, the only way an adversary could
have learned ski is if it breaks the zero-knowledge property of the NIZKPoK construction, which only
happens with at most negligible probability.

Anonymity of the scheme trivially follows from the zero-knowledge property of our NIZKPoK.

Anonymity. Intuitively, anonymity ensures that a valid signature with respect to a ring R does not reveal
which secret key (corresponding to some public key in R) was used to generate the signature.
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Post-Quantum Secure Ring Signatures

Let PRF : {0, 1}κ × {0, 1}κ → {0, 1}κ be a pseudorandom function.

• Gen(1κ) → (pk, sk): The key-generation algorithm Gen chooses a uniform signing key sk ∈ {0, 1}κ and the corre-
sponding public key is defined as pk = PRFsk(0

κ). It outputs (pk, sk).

• Sign({pki}i∈[`], sk,M) := σ: The signing algorithm Sign computes and outputs a NIZKPoK for:

NIZKPoK {(sk, pk) : (PRFsk(0
κ) = pk) ∧ pk ∈ {pk1, . . . pk`}} ,

where the message M being signed is included as input to the hash function HRO used to compute the challenge.

• Verify({pki}i∈[`],M, σ) := b: The verification algorithm verifies the NIZK proof σ and outputs 1 if the proof accepts
and 0 otherwise.

Figure 3: The signature construction that we implement, based on [CDG+17, KKW18]. When proving the
security of the scheme, PRF is modeled as a one-way function.

Definition 3 Ring signature scheme (Gen,Sign,Verify) satisfies anonymity if, for any PPT adversary A and
any polynomial `, the probability that A succeeds in the following experiment is at most 1/2 + negl(λ):

1. Keys {(pki, ski)}i∈[`] are generated by Gen(1λ) and all keys (both public and private) are given to A.

2. A outputs a message M , a ring R, and i0, i1 ∈ [`]. A uniform b ∈ {0, 1} is chosen, and A is given
Sign′(R′, skib ,M) where R′ = R ∪ {pki0 , pki1}.

3. A outputs a bit b′ and succeeds if b′ = b.

5.2 Construction and Implementation

The work of Chase et. al. [CDG+17], and later Katz et. al. [KKW18], construct post-quantum ring
signatures in the random oracle model that only depend on symmetric key primitives. These signatures use
random PRF keys as the secret keys sk and the corresponding public key is defined as PRFsk(0

κ). The regular
signatures constitute a NIZKPoK{(sk) : PRFsk(0

κ) = pk} in which the message is fed into the random oracle
during flattening. This means that the simulated players execute the PRF and that the public key is fed
explicitly into the circuit at the end to perform the equality check. Clearly, this reveals the identity of the
signer.

Katz et. al. [KKW18] showed how to extend this template to create both ring and group signatures by
adding a Merkle membership proof inside the circuit. More formally, the signature would be of the form
NIZKPoK {(sk, pk) : (PRFsk(0

κ) = pk) ∧ pk ∈ {pk1, . . . pk`}} , where the membership proof is implemented
using a Merkle tree. This introduced a multiplicative overhead to the signature size proportional to the the
logarithm of the ring size, as each hash in the Merkle tree is the same size as the relation itself. Taking a
similar approach, but we use the membership proof construction presented in Section 4.2.

Implementation and Evaluation We implemented our ring signatures using Reverie. We instantiate the
PRF using LowMC with the picnic-L5-full parameters10 from the Picnic specification [Zav20] offering
an estimated 128 bits of post-quantum security. The underlying MPC protocol is instantiated with n = 64,
M = 1662, τ = 44 to optimize for signature size at 256 bits of statistical security (yielding a NIZK with
128 bits of security against Grover’s algorithm [Gro96]). We bitslice the LowMC circuit inside the MPC

10LowMC with 255-bit state, 255-bit key, 4 rounds and full S-Box layers.
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Table 2: Performance of the post-quantum ring signature scheme compared to prior works. |σ| is the size
of the resulting signature. t is the time for signing/verifying the signature. The average is taken over 1000
executions. The server consists of two Intel(R) Xeon(R) CPU E5-2695 @ 2.10GHz. The laptop consists of
a single Intel(R) i7-4510U CPU @ 2.00GHz. Derler et al. do not report runtime. The experiments of Katz.
el al. were run on a Intel Xeon E5-2666v3

Ring size: 27 210 213

|σ| t |σ| t |σ| t
Derler et al. 982 KB — 1352 KB — 1722 KB —

Katz et al. (Server w/ 10 cores) 285 KB 2000 ms 388 KB 2800 ms 492 KB 3600 ms
This Work (Server w/ 36 cores) 52 KB 126 ms 56 KB 210 ms 60 KB 1980 ms
This Work (Laptop w/ 2 cores) 52 KB 2163 ms 56 KB 3437 ms 60 KB 16080 ms

protocol11, by letting the MPC protocol operate over vectors from (F2)85 (rather F2) to improve concrete
prover/verifier time.

We find that our ring signatures are the smallest post-quantum ring signatures currently known from
symmetric key assumptions. A single iteration of LowMC requires ≈ 42KB of communication, which is
linear in the number of non-linear gates in the the LowMC circuit times the number of online repetitions.
The membership proof requires ≈ 1.5KB× log(`), where ` is the size of the ring. We present concrete sizes
for our signatures in Table 1. Additionally we report signature generation/verification time in Table 2. We
note that signature generation/verification is an embarrassingly parallel problem, so computing on multiple
cores significantly increases the performance of the system.

6 Post-Quantum RingCT

RingCT [Noe15, NMRL16] is a protocol used by the cryptocurrency Monero to provide additional privacy
to transactions posted on the blockchain. RingCT provides two primary benefits over more standard cryp-
tocurrencies: the identity of a transaction’s sender is obscured using an anonymity set of the sender’s choice,
and the amounts sent in each transaction are kept private to the sender and receiver. These properties make
it difficult to track the flow of currency through the network, providing significantly improved privacy over
blockchains like Bitcoin [Nak08] and Ethereum [B+].

In order to provide these privacy properties, RingCT augments standard blockchain transactions with
the following: (1) protect the identity of the sender with a ring signature, rather than a traditional signature,
(2) encapsulate the input and output balances of transactions inside commitments, (3) prove that the input
balances sum to the output balances, and (4) prove that all balances are well formed. Monero instantiates
these augmentations using ring signatures, homomorphic Pederson Commitments, and range proofs based
on Bulletproofs [BBB+18].

There has been recent interest in instantiating RingCT using plausibly post-quantum secure primi-
tives [TSS+18, TKS+19, EZS+19, TSSK20]. These works follow the classical constructions of RingCT
closely, leveraging lattice-based cryptography to create the required primitives. We improve upon this work
by reducing the assumptions to only symmetric-key primitives.

6.1 Definition of RingCT

In this work, we adopt the definitions of RingCT 2.0 [SALY17], as they are cleaner that subsequent formal-
izations [LRR+19, EZS+19, YSL+20] and are sufficient to capture the application in which we are interested.
A RingCT scheme consists of the following algorithms:

11As done in the optimized Picnic implementation.
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– pp← Setup(1κ): On input the security parameter, generate any necessary public parameters. We let these
public parameters be an implicit input to the algorithms below.

– (pk, sk) ← KeyGen(1κ) : On input the security parameter, generate a random public-private keypair
(pk, sk).

– (coin, ck) ← Mint(pk, ε) : On input a public key pk and an amount ε, create a coin coin and a coin key
ck. In general, the coin can be thought of as a commitment to the value ε under the randomness ck.

– (tx, π, S) ← Spend(Ks, As, A,R) : On input a set Ks of private information tuples (pk, (ε, ck)) (where sk
is a secret key, ε is an amount, and ck is a coin key), each of which is associated with an input account
(pk, coin) in the set As, a larger set of anonymizing accounts A, and a set of output accounts R, generate
a transaction tx, a proof π that the transaction is well formed, and a set of serial numbers S.

– {0, 1} ← Verify(tx, π, S) : On inputs a transaction tx, a proof π and a set of serial numbers S, determine
if the bundle is valid.

We now give informal descriptions of the security properties that these algorithms must satisfy. We refer
the reader to [SALY17] for a more formal definition of these properties:

– Correctness. A user can run the Spend algorithm to produce a valid tuple (tx, π, S) spend from ac-
counts that they control to any set of (adversarial chosen) receiver accounts and any (adversarial chosen)
anonymity set.

– Balance. A user should (1) only be able to spend from accounts that they control, and (2) it should
be impossible to use transactions to fabricate more currency (i.e. the sum of the input amounts to a
transaction should be at least as large as the sum of the outputs of that transaction). Relatedly, it should
only be able to spend from accounts once.

– Anonymity. An observer should not be able to determine which of the accounts in A are the input
accounts.

– Non-Slanderability. The non-slanderabiliy property requires that a malicious user cannot slander any
honest user after observing an honestly generated spending. It is infeasible for any malicious user to
produce a valid spending that shares at least one serial number with a previously generated honest spending

6.2 Constructing RingCT From Symmetric Key Primitives

Recall that the goal is to construct RingCT from only symmetric key primitives. Adapting the intuition
of prior implementations, we choose to instantiate coins as a commitment to the value using the coin key
as randomness. Specifically, we will use hash based commitments, as they rely only on symmetric key
primitives, instantiated using LowMC and the Davies-Meyer transformation12. Thus, the Mint algorithm
is simply generating a random string ck and then committing to the input value. Additionally, we will
make use of the signatures discussed in the previous section and compute the serial numbers for each coin
as a deterministic, random-looking function of ck. Because we use a pseudorandom function both for the
generation of serial numbers and signatures, we separate the two pseudorandom functions as PRF1 and PRF2

respectively.

Warmup. As a warmup, we start by showing the algorithm Spend when |As| = |R| = 1. In this case,
|As| consists of a single account (pkin, coinin), and Ks is the private information necessary to spend from
this account; namely, Ks contains skin, (εin, ckin) such that coinin = Com(εin, ckin) and pkin = PRF2(skin, 0).
With only a single output, R consists of just (pkout, εout). Finally, A is an arbitrary set of accounts such
that As ⊆ A.

12The Davies-Meyer transformation constructs a collision resistant hash function from a block cipher E(k,m) as H(m1‖m2) =
E(m1,m2)⊕m2.
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In our construction, the proof π is a single zero-knowledge proof that simultaneously provides most of
the required security properties. Namely, it plays both the role of the signature and the balance checks.
Concretely, for our warmup case, Spend generates a new output coin coinout containing value εout and
returns (tx, πsingle, S), where tx is (A, (pkout, coinout)), S is a set containing the serial number sn, and
πsingle is computed as

πsingle = NIZKPoK{(Ks, As, (εout, ckout)) :

(pkin = PRF2(skin, 0) ∧ (pkin, coinin) ∈ A)∧
(coinin = Com(εin; ckin) ∧ sn = PRF1(skin, ckin))∧
(εin = εout ∧ coinout = Com(εout; ckout))}.

Intuitively, there are 3 parts of this proof, that together provide the necessary security properties for
RingCT:

• Showing Authorization to Spend Input Coin. First the prover uses a membership proof to show
that (pkin, coinin) is in A and a signature to show that the prover has authorization to spend from that
account.

• Proving Knowledge About Input Coin. Next, the prover demonstrates that it knows an opening to
the coin and that the public serial number corresponds to the coin.

• Proving Output Coin is Well Formed. Finally, the prover shows that the output coin holds the
correct balance and is well formed.

Once these elements have been constructed, the spender sends them to the blockchain. There, the miners
verify the correctness of the proof and check that sn has not been seen before. If these checks pass, the
transaction will be included in the blockchain. Finally, the spender will send εout and ckout to the receiver so
that they can spend in the future. We note that this approach is significantly simpler than prior constructions.
We emphasize that using a generic zero knowledge proof in this way is only possible because of an efficient
construction of set-membership proofs.

Generalizing to Multi-input and Multi-output. Using the blueprint from the warmup above, we now
present the construction for multi-input and multi-output RingCT. The input sets Ks, As and R now contain
many elements each. The checks used in the warmup are applied to each input account and output coin,
as appropriate. The only significant difference is that the proof checks if the sums of the input accounts
equal the sums of the output accounts instead of doing a direct equality check. This task is incredibly
straightforward in the MPC-in-the-head setting. Specifically, if the statement is represented as a boolean
circuit, then summing the amounts just requires a cascade of full adders of the appropriate width (3 AND

gates per bit). Another advantage of this representation is that no range proof is necessary, as a boolean
circuit can natively support unsigned arithmetic. This is a big departure from prior work, where the amounts
had to be represented as arithmetic values, which opens the possibility of “overflowing” the ring in which
they were being represented. The full construction can be found in Figure 4.

As is expected from such a simple construction that makes such heavy use of generic zero knowledge,
security of this construction trivially follows from the security of the underlying set membership proof system.
In particular, correctness follows from the correctness of the PRF, commitment scheme and completeness
of the set membership proof system. Balance follows from the soundness of the set membership proof
system. Anonymity follows from the zero-knowledge property of the set membership proof system. It is
well-known [CDG+17] that the Fiat-Shamir transform yields non-malleable NIZKPoKs, both in the classical
setting [FKMV12] and in the quantum setting [Unr17]. Non-slanderability of this RingCT construction
follows from non-malleability of our NIZKPoK for set membership.

Efficiency Analysis. We now compute the size of the proof π in Figure 4 in terms of |A|, |As| and |R|.
For each input in As, the prover must prove the following information: (1) that it knows a valid opening
for the input coin (1 commitment evaluation), (2) the serial number is correctly computed as the output of
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Post-Quantum RingCT from Symmetric Key Assumptions

Let PRF1,PRF2 : {0, 1}κ × {0, 1}κ → {0, 1}κ be a pseudorandom functions. Let Com : {0, 1}∗ → {0, 1}κ be a
hash-based commitment scheme.

– (pk, sk)← KeyGen(1κ) : Sample sk
$←− {0, 1}κ and compute pk← PRF2(sk, 0)

– (coin, ck)← Mint(pk, ε) : Sample ck ← {0, 1}κ and compute coin = Com(ε; ck)

– (tx, π, S)← Spend(Ks, As, A,R) : // Ks = {(skin,i, (εin,i, ckin,i))}i∈[|Ks|] are secret key material to spend from As

// As = {(pkin,i, coinin,i)}i∈[|As|] are accounts from which the spender spends

// A = {(pkin,i, coinin,i)}i∈[|A|] is the anonymity set (ring) hiding input accounts AS

// Note that A may be represented succinctly using a random low degree polynomial

// R = {(pkout,j , εout,j)}j∈[|R|] are receiver’s public keys and amounts

• For (pkout,j , εout,j) ∈ R, compute (coinout,j , ckout,j)← Mint(pkout,j , εout,j)

• For (skin,i, (εin,i, ckin,i)) ∈ As, compute sni ← PRF1(skin,i, ckin,i)

• Let tx = (A, {(pkout,j , coinout,j)}j∈[|R|])

• Let S = {sni}i∈[|As|]

• Compute π as

π = NIZKPoK{(Ks, As, {εout,j , ckout,j}j∈|R|) :
(
{pkin,i = PRF2(skin,i, 0)}i∈[|As|]

)
∧ (As ⊆ A)

∧
(
{coinin,i = Com(εin,i; ckin,i)}i∈[|As|]

)
∧
(
{sni = PRF1(skin,i, ckin,i)}i∈[|As|]

)
∧

 ∑
i∈[|As|]

εin,i =
∑
j∈[|R|]

εout,j

 ∧
(
{coinout,j = Com(εout,j ; ckout,j)}j∈[|R|]

)
}

– {0/1} ← Verify(tx, π, S) : Return 1 if and only if:

• π verifies

• A is a subset of existing accounts

• No element of S appears previously

Figure 4: A post-quantum RingCT construction based on symmetric key primitives.

the PRF (1 PRF evaluation), (3) the prover knows the secret key corresponding to the public key associated
with the input coin (1 PRF evaluation), and (4) the public key and input coin are indeed part of the ring
(1 set membership proof). Thus, the total cost for each input is 3 × |LowMC| + |Membership Proof|. For
each output in R, the prover need only demonstrate that the coin is well-formed with respect to the output
value εout. The sum check requires 3 × b AND gates per addition, where b is the bit width of the amount
representation. With b = 64 and τ = 44, this means each addition costs only 2.1KB of communication.
Thus, the total cost for each output is |LowMC|. Finally, the prover demonstrates that the inputs and
outputs sum correctly. In total, for a transaction with |As| inputs, |R| outputs, and a ring size of |As|, π is

(3|As|+ |R|)|LowMC|+ |As||Membership Proof|+ |Sum Check|.

Each iteration of LowMC, using the same parameter choices from Section 5 costs 11.2KB13 with a baseline

13Elements are in F85. There are 4 rounds, in which each bit of the element in F85 is multiplied 3 times. Each MPC requires
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overhead of 31KB. Thus, the full cost is

31KB + (3|As|+ |R|)(11.2KB) + |As| log(|A|)(1.5KB) + (|As|+ |R| − 2)(2.1KB)

Comparing our work to the most efficient recent work on post-quantum RingCT [EZS+19], we find
that our techniques yield proof sizes that significantly more efficient when the anonymity set is large.14

For instance, when |A| = 215, |As| = 1, and |R| = 2, our proofs are of size 111KB, which is half the
size of [EZS+19] transactions, which are ≈ 250KB. The relative performance of our techniques improves
as |A| grows. Once |A| = 221, the proof size of [EZS+19] is already 400KB, whereas ours would only be
120.6KB. Both of our techniques scale linearly with |As|, but ours offers slightly worse constants. Our proofs
grow by ≈ 35KB per input. However, as noted by [EZS+19], the most common kinds of transactions have
|As|, |R| ≤ 2. Finally, we note that the public keys in our construction are only 256 bits, whereas the public
keys in [EZS+19] are 4.36KB.

7 Conclusion

In this work we presented an efficient set membership proof method that can be used with any MPC-in-
the-head zero-knowledge proof system. We demonstrated that this technique has meaningful applications
to privacy preserving systems, including the smallest post-quantum ring signatures from symmetric key
primitives. Additionally, we presented a simple construction of post-quantum RingCT that showed the
benefits of set membership proofs that naturally integrate with generic zero-knowledge.
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A Preliminaries

In this section, we give formal definitions of the primitives used in our constructions.

A.1 Sigma Protocols

Σ-protocols are a large class of particularly ‘simple’ zero-knowledge proofs of knowledge. They share three
defining qualities:

• 3-round Arthur-Merlin: the protocol consists of 3 moves: (1) a message ‘a’ from the prover to the
verifier. (2) a random message ‘c’ from the verifier to the prover, sampled independently of a. (3) a
message ‘z’ from the prover to the verifier.

• Special Honest-Verifier Zero-Knowledge: there exists a polynomial-time simulator which given the
statement ‘x’ and challenge ‘e’ produces the same distribution over transcripts (a, e, z) as the honest
interaction between the prover and verifier with the challenge ‘e’.

• s-Special Soundness: from s distinct transcripts (a, e1, z1), . . . , (a, es, zs), sharing the first message ‘a’,
but with distinct challenges ‘e’, there exists a polynomial-time extractor which recovers a witness ‘w’
for ‘x’.

A.2 Fiat-Shamir Transform

Any Σ-protocol can be compiled into a NIZKPoK by generating e = H(a) where H is modelled as a random
oracle, rather than having the verifier send e. To check the validity of the resulting proof π = (a, e, z), the
NIZKPoK verifier emulates the verifier from the Σ-protocol on the transcript π and checks that e = H(a).
When H is instantiated with any concrete family of hash functions there are (contrived) examples where
the Fiat-Shamir transform is unsound [GK03], however in practice the transform appears to yield secure
and highly efficient NIZKPoKs from natrual interactive proofs. The CRS for the resulting NIZKPoK is a
description of a programmable hash function H, the extractor/simulator is obtained from the Σ-protocol
extractor/simulator in the natural way.

A.3 Accumulators

Let κ be the security parameter. A secure accumulator for inputs in Y is tuple of the 4 PPT algorithms
(Acc.Gen, Acc.Eval, Acc.Proof, Acc.Verify) defined as follows:

• Acc.Gen(1κ, n): On input κ and the number of values that can be securely accumulated n, this algorithm
returns a key key.

• Acc.Eval(key, Y ): On input the key and accumulation set Y = {y1, . . . , yn′} ∈ Yn
′
, where n′ ≤ n, this

algorithm returns an accumulated value z and auxiliary information aux.

• Acc.Proof(key, y, z, aux): On input key, a value y, an accumulated value z of some set Y , and some
auxiliary information aux, this algorithm returns a proof π if y ∈ Y , else it returns the special symbol
⊥.

26



• Acc.Verify(key, y, z, π): This is a deterministic algorithm that takes in a key key, a value y, a proof π,
and an accumulated value z, and returns a bit b ∈ {0, 1}.

These algorithms satisfy the following properties:

• Completeness: For any input set Y = {y1, . . . , yn′} ∈ Yn
′
, and and i ∈ [n], it holds that:

Pr[Acc.Verify(key, y, z, w) = 1 |
key← Acc.Gen(1κ)z, aux← Acc.Eval(key, Y ),

w ← Acc.Proof(key, y, z, aux)] = 1

• Soundness: No PPT adversary Adv, can win the following game with more than negligible probability
(in κ):

1. The challenger samples key← Acc.Gen(1κ) and sends to Adv.

2. Adv responds with ({yj}j∈[n′]).

3. The challenger computes z, aux← Acc.Eval(key, Y = {y1, . . . , yn} and sends (z, aux) to Adv.

4. Adv responds with a pair (y′, w), and wins if Acc.Verify(key, y′, z, w) = 1 and y′ 6= yi for every
i ∈ [n].

A.4 Merkle Hash Proof System

In this section, we give a definition of the Merkle Hash Proof System [Mer88]. For simplicity, we give
a definition based on a key-less hash function. If any leaves does not have enough entropy, it must be
committed to using a hiding commitment scheme (e.g. adding random salt).

A Merkle hash proof system corresponding to a hash function H : {0, 1}∗ → {0, 1}λ is defined by a tuple
of algorithms (Merkle.Hash,Merkle.Proof,Merkle.Verify) as follows:

• Merkle.Hash(x1, . . . , xn): On input a vector x1, . . . , xn, the Merkle hash algorithm computes and returns
a hash y using a Merkle tree as follows:

– For each i ∈ [n], compute y0
i = H(xi).

– For each ` ∈ [log(n)] and i ∈ [n/2`],15 compute y`i = H(y`−1
2i−1||y

`−1
2i ). Set y = y

log(n)
1 .

• Merkle.Proof(x1, . . . , xn, xi): On input a vector x1, . . . , xn, and an element xi, the Merkle proof algo-
rithm computes and outputs a proof p as follows:

– For each k ∈ [n], compute y0
k = H(xk).

– For each ` ∈ [log(n)] and k ∈ [n/2`], compute y`k = H(y`−1
2k−1||y

`−1
2k ).

– Initialize p = {(i, sibling(y0
i ))} and for each ` ∈ [log(n)], set p = p ∪ {(

⌈
i/2`

⌉
, sibling(y`di/2`e))}.

• Merkle.Verify(xi, y, p): On input an element xi, Merkle hash y, and a Merkle proof p, the Merkle
verification algorithm parses p = ((i0, x

0), . . . , (ilog(n), x
log(n))) and returns {0, 1}, proceeding as follows:

– If i0 is an even number, compute y1 = H(H(xi)||x0), else compute y1 = H(x0||H(xi)).

– For each ` ∈ [log(n)], if i` is an even number, compute y` = H(H(y`−1)||x`), else compute
y` = H(x`||H(y`−1)).

– If ylog(n) = y, output 1; else, output 0.

15For simplicity, we assume that n is a power of 2. The general case follows either by including additional elements 0λ or by
just computing a canonical balanced tree.
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A Merkle Hash Proof System has the following properties.

Theorem 1 (Merkle Hash Proof System) Assuming existence of a length-halving, seeded, collision re-
sistant hash function H : {0, 1}∗λ→ {0, 1}λ, the Merkle hash proof system (Merkle.Hash,Merkle.Proof,Merkle.Verify)
satisfies the following properties:

• Completeness: For any input string x1, . . . , xn ∈ {0, 1}nλ and i ∈ [n], it holds that:

Pr

[
Merkle.Verify(xi, y, p) = 1

∣∣∣∣∣ y = Merkle.Hash(x1, . . . , xn)

p = Merkle.Proof(x1, . . . , xn, xi)

]
= 1

• Soundness: No PPT adversary Adv, can win the following game with more than negligible probability
(in κ):

1. Adv responds with (i, {xj}j∈[n]\{i}).

2. The challenger samples xi
$←− {0, 1}λ, computes

Merkle.Hash(x1, . . . , xn) = y and sends (xi, y) to Adv.

3. Adv responds with a pair (x′, p), and wins if
Merkle.Verify(x′, y, p) = 1 and x′ 6= xi for every i ∈ [n].

A.5 Tree-Based PRG

In order to generate the preprocessing for many parties efficiently (and to send the states of many parties to
the verifier succinctly), we requires a puncturable, tree-based pseudo-random generator. This construction
uses a single seed as the root of a tree and outputs the leaves. To puncture a leaf value, preventing it from
being recovered from the seed, the seed is replaced by all the siblings of nodes along the path from the leaf
to the root seed.

Definition 4 A tree based pseudo-random generator corresponding to a pseudorandom generator PRG :
{0, 1}κ → {0, 1}2κ is defined by a tuple of algorithms
(TreePRG.Gen,TreePRG.Punc,TreePRG.GenPunc) as follows:

• TreePRG.Gen(seed, `): On input the seed and number of leaves `, this algorithm outputs ` seeds, com-
puted as follows:

– Set seed0
1 = seed.

– For each k ∈ [log(`)] and i ∈ [2k−1], compute
seedk2i−1‖seedk2i = PRG(seedk−1

i )

– Output seed
log(`)
1 , . . . , seed

log(`)
`

• TreePRG.Punc(seed, `, q): On input the seed, number of leaves ` and an index q, this algorithm computes
a punctured seed S, that is computed as follows:

– Set seed0
1 = seed.

– For each k ∈ [log(`)] and i ∈ [2k−1], compute
seedk2i−1‖seedk2i = PRG(seedk−1

i )

– Inititalize S = {}. For each k ∈ [log(`)], set S = S ∪ {sibling(seedk⌊
q

2log(`)−k

⌋)}.

• TreePRG.GenPunc(S, `, q): On input the punctured seed S, number of leaves ` and the punctured index
q, parse S = ((1, seed1), . . . , (log(`), seedlog(`))), this algorithm recovers all the leaf seeds except for
the punctured leaf seed as follows:
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– For each k ∈ [log(`)−1], for each i ∈ [2k]\{
⌊

q
2log(`)−k

⌋
}, compute seedk+1

2i−1‖seed
k+1
2i = PRG(seedki ).

– Output {seedlog(`)
i }i∈[`]\{q}.

We require standard notions of pseudorandomness from the PRG, which implies pseudorandomness for the
leaves and nodes of the tree.

B Security of our Set Membership Proof System

In this section, we prove zero-knowledge and soundness of the protocol presented in Section 3.

Zero-Knowledge. We can use the simulator of the underlying MPC-in-the-head protocol to design a
simulator for the new protocol. Let SimΣ be the simulator that exists from the zero-knoweldge property of
the underlying Σ protocol. The simulator proceeds as follows:

1. Sample a random α
$←− [`], and a random (M − τη)-subset S ⊂ [M ] and η-subsets C1, . . . , Cτ .

2. Use SimΣ to sample subsets (of appropriate size) Ii ⊂ [n] (∀i ∈ [τ ]) of the parties.

3. For each j ∈ [M ] \ S, compute the preprocessing exactly as described in the real protocol.

4. For j ∈ [M ] \ S, compute the preprocessings exactly as described in the real protocol, except for each

k 6= α, compute com
(∆)
j,k = Com(0; r

(∆-com)
j,k ) and for eachm /∈ Ii compute com

(mask)
j,m = Com(0; r

(mask-com)
j,m ),

where i is such that j ∈ Ci.

5. Sample random values {wi}i∈I .

6. Shares of the active element for parties i ∈ I are chosen exactly as described in the real protocol.

7. Use these shares and simulator SimΣ, to simulate the remaining third round messages (which correspond
to the first round messages in the underlying MPC-in-the-head protocol).

8. Last round messages of the underlying MPC-in-the-head protocol are also computed using SimΣ.

We now proceed to show that the transcripts output by the simulator is computationally indistinguishable
from transcripts of real executions of the protocol with an honest verifier. We do this by constructing a
sequence of hybrids as follows:

• H0 : Real Transcript

• H1 : The simulator samples a random S ⊂ [M ], and a random subsets I1, . . . , Iτ . It behaves exactly

like an honest prover, except for each j ∈ [M ] \ S and k 6= α, it computes com
(∆)
j,k = Com(0; r

(∆-com)
j,k )

and for each m /∈ Ii compute com
(mask)
j,m = Com(0; r

(mask-com)
j,m ),where i is such that j ∈ Ci.

H0 ≈c H1 : Since these com
(∆)
j,k and com

(mask)
j,m are never opened, indistinguishability of hybrids H0 and

H1 follows from the hiding property of the commitment scheme.

• H2: The simulator proceeds exactly as in hybrid H1, except that it samples uniform {wi}i∈I and
runs SimΣ along with preprocessing information to simulate the first and third round messages in the
underlying MPC-in-the-head protocol (which correspond to the third and fifth round messages (resp.,)
in our compiled protocol).

H1 ≈c H2 : Indistinguishability of hybrids H1 and H2 follows from the zero-knowledge property of the
underlying Σ-protocol.
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• H3: The simulator behaves exactly as in hybrid H2, except that instead of using the actual α, it
samples a random α ∈ [`].

H2 ≈c H3 : Since we permute the set before accumulating, H2 and H3 are identically distributed.

Soundness. Let the underlying MPC-in-the-head protocol have s-special soundness, require τ repetitions
and the soundness error in each reptition be 1/ε. Intuitively a malicious prover P∗ can violate soundness of
our compiled protocol, if each opened pre-processing commits to the set {x1, . . . , x`} (otherwise the verifier
will reject), yet in each of the τ online executions either: (1) the η consumed preprocessings Ci does not
commit to x1, . . . , x` (e.g. by replacing some xi by x′i). (2) P∗ successfully cheated in an instance of the
underlying MPC-in-the-head protocol.

We start by calculating the probability when the above conditions hold true and the malicious prover P∗

is able to violate soundness. Later, we will show that if the none of the above happens, then it is possible to
extract the valid witness from prover’s messages corresponding to s+ 1 different verifier challenge messages.

Soundness Error: For notational convenience let S(N,S) :=
∏N
i=0

(
S−iη
η

)
be the number of ways to sample

N disjoint subsets, each of size η from a set with S elements. Let A be the number of preprocessings in
which P∗ cheats (e.g. by committing to the wrong set), to bound the probability of successfully cheating
in the online execution we consider the probability of at least k online executions being executed with η
malicious preprocessing (meaning P∗ does not need to cheat in the underlying MPC-in-the-head protocol)
and P∗ successfully cheating in the underlying MPC-in-the-head protocol for the remaining τ−k repetitions.
The latter is bounded by 1/ε(τ−k) while the former is bounded S(k,A)·S(τ−k,τη−kη)/S(τ,τη). The probability of
passing the opening check is (M−AM−τη)/( M

M−τη). Using a union bound, the soundness/knowledge error is therefore
upper bounded by the maximum over A as:

perr ≤ max
A


(
M−A
M−τη

)(
M

M−τη
) · bA/ηc∑

k=0

(
S(k,A) · S(τ − k, τη − kη)

S(τ, τη)
· 1/ε(τ−k)

)
Extracting the Witness: We know show that using s + 1-transcripts of our compiled protocol, except with
probability perr, it is possible to extract the witness from this protocol. In our case, for each i ∈ [τ ], this
witness is ({maskj}j∈Ci , xα, w). From soundness of the underlying protocol, it holds that
F
(
{{[maskj ]m}j∈Ci , [xα]m, [w]m}m∈[n]

)
= 1. In order to argue soundness of our compiled protocol, all that

is left to show is that xα is indeed a member of the set {x1, . . . , x`}.
Let (S, {C1, . . . , Cτ}, I1), . . . , (S, {C1, . . . , Cτ}, Is) be the S challenges whose corresponding transcripts

were used for extracting ({maskj}j∈Ci , xα, w). We rely on an accepting transcript for one more challenge of
the form (S′, ∗, ∗), where S 6= S′. Given these transcripts, unless the prover is able to guess c, the following
holds:

1. On challenge (S′, ∗, ∗): The verifier gets the randomness used for computing the pre-processings for
each j ∈ S′. It uses this to reconstruct the preprocessings for each j ∈ S′.

2. On challenge (S, {C1, . . . , Cτ}, I): The verifier gets the randomness used for computing the pre-
processings for each j ∈ S. It uses this to reconstruct the preprocessings for each j ∈ S. It also
gets some partial randomness to compute some commitments in the remaining [M ] \S preprocessings.

From binding property of the commitment scheme, we know that the transcripts obtained across the above
two challenges are consistent (in particular, the set {x1, . . . , x`} was honestly used in the preprocessings and
the ∆·,α values computed using the pre-processing randomness in one transcript is the same as the one
obtained from the prover in the third round in the other transcript). Moreover, from soundness of the
accumulator, we know that the ∆·,α values were indeed part of the accumulated sets. It now trivially follows
that xα = maskj + ∆j,α (∀j ∈ Ci) is indeed a member of the set {x1, . . . , x`}.
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