Identifiable Cheating Entity Flexible
Round-Optimized Schnorr Threshold (ICE
FROST) Signature Protocol

Alonso Gonzélez, Hamy Ratoanina, Robin Salen,
Setareh Sharifian, Vladimir Soukharev

research@toposware.com
Toposware, Inc.

November 8, 2022

Abstract. This paper presents an Identifiable Cheating Entity (ICE)
FROST signature protocol that is an improvement over the FROST sig-
nature scheme (Komlo and Goldberg, SAC 2020) since it can identify
cheating participants in its Key Generation protocol.

The proposed threshold signature protocol achieves robustness in the
Key Generation phase of the threshold signature protocol by introducing
a cheating identification mechanism and then excluding cheating partic-
ipants from the protocol. By enabling the cheating identification mech-
anism, we remove the need to abort the Key Generation protocol every
time cheating activity is suspected. Our cheating identification mecha-
nism allows every participant to individually check the validity of com-
plaints issued against possibly cheating participants. Then, after all of
the cheating participants are eliminated, the Key Generation protocol is
guaranteed to finish successfully. On the other hand, the signing process
only achieves a weak form of robustness, as in the original FROST.

We then introduce static public key variant of ICE FROST. Our work
is the first to consider static private/public keys for a round-optimized
Schnorr-based signature scheme. With static public keys, the group’s
established public and private keys remain constant for the lifetime of
signers, while the signing shares of each participant are updated over
time, as well as the set of group members, which ensures the long-term
security of the static keys and facilitates the verification process of the
generated threshold signature because a group of signers communicates
their public key to the verifier only once during the group’s lifetime.
Our implementation benchmarks demonstrate that the runtime of the
protocol is feasible for real-world applications.

1 Introduction

Digital signatures are a primary authentication tool for many cryptographic
protocols. Digital signature schemes assign a key pair consisting of a public and
a private key to each user. A user can sign messages using their private key,
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whereas the signature is verifiable by any entity with access to the user’s public
key. If the private key is known only to the signer, a secure digital signature
scheme guarantees that a verifiable signature on a message is generated, and no
other entity can forge their signature.

In some applications, the signer is not an individual but a group such as a
network or an organization. In this case, a valid signature can only be generated
if the group members approve the content of the message. This requirement has
become increasingly indispensable with the advent of blockchain technologies
and cryptocurrencies in the past decade.

Distributed signing is usually enforced by using multisignature or threshold
signature schemes. Multisignature schemes [Oka88/MOROI| enable a subgroup
of potential signers, each with a public/private key pair, to jointly generate a
signature o on message m so that ¢ convinces a verifier that all members of the
corresponding subgroup have signed m. On the other hand, threshold signature
schemes |GJKR96al/GJKRI6D| distribute a private key, with or without a trusted
dealer, among n potential signers according to some t-out-of-n access structure.
Only signatures generated by the cooperation of at least ¢ signers will be accepted
by verifiers with access to a unique fixed public key of the scheme. Note that
multisignature schemes strive to prove that each member of the stated subgroup
signed the message while the size of this subgroup can be arbitrary. As for
threshold signature schemes, they aim to prove that a subgroup of sufficient size
(the minimum subgroup size is known in advance) signed the message.

In some applications, threshold signature schemes are preferred over mul-
tisignature schemes due to privacy and availability reasons. From the privacy
perspective, contrary to multisignatures, threshold signatures do not reveal the
identities of individual signers and guarantee their anonymity. Finally, gener-
ating a threshold signature does not require all signers of a specific subgroup
to be present online: the signature will be generated if at least ¢ of the signers
are online. In the case of generating a multisignature, all members of the sign-
ing subgroup must be present online (maybe not simultaneously as described in
[BDNTS].

Threshold signature schemes are constructed from primary digital signatures
including RSA signatures | , DSA signatures and

their variants — ECDSA [IGIIWL[BZEEKEEH SIgnatures BLS SIgnatures
[Bol03], and Schnorr signatures [SSO1LIGJKRO3].

The above protocols require that signers interact in order to generate the
final signature. Yet, in many real-life situations, it is desirable to have a non-
interactive signature generation scheme that allows each signer, who saw the
message, to generate their own “signature share” without having to interact with
any other signer. Non-interactive threshold RSA and BLS signature schemes are
proposed in [JOO§| and [BLSO01], respectively. Preprocessing technique is used
in ECDSA threshold schemes [CGGT20| and Schnorr-based schemes [KG20] to
construct non-interactive protocols.

Robustness is another desirable property of multisignature and threshold
signature schemes; it ensures proper execution of the protocol even if there are
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cheating signers who deviate from the protocol. One way to achieve robustness is
by identifying cheaters and excluding them from the protocol execution. In such
environments as blockchains that allow financial punishment of cheating par-
ticipants, when cheating identifiability combines with sufficient punishment, the
resulting method can stop (rational) parties from cheating and thus decrease the
failure probability of the protocol: i.e., enhance its robustness. Note that cheat-
ing identifiability does not necessarily result in robustness as some protocols will
abort execution after identifying cheaters (identifiable aborts): e.g., threshold
ECDSA protocols in [CGGT20/GG20]. The obtained guarantee in these cases is
referred to as weak robustness [MORO1].

Cheating identifiability can be viewed as an extended notion of soundness
where the validity of local, possibly secret, communication between two partici-
pants can be publicly verified by the rest. In this way, all honest participants can
agree on the set of misbehaving participants and exclude them. This can be eas-
ily achieved through the use of zero-knowledge proofs and encryption by making
participants encrypt their secret messages and show in zero-knowledge its cor-
rectness. Non-interactive versions of this mechanism typically require the use of
pairings, or at least homomorphic encryption, so that it is possible to efficiently
construct statements related to the encrypted communication. ElGamal-based
encryption with non-interactive checks of correctness such as the one used in
[Gro21] suffers from inefficient decryption requiring the computation of the dis-
crete logarithm problem for bounded challenges.

The signature generated by a threshold scheme eventually becomes part of
a certificate in protocols that require authentication. Before the signing and
verification sub-protocols start, the group’s public key (necessary to verify the
generated signature) should be communicated reliably to the certificate author-
ity. However, each public key is valid only for a certain time period and after
that the update is necessary to minimize the assessed risk under the potential
attacks. This highlights the challenge of frequent update and communication of
temporary public keys that may affect the efficiency of the protocol, particularly
while generating multiple threshold signatures for multiple messages. A solution
to this is using long-lived (i.e., static) public keys that will remain unchanged
for, possibly, the lifetime of the signing group. Protecting long-lived keys re-
quires constructing proactive countermeasures by using variations of Shamir’s
secret sharing scheme. The application of long-lived keys for threshold signa-
tures was first considered in [HJJ 97|, where the proactive secret sharing (PSS)
scheme of [HJKY95] is used to propose a framework for transferring a wide class
of discrete log-based threshold signature schemes into the proactive ones with
long-lived secure private/public keys.

1.1 Owur Contributions

We propose a threshold signature protocol based on FROST, a Flexible Round-
Optimized Schnorr Threshold signature scheme by Komlo and Goldberg [KG20).
The proposed signature protocol has the advantage of preprocessing computa-
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tions, first considered in [GG18]| for threshold signature schemes. The protocol
has two main phases:

1. A Key Generation phase in which all participating parties take part in gen-
erating and distributing a joint secret key that will be used for signing mes-
sages, and

2. A Signing phase in which a subgroup of parties, satisfying the threshold, use
their shares from the joint secret key to sign a message.

Our main contributions in this work are as follows:

1) Achieving robustness in Key Generation phase of the threshold signature
protocol. We propose a cheating identification mechanism and then exclude
cheating participants from the protocol, without aborting, to bring robustness
to the Key Generation protocol. We consider a party to be cheating when it
distributes inconsistent shares among other participants or accuses an honest
participant of distributing inconsistent shares. To emphasize this contribution,
we named our proposed signature protocol as “Identifiable Cheating Entity (ICE)
FROST”. The description of the protocol is given in Section 4] Due to the robust-
ness of the Key Generation phase in ICE FROST and identification of cheaters
during the Signing phase (that is inherent from FROST), ICE FROST is weakly
robust in the sense of Micali et al. [MORO1]. Further, in Section |7, we show that
with an appropriate choice of a subset of signers, the weak robustness property
of ICE FROST scales well for systems with large numbers of participants. Im-
proving the robustness of ICE FROST, by making Signing phase robust, remains
an interesting future research question.

For achieving cheating identifiability, instead of using homomorphic encryp-
tion as in [Gro21], we use symmetric encryption at the cost of more interaction.
In our construction, shares are encrypted using the the DH key between the
sender and the receiver. When a receiver decrypts an invalid share, it can con-
vince the rest of the parties that the sender cheated by revealing the DH key
with a proof of its validity with respect to the sender and receiver key.

ii) Designing the first proactively secure Schnorr-based signature scheme with
static private/public keys. We modify the Key Generation protocol of ICE FROST
to maintain long-lived secure signing keys with the help of the PSS protocol
[HIKY95] that allows for regular key redistribution between participants while
keeping the resulting distributively generated key unchanged. Note that the set
of participants can be updated as well, while the key would still remain the same.

According to |[HIJT97|, “proactivization” of a threshold signature scheme
is possible under satisfaction of certain conditions. Namely, if the signature
scheme is a discrete log-based robust threshold signature scheme, whose thresh-
old key generation protocol implements Shamir’s secret sharing of the secret
key x corresponding to the public key y = ¢g* and outputs verification informa-
tion (¢*,...,g""), where (z1,...,x,) are secret shares of the players and if the
threshold signature protocol is can be simulated [GJKRI6D], Definition 2]. While
Schnorr-based threshold signature schemes are introduced as one of the potential
candidates for proactivization using the framework of [HJJ"97], to the best of
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our knowledge, an actual proactive Schnorr-based scheme has never been pro-
posed in the literature. Proactivization of existing robust Schnorr-based thresh-
old signatures of [SSOI] and [GJKR03| using this the framework of [HJIT97| is
not possible because they do not satisfy all the mentioned conditions. In par-
ticular, they use additive shares rather than Shamir’s (polynomial) shares for
generating the threshold signature. Our scheme on the other hand, is the first ro-
bust Schnorr-based threshold signature scheme that satisfies all the conditions,
noting that the proof of simulatability is implicit in our unforgeability proof
(Theorem , where we use simulation technique to proceed with the proof. The
details of our design is given in Section

ili) Mitigating the Key Bias Attack from [GJKR99] without increasing the
number of rounds of the protocol. We achieve this by using public verifiable ran-
domness to choose and sacrifice one of the participants at random to ensure
that an adversary cannot bias the generated key. In the environments where a
distributed randomness is available to participants (e.g., in a blockchain), im-
plementing the suggested mitigation is easily feasible.

So far, no explicit forgery attack associated to the key bias has been reported.
However, according to [GJKRO3|, mitigating this attack reduces the required
security parameters to achieve a desired level of security.

Organization In Section [2| we review the related backgrounds. In Section [3| we
review the FROST signature scheme, which is the basis of the proposed work,
and then discuss some suggestions for achieving (weak) robustness in FROST. In
Section [4 we present our main contribution, a Schnorr-based threshold signature
scheme that can identify cheating participants in its key generation protocol. In
Section [5| we present a modification of ICE FROST that allows the use of static
group public and private keys for signing, while the shares of signing participants
are regularly updated. In Section [7] we present some practical considerations that
can improve the efficiency of ICE FROST in practice, especially when dealing
with large numbers of participants. Section [7] contains benchmarks of our im-
plementations. In Section [8] we review the possible attacks against which ICE
FROST is secure and propose mitigation for attacks against which ICE FROST
is vulnerable. In Section [0l we compare the ICE FROST with FROST in terms
of computational and communication costs, and finally, we conclude this work
in Section [0l

1.2 Related Works

Threshold cryptography aims to distribute secret information (i.e.,
private keys) and computation (i.e., signature generation or decryption) among n
parties to avoid having a central point of trust, which may become a single point
of failure. Threshold signature schemes lay under the umbrella of threshold cryp-

tography. They are based on RSA signatures [Rab98Sho00/FGMY97al, BLS sig-
natures [BDNT8IBLS01], and Schnorr signatures [AAMI9IGG20IGIKRO03ISSOT].

Robust schemes ensure successful execution of the protocol if ¢ participants
follow the protocol, even if a subgroup of participants (at most n—t) contributes
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malformed shares. On the other hand, non-robust schemes abort after detecting
any misbehavior of a participant. The schemes of [FGMY97a/Rab98| are RSA-
based robust threshold signature schemes and [SSO1JGJKRO3| are Schnorr-based
robust threshold signature schemes. The latter two schemes require all n sign-
ers, of which no more than ¢ are malicious, to participate in order to generate
a signature. Both of these schemes consist of two main phases: Key Genera-
tion phase and Signing phase. Key Generation phase uses Pedersen’s distributed
key generation (DKG) algorithm [Ped91a), which allows for the joint genera-
tion of signing keys. This algorithm uses a variation of Shamir’s secret shar-
ing scheme (SSS) [Sha79], the Verifiable Secret Sharing (VSS) scheme, which
allows verification (in terms of consistency) of the shared secrets during the
secret distribution and verification of presented shares during the secret recon-
struction steps [Fel87]. VSS schemes are examined in the presence of a trusted
dealer [CGMASSICDDT99/RBO&I| as well as in the absence of a trusted dealer
[CDEO1]. Cheating in these schemes is detected, and robustness is achieved by
avoiding incorrect input in some cases. However, it does not provide a strong
deterrent against cheating because cheating entities can cause additional com-
putations in the protocol without being identified. In identifiable secret sharing,
a failure of the reconstruction algorithm results in identifying the participants
who modified their shares. Computationally identifiable secret sharing schemes
have been proposed in [KOO95/MS81IChol1ITOS12].

Long-lived keys achieved with the aids of proactive secret sharing schemes are
first considered in [HJJ"97] for discrete log-based threshold signature schemes.
Proactive RSA based threshold schemes are considered in [FGMY97b] and [Rab98].
Static keys were used in [Gro21] for BLS signatures, but our work is the first to
consider static keys for a Schnorr-based signature scheme.

2 Preliminaries

In this section, we first introduce the notations that will be used throughout the
paper. Then we review the mathematical background needed to understand the
contributions of this paper.

Notations. We use calligraphic letters to denote integer sets, or sets of par-
ticipants in a protocol I1. By P = {Py, P,,...,P,} we denote the set of n
participants and can identify a participant by their index. If S C P is a subset
of participants, then |S| denotes its size.

All the logarithms are in base 2. We use x & X to denotea uniformly random
selection of an element x from a set X. The set X is usually instantiated by a
finite field of prime order g, i.e., Z,.

A symmetric encryption scheme is denoted by Esym = (Encsym, Decsym)
associated with key space K, message space M, and ciphertext space C, for
k € IC, encrypts the message m € M to ¢ = Encgym(k,m), where ¢ € C so that
Decgym(k, Encsym (k,m)) = m.
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2.1 Distributed Secret Generation

Shamir’s Secret Sharing (SSS) [Sha79]. Secret sharing is a cryptographic
primitive that allows a trusted dealer to distribute a secret s among a set of
parties by allocating a share of the secret to them. More precisely, to distribute
a secret s € S among a set of signers P = {P,...,P,} the trusted dealer
computes the shares f1,..., f, € F, where S is the space of secret keys and F
is the space of all possible shares. The secret can be reconstructed only when an
authorized subset of the parties A C P of these signers pools their shares.

In threshold secret sharing schemes, authorized subsets of valid shares are
those whose cardinality is greater than the threshold value denoted by ¢. Shamir’s
threshold secret sharing scheme [Sha79] is based on polynomial interpolation.
This scheme is information-theoretically secure and does not reveal any informa-
tion to an unauthorized subset of users. Shamir’s (¢, n)-threshold secret sharing
scheme consists of the Share and Reconstruct algorithms defined as follows:

— Share takes a secret s € [, as input and constructs a polynomial of degree
t — 1 by randomly selecting ¢ — 1 coefficients a1,...,a;—1 € Fy, and letting
the polynomial be f(z) = s+ ZZ;} a;z'. It computes the share f; € F, for
the signer s; € S with a unique ID id; € F, as a point on polynomial f(z),

— Reconstruct takes as input a set of shares held by a subset A C S of signers.
If | A] < t, then it outputs L. Otherwise, it reconstructs the polynomial f(z)
using Lagrange interpolation formula as follows:

CEDINTIN | =3

P,eA Pj EA,idi;aﬁidj
and outputs the secret s € F, as f(0) = s.

Cheating (tampering) in secret sharing corresponds to a scenario in which a
signer provides the reconstruction algorithm with a share different than the one
assigned to them by the distribution algorithm. An identifiable secret sharing
scheme, which was first considered by McEliece and Sarwate [MS81], is a secret
sharing scheme in which the reconstruction algorithm can identify all cheaters
with high probability.

Proactive Secret Sharing (PSS) [HIKY95]. Proactive secret sharing was
introduced by Herzberg et al. in [HIKY95]. It addresses the problem of the
long-term confidentiality of the shared secret by periodically renewing shares to
prevent a mobile adversary from collecting enough shares over time to recon-
struct the secret. For share renewal, each participant can generate (¢,n) shares
of the value of “0” each and send the shares to respective participants. Next, the
participants add all the received shares to get their renewed secret share of the
initial secret [HJKY95].

Refined constructions of PSS allow not only for renewal of existing shares,
but also for distribution of new shares to different signers. Therefore, this proce-
dure is often referred to as redistribution rather than renewal of shares [DJ97].
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Suppose an underlying (¢, n)-Shamir’s secret sharing of a secret s, which should
be converted into a (¢, n’)-Shamir’s secret sharing of the same secret s. Let P
be the set of current signers and P’ the set of new signers to which share redis-
tribution should happen, where |P| = n and |P’| = n’. Each participant P; € P
applies the (¢',n’) secret sharing procedure to their currently stored share s; and
sends (through a secure channel) the sub-shares to the respective participants.
Next, the receiving participants agree on a subset P, C P of ¢ participants and
compute their new share s’ by combining the ¢ sub-shares received from the
members of P.. Once the new shares are computed and stored, the respective
participants should delete the old shares. Note that, by creating sub-shares of
the existing shares and recombining them, the original secret remains unchanged,
and shares from different time periods cannot be combined to reconstruct the
secret.

Verifiable Secret Sharing (VSS) [CGMAS5]. Verifiable secret sharing was
introduced by Chor et al. in [CGMAR85| and allows signers to verify the validity of
the received shares from the dealer. Verifiable secret sharing is usually provided
by the application of a public commitment, which is assumed to be correctly
visible to all participants [Fel87[Ped91al.

To share a secret s using a (t,n) VSS, the dealer (as in Shamir’s secret
sharing) generates t — 1 random coefficients a1, ...,a;—; and uses them to de-
fine a polynomial f(-) of degree ¢t — 1 so that f(0) = s and f; = f(id;) is the
corresponding share for the party P; with an ID id;. However, to facilitate the
verification of the distributed shares, the dealer also broadcasts a public com-
mitment vector C = (¢g, ¢1,- .., P:—1), Where ¢g is a commitment to the secret
sand, for 1 < i <t—1, ¢; is a commitment to the coefficient a; used to de-
fine the polynomial f(-). Each party verifies the validity of their share using the
commitment vector C. If the verification fails, the signer can issue a complaint
against the dealer and take actions such as broadcasting the complaint to all
other participants.

Commitment schemes. Commitment schemes allow a committer to publish a
value that binds them to a message (binding) without revealing it (hiding).

We review Feldman’s commitment scheme [Fel87] here; the scheme is a triple
of algorithms (Setup, Commit, Open):

— Setup takes a security parameter \ as input and outputs G, a group of prime
order ¢, and a generator g € G.

— Commit takes a message m € F, as input and outputs the commitment
p=g".

— Open takes a commitment ¢ € G and a message m € [F, as input and outputs
1if ¢ = g™ and 0 otherwise.

The commitment scheme used in Feldman’s VSS scheme [Fel87] is uncondition-
ally binding and computationally hiding; there are other schemes, such as Ped-
ersen’s scheme [Ped91a], that are computationally binding and unconditionally
hiding.



ICE FROST Protocol 9

Distributed Key Generation (DKG) [Ped91b]. Distributed key generation
allows a set of parties P = {Py,..., P,} to jointly generate a public and private
key pair without involving a trusted dealer. The public key is publicly known,
while the private key is kept secret and shared via a (¢,n) threshold scheme,
where the shares belong to the parties in P. More precisely, no attacker can
learn anything about the key unless they obtain the corresponding shares from at
least t parties in P. For discrete log—based schemes, a distributed key generation
scheme secretly shares a uniformly distributed value x and makes the value
y = g” public as the public key, where g € G is the generator of G, a group of
prime order gq.

In the DKG scheme presented by Pedersen in [Ped91b], each participant acts
as a dealer of Feldman’s VSS protocol. Each participant selects a secret s; and
generates corresponding shares for all other parties. The protocol then requires
two rounds of communication between all participants: a public communication
round, where each party broadcasts a commitment to s; and the coefficients of
the corresponding polynomial, and a secure communication round, where each
party P; securely sends a secret share of s; to all other participants. After receiv-
ing a share from P;, each participant checks if the received share is consistent
with the previously published commitment. If so, the received share is marked
as qualified. Each participant derives their total share by adding up all the quali-
fied shares they received. The secret shared value s itself is not computed by any
party: however, it is equal to the sum of the shared s;s which passed commitment
checks by all recipients of the shares.

2.2 Zero-knowledge Proofs

Zero-knowledge proofs were introduced in the seminal work of Goldwasser, Mi-
cali, and Rackoff [GMR&9]. Informally, in a zero-knowledge proof system, the
prover wants to convince the verifier that some statement is true, yet, the ver-
ifier should not learn anything from their interaction with the prover beyond
the truth of the statement. In other words, a (potentially malicious) verifier V'
gains no new information from interacting with a prover P on a common input
x, if everything that this verifier V' can compute after interacting with P can
be computed directly from the common input « by an efficient algorithm. Zero-
knowledge proofs not only demonstrate to the verifier the existence of a witness
w for the statement, but additionally prove that the prover knows that witness.
We say that an efficient algorithm A knows a value w if we can construct another
efficient algorithm that takes A as input (for example, by getting the code of A
and its random coins) and outputs w. Such an algorithm is called an extractor
for A.

A typical use case of zero-knowledge proof of knowledge is during authenti-
cation in a secure communication between the server and the client: the server
publishes their public key pk and stores the corresponding secret key sk. The
client can verify that it is talking to the correct server by asking the server to
perform a zero-knowledge proof that it knows the secret key sk corresponding
to pk.
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3-Protocols. Y-protocols, a special class of zero-knowledge proof systems, are
the basis of many efficient zero-knowledge protocols.

Definition 1 (X-Protocol). A X-protocol for a language L is a public-coin
three-move honest-verifier zero-knowledge proof of knowledge, which has the fol-
lowing structure:

1. P sends to V some commitment value r,
2. V sends to P a uniformly random challenge e,

3. P sends to V an answer f(w,r,e), where f is some public function, and w
is the witness held by P.

Fiat-Shamir Heuristic. The Fiat-Shamir heuristic [FS86] is a heuristic method
to convert X-protocols into non-interactive zero-knowledge arguments. It pro-
ceeds as follows: let w be the witness. To prove that a word = belongs to a
language L, the prover P first computes the first flow (the commitment) of a X-
protocol for this statement. Let ¢ denote this first flow. Then, P sets e = H(z, ¢),
where H is some hash function, and computes the last flow of the X-protocol
using e as the challenge. This approach has been proven to be secure in a random
oracle model.

2.3 Schnorr Signature Scheme

A Schnorr signature [Sch89] is generated for a message m, under secret key
s € Zq and public key Y = ¢g° € G as follows:

1. Sample a random nonce k & Z4; compute the commitment R = g* € G.

2. Compute the challenge ¢ = H(R,Y, m), where H : {0,1}* — Z, is a crypto-
graphic hash function.

3. Using the secret keys, compute the response z = k +s- ¢ € Zq.

4. Define the signature over M to be o = (R, 2).

Validating the integrity of m by an identified signer with the public key Y
and the signature o is performed as follows:

1. Parse o as (R, z); derive ¢ = H(R, Y, m).
2. Compute R' =¢*-Y ¢
3. Output 1 if R = R’ to indicate success; otherwise, output 0.

In the random oracle model, the unforgeability of this scheme under chosen-
message attack is reduced to the discrete logarithm problem according to [PS96].

Schnorr signatures can be considered just standard X-protocol proofs of
knowledge of the discrete logarithm of Y, made non-interactive (and bound to
the message m) with the Fiat-Shamir transform [FS86].
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2.4 Threshold Signatures

The initial definition of a (¢, n) threshold signature scheme introduced by Desmedt
in [Des87] has two main properties; i) n participants with a common pub-
lic key can issue a signature even if there are ¢ < n/2 dishonest (cheating)
participants and ii) any ¢ — 1 corrupted participants cannot forge a signature.
These types of signature have been referred to as robust threshold signatures in
[GTKRO96alGIJKRI6D] and t-resilient signatures in [PK96|. Frankel and Desmedt
defined the concept of threshold multisignature schemes in [ED92] and proposed
a threshold multisignature RSA scheme that is non-interactive. Threshold mul-
tisignatures allow any subset of participants of a size larger than the threshold
to produce signatures over a message so that anyone can validate the signature
using the unique public key assigned to the group of n parties. Threshold mul-
tisignatures are referred to as threshold signatures in [GTKR99ISS01/KG20]. We
follow the latter and use a “(¢, n)-threshold signature” to describe these schemes.

Shoup [Sho00] used the “dual-parameter” notion to describe a threshold sig-
nature scheme that allows any subset of sufficient participants to generate a
signature, but that disallows the creation of a valid signature by insufficient
(possibly corrupted) participants or the prevention of signature generation by
uncorrupted participants. In this notion, there is one threshold ¢ for the min-
imum quorum size and another threshold k& < t for the maximum number of
cheating participants. A particular message is signed only if at least ¢t — k honest
participants have authorized the signature. Shoup proposes an RSA threshold
signature scheme for k < ¢ — 1.

The security notion for (¢,n) threshold signature schemes requires unforge-
ability of the scheme. That is, after a distributed generation of the public key, no
polynomial-time adversary who can access a polynomial number of threshold sig-
natures on the messages of their choice and also ¢t —1 corrupted participants, can
produce, with a non-negligible probability, a valid signature under the generated
public key on some new message. Unforgeability in this sense is referred to as
existential unforgeability in the literature [GMRS88|. A weaker notion is universal
unforgeability, where an adversary is supposed to generate a valid signature for
any message. We consider only ezistential unforgeability in this paper.

Definition 2. Let TS = (KeyGen, Sign, Verify) be a threshold signature scheme
with key generation, signing and verification algorithms KeyGen, Sign and Verify,
respectively. TS is called a secure threshold signature scheme if the following
conditions hold:

1. Correctness. Any subset S of participants with cardinality at least t can
produce a valid signature on message M. A wvalid signature is a signature
that will be verified by the Verify algorithm.

2. Unforgeability. Any polynomial-time adversary who sees the protocol’s out-
put (signature) on poly(A) input messages of their choice and can corrupt up
to t—1 players, cannot produce the valid signature o for a message M, which
has not been submitted to Sign before, with probability more than negl()),
where negl(-) is a negligible function.
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Robustness is a desirable property of a (¢,n) threshold signature schemes.
It ensures that a valid signature is generated in the presence of some malicious
participants who seek to break the protocol. For the sake of clarity, further, we
refer to participants who try to forge a signature as corrupted participants. Also,
we refer to participants who try to prevent the generation of a valid signature
as cheating participants. We use ¢ to denote the number of trusted participants
required to successfully run the signature scheme and k to denote the number
of cheating participants. For an integer k, the robustness property is defined as
follows.

(k,n)-Robustness [GIKRIG6H]. Even k out of n cheating participants who
deviate from the protocol cannot prevent honest participants from generating a
valid signature. i.e., both Key Generation and Signing protocols will run success-
fully in the presence of k cheating participants.

We also define (k,n) robustness for a standalone Key Generation and Signing
protocols. The Key Generation protocol of a (¢,n) threshold signature scheme
is (k,mn) robust if even in the presence of k cheating participants, the protocol
outputs a group public key and associated signing and verification keys to each
honest participant such that at least ¢ honest participants can output a valid
signature on a message m using their signing shares during the Signing protocol.
The Signing protocol is (k,n) robust if even in the presence of k cheating adver-
saries, the protocol allows the maximal set of ¢ honest participants who verify
message m to outputs a valid signature on m using the generated signing keys
during the Key Generation protocol.

3 FROST and Its Robustness

The FROST protocol focuses on efficiency rather than on robustness. In the ab-
sence of cheating participants, this approach works efficiently. However, cheating
participants can delay or even stop the execution of FROST by distributing in-
consistent shares among participants. In this section, we start with a review of
the FROST protocol of [KG20] and then introduce mechanisms for dealing with
cheating participants in FROST.

3.1 Flexible Round-optimized Schnorr Threshold Signature

FROST is an efficient Schnorr threshold signature scheme with security guar-
antees. Although the original design of FROST requires a two-round signing
protocol in which each signer sends and receives two messages, it can be opti-
mized to a (non-broadcast) single-round signing protocol with a preprocessing
step. FROST has high efficiency in the absence of misbehaving parties. However,
misbehaving participants can delay the FROST signing algorithm by forcing the
honest parties to re-run the protocol after their misbehaviour is detected.

The FROST protocol consists of two sub-protocols: (i) Key Generation, in
which a group of signers jointly generates a random key that will be used as
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the group’s signing keyﬂ and (i1) Signing, in which any subgroup of users of
cardinality greater than or equal to the threshold can sign a message. The final
signature is generated either by a semi-honest signature aggregator or by any
of the active participants. We briefly review the (¢,n) FROST signature scheme
here for completeness. See [KG20, Section 5] for more information.

-FROST Key Generation Protocol. The key generation protocol of
FROST runs as follows: each participant P;,1 < i < n chooses a secret a;o and
generates a polynomial f(-) of degree t—1 by randomly choosing ¢t —1 other coef-
ficients a;1, ..., a;;—1)- Next, they publish a zero-knowledge proof of knowledge
of a;p and a vector of commitments to every other coefficient of the polynomial
(as1 to a;¢—1y). Publishing the zero-knowledge proof of knowledge of a;o is re-
quired to prevent rogue-key attacks [BBS03| in the setting where ¢ > n/2. The
zero-knowledge proof published by P; is checked by every other participant using
the first component of the commitment vector - the commitment to the shared
secret a;g. If the proof verification fails, the protocol is aborted. Otherwise, P;
calculates the shares of the secret a;g for all the other participants and securely
sends each share to the corresponding participant. Each participant verifies the
share received from P; using the commitment vector and aborts the protocol
if the verification fails. Otherwise, each participant calculates their long-lived
private signing share s; and the corresponding public verification share Y; using
the received shares from every other participant (including their own share). The
group’s public key is calculated using all the commitments to a;o for 1 <i < n.

-FROST signing protocol. The FROST signing protocol consists of two
phases: a preprocessing phase and a single-round signing phase. In the preprocess-
ing phase, each participant P; generates a list of single-use private nonce pairs
and corresponding public commitment shares <((dij,D¢j = gd”'), (eij,EZ-' =
g°7)))7—1, where j is a counter that identifies the next nonce/commitment share
pair available to use for signing and 7 determines the number of nonces that are
generated and their corresponding commitments (D;;, E;;) in a single prepro-
cessing step. P; then publishes their ID id; and the list of commitments.

To sign a message m in the signing phase, a set S of at least ¢ signers is
selected. After this, the signature aggregator (possibly included in S) selects
the next available commitment (D;; = g%, E;; = g%i) for each signer and
outputs B; = ((i, D;, F;))ics. The signature aggregator then sends (m, B;) to
every signer in §. Each participant checks M. If a participant agrees to sign M,
they (i) calculate a binding value p; = Hy(i,m, B;) using a hash function H; ()
for every i € S, (ii) calculate the group commitment R = [],.s D; - (£;)”* and
the challenge ¢ = Hao(R,Y,m) using another hash function Hs(-), and finally,
(iii) calculate the response z; = d; + (e; - p;) + A\i - s; - ¢ to the challenge using
their long-lived key s;, where \; is the Lagrange coefficient for ID ¢ in set S.
The signature aggregator then checks the consistency of z;, reported by each
participant, using (D;, E;) and their public verification share Y;. If the check

! Note that the signing key is never reconstructed. Instead, at the end of the key
generation protocol, each participant receives a long-lived private signing share and
computes a public verification share.
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passes, the group’s response is z = ), . 2 and the group signature on m is
o = (R, z). This signature is verifiable to anyone performing a standard Schnorr
verification operation with Y as the public key (Section .

-Robustness in the FROST protocol. To ensure successful execution of
the FROST protocol without significant loss of efficiency, we define a relaxed
version of robustness property called weak robustness, following the definition
for multisignatures given in Micali et. al. [MOROI]. Let 0 < a < 1; we define
a-weak robustness as follows.

Definition 3 (a-Weak Robustness.). Let TS = (KeyGen, Sign, Verify) be a
(t,n) threshold signature scheme with key generation, signing and verification
algorithms KeyGen, Sign and Verify, respectively. TS is weakly robust if, after
each failure in generating a valid signature on message m (either during Key-
Gen or Sign), the identity of at least one cheating participant is exposed with
probability greater than a.

Proposition 1. An a-weak robust (t,n) threshold signature scheme run by n
players, of which no more than k are malicious and k < n—t, will run successfully
after at most k runs with probability at least o*.

Proof. In each run of TS, at least one cheating participant will be identified
with probability at least a. Let the protocol re-run after excluding the cheat-
ing participant. After no more than k runs, every participant will be excluded,
and the protocol will complete successfully. The probability of identifying all &k
cheating participants is bounded from above by the product of the probalility of
detecting each participant in one run; according to the Bayes’ theorem, that is
k. O

In FROST, cheaters are identified during the signing phase. However, the
scheme, as a whole, is neither robust nor weakly robust, because the key gener-
ation process may abort without exposing any cheating participants. To achieve
weak robustness, we propose to make the key generation phase robust. In this
case, the only event where the protocol fails is during the signing phase and,
since cheating is identifiable in the signing phase, the whole scheme can become
robust. We consider two approaches for making the key generation of FROST
robust, namely, i) using Pedersen’s distributed key generation protocol [Ped91b]
for generating the key, and ii) identifying and excluding cheaters from the key
generation process. We note that, unlike the signing phase, the key generation
phase can continue after cheaters are identified and excluded; therefore, the guar-
antee that we get by enabling cheating identification in the key generation phase
is robustness rather than weak robustness for the Key Generation protocol. How-
ever, the whole scheme is only weakly robust Further, we look into these two
approaches.

3.2 First Approach: Robustness Using Pedersen’s DKG

Weak robustness for FROST can be maintained by modifying the key generation
phase using Pedersen’s DKG in [Ped91b]. This approach for key generation of
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a threshold signature is used in [SSO1I/GJKR99|. The modified KeyGen protocol
of FROST proceed