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Abstract—Publish-subscribe protocols enable real-time
multi-point-to-multi-point communications for many dis-
persed computing systems like Internet of Things (IoT) ap-
plications. Recent interest has focused on adding processing
to such publish-subscribe protocols to enable computation
over real-time streams such that the protocols can provide
functionalities such as sensor fusion, compression, and
other statistical analysis on raw sensor data. However,
unlike pure publish-subscribe protocols, which can be easily
deployed with end-to-end transport layer encryption, it
is challenging to ensure security in such publish-process-
subscribe protocols when the processing is carried out
on an untrusted third party. In this work, we present
XYZ , a secure publish-process-subscribe system that can
preserve the confidentiality of computations and support
multi-publisher-multi-subscriber settings. Within XYZ , we
design two distinct schemes: the first using Yao’s garbled
circuits (the GC-Based Scheme) and the second using
homomorphic encryption with proxy re-encryption (the
Proxy-HE Scheme). We build implementations of the two
schemes as an integrated publish-process-subscribe system.
We evaluate our system on several functions and also
demonstrate real-world applications. The evaluation shows
that the GC-Based Scheme can finish most tasks two orders
of magnitude times faster than the Proxy-HE Scheme
while Proxy-HE can still securely complete tasks within
an acceptable time for most functions but with a different
security assumption and a simpler system structure.

Index Terms—IoT; Security; Privacy; Secure Multi-
Party Computation;

I. INTRODUCTION

Modern interconnected networked systems like Inter-
net of Things are dispersed often requiring a strategic,
opportunistic movement of computation to data, and data
to computation, in a fashion that best suits user appli-
cation needs. Recent developments in IoT enable appli-
cations to use multi-point-to-multi-point communication
by use of the publish-subscribe (pub-sub) paradigm [1].
The publish-subscribe messaging allows multiple data
consumers to connect to streams of real-time data from
multiple sensors. Commonly used examples of pub-
sub protocols are Message Queue Telemetry Trans-
port (MQTT) [2], Advanced Message Queuing Protocol

(AMQP) [3] and commercial pub-sub platform as a
service (PaaS) providers such as PubNub [4] with their
own proprietary protocols and APIs. The key idea behind
pub-sub protocols is the use of a broker as a relay,
which is typically centralized on a cloud server, such as
Mosquitto [5]. Sensors (also called publishers) publish
messages to specified ”topics” that are sent to the broker;
data consumers (also called subscribers) send to the
broker a subscribe request to specified topics and receive
data from the broker. The broker in a traditional pub-
sub system plays primarily a message-forwarding role
with optional extension to client authentication, but this
basic functionality does not serve the emerging need
for data processing in such systems [6]. Enabling data
processing on the broker before forwarding instead of
merely relaying raw data helps provide more meaningful
data derived from raw sensor data and detect potential
anomalies. In some cases, it can also reduce the overall
throughput and improve clients’ energy efficiency. This
is important in IoT environments considering the fact
that most IoT devices are of a low-budget setting. One
of the examples is that PubNub’s BLOCKS [7].

However, as brokers are typically hosted on third-
party servers, adding processing to pub-sub middleman
introduces concerns about security. An application that
wishes to make use of a third-party broker for traditional
pub-sub messaging could use end-to-end encryption to
provide security [8], but with computational functionality
being moved to the server, such encryption is no longer
enough. Additionally, approaches like moving compu-
tation to clients simply do not work when sensitive
individual data has to be aggregated but protected, for
example, building privacy-preserving machine learning
models from sensitive data of medical sensors [9] and
federally aggregating model parameters from multiple
IoT users while preventing information leakage espe-
cially for users with small datasets [10]. To our knowl-
edge, with the exception of proposals [11], [12] to
utilize trusted execution environments, there is no prior
practically implemented protocol that provides secure
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computation on a pub-sub broker for IoT. Given the
security vulnerabilities identified with SGX in recent
years [13], [14], a system based on secure computation
would be more desirable. Such a system has the potential
to dramatically lower the barrier for use of third-party
edge/cloud-based computation, especially for privacy-
sensitive data streams such as data from smart homes and
wearable devices collecting physiological information.
As for reducing cost impact from secure computation
on IoT devices, clients in our system are only required
to encrypt or decrypt data. This overhead is the relatively
cheap part in secure computation and has already existed
in previous pub-sub messaging protocols.
Our Contributions. Our core contributions can be sum-
marized as follows:
1) It is challenging to integrate multi-party computation

into IoT messaging protocols constricted by its pub-
sub structure despite the growing need of intelligent
movement between secure computation and data. We
build a system, XYZ , to bridge this gap.

2) XYZ is a secure publish-process-subscribe system
based on MQTT for IoT applications that can perform
secure multi-party computation on the broker side.
We propose and implement two distinct multi-party
computation schemes with different system construc-
tions and security assumptions. Our system supports
multi-publisher-multi-subscriber settings.

3) The first scheme is based on Yao’s garbled cir-
cuits [15]. We introduce techniques like communi-
cation reduction and seed synchronization to circum-
vent the constraints of traditional pub-sub. We also
provide forward-secure seed for extra security.

4) The second scheme is based on homomorphic en-
cryption [16] and proxy re-encryption [17]. We in-
troduce techniques like key exchange reduction to
mitigate conflicts between proxy re-encryption and
traditional pub-sub structure, and subscriber represen-
tative mechanism to support multi subscribers.

5) We evaluated XYZ on different functions, i.e., mean,
variance, weighted mean, private set intersection and
secure federated learning. The function library in
our system can be easily extended to support more
complex functions. We also provide concrete real-
world IoT applications based on our system.

The rest of the paper is structured as follows: in §II
we provide an overview of our secure publish-process-
subscribe system and its related work; in §III and §IV we
introduce two different schemes (the GC-Based Scheme
and the Proxy-HE Scheme) in our system respectively;
in §V and §VI, we implement and evaluate our system
with concrete real-world applications demonstration.

II. OVERVIEW AND RELATED WORK

A. Overview
Our secure publish-process-subscribe protocol should

handle secure computation on the broker’s side using
encrypted data from publishers and distribute encrypted
processed data to subscribers. Our protocol involves a
publishers, b subscribers and third-party server(s). We
assume a semi-honest adversary A who can corrupt a
certain set of clients and the server(s). A semi-honest
adversary does not deviate from the protocol but tries
to learn as much information as possible. Additionally,
certain collusion is restricted. Our security definition
requires that A only learns the data from corrupted
publishers and final outputs from corrupted subscribers,
but nothing about honest parties’ inputs.
Ideal Functionality. We describe the ideal functionality
as a generic definition of a secure publish-process-
subscribe protocol. Our ideal functionality F interacts
with participating parties as shown in Figure 1.

Initialization
• Each new publisher sends a policy to the broker

specifying allowed computation on its data.
Publish
• Each publisher publishes its data to F . If the data

from a publisher is not received in the given time
period, F marks it as null.

Subscribe
• To subscribe to the computation C, each subscriber

sends a subscription message to the broker containing
requested C.

• The broker sends C and its subscribers to F .
Process
• F determines a subset P ′ ⊂ P of publishers whose

data can be used for C, then sends P ′ to the broker.
• The broker sends back PC whose policies allow C.
• If data of all available publishers in PC is enough for
C, F evaluates it and sends the result to subscribers,
otherwise F sends an empty message to subscribers.

Fig. 1: Ideal World Functionality

Real-World Schemes. Our system adopts two different
multi-party computation schemes using garbled circuits
and homomorphic encryption with proxy re-encryption
respectively with different security assumptions and sys-
tem constructions. This availability of different designs
offers users more choices to better fit specific needs when
constructing secure publish-subscribe-process systems in
practice. The summary of scheme comparison is listed in
Table I. The two schemes have different security assump-
tions. The detailed definitions of A in our two different
schemes will be described in §III and §IV. In terms
of the system complexity, our GC-Based Scheme needs
both the garbler and the broker on third-party servers.
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Even with our reduced communication extension, which
circumvents the direct communication among the garbler
and clients in pub-sub setup, this scheme still requires
the garbler as an independent intermediate party. Addi-
tionally, procedures like key ratcheting and seed synchro-
nization are needed for indirect communication between
clients and the garbler as well as seed sharing for multi-
party support. On the contrary, the broker can act as
a proxy in the Proxy-HE Scheme, which can be easily
constructed on top of standard pub-sub protocols. As a
trade-off, the Proxy-HE Scheme is in general slower.

Scheme GC-Based Proxy-HE

Adversary can’t control both
Garbler and Broker

can’t control both
Broker and Subscribers

System
Complexity needs both Garbler/Broker only needs Broker

Issues seed sharing; data reusability computation overhead
Typical Cost ~10 ms ~1000 ms

*Typical cost is from computing variance with 100 publishers.
TABLE I: Comparison of Two Schemes in Our System

B. Related Work
Secure Pub/Sub System. Previous studies on secure
pub/sub messaging systems have been conducted and
secure pub/sub schemes have been proposed [18], [19],
but these work all focused on the simple pub/sub system
without a computation functionality from the broker.
Cryptographic Primitives & Systems. Our secure
publish-process-subscribe system is related to the work
on garbled circuits [20]–[23] and homomorphic encryp-
tion [24], [25]. However, existing schemes do not di-
rectly fit our real-time publish-process-subscribe system.
Kamara et al. developed two protocols, a covertly secure
protocol that outsources the garbled circuit generation
and a maliciously secure protocol that outsources eval-
uation [20]. Carter et al. also proposed a maliciously
secure protocol that outsources garbled circuit evalua-
tion but uses a new oblivious transfer mechanism to
reduce bandwidth and computation [21]. Bachrach et al.
developed a protocol that allows a set of parties with
data stored in the cloud to compute on encrypted data
using a third-party evaluator [23]. All the work above
attempted to provide a solution to more general cloud
server models using garbled circuits but didn’t address
the issues from the publish-subscribe protocol’s unique
messaging mechanism. Different from how garbled cir-
cuits work, homomorphic encryption [16] allows arbi-
trary computation on encrypted data. Gentry proposed
the first fully homomorphic encryption scheme [24], [25]
followed by several improved schemes, e.g., the BGV
scheme [26]. Dijk et al. showed that privacy-preserving
outsourced computation on data from multiple parties
and supplying output to multiple parties requires, in
addition to homomorphic encryption, access-controlled
ciphertexts and re-encryption [27]. They reduce a scheme

that computes data from two parties and supplies out-
puts to two parties to black-box program obfuscation,
which is hard to accomplish in general. Additionally,
restrictions on parties in the paper make its potential
application less realistic. Nikolaenko et al. proposed a
scalable privacy-preserving system for ridge-regression
combining additive homomorphic encryption and Yao’s
garbled circuits [28]. In their setting, a single evaluator
is interested in learning ridge regression over data of
a large number of data owners without learning the
individual data of data owners. Our system works in
a different way: (a) we don’t want to reveal output
to the evaluator, (b) we support a multi-sub-multi-pub
setting with an extensible function library, and (c) our
data owners, publishers, are oblivious of subscribers and
subscribers are oblivious of publishers.
IoT with Proxy Re-Encryption. We also make use
of proxy re-encryption in our Proxy-HE Scheme. This
scheme, first proposed as a method to delegate de-
cryption rights [17], solves the asynchronous encryption
issue in publish-subscribe protocols where a publisher
might publish its data long before a subscriber subscribes
to a topic without knowing who the subscriber is but
message encryption requires key exchange between these
two parties as the first step. Polyakov et al. proposed
a proxy re-encryption scheme based on homomorphic
encryption to tackle this problem [8]. However, their
work focused on the simple publish-subscribe setup and
did not further address the issue that publishers and
subscribers need to communicate back and forth via
the broker to generate re-encryption keys every time a
communication is established. Our work use their library
but apply it with additional optimization.

III. THE GC-BASED SCHEME

In this section, we describe our scheme designed
with Yao’s garbled circuits. The overall structure of the
scheme is shown in Figure 2. In the real world, F is
replaced by our scheme described in §III-B.

A. Components
Yao’s Garbled Circuits. Yao’s garbled circuits [15]
allows the participating parties to evaluate their pri-
vate inputs in a function even if they do not trust
each other. Yao’s garbled circuits GC, with algorithms
(G,Encode,Eval,D), can be defined as follows [29]:

1) On input circuit c, the garbling algorithm G outputs
a garbled circuit C, encoding e and decoding d.

2) On inputs (e, x), the encoding algorithm Encode
outputs a garbled output X , where x is the original
input. Then the evaluation algorithm Eval takes in
(C,X) and outputs a garbled result Y .

3) On inputs (d, Y ), the decoding algorithm D outputs
the plaintext.
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Fig. 2: Structure of the GC-Based Scheme: two cloud servers but the actual communication between clients and the garbler is via the broker

Reduced Communication Extension. The basic pro-
tocol assumes direct communication with the garbler.
However, the publishers and subscribers in our system
communicate with the garbler only through the bro-
ker. To address this issue, we describe an extension
that allows clients and the garbler to generate wire
labels/masks independently. This ensures our scheme’s
compatibility with a standard publish-subscribe system
where all communication is only through the broker.

Publishers and the garbler share a random seed s and
use a pseudorandom number generator to independently
generate two wire labels for each input bit, circum-
venting wire label exchange between publishers and the
garbler. Similarly, subscribers for the computation C
and the garbler share a truly random seed s′ and use a
pseudorandom number generator to independently gener-
ate output masks, avoiding direct output mask exchange
between subscribers and the garbler.
Seed Synchronization. The above method requires syn-
chronization between clients and the garbler. We adapt
the key ratcheting protocol of Signal, a popular secure
messaging protocol, to generate seeds securely. Ratchet
keys work by advancing a secret key at every round using
the preimage-resistance property of a cryptographic hash
function [30] [31]. At any round, a seed can be derived
from a ratchet key to be used to generate pseudorandom
strings. To maintain synchronization of the ratchet keys
between the clients and the garbler, when sending values,
publishers add the round of the ratchet key to derive
the seeds used to generate the labels in the message.
When the broker requests the garbling of the circuit to
the garbler, it also specifies the rounds of the values it
will use, such that the garbler can advance the ratchet
key accordingly to derive the same seed and generate
matching labels. Similarly, the garbler tells the broker
the function ratchet key round for generating the mask,
such that the broker can forward this information to
subscribers which in turn advance their stored ratchet

keys to derive a matching mask.
Forward-Secure Seeds. While the extension reduces
publishers’ and subscribers’ communication with the
garbler significantly, an adversary stealing a seed s from
a publisher and colluding with the broker compromises
the confidentiality of all of the publisher’s inputs, includ-
ing past, current, and future inputs. Similarly, an adver-
sary stealing the seed s′ for the computation C from a
subscriber and colluding with the broker compromises
the confidentiality of outputs of all executions.

We design an extra procedure that ensures that seeds
are forward-secure, i.e., an adversary stealing a seed
wouldn’t be able to compromise the confidentiality of
any past inputs and outputs. The key ratcheting used in
our scheme can make all seeds s and s′ forward-secure.
An adversary stealing publishers’ seed s or subscribers’
seed s′ would still learn all current and future inputs of
the publisher or outputs for computation C. But once the
adversary compromises target clients, it will learn this
information anyway with or without stealing the seeds.
The detailed protocol can be found in Figure 3.

B. Protocol Design
As shown in Figure 2, the design of our GC-Based

Scheme includes four major parties: publisher(s), the
broker, the garbler, subscriber(s). We first describe the
threat model for this scheme and then explain the de-
tailed design in two different settings: single-publisher-
single-subscriber and multi-publisher-multi-subscriber.
Adversary Model. In the GC-Based Scheme, we have
four parties in GC(a, b): a publishers, the broker, the
garbler and b subscribers as defined.
Definition 1 (The GC-Based Adversary). A semi-honest
adversary AGC can corrupt any subset of b subscribers
and at most a−2 publishers. AGC can corrupt the broker
or the garbler, but not at the same time. In other words,
the broker and the garbler can not collude.
Single-Publisher-Single-Subscriber. To publish a value,
the publisher generates two wire labels w0 and w1 for
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every bit b of the value, sends both labels w0 and w1 to
the garbler, and only wb to the broker; the broker receives
the computation request from the subscriber and requests
the garbler to garble the circuit; the garbler sends the
masked result back to the broker for it to evaluate; the
subscriber unmasks the result from the broker.
Multi-Publisher-Multi-Subscriber. The multi-sub func-
tionality can be realized by the garbler specifying a same
rachet key round number to share the same mask seed
with subscribers of the same computation. Similarly, the
multi-publisher functionality in the GC-Based Scheme
requires that publishers to also have a synchronized
seed for a same set of labels for the same computation.
This synchronization is hard to realize upon publishers’
publishing encrypted data. A work-around would be
the garbler translating labels into one uniform set and
informing the broker to do the same encrypted translation
for wire labels it received from different publishers.

Figure 3 depicts how our GC-Based Scheme works
and the security analysis can be found in Appendix A. .

IV. THE PROXY-HE SCHEME

In the previous section, we construct a secure publish-
process-subscriber scheme using Yao’s garbled circuits,
which requires both the broker and the garbler. Addi-
tionally, our GC-Based Scheme restricts the adversary
to compromising only one third-party server (the broker
or the garbler) at one time while also requiring commu-
nication between the garbler and clients goes through the
broker. However, in the IoT setting where typically IoT
broker services are operated by one single commercial
entity, it is difficult to set up two non-colluding servers.

In this section, we design a Proxy Homomorphic
Encryption (Proxy-HE) Scheme with a simpler structure
and a different security assumption while addressing the
issues discussed above. It also uses proxy re-encryption
to solve encryption issues in secure publish-subscribe
systems. The system structure is shown in Figure 4. In
the real world, F is replaced by our scheme.

A. Components
Homomorphic Encryption. Homomorphic encryption
(HE) [16] is a scheme that allows computation to be
performed on encrypted data without revealing the data
to the computing parties. HE in general, with algorithms
(G,Enc,Eval,D), can be defined as follows:
1) Key Generation Algorithm G outputs a key pair

(Pk, Sk). Encryption Algorithm Enc takes in mes-
sages m1, · · · ,mn and Pk, then outputs C1, · · · , Cn.

2) On inputs (C1, · · · , Cn) and the computation f , Eval-
uation Algorithm Eval outputs the result Cresult.

3) Decryption Algorithm D takes inputs (Sk,Cresult)
and outputs the plaintext result f(m1, · · · ,mn).

Proxy Re-Encryption. Proxy re-encryption (PRE) del-
egates decryption rights [32] that enables ciphertexts

Initialization
• Each new publisher sends the broker a policy speci-

fying allowed computations on its data.
• Each new publisher generates and sends to the gar-

bler a random seed s, which will be used to create
wire labels without interaction.

Subscribe
• To subscribe computation C, each subscriber sends a

subscription request to the broker. If the broker does
not allow a subscriber to learn C’s output, it sends
back an error message.

• Each new subscriber shares a truly random seed s′

with the garbler for masking/unmasking the result.
Publish
• To publish kth value, the publisher generates two

pseudorandom wire labels, w0 and w1, using a seed
s from a pseudorandom number generator (PRNG),
for each bit of the value. w0 is ith and w1 is (i+1)th
numbers in pseudorandom sequence generated using
s, where 2kL ≤ i < 2(k + 1)L with L being the
bit-length of a value.

• For input bit b, the publisher sends wire label wb to
the broker.

Process
• After receiving wb, the broker sends the garbler iden-

tifiers of publishers along with the set of subscribers
allowed to the computation, then requests the garbler
to garble circuit for XOR◦C. XOR is used to mask
the output of the circuit.

• The garbler independently generates input wire labels
using s from each publisher and an output mask r
using s′ for the output.

• The garbler generates a garbled circuit GC for the
circuit XOR◦C using both wire labels for each input
bit, w0 and w1 for a bit b. The garbler uses the mask
r it to mask the output o of C, such that evaluating
GC would result in a masked output o⊕ r.

• The broker evaluates the garbled circuit using wire
labels sent by publishers in set PC , obtains masked
output o ⊕ r, and sends o ⊕ r to all subscribers of
computation C.

• Subscribers in the set SC use r to unmask o.
Forward-Secure Seeds
• Generate a truly random key K0.
• Generate, using pseudorandom function (PRF) with
K0, a pseudorandom seed s0 and a pseudorandom
key for ratchet Round 1. s0 is used for pseudorandom
strings during ratchet Round 0.

• At round i, using PRF with key Ki, generate a
pseudorandom seed si and key for ratchet round i+1.
Seed si is used to generate pseudorandom strings
during ratchet round i.

Fig. 3: The GC-Based Scheme
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Fig. 4: Structure of the Proxy-HE Scheme: only one cloud server which handles both communication and computation

to be decrypted by a secret key that is not paired
with the original public key. PRE, with algorithms
(KG,E,RG,RE,D), can be defined as follows:

1) The standard key generation algorithm KG outputs
a key pair (PkA, SkA) for Party A and another key
pair (PkB , SkB) for Party B. Party A uses PkA to
encrypt the message m with the encryption algorithm
E, which outputs ciphertext CA.

2) The re-encryption key generation algorithm RG takes
the inputs (PkA, SkA, PkB , SkB) and outputs a key
RkA→B for re-encryption. On inputs (RkA→B , CA),
the proxy then applies the re-encryption algorithm
RE and outputs CA→B .

3) Party B applies the decryption algorithm D on inputs
(CA→B , SkB) and get the output m.

In our scheme, publishers can encrypt the data using
their own public key; after proxy re-encryption, sub-
scribers are able to decrypt the ciphertext with sub-
scribers’ secret key. This solves the asynchronization
issue under the traditional publish-subscribe encryption,
allowing publishers to publish messages without the need
to wait for subscribers’ public keys to encrypt their data.
Key Exchange Reduction. Proxy re-encryption would
require that, once a subscriber requests computation,
publishers (also the key authority of themselves) in-
volved in the computation have to receive the public key
from the subscriber and then regenerate a re-encryption
key for re-encrypting the original encrypted data [33].
This introduces the asynchronous communication issue
again under the IoT context and also an additional
communication cost. To solve this problem, we design
key exchange reduction. At the initialization state, the
broker asks all subscribers to upload their public keys.
Then each publisher regenerates a re-encryption key for
each subscriber once they receive subscribers’ public
keys from the broker. The broker maintains a map
between a re-encryption key and its subscriber-publisher
pair. Every time when a new client joins the system, the
broker updates the map. Under this design, whenever a
subscriber requests computation, the broker only needs
to find the re-encryption keys from the map to re-encrypt

the data without going back to the publishers, which
reduces the key exchange communication.

B. Scheme Design
Figure 4 depicts the structure of the Proxy-HE

Scheme, which does not need an extra party (a garbler).
Adversary Model. The Proxy-HE Scheme PHE(a, b)
has a publishers, the broker and b subscribers.
Definition 2 (The Proxy-HE Adversary). A semi-honest
adversary APHE can corrupt both the broker and at
most a−1 publishers, or, APHE can corrupt any subset
of b subscribers and at most a− 2 publishers. It cannot
corrupt the broker and subscribers at the same time.

We believe the assumption that the broker can not
collude with subscribers is acceptable because it is
inevitable that the adversary can obtain a publisher’s raw
data when it controls both the server and subscribers.
Single-Publisher-Single-Subscriber. First, the publisher
publishes encrypted data; the broker re-encrypts the data
using the re-encryption key, and performs computation;
the subscriber requests computation then decrypts results
from the broker using its own private key.
Multi-Publisher. To operate homomorphic encryption,
it is important to have data from all different publishers
encrypted under the same key setting. Luckily, it is viable
to handle this issue using proxy re-encryption. Once the
encrypted data is re-encrypted, the data from different
publishers can be considered as encrypted under the
same key setting even with different re-encryption keys.
Multi-Subscriber. When a group of subscribers request
the same computation, it is wasteful to recompute the
result for each subscriber. It is straightforward that we
can reduce the cost by only computing the result once
then distributing it to all subscribers having the same
request. However, it would be challenging to do so under
the scheme of homomorphic encryption since each sub-
scriber has its own key pair. We noticed that this prob-
lem is similar to the asynchronization problem between
publishers and subscribers but now among subscribers.
Hence, we apply PRE (2 hops) and a key map between
subscribers to circumvent repetitive computation. The
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Initialization
• Each client generates its own pair of public and

private keys.
• Each publisher generates a re-encryption key Pkrp

associated with each subscriber and the broker up-
dates the key map.

• Each subscriber is assigned with a ID number. Each
subscriber works with the broker to generate re-
encryption keys for others subscribers whose ID
numbers are larger than its.

Publish
• Each publisher encrypts its data M using its own

public key and sends its encrypted data along with
a policy specifying allowed computations on its
encrypted data to the broker.

Subscribe
• To subscribe computation C, each subscriber sends

a subscription request to the broker and its public
key Pks. If the broker does not allow a subscriber
to learn C’s output, it rejects the request.

Process
• First Re-Encryption Once the broker approves sub-

scribers’ request, it selects the representative sub-
scriber X with the smallest ID in a group of
subscribers requesting the same C. Then the broker
reencrypts M using Pkrp associated with X.

• The broker performs requested C on re-encrypted
data.

• Second Re-Encryption The broker re-encrypts the
message using Pkrs for each pair of X and one of
other subscribers.

• The broker sends the result of HE operations to
subscribers.

Decryption
• Each subscriber decrypts the message with its own

private key.
Fig. 5: The Proxy-HE Scheme

system selects the subscriber with the smallest ID as
the subscriber representative, and the broker performs
the encrypted computation based on this representative’s
key pair. Before distributing the computation result, the
broker re-encrypts the result for each subscriber using
the re-encryption key associated with the representative
and the subscriber. Each subscriber then decrypts it using
its own private key to get the result. The performance
improvement using our 2-hop-PRE subscriber represen-
tative design compared to repetitive mode (repeating
evaluation for each subscriber) can be found in §VI.

Our final scheme can be found in Figure 5 and the
security analysis can be found in Appendix B.

V. SYSTEM

XYZ is designed to work on top of the standard pub-
sub protocols, such as MQTT. In this section, we discuss
the general system design around MQTT and explain the
different setups for two schemes respectively.

A. General Design
System Implementation Around MQTT. MQTT al-
lows subscribers and publishers to indirectly commu-
nicate with each other via the broker by publishers
publishing data to topics and subscribers receiving it
from topics after subscribing to them. To integrate our
schemes into the MQTT protocol, we require each client
(either publisher or subscriber) to have a device-specific
topic that allows a two-way authenticated communica-
tion between each client and the broker. The broker (and
the garbler in the GC-Based Scheme) will handle the
computation and distribute data. We implement the bro-
ker using Eclipse Mosquitto 1.4.15 [5] and clients using
Eclipse Paho 1.3 in Python [34]. Both of them support
versions 5.0, 3.1.1, and 3.1 of MQTT. We implement
the cryptographic components, namely garbled circuits,
homomorphic encryption and proxy re-encryption in
C/C++. In our system, the Mosquitto broker has to be
configured using access control list file such that certain
topics where publishers publish unprocessed data are
inaccessible to other clients to protect private inputs
from publishers and only authorized subscribers can have
access to certain computation topics.
Supported Functions. We implement five functions in
our system: mean, variance, weighted mean, private set
intersection (PSI) and secure federated learning (SFL).
We will explain the details later in this section.

B. The GC-Based Scheme
Ratchet Keys. In the GC-Based Scheme, to improve
synchronization and security of seeds, we adapt the key
ratcheting protocol which can advance a secret key at
every round and then deriving a seed from a ratchet
key to generate pseudorandom strings. To set up the
ratchet keys, the broker will forward the messages to
the garbler such that clients can establish a ratchet
key with the garbler. This design choice of relaying
messages to the garbler through the broker is important
to maintain the MQTT semantics. However, we need to
add authentication in the MQTT messages using digital
signatures and a key exchange protocol. This way, the
secrets can be shared between the clients and the garbler
via the broker. For publishers, this authenticated key
exchange is used to derive the publisher’s ratchet key.
For every computation subscription from subscribers,
key exchange is performed to derive a key to encrypt
the function ratchet key from the garbler.
Extending Libgarble. Libgarble [35] is a garbling li-
brary written in C. As Libgarble is currently in develop-
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ment, it lacks some functionality which we have to add
in order to build and garble circuits. On the garbling
side, we implement the NOT gate (expressed as the
XOR of the input with 1 to take advantage of the free-
XOR optimization) and the OR gate. We add arithmetic
blocks to be used when building circuits in order to allow
signed fixed-point multiplication and signed fixed-point
division. Based on these implementations, we can build
mean, variance and weighted mean.

C. The Proxy-HE Scheme
PALISADE Setup. We use PALISADE v1.10.5 [33] for
the Proxy-HE Scheme. PALISADE currently provides
three different homomorphic schemes, namely BGV,
BFV and CKKS [36]. BGV is believed to have bet-
ter performance than BFV does [36]. Thus, here we
choose BGV for integer operation and CKKS for real
number operation. Note that PALISADE also has built-
in multi-hop proxy re-encryption. In our evaluation, we
slightly modified the default scheme parameters from
PALISADE for benchmark purposes. The parameter
configuration can be found in Table II.

Scheme BGV CKKS
ring dimension 8192 8192
security level HEStd 128 classic HEStd 128 classic
multi depth 4 3

sigma 3.2 \
plaintext modulus 65537 \
scale factor bits \ 50

batch size \ 8
TABLE II: Scheme Parameter Configuration: to fairly compare BGV
with CKKS, we try to keep ring dimensions and CRT moduli the
same; we choose the base 128-bit security in our evaluation; we also
select the minimum viable values of multi depth for maximum possible
multiplicative depth in our evaluation.

Extending PALISADE. The current PALISADE library
provides basic functions like addition and multiplication.
To better fit our needs, we extend PALISADE to have
functions desired in our system as discussed. More
functions can be included in our system in the future.
We describe our implementation of the functions under
the Proxy-HE scheme as follows:

• Mean In our implementation, we choose between
BGV and CKKS for mean. It is straightforward to
implement mean on CKKS. However, BGV can only
perform secure integer operations such that we cannot
calculate mean by multiplying the sum and the inverse
of n (a real number). This means the computation of
mean on BGV requires the plaintext of n. Thus, a
mean implementation on BGV will leak the number of
publishers involved in the computation. If this number
is not sensitive, we can choose BGV as well.

• Variance and weighted mean Implementing variance
and weighted mean on BGV shares a similar averaging
structure as mean. Thus, the scheme selection for these

two functions is the same as above.
• Private set intersection We use Chen’s algorithm [37]

to construct our PSI (shown in Appendix C). We
currently consider BGV for PSI since CKKS’s approx-
imation property will introduce errors with zero.

• Secure federated learning SFL helps securely aggre-
gate model parameters for federated learning. We use
a similar secure FedAvg structure from [10] in our
current system with CKKS.

Data Transfer. We serialize cryptocontexts, keys and
encrypted data into binary files for data transferring. Dur-
ing the initialization, we create and store cryptocontexts
and corresponding keys on each machine. Then MQTT
transfers encrypted data in binary. The sizes of binary
files are usually 100 kb to 200 kb.

VI. EVALUATION

A. Setup
We have evaluated XYZ on an IoT testbed with 1200

embedded computing nodes. Publishers and subscribers
are run on IoT nodes (Ubuntu 18.04.5 LTS with Dual-
core Intel® Atom™ E3826 and 2 GB of RAM); the
broker/garbler is run on a machine (Ubuntu 18.04.5 LTS
with Intel Core i7-7700 CPU and 16 GB of RAM) with
sufficient computing power. Note that for some functions
we run multiple processes on one node to imitate more
clients.

We have selected five functions of varying complexity
to evaluate the cost of the different schemes discussed
above. We evaluate these functions upon receiving the
values (real number for garbled circuits and CKKS;
integer for BGV) from a variable number of publishers
and sending results to multiple subscribers.

We put the cost into two categories: time cost for the
actual computation and communication cost for the data
transferred between clients and the broker as in the size
of data. Our measured time includes the time of publish-
ers encrypting data, the time of the broker evaluating data
(also the time used for garbling in the GC-Based Scheme
and the time used for re-encrypting data in Proxy-HE)
and the time of the subscriber decrypting results. We use
the data exchanged to show communication costs.

B. Results
In this part, we focus on evaluating our system regard-

ing its multi-publisher-multi-subscriber functionality as
well as its performance using different schemes.

Figure 6 shows the costs for the most relevant steps of
three numerical operations involving a varying number
of publishers with one subscriber requesting the com-
putation. From our results, the GC-Based scheme has a
huge advantage in both time cost and communication
cost as the number of publishers increases while the
difference is not noticeable for a small set of publishers.
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Fig. 6: Microbenchmark Results: here we have the cost on the server of three basic statistical operations (mean, variance and weighted mean).

Fig. 7: Distribution of Costs for Each Step

This is because the most expensive steps of our GC-
Based Scheme are the garbling and evaluation (shown
in Figure 7), which do not change much for multiple
publishers. Using the current version of PALISADE,
CKKS nearly doubles the time cost of BGV, but the
communication costs are close.

To microbenchmark our multi-subscriber functional-
ity, we first test our system on mean function for all
three implementations and also demonstrate the cost
improvement in the Proxy-HE Scheme with our 2-hop-
PRE subscriber representative design. We here only
compare the computation cost since the communication
cost between the broker and the subscribers has a nearly

linear relationship with the number of subscribers. As
shown in Figure 9, under our GC design, the number of
subscribers should not affect the time cost in the view
of the system. For Proxy-HE, our scheme introduces
the cost of additional re-encryption while reducing the
cost from repetitive evaluation. Figure 9 also shows that
our 2-hop-PRE subscriber representative design consid-
erably improves the performance by avoiding repetitive
evaluation operation for each subscriber (re-encryption
is always a lighter operation for complex functions
like PSI). A further improvement could be distributing
the re-encryption overload on the broker side to be
parallel re-encrypting the message on subscribers instead
of the broker doing all the re-encryption (around 20
ms for each subscriber on BGV and around 90 ms
on CKKS but around 102 seconds for the broker with
1000 subscribers). However, this would require each
subscriber to maintain a PRE key map, gets the ID of
the representative and perform the re-encryption, which
adds workload on subscribers.

Figure 8 depicts the performance of PSI and SFL. At
the moment we implement PSI on BGV implementation.
Each publisher has an array with 10 elements. During
the evaluation of PSI, the first publisher’s data will be
computed with the rest of the publishers’ data iteratively.
The cost of PSI in our BGV implementation is nearly
linear against the number of publishers for both types
of costs. We test our SFL on CKKS on a medium-
size convolutional neural network with 10 million pa-
rameters. We compare the cost of SFL in our system
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Fig. 8: Microbenchmarks of PSI (BGV) and FL (CKKS)

Encrypt Evaluate Decrypt Data
26.537 ms 24.361 ms 106.101 ms 1.196 MB
TABLE III: Cost of Contact Tracing in Our System.

to the cost of plaintext FedAvg (GPU comparison runs
on Google Compute Engine backend). The major per-
formance drawback of our sFL is the re-encryption step
because of input data size. Additionally, our SFL can be
seen as an encrypted form of the regular FedAvg with
acceptable approximation loss, thus the performance of
our model is similar to plaintext-trained models.

C. Applications
We prepare concrete applications for IoT scenarios to

show potential practical use of our system. For demon-
stration purposes, we use Proxy-HE Scheme here.
Contact Tracing. During the global pandemic, contact
tracing becomes a promising tool to help identify the
potential patients who might have contact with confirmed
Covid-19 patients and slow down the spread of the
virus. However, privacy is a major concern since the
computation of regular contact tracing can reveal sen-
sitive personal location data. We demonstrate a simple
application using our system that implements PSI for
contact tracing without the need for plaintext location
information. Due to the sensitivity of the subject and
the lack of available public datasets, we wrote a python
program to generate random personal location datasets
for testing purposes. Each person in the dataset has 10
visited locations in the same hour (in real cases the time
granularity can be set to be more accurate).

In this application, we have two publishers (the con-
firmed patient and the potential contact) with IoT devices
recording their location data. These IoT devices, for
example, can be smartwatches and smartphones. The
broker can be public health authorities providing ser-
vice. The broker receives the encrypted location data
from publishers, performs PSI on the data and returns

(1) Cost of Multi-Sub Functionality on Different Schemes

(2) Multi-Sub Functionality in Proxy-HE: 2-Hop PRE vs Repetitive Mode 

Fig. 9: Microbenchmarks of Multi-Subscriber Functionality: (1) cost
comparison between different schemes demonstrated using mean func-
tion; (2) performance improvement with 2-hop-PRE subscriber repre-
sentative design compared to repetitive mode demonstrated using BGV.

Statistics BGV CKKS BGV CKKS
Mean 47.0 ms 173.6 ms 115.1 MB 77.2 MB
Variance 2543.7 ms 4485.8 ms 115.2 MB 77.2 MB

TABLE IV: Cost Required to Evaluate Different Statistical Measures
of the Parking Lot Dataset.

whether two publishers have been in contact with each
other. In Table III, the cost of PSI requires adequate
computational resources on authority servers.
Daily Statistics of Parking Lots. In this application,
we are interested in obtaining daily statistics of the
parking lots without revealing private data at fine time
granularity. For this scenario, we have one publisher for
one lot, which will be sending the current number of
free and occupied spots. We use the live status of the
parking lots of a major airport [38] as our dataset. In
particular, the airport provides updates of the number of
occupied and free parking spaces for each one of the 9
parking lots every 5 minutes. This makes a total of 288
published values per day per parking lot.

We simulate the scenario by running it 288 times.
The broker will accumulate the data from each day and
compute the daily mean and variance for each day. From
these statistics, we can have an understanding of the
parking lot’s operation state from a daily perspective
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without invading detailed data. The cost for such an
application is shown in Table IV.

VII. CONCLUSION

We present XYZ , a secure publish-process-subscribe
system with two multi-party computation schemes, i.e.,
the GC-Based Scheme and the Proxy-HE Scheme with
different security assumptions and system constructions.
To properly fit constraints from the traditional publish-
subscribe structure, we also propose optimizations such
as reduced communication extension and seed synchro-
nization in the GC-Based Scheme and key exchange
reduction along with multi-subscriber support in the
Proxy-HE Scheme. Without the need for two third-
party servers, our Proxy-HE Scheme has less system
complexity than the GC-Based Scheme does, but yields
larger overhead due to the time-consuming homomorphic
encryption. Additionally, our system supports multiple
publishers and multiple subscribers as well as provides
an extensible library of several functions.

Our secure publish-process-subscribe system starts the
conversation on integrating secure computation into IoT
systems, but future work needs to be further considered
such as adding support for a distributed set of brokers.

APPENDIX

A. Security Analysis for The Garbled Circuits Scheme
Definition 3 (UC-Security-GC). Our protocol πGC se-
curely realizes F in the presence of AGC in the real
world, if there exists a simulator S in the ideal world
such that for all inputs, probability distributions of the
ideal world and the real world are indistinguishable.

We describe a simulator S that simulates the view of
the adversary AGC in the ideal world to prove that our
scheme guarantees both correctness and security.
S receives from F the number of publishers |PC |

whose policy allows computing C on their data. S cre-
ates 2l|PC | number of random wire labels (r00, r

1
0), . . . ,

(r02l|PC |−1, r
1
2l|PC |−1), where l being the bit-length of

publisher inputs. We use a blackbox garbled circuit simu-
lator from the projective prv.sim secure garbling scheme
with circuit M ◦ C being the side information [39].
S receives F(M◦C, x⃗C) from F , where M is an XOR

masking function. S sends F(M ◦C, x⃗C) to the garbled
circuit simulator and obtains a fake garbled GCfake.
S generates a random string or of the same length as
output. S sends (GCfake, r

0
0, . . . , r

0
2l|PC |−1, or) to the

adversary. As garbled circuits distribution is independent
of the input wire labels, GCfake is computationally
indistinguishable from the GC in the real execution. The
random output or in ideal execution is indistinguishable
from o+ r in the real execution.

In the ideal world, S creates a fake garbled cir-
cuit. This fake garbled circuit doesn’t use wire labels

(r00, r
1
0), . . . , (r

0
2l|PC |−1, r

1
2l|PC |−1) for garbling. Other-

wise, the adversary could use r00, . . . , r
0
2l|PC |−1 labels

to evaluate the circuit on 0l|PC |, which would allow it
to distinguish between real and ideal executions.

The view of S in the ideal world is indistinguishable
from the view that AGC has in the real world execution.

B. Security Analysis for The Proxy-HE Scheme
Definition 4 (UC-Security-PHE). Our protocol πPHE

securely realizes F in the presence of APHE in the real
world, if there exists a simulator S in the ideal world
such that for all inputs, probability distributions of the
ideal world and the real world are indistinguishable.

Our scheme guarantees both correctness and security.
Correctness. The correctness of our scheme is built
on the correctness of HE and PRE [8], [25]. Our
scheme PHE = (KG,RG,Enc,RE,Eval,Dec) can
be proven correct: for all (Pk, Sk) ← KG(1λ) with
the security parameter 1λ, Rk ← RG(PkB , SkA), all
functions f and messages m in the message space M ,

Pr[Dec(Sks, RE(Reks, Eval(f,RE(Rek1,

Enc(Pk1,m1)), · · · , RE(Rekn, Enc(Pkn,mn)))))

= f(m1, · · · ,mn)] = 1.

Privacy. As mentioned before, we do not consider the
collusion adversary scenario where the compromised
broker is able to collude with subscribers. Specifically,
we assume the compromised broker has no access to any
subscriber’s secret key. We describe a simulator S that
simulates the view of the adversary APHE .

In the real world, when APHE compromises both
the broker and a subset of publishers and subscribers,
the bound of the number of publishers allowed to be
compromised is a−1. This means that if there is only one
honest publisher and the rest are all controlled by APHE ,
that honest publisher’s input is unknown to APHE due
to the fact APHE does not have access to any private
key that can decrypt the data. In the case where APHE
compromises both any subset of the subscribers and a
subset of publishers, the bound of the number is a− 2.
APHE has the final plaintext output of the computation
and the rest of a − 2 publishers’ inputs but is unable
to infer the values of the 2 honest publishers’ inputs.
In the ideal world, S submits compromised publishers’
inputs but learns nothing about the honest publishers’
inputs. S’s view in the ideal world is indistinguishable
from APHE ’s view in the real world.

C. Implementation of Private Set Intersection on BGV
This appendix shows the PSI algorithm we use in

BGV.
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Algorithm 1: Private Set Intersection
Input: Two lists of items A and B
Output: Indices of intersection items
initialization;
Encrypt(A);
Encrypt(B);
while i < len(B) do

sample a random non-zero plaintext element
ri;
temp1 = EvalSub(Bi, A0);
temp2 = EvalSub(Bi, A1);
Ci = EvalMult(temp1, temp2);
while j < len(A) do

Ci = EvalMult(Ci, EvalSub(Bi, Aj));
j++;

end
Ci = EvalMult(ri, Ci);
i++;

end
Decrypt(C);
while i < len(C) do

Compare(Ci, 0);
end

Algorithm 2: Secure FedAvg
Input: A list of model parameters from n

learners P and a scailingfactor array s
Output: Aggregated model parameters C
initialization;
Encrypt(P );
while i < n do

temp = EvalMult(Pi, Si);
C = EvalAdd(C, temp);
i++;

end
Decrypt(C);
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