
Multi-Issuer Anonymous Credentials Without a Root Authority

Kaoutar Elkhiyaoui, Angelo De Caro, and Elli Androulaki

IBM Research - Zurich
{kao, adc, lli}@zurich.ibm.com

Abstract. The rise of blockchain technology has boosted interest in privacy-enhancing technologies, in
particular, anonymous transaction authentication. Permissionless blockchains realize transaction anony-
mity through one-time pseudonyms, whereas permissioned blockchains leverage anonymous credentials.
Earlier solutions of anonymous credentials assume a single issuer; as a result, these solutions hide the
identity of users but still reveal the identity of the issuer. A countermeasure is delegatable credentials, which
supports multiple issuers as long as a root authority exists. Assuming a root authority however, is unsuitable
for blockchain technology and decentralized applications. This paper introduces a solution for anonymous
credentials that guarantees user anonymity, even without a root authority. The proposed solution is secure
in the universal composability framework and allows users to produce anonymous signatures that are
logarithmic in the number of issuers and constant in the number of user attributes.

1 Introduction

With the advent of blockchain technology, demand for efficient and practical anonymous transaction authen-
tication has surged. Blockchain applications require all participants to verify whether the author of a given
transaction is authorized to update the state of the shared ledger or not. When this verification leaks the
identity of the transaction origin, this puts at risk the privacy of blockchain users. Permissionless blockchains
tackle this issue with one-time pseudonyms. Permissioned blockchains, on the other hand, are expected to recon-
cile transaction anonymity with user accountability, making one-time pseudonyms inadequate. In other words,
users should be able to sign transactions with their long-term identities, but at the same time, preserve their
anonymity.

Anonymous credentials [10, 8] are cryptographic primitives that grant users the ability to sign messages
and prove statements about themselves, without revealing their long-term identities. As such, they can be
used to authenticate blockchain transactions anonymously. For example, Hyperledger Fabric [1] uses IDemix
[2] – an implementation of the solution described in [9], to ensure that only users with certified identities and
certain properties can submit transactions. Central to anonymous credentials is a trusted issuer that produces
credentials for users. A credential is a signature from the issuer on a secret key and a set of attributes describing
user properties. To sign messages anonymously, users leverage zero-knowledge proofs to demonstrate that they
have received a valid credential from the issuer and that they know the corresponding secret key. These proofs
can be extended so that users prove statements about themselves while signing messages.

Although these techniques protect the privacy of users in the single-issuer setting, they fall short in settings
with multiple issuers; as the signature of a user reveals the public key of her issuer [10, 8, 4]. A workaround
is delegatable credentials [3, 7, 13]: these allow a trusted root authority to delegate issuing capabilities to a
multitude of issuers in such a way that the resulting anonymous signatures only reveal the public key of the
root authority and nothing else.

A trusted root authority, however, contradicts the decentralization property inherent to blockchain technol-
ogy and its applications. Ideally, blockchain issuers are independent participants and users are free to choose
any issuer without undermining their privacy.

We present, in this paper, a solution for anonymous credentials that supports multiple issuers without a root
authority. We use one-out-of-many proofs to prove that a user was issued a credential by one of the authorized
issuers, and we leverage zero-knowledge proofs to show that the user knows the secret key corresponding to
the credential. We define an ideal functionality that captures the requirements of anonymous credentials in the
multi-issuer setting, and demonstrate that the proposed solution is secure in the universal composability (UC)
framework. We also show that the solution is designed with performance in mind: the size of user signatures is
logarithmic in the number of issuers and does not depend on the number of user attributes.

Summary of Contributions. The contributions of this paper are two-fold:

– A formalization of the security requirements of multi-issuer anonymous credentials in the universal compos-
ability framework.

– A solution for multi-issuer anonymous credentials without a root authority, which is UC-secure and whose
size is logarithmic in the number of issuers and constant in the number of user attributes.

Outline. The paper is organized as follows: Section 2 introduces ideal functionality F that formalizes the security
requirements of multi-issuer anonymous credentials. Section 3 presents the building blocks whereas Section 4
describes the solution. The security analysis can be found in Section 5. Finally, Section 6 summarizes related
work and Section 7 concludes the paper.

Let I = {I1, ..., IN} denote the set of authorized issuers and ATT = {att1, ..., attL} denote the set of admissible
attributes.
Let Cred and Sig be two empty maps.

– Enrol. On input (Enrol, U,A) from issuer I, with
A = {a1, ..., aL} being values of attributes ATT =
{att1, ..., attL}, proceed as follows:

1. If I is honest and Cred[(U, I)] 6→ nil, then re-
ject. (An honest issuer will enrol a user only
once).

2. Output (Enrol, U, I) to S and wait for response
EnrolEND.

3. Set Cred[(U, I)]← A.

4. Output EnrolEND to I.

– Sign. On input (Sign,m,A′) from some user U , pro-
ceed as follows:

1. If all issuers are honest and if @ A ←
Cred[(U, Ii)] such that A 6⊃ A′, then reject.

2. Send (Sign,m,A′) to S and wait for response
(SignEND, ψ).

3. If Sig[ψ] 6→ nil, then reject.
4. Set Sig[ψ]← 〈m,A′〉.
5. Output (SignEND, ψ) to U .

– Verify. On input (Verify, ψ,m,A′) from party P ,
proceed as follows:
1. If Sig[ψ] → 〈m,A′〉, then output

(Verified, true) to P (completeness).
2. Else if all issuers are honest and all users with

attributes A such that A′ ⊂ A are also honest,
then output (Verified, false) to P (unforge-
ability).

3. Else query S with message (Verify, ψ,m,A′)
and output response (Verified,bool).

Fig. 1. Ideal functionality F for multi-issuer anonymous credentials

2 Security Definition

2.1 Universal Composability

We formalize the security of multi-issuer anonymous credentials in the universal composability (UC) framework
[11], which follows the simulation paradigm. More specifically, we define an ideal functionality F that captures
the security and privacy guarantees of multi-issuer anonymous credentials in the ideal world, where honest parties
are restricted to communicating their inputs to F and obtaining from F the corresponding outputs. The UC
framework assumes an environment Z that provides inputs to protocol participants and receives their outputs.
The security of a protocol Π is hence defined with respect to the capability of Z to distinguish between ideal-
world executions and real-world executions. A real-world execution is an execution of protocol Π in the presence
of an adversary A, who controls the network, corrupts parties and freely communicates with environment Z.

More formally, we say that a protocol Π securely realizes ideal functionality F iff, for every adversary A in
the real world, there is a simulator S in the ideal world such that Z cannot distinguish the real world (where A
interacts with Π) from the ideal world (where S interacts with F). In other words, Π offers the same security
guarantees as F. Now, given that F is secure by construction, the security of Π follows.

Security in the UC frameworks guarantees composability; that is, it ensures that security is preserved even
when running multiple instances of protocol Π in parallel.

2

The following section defines ideal functionality F, which reflects the security properties of multi-issuer
anonymous credentials in the static corruption model.

2.2 Ideal Functionality F
We define ideal functionality F with respect to a set of authorized issuers I = {I1, ..., IN} and a set of admissible
attributes ATT = {att1, ..., attL}. Issuers produce credentials for users who hold a set of attribute values
A = {a1, ..., aL} each, such that ai is the value of attribute atti. A user U with credentials from one of these
issuers is able to anonymously sign messages; whereas all other participants are able to verify the signatures. F
accommodates these operations by exposing three interfaces Enrol, Sign and Verify, which the participants
call to communicate with F (cf. Figure 1).

Enrol Issuer I ∈ I enrols user U by calling F with message (Enrol, U,A). F in turn notifies simulator S that
an enrollment of user U by I is taking place. If S agrees to the enrollment, then F sets Cred[(U, I)]← A.

Sign User U signs a message m while disclosing attributes A′ = {a′1, ..., a′n} by sending a request (Sign,m,A′)
to F. If all issuers are honest and U does not have a credential for attribute values A such that A′ ⊂ A, then F
rejects the signature request. Otherwise, F forwards the signature request to S, and in return, receives a string
ψ. Next, F checks if Sig[ψ] is empty, and if so, sets Sig[ψ]← 〈m,A′〉.

Verify Finally, to verify a signature ψ on message m relative to attribute values A′, a party P calls F with tuple
(Verify, ψ,m,A′). If ψ was originally generated for (m,A′), then F returns true (this reflects completeness).
If not, and if all the issuers are honest and all users with attributes encompassing A′ are also honest, then
F returns false (this captures unforgeability). Otherwise, F sends tuple (Verify, ψ,m,A′) to S. S responds
with a Boolean bool that F outputs in turn.

3 Preliminaries

Notation Let G1, G2 and GT be three cyclic groups of large prime order q, such that an efficient bilinear pairing
e : G1 × G2 → GT exists. Let g and g̃ be random generators of G1 and G2 respectively. Let H : {0, 1}∗ → Fq
denote a cryptographic hash function.

In the remainder of the paper, lower-case letters in bold font refer to group elements in G1 and G2. Group
elements with tilde on top refer to elements in G2 whereas upper-case letters in bold font refer to sets.

Finally, we denote by Λ the tuple (q,g, g̃, e,H). The cryptographic primitives described in this section all
take Λ as a default input, which we omit for simplicity purposes.

3.1 Groth Signature

Groth signature [18] is a structure-preserving signature that sign vectors of group elements. It consists of four
algorithms Setup, Keygen, Sign and Verify.

– Setup(l) → sp: on input of integer l, Setup randomly selects l random generators (h1, ...,hl) of Gl1 and
returns setup parameters sp = (g, g̃,h1, ...,hl). sp is an implicit input to subsequent algorithms.

– Keygen(.)→ (sk , pk): Keygen randomly selects secret key sk = x ∈ F∗q and computes the corresponding
public key pk = x̃ = g̃x.

– Sign(sk , ~m) → σ: on input of secret key sk = x and vector of messages ~m = (m1, ...,ml) ∈ Gl1, Sign
randomly selects r ∈ F∗q and computes signature σ = (r̃, s, t1, ..., tl) where

r̃ = g̃1/r ; s = (h1g
x)r ; ti = (hxi mi)

r,∀1 ≤ i ≤ l
– Verify(pk , ~m, σ) → bool: on input of public key pk = x̃, messages ~m = (m1, ...,ml) ∈ Gl1 and signature
σ = (r̃, s, t1, ..., tl), Verify checks whether the following equations hold:

e(s, r̃) = e(h1, g̃)e(g, x̃) ;

e(ti, r̃) = e(hi, x̃)e(mi, g̃) ,∀ 1 ≤ i ≤ l ;

If so, then Verify returns bool = true signifying that the signature is valid; otherwise, Verify returns
bool = false.

3

3.2 Pairing-based Accumulators

Pairing-based accumulators (PACC) operate in pairing groups and comprise the following algorithms.

– CRSGen(L) → acrs: given the maximum number of values that can be accumulated L, CRSGen picks

a random number z in F∗q and outputs acrs = (g,gz, ...,gz
L

, g̃, g̃z, ..., g̃z
L

) = (z0, z1, ..., zL, z̃0, z̃1, ..., z̃L) ∈
GL+1

1 ×GL+1
2 . All subsequent algorithms take acrs as an implicit input.

– Eval(A) → acc: on input of a set A = {a1, ..., aL}, Eval computes polynomial p(X) =
∏L
i=1(X + ai) =∑L

i=0 αiX
i and outputs acc =

∏L
i=0 zαi

i .
– WitGen(A′,A) → ω′: on input of set A′ = {a′1, ..., a′n} and a set A = {a1, ..., aL}, WitGen computes

polynomial q(X) =
∏L
i=1ai 6∈A′(X + ai) =

∑L−n
i=0 βiX

i and outputs witness ω′ =
∏L−n
i=0 zβi

i .

– Verify(A′,ω′,acc) → bool: on input of set A′ = {a′1, ..., a′n}, witness ω′ and accumulator acc, Verify
computes polynomial d(X) =

∏n
i=1(X + a′i) =

∑n
i=0 δiX

i and checks whether e(acc, g̃) = e(ω′,
∏n
i=0 z̃δii).

If so, then Verify outputs bool = true indicating that A′ is accumulated in acc; else Verify outputs
bool = false.

Nguyen et al. [22] showed that these accumulators are collision resistant under the L-strong Diffie-Hellman
(L-SDH) assumption.

Definition 1 (L-SDH Assumption). Let z be randomly-chosen element in Fq and let g and g̃ be two random
generators of G1 and G2 respectively.

We say that L-strong Diffie-Hellman assumption holds, if given (g,gz, ...,gz
L

, g̃, g̃z, ..., g̃z
L

), it is computa-
tionally infeasible to output a pair (c,g1/z+c) ∈ Fq ×G1.

3.3 Elgamal-based Commitments

For consistency purposes, we describe the algorithms underlying Elgamal-based commitments [14] in group G2.

– CRSGen(.)→ ccrs: CRSGen randomly selects two generators ccrs = (g̃, ỹ) ∈ G2. For simplicity, we omit
ccrs from subsequent algorithms.

– commit(m) → (com, r): on input of message m ∈ Fq, commit randomly selects r ∈ F∗q and computes
com = (g̃mỹr, g̃r).

– open(m, r,com)→ bool: on input of message m, randomness r and Elgamal commitment com = (c̃1, c̃2),
open checks if c̃1 = g̃mỹr and c̃2 = g̃r. If so, then open returns bool = true, indicating that com is a
commitment to m. Otherwise, it returns bool = false.

These commitments are perfectly binding and computationally hiding under the Decisional Diffie-Hellman
assumption.

3.4 One-Out-Of-Many Proof

One-out-of-many proof [19] is a public-coin special-honest verifier zero-knowledge proof of knowledge that en-
ables a prover to show that in a vector ~com = (com1, ...,comN) of additively-homomorphic commitments, there
is a commitment comi that opens to 0. The proof is originally interactive, however thanks to the Fiat-Shamir
heuristic, it can be made non-interactive.

In this paper, we use the variant introduced by Bootle et al. [6], in which commitments comi are computed as
Elgamal ciphertexts. For ease of exposition, we only provide a high-level description of the algorithms underlying
this variant.

One-out-of-many proof (OOMP) involves algorithms:

– CRSGen(.) → ccrs: CRSGen returns two random generators ccrs = (g̃, ỹ). Subsequent algorithms take
ccrs as an implicit input.

– Prove(~com, i, r) → φ: on input of a vector of Elgamal commitments ~com = (com1, ...,comN), an index
i ∈ {1, N} and randomness r ∈ Fq, such that comi = (g̃0ỹr, g̃r), Prove outputs a proof φ.

– Verify(~com, φ) → bool: on input of a vector of Elgamal commitments ~com = (com1, ...,comN) and a
proof φ, Verify returns a Boolean bool. If bool = true, then that indicates that there is a commitment
in ~com that opens to 0.

4

Let R be a binary relation whose membership can be efficiently verified.

Let L be an empty map.

– On input (Prove, pub, w) from some party P such that R(pub, w) = 1, send (Prove, pub) to S.
– On input (ProveEND, ξ) from S, set L[〈pub, ξ〉]← true and send (ProveEND, ξ) to P .
– On input (Verify, pub, ξ) from some party P , proceeds as follows:

1. If L[〈pub, ξ〉]→ nil, then output (Verify, pub, ξ) to S and wait for response (Witness, w). If R(pub, w) =
1, then set L[〈pub, ξ〉]← true; else set L[〈pub, ξ〉]← false.

2. Return L[〈pub, ξ〉].

Fig. 2. Non-interactive zero-knowledge functionality FNIZK parametrized with relation R. Based on the one described
by Groth et al. [20].

3.5 Schnorr Signatures

Schnorr signatures [25] consist of three algorithms Keygen, Sign and Verify.

– Keygen(.) → (sk , pk): upon call, Keygen first picks a generator u ∈ G1, then randomly selects a secret
key v and computes v = uv. Keygen concludes by outputting sk = v and pk = (u,v).

– Sign(sk , pk ,m) → γ: on input of secret key sk = v ∈ Fq, public key pk = (u,v) and message m ∈ {0, 1}∗,
Sign randomly selects f ∈ Fq, computes f = uf , c = H(m, pk , f) and π = f + cv mod q, and returns
γ = (f , π).

– Verify(pk ,m, γ)→ bool: on input of message m, signature γ = (f , π) and public key pk = (u,v), Verify
computes c = H(m, pk , f) and checks if vcf = uπ. If so, Verify returns bool = true, meaning that γ is a
valid signature under public key pk . Else Verify returns bool = false.

3.6 Non-interactive Zero-Knowledge Proofs (NIZK)

For clarity purposes, we introduce notations and definitions related to non-interactive zero-knowledge proofs
(NIZK for short) that we use in our solution.

Let R be a binary relation. For pairs (w, pub) with R(w, pub) = 1, we call w witness (i.e. private input) and
pub statement (i.e. public input).

Accordingly, a NIZK for R is defined by the following algorithms:

– CRSGen(R) → crs: on input of binary relation R, CRSGen outputs a common reference string crs. For
simplicity, we omit crs from the inputs of Prove and Verify.

– Prove(w, pub)→ ξ: on input of pair (w, pub) such that R(w, pub) = 1, Prove outputs a proof ξ.
– Verify(pub, ξ) → bool: on input of public input pub and proof ξ, Verify outputs a Boolean bool.

bool = true implies that ξ is a valid proof relative to public input pub and relation R.

A NIZK is said to be correct if honestly-generated proofs are always accepted by Verify. It is said to be
knowledge extractable if it is infeasible for an adversary with access to an arbitrary number of proofs to produce
a valid proof without access to a valid witness. Finally, we say that NIZK is zero-knowledge if the verification
of valid proofs yields nothing beyond their validity.

For ease of exposition, we introduce an ideal functionality FNIZK (cf. Figure 2) as a stand in for knowledge
extractable NIZK. Details on how to instantiate FNIZK are deferred to Appendix B.

4 Solution

Overview To sign a message m anonymously while disclosing some attributes A′ = {a′1, ..., a′n}, a user first
uses one-out-of-many proof to show that an Elgamal-encrypted public key is the public key of one of the
authorized issuers. Afterwards, the user proves in zero-knowledge that she knows a valid Groth signature under
the encrypted public key on a vector composed of a Schnorr public key and a set of attributes A = {a1, ..., aL}
such that A′ ⊂ A. Finally, the user leverages Schnorr signatures to sign message m while proving knowledge
of the secret key underlying the signed Schnorr public key.

To make sure that the size of users’ signatures do not grow in the number of attributes, we use – similar
to [24], pairing-based accumulators. Note that accumulators enable constant-size proofs of membership that
translates to signatures whose size is constant in the number of attributes.

5

Let

sp = (g, g̃,h1,h2)← Groth.Setup(2) , ccrs ← Elgamal.CRSGen(.) , acrs ← PACC.CRSGen(L)

Let

w = (upk2, ipk i, r, t
′, s, t1, t2,ω

′,acc) (1)

pub = (upk ′,A′,comi, r̃,h1,h2, g̃, ccrs, acrs) such that: upk ′ = (upk ′1, upk
′
2) (2)

Finally, let R be a binary relation such that R(w, pub) = 1 iff

comi ←Elgamal.Enc(ipk i, r, ccrs); (upk ′1, upk
′
2) = (gt′ , upk t′

2)

e(s, r̃) = e(h1, g̃)e(g, ipk i); e(t1, r̃) = e(h1, ipk i)e(upk2, g̃); e(t2, r̃) = e(h2, ipk i)e(acc, g̃);

∀1 ≤ i ≤ m : PACC.Verify(A′,ω′,acc, acrs)→ true;

Fig. 3. Binary relation R

4.1 Description

Our protocol Π for multi-issuer anonymous credentials comprises four phases:

Setup Authorized issuers agree on the set of admissible attributes ATT = {att1, ..., attL} and on the public
parameters (see Figure 6).

Afterwards, each authorized issuer Ii runs Groth.Keygen(.) to produce a Groth signature key pair
(isk i, ipk i) and calls registration functionality FREG to register. FREG accepts the registration request only
if the provided key pair is valid and was not registered before (check Figure 4).

Setup concludes when all authorized issuers are registered.

Let validate be an algorithm that takes as input a key pair (sk , pk) and outputs true if the key pair is a valid
Groth signature key pair and false otherwise.

Let registered and pk be two empty maps.

– On input (register, (sk , pk)) from party P , send (register, P, pk) to S.
– On input of response (OK, P, pk) from S, do:

1. If registered[pk]→ true, then reject.
2. If validate(sk , pk)→ false, then reject.
3. Set pk[P]← pk and registered[pk]← true.
4. Output (RegisterEND, pk) to P .

– On input (Lookup, P) from some party P ′, return (LookupEND, P, pk[P]).

Fig. 4. Registration functionality FREG parametrized with Groth signature.

Enrol At the beginning of this phase, user U produces a key pair (usk , upk) where upk = (upk1, upk2) =
(g,gusk).

U then contacts authorized issuer Ii to obtain a credential that binds public key upk to U ’s attributes
A = {a1, ..., aL}. Accordingly, Ii first checks if U is already enrolled and if public key upk is already registered.
If not, Ii verifies if U actually possesses attributes A = {a1, ..., aL}. If this verification succeeds, then Ii engages
with U in an interactive protocol that allows U to prove knowledge of secret key usk (e.g., U signs a nonce from
Ii using usk and Schnorr signature). If the interactive protocol terminates successfully, then Ii generates U ’s
credential, which corresponds to cred = (usk , upk1, upk2,A, σ) with σ ← Sign(isk i, ~m), ~m = (upk2,acc) and
acc← PACC.Eval(A).

During this phase, U and Ii use functionality FSMT (see Figure 5) to exchange messages securely and
privately (i.e., no one can tamper with or access the content of the exchanged messages).

6

Let S and R denote sender and recipient respectively.
Let m denote the message to be exchanged between S and R.

– On input (Send, R,m) from S:
• If both S and R are honest, then send (Send, S,R) to S.
• Else send (Send, S,R,m) to S.

– On input (Receive, S,R) from S, output (Receive, S,m) to R.

Fig. 5. Secure message transmission functionality FSMT. Based on the functionality in [12].

Sign User U is endowed with a credential cred = (usk , upk ,A, σ) s.t. upk = (upk1, upk2) = (g,gusk),
Verify(ipk i, ~m, σ)→ true for ~m = (upk2,acc) and acc← PACC.Eval(A).

To sign a message m while disclosing attributes A′, U first calls FREG to retrieve public keys {ipk1, ..., ipkN}
of authorized issuers I = {I1, ..., IN}. Then U computes an Elgamal ciphertext comi of public key ipk i and pro-
duces a one-out-of-many-proof φ that demonstrates that comi actually encrypts the public key of one of the au-
thorized issuers. Next, U randomizes public key upk to upk ′ and computes witness ω′ ← PACC.WitGen(A′,A).
U then calls FNIZK to generate a zero-knowledge proof ξ that proves that U knows a tuple (upk2,acc, σ) such
that:

1. σ is a valid Groth signature of ~m = (upk2,acc) under the public key encrypted in comi;
2. A′ is accumulated in acc;
3. upk ′ is a randomization of (g, upk2).

Finally, U computes a Schnorr signature

γ′ ← Schnorr.Sign(usk , upk ′,m||ξ)

We denote ψ the output of this phase. ψ contains encryption comi, Schnorr signature γ′, randomized public
key upk ′, one-out-of-many-proof φ and zero-knowledge proof ξ.

Verify Given a message m, disclosed attributes A′ and a signature ψ, a party P retrieves from ψ signature γ′,
randomized public key upk ′, ciphertext comi, one-out-of-many-proof φ and zero-knowledge proof ξ.

P verifies if γ′ is a valid Schnorr signature of message m||ξ relative to upk ′. If not, then P rejects. Next, P
queries functionality FREG to retrieve the public keys of the authorized issuers. Thanks to φ, P verifies whether
comi is a valid Elgamal encryption of one of the retrieved public keys. If not, then P rejects. Finally, P calls
FNIZK to verify if ξ is a valid zero-knowledge proof of the statement described in Figure 3.

A more formal description of the protocol can be found in Figure 6.

4.2 Performance

Relying on one-out-of-many proofs to show that a user obtained a credential from one of the authorized issuers
results in a proof whose size is logarithmic in the number of issuers. More precisely, one-out-of-many proof yields
4 log(N) elements in G2 and 1 + 3 log(N) elements in Fq), with N being the number of issuers. On the other
hand, The computation and verification of the proof consists of (7 + 2N) log(N) + 2 and 2N + 12 log(N) + 2
exponentiations in G2 respectively. Given that the number of issuers is generally in the order of tens, the
O(N log(N)) complexity will be acceptable for most applications.

Appendix B details how to instantiate FNIZK to guarantee security in the UC framework. The instantiation
relies on Groth-Sahai proofs [21, 15], and accordingly, a user proves that they hold certain attributes by per-
forming 74 and 32 exponentiations in G1 and G2 respectively. The resulting proof consists of 43 and 21 elements
in G1 and G2 and 4 elements in Fq and its Verification corresponds to computing ((11 + 2N) log(N) + 2) ex-
ponentiations in G2 and 69 pairings. Performance however can be further optimized using batching techniques
that reduce the number of pairings in the verification, see [5]. Table 1 summarizes our performance numbers.

Note that if we forgo UC security, then we can use Schnorr proofs instead of Groth-Sahai proofs; this yields
much more efficient proofs (in terms of both proof generation and verification). In [7], Camenisch et al. show
how to extend Schnorr proofs to prove statements about elements in bilinear groups.

In the same vein, the one-out-of-many proof we use can also be replaced by any other primitive that admits
Elgamal-based commitments as input.

7

Let ATT = {att1, ..., attL} denote the set of admissible attributes and I = {I1, ..., IN} denote the set of authorized
issuers.

0. Setup. In the setup phase, issuers in I agree on the system public parameters. These are defined as

pp = (Λ, sp, ccrs, acrs)

whereby Λ = (q,g, g̃, e,H), sp ← Groth.Setup(2), ccrs ← Elgamal.CRSGen(.) and acrs ←
PACC.CRSGen(L).
Issuers also parametrize ideal functionality FNIZK with relation R defined in Figure 3.
Finally, each issuer Ii ∈ I calls FREG to register its Groth signature key pair (isk i, ipk i)← Groth.Keygen(.).

1. Enrol. User U generates a key pair (usk , upk) with upk = (upk1, upk2) = (g,gusk). U then requests, from issuer
Ii ∈ I, a credential that binds upk to her attributes A = {a1, ..., aL} ∈ FL

q .
Ii checks if upk is already registered. If not, then it checks if U actually holds attributes A = {a1, ..., aL}. If
so, it sends a nonce n to U , who responds with γ ← Schnorr.Sign(usk , upk , n). Upon receipt of γ, Ii checks if
Schnorr.Verify(upk , n, γ)→ true. If not, then Ii rejects; else it executes the following:
– run acc← PACC.Eval(A, acrs);
– compute σ ← Groth.Sign(isk i, ~m) for ~m = (upk2,acc);
– output σ to U .

On receiving σ, U computes acc ← PACC.Eval(A, acrs) and executes bool ← Groth.Verify(ipk i, ~m, σ)
for ~m = (upk2,acc). If bool = false, then U rejects the signature; otherwise, she stores credential cred =
(usk , upk ,A, σ).
User U and issuer Ii leverage functionality FSMT to exchange messages.

2. Sign. We assume that user U has a credential cred = (usk , upk ,A, σ) such that σ is a valid Groth signature
under public key ipk i. U signs a message m ∈ {0, 1}∗ and proves that she holds attributes A′ ⊂ A as follows.
– using FREG, lookup the public keys (ipk1, ..., ipkN) of the authorized issuers;
– parse ccrs as (g̃, ỹ);
– pick r ∈ F∗q and compute comi = (c̃i,1, c̃i,2) = (ipk iỹ

r, g̃r);
– for all 1 ≤ j ≤ N , compute com′j = (c̃j,1, c̃j,2) = (c̃i,1/ipk j , c̃i,2);

– run φ← OOMP.Prove(~com
′
, i, r, ccrs) for ~com

′
= (com′1, ...,com

′
N);

– pick t′ ∈ F∗q and compute upk ′ = (upk ′1, upk
′
2) = (gt′ , upk t′

2);
– parse Groth setup parameters sp from public parameters pp as (g, g̃,h1,h2);
– parse σ from cred as (r̃, s, t1, t2) ∈ G2 ×G3

1;
– compute ω′ ← PACC.WitGen(A′,A);
– call FNIZK with (Prove, pub, w) where w and pub are defined in Figure 3, Equations (1) and (2), and satisfy

relation R (this results in proof ξ);
– compute γ′ ← Schnorr.Sign(usk , upk ′,m||ξ);
– finally, output message m, attributes A′ and the corresponding signature ψ = (upk ′, γ′,comi, φ, r̃, ξ)

3. Verify. In the verification phase, a verifier who is given message m, attributes A′ and signature ψ executes
the following steps:
– parse ψ as tuple (upk ′, γ′,comi, φ, r̃, ξ);
– run bool← Schnorr.Verify(upk ′,m||ξ, γ′); if bool = false, then reject;
– parse comi as pair (c̃1, c̃2);
– using FREG, lookup the public keys (ipk1, ..., ipkN) of the authorized issuers;
– for all 1 ≤ j ≤ N , compute com′j = (c̃j,1, c̃j,2) = (c̃1/ipk j , c̃2);

– run bool← OOMP.Verify(~com
′
, φ, ccrs) for ~com

′
= (com′1, ...,com

′
N); if bool = false, then reject;

– else, call FNIZK with (pub, ξ) (where pub is defined in Figure 3 – Equation (2)) and output the response.

Fig. 6. Protocol Π for multi-issuer anonymous credentials.

8

Signature Generation Signature Verification Signature Size Assumptions

68 exp in G1 + 2N + 12 log(N) + 2 exp in G2 37 G1 + DDH +
(7 + 2N) log(N) + 40 exp in G2 69 pairings (27 + 4 log(N)) G2 + L-SDH +

(5 + 3 log(N))Fq Random Oracle

Table 1. Performance numbers of anonymous credentials without a root authority. We do not account for the cost
incurred by the Schnorr signature. In terms of size, Schnorr signature adds 1 element in Fq and 3 elements in G1. In
terms of proof generation and verification, it adds 3, respectively 2, exponentiations in G1.

5 Security Analysis

In this section we prove the main theorem of the paper.

Theorem 1. Protocol Π realizes ideal functionality F.

We use a series of indistinguishable games (Game 0 to Game 6) to prove that environment Z cannot
tell apart the real world (where it interacts with protocol Π) and the ideal world (where it interacts with
functionality F and simulator S).

Game 0 corresponds to an execution of protocol Π in the real world whereas Game 6 describes the
interactions of the participants with ideal functionality F. Game 1 and Game 2 allow S to run Π on behalf of
the honest parties, while Game 3 introduces a dummy functionality F ′ that we gradually update in subsequent
games so that we end up with functionality F in Game 6.

Game 0. This corresponds to an execution of protocol Π.

Game 1. Simulator S simulates hybrid functionalities FREG, FSMT and FNIZK correctly. This is equal to Game
0.

Game 2. Simulator S runs protocol Π on behalf of all honest parties. That is, S receives the inputs of honest
parties, and correctly, generates the corresponding outputs. This is indistinguishable from Game 1.

Game 3. Simulator S works together with a functionality F ′ to execute protocol Π on behalf of honest parties.
F ′ is a dummy functionality that forwards inputs from the honest parties to S and S’s outputs to the honest
parties. S acts as before except that it sends its outputs to F ′ instead of sending them directly to the honest
parties.

Game 4. Functionality F ′ handles Enrol queries from honest issuers the same way as functionality F. If the
user is honest, S does not learn the attribute values of the user. As a result, S uses dummy values to simulate
Π. Since the user and the issuer use FSMT to communicate, this change is not detected by environment Z. If
the user is corrupt, then S learns the values of the attributes and can use these to run protocol Π.

Note that S is able to emulate honest issuers for protocol Π thanks to FREG. The latter enables S to extract
the secret keys of the issuers at time of registration.

Game 5. Functionality F ′ takes care of Sign requests (Sign,m,A′) from honest users. If all issuers are honest,
then F ′ checks if the user is allowed to sign the message relative to the disclosed attributes A′. If not, then F ′
aborts.

If the user is allowed to sign the message or one of the issuers is corrupt, then F ′ forwards request (Sign,m,A)
to S.

Upon receipt of the signature request, S emulates one of the authorized issuers and generates a credential
cred for attributes A such that A ⊃ A′.

Now using cred, S produces a valid signature ψ on message m relative to the disclosed attributes A′. S
outputs ψ to F ′, which in turn records it and outputs it to the user.

This game is indistinguishable from a Game 4 except for the following:

9

1. F ′ aborts when all issuers are honest and the user was never issued a credential for attributes A′. Since
the user is honest, this never happens: an honest user will not request a signature for a message m under
attributes A′ unless she received a valid credential for those attributes.

2. S generates a new credential for the user every time it receives a signature request – leveraging an arbitrary
issuer. In Game 4 though, this is not the case: S reuses the credentials of the user to compute the signatures.
Thanks to the semantic security of Elgamal, the encryption of the public key of the issuer does not reveal
which issuer was used to produce the credentials. Moreover, under decisional Diffie-Hellman assumption, the
randomized public key in the signature does not leak any information about the original public key of the
user. Moreover, the witness indistinguishability of one-out-of-many proofs, Schnorr signatures and FNIZK

guarantees that environment Z cannot tell which credential was used to sign the message.
In particular, Z cannot distinguish between the case where the credential is reused and the case where it is
produced afresh.

From (1) and (2) we conclude that Game 4 and Game 5 are indistinguishable.

Game 6. In this game, functionality F ′ handles Verify requests (Verify,m,A′, ψ) as follows:

1. If one of the issuers is corrupt, F ′ forwards (Verify,m,A′, ψ) to S, which then runs Π to verify if signature
ψ is a valid signature on message m relative to disclosed attribute values A′. S returns the result of the
verification to F ′, which in turn outputs it.

2. If there is a corrupt user with attribute values A such that A ⊃ A′, then F ′ proceeds like (1).
3. Otherwise, F ′ checks if (m,A′, ψ) is recorded locally. If so, then F ′ outputs true; else it outputs false.

Note that in (1) and (2), the output of F ′ is indistinguishable from Game 5. Note also that when F ′ returns
true in (3), Game 5 will correspondingly outputs true. Now what remains to prove is that when F ′ outputs
false, Game 5 also outputs false.

Assume the contrary, that is, there is an adversary A who is able to produce a signature (m,A′, ψ) that
passes the verification following Π but not when calling F ′.

We recall that in this scenario all issuers are honest and that all users with attributes A such that A ⊃ A′

are also honest.
We show in what follows that under the soundness of one-out-of-many proofs and the collision-resistance of

polynomial-based accumulators, this is tantamount to adversary A breaking the unforgeability of either Schnorr
signatures or Groth signatures.

In fact, the soundness of one-out-of-many proof ensures that the commitment comi used in relation R is
an Elgamal encryption of the public key of one of the honest issuers (see Figure 3). Using FNIZK, S extracts
witness

w = (usk , upk2, ipk i, r, t
′, s, t1, t2,acc,ω′)

for relation R and public input

pub = (upk ′,A′,comi, r̃,h1,h2, g̃, ccrs, acrs)

Let Ii denote the issuer with public key ipk i.

– Ii already issued a credential for some user U with public key upk and attributes A such that acc is the
accumulator of A.

1. A′ 6⊂ A: If U generates a valid signature for message m under attributes A′, then U is able to find two
sets A 6= A∗ that accumulate to the same value. (Notice that A′ 6⊂ A and A′ ⊂ A∗). This breaks the
collision resistance of pairing-based accumulators.

2. A′ ⊂ A: This entails that the credential was issued for an honest user U . If the signature was produced
by U , then F will recognize it and output true. If the signature was produced by a corrupt user U∗,
then U∗ is able to impersonate U and generates a valid Schnorr signature γ′ for message m′ = m||ξ,
under the randomized public key upk ′ of honest user U . This breaks the strong unforgeability of Schnorr
signatures (cf. Lemma 1).

– Ii did not issue a credential for attributes A that accumulate to acc. This implies that tuple σ = (r̃, s, t1, t2)
is a valid Groth signature under public key ipk i that was not generated by Ii (i.e. σ is a forgery).

10

This implies that Game 6 and Game 5 are indistinguishable.
Finally, since F ′ = F, this proves that protocol Π realizes F.

Lemma 1. Let pk = (u,v) ∈ G1 ×G1 be a Schnorr signature public key.
If there is an adversary A′ who produces a tuple (pk ′, ξ′,m′, γ′) such that

1. pk ′ = (u′,v′) ∈ G1 ×G1;
2. ξ′ is a knowledge-extractable zero knowledge proof for binary relation R(pub, w) such that pub = (pk , pk ′),

w = t′ ∈ Fq, and R(pub, w) = 1 iff pk ′ = pk t (i.e., (u′,v′) = (ut,vt));
3. γ′ is a valid Schnorr signature of message m′||ξ′ under public key pk ′.

then there exists another adversary A that runs A′ as a subroutine and breaks the strong unforgeability of
Schnorr signature under public key pk.

Proof of Lemma 1 is deferred to Appendix A.

6 Related Work

Anonymous credentials allow users to prove statements about themselves without disclosing their identities.
Early work [10, 4, 8] hides the identity of the user, however, it reveals the identity of the issuer, making them
only suitable for single-issuer settings. A workaround is delegatable credentials[3, 7, 13]: these allow a root
authority to delegate issuing capabilities to intermediate issuers in such a way that proving possession of a valid
credential only reveals the identity of the root authority and nothing else. Yet, in decentralized settings such as
blockchain, it is desirable to enable anonymity without relying on a root authority.

Garman et al. [16] devised a scheme for anonymous credentials that leverages the blockchain to achieve
decentralization. Users submit commitments to their secret keys and attributes to the blockchain and sign
messages by showing that their credential is stored in the blockchain without revealing which one. More precisely,
users produce privacy-preserving proofs of membership using RSA accumulators. The caveat though is that
users are required to keep an up-to-date version of their witness, leading to a work linear in the number of user
commitments albeit spread-out.

Coconut [26] proposes a solution for federated credential issuance. It relies on a blind variant of threshold
Pointcheval-Sanders signatures [23] to allow a group of issuers to collectively generate signatures for users in such
a way that users can sign messages anonymously. The setting targeted by Coconut assumes interaction between
issuers to compute the secret shares, whereas our solution addresses situations where issuers are independent
of each other and never interact.

7 Conclusion

This paper introduces a new solution for multi-issuer anonymous credentials without a root authority. The
proposed solution relies on one-out-of-many proof to allow a user to prove that they received a credential from
one of the authorized issuers without revealing which one exactly. Additionally, it optimizes the size of user
signatures by leveraging Groth signatures and pairing-based accumulators. Finally, the solution is shown to be
secure in the universal composability framework.

11

References

1. https://www.hyperledger.org/use/fabric.
2. https://hyperledger-fabric.readthedocs.io/en/release-2.2/idemix.html.
3. Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Hovav Shacham. Ran-

domizable proofs and delegatable anonymous credentials. In Shai Halevi, editor, Advances in Cryptology - CRYPTO
2009, pages 108–125, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

4. Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-signatures and noninteractive anony-
mous credentials. In Ran Canetti, editor, Theory of Cryptography, pages 356–374, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

5. Olivier Blazy, Georg Fuchsbauer, Malika Izabachène, Amandine Jambert, Hervé Sibert, and Damien Vergnaud. Batch
groth–sahai. In Jianying Zhou and Moti Yung, editors, Applied Cryptography and Network Security, pages 218–235,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

6. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and Christophe Petit. Short ac-
countable ring signatures based on ddh. In Günther Pernul, Peter Y A Ryan, and Edgar Weippl, editors, Computer
Security – ESORICS 2015, pages 243–265, Cham, 2015. Springer International Publishing.

7. Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. Practical uc-secure delegatable credentials with attributes
and their application to blockchain. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’17, page 683–699, New York, NY, USA, 2017. Association for Computing Machinery.

8. Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials. ACM Trans. Inf. Syst. Secur.,
15(1), March 2012.

9. Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based on bilinear maps and efficient
revocation for anonymous credentials. Cryptology ePrint Archive, Report 2008/539, 2008. https://ia.cr/2008/539.

10. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps. In Matt
Franklin, editor, Advances in Cryptology – CRYPTO 2004, pages 56–72, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg.

11. Ran Canetti. Universally composable security: a new paradigm for cryptographic protocols. In Proceedings 42nd
IEEE Symposium on Foundations of Computer Science, pages 136–145, 2001.

12. Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and secure channels. Cryptology
ePrint Archive, Report 2002/059, 2002. https://ia.cr/2002/059.

13. Elizabeth C. Crites and Anna Lysyanskaya. Delegatable anonymous credentials from mercurial signatures. In
Mitsuru Matsui, editor, Topics in Cryptology – CT-RSA 2019, pages 535–555, Cham, 2019. Springer International
Publishing.

14. Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In George Robert
Blakley and David Chaum, editors, Advances in Cryptology, pages 10–18, Berlin, Heidelberg, 1985. Springer Berlin
Heidelberg.

15. Alex Escala and Jens Groth. Fine-tuning groth-sahai proofs. In Hugo Krawczyk, editor, Public-Key Cryptography –
PKC 2014, pages 630–649, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

16. Christina Garman, Matthew Green, and Ian Miers. Decentralized anonymous credentials. Cryptology ePrint Archive,
Report 2013/622, 2013. https://ia.cr/2013/622.

17. Essam Ghadafi, Nigel. P. Smart, and Bogdan Warinschi. Groth–sahai proofs revisited. In Phong Q. Nguyen and
David Pointcheval, editors, Public Key Cryptography – PKC 2010, pages 177–192, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

18. Jens Groth. Efficient fully structure-preserving signatures for large messages. In Tetsu Iwata and Jung Hee Cheon,
editors, Advances in Cryptology – ASIACRYPT 2015, pages 239–259, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

19. Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a coin. In Elisabeth
Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015, pages 253–280, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

20. Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-knowledge. J. ACM, 59(3),
jun 2012.

21. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. Cryptology ePrint Archive,
Report 2007/155, 2007. https://ia.cr/2007/155.

22. Lan Nguyen. Accumulators from bilinear pairings and applications. In Alfred Menezes, editor, Topics in Cryptology
– CT-RSA 2005, pages 275–292, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

23. David Pointcheval and Olivier Sanders. Short randomizable signatures. In Kazue Sako, editor, Proceedings of the
Cryptographers Track at the RSA Conference, volume 9610 of LNCS, pages 111–126. Springer, 2016.

24. Olivier Sanders. Efficient redactable signature and application to anonymous credentials. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, Public-Key Cryptography – PKC 2020, pages 628–656, Cham,
2020. Springer International Publishing.

12

25. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Conference on the Theory and
Application of Cryptology, pages 239–252. Springer, 1989.

26. Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, and George Danezis. Coconut: Threshold issuance selective
disclosure credentials with applications to distributed ledgers. ArXiv, abs/1802.07344, 2019.

13

A Proof of Lemma 1

Let OSign be an oracle parametrized with Schnorr public key pk = (u,v). Upon call with message m, OSign

returns a valid Schnorr signature γ = (f , π).
Let A be an adversary whose goal is to produce a Schnorr signature forgery under public key pk .
Let ORSign be an oracle parametrized with Schnorr public key pk = (u,v). Upon call with message m,

ORSign returns a tuple (pk ′, ξ′,m′, γ′) such that

(1) pk ′ = (u′,v′) ∈ G1 ×G1;
(2) ξ′ is a knowledge-extractable zero knowledge proof for binary relation R(pub, w) such that pub = (pk , pk ′),

w = t′ ∈ Fq and R(pub, w) = 1 iff pk ′ = pk t
′

(i.e., (u′,v′) = (ut
′
,vt

′
));

(3) γ′ is a valid Schnorr signature of message m′||ξ′ under public key pk ′.

Let A′ be an adversary who produces a valid forgery of ORSign, that is, a tuple (pk ′, ξ′,m′, γ′) that verifies
(1), (2) and (3) and which was not output by ORSign.

For ease of exposition, we assume that the participants leverage ideal functionality FNIZK (parameterized
with relation R) to generate the zero-knowledge proofs. This functionality is controlled by adversary A.

To break Schnorr signature, A also simulates a random oracle H and the signing oracle ORSign.

Simulation of H

Let H denote the cryptographic hash used in Schnorr signature under public key pk .
On input (m′||ξ′, pk ′, f ′), query FNIZK with verification request (Verify, (pk , pk ′), ξ′).

– FNIZK returns false: set H(m′||ξ′, pk ′, f ′) to H(m′||ξ′, pk ′, f ′).

– FNIZK returns true: using FNIZK extract t′ such that pk ′ = pk t
′

and output H(m′||ξ′, pk , f ′1/t
′
).

For arbitrary inputs, set the output of the random oracle to a randomly-selected value h.

Simulation of ORSign

On input of message m′ from adversary A′, adversary A proceeds as follows:

– compute pk ′ = pk t
′
;

– call FNIZK to generate proof ξ′ for (pk , pk ′);
– call OSign with message m = m′||ξ′ to obtain signature γ = (f , π);

– return (pk ′, ξ′,m′, γ′) where γ′ = (f ′, π) = (f t
′
, π).

Note that thanks to the simulation of H the output of A′ is indistinguishable from the output of signing
oracle ORSign. In fact, c = H(m, pk , f) = H(m′||ξ′, pk , f ′1/t

′
) = H(m′||ξ′, pk ′, f ′).

Also by construction: uπ = fvc. Hence:

(uπ)t
′

= (fvc)t
′

(ut
′
)π = f t

′
(vt

′
)c

u′π = f ′v′c

This makes γ′ = (f ′, π) a valid Schnorr signature of message m′||ξ′ relative to pk ′ and (pk ′, ξ′,m′, γ′) a valid
output of ORSign.

A’s Forgery

Now A′ outputs a forgery (pk ′, ξ′,m′, γ′) that verifies

(1) pk ′ = (u′,v′);
(2) ξ′ is a valid knowledge-extractable zero knowledge proof for binary relation R relative to public input

pub = (pk , pk ′);
(3) γ′ = (f ′, π′) is a valid Schnorr signature of message m′||ξ′ under public key pk ′.

14

Using FNIZK, adversary A first extracts t′ such that pk ′ = pk t
′
. Given t′, A outputs pair (m, γ) where

m = m′||ξ′ and γ = (f , π) = (f ′
1/t′

, π′).

Notice that, thanks to random oracle H:

Schnorr.Verify(m′||ξ′, pk ′, γ′)→ true

=⇒ Schnorr.Verify(m, pk , γ)→ true

This makes (m, γ) a valid forgery of Schnorr signature under public key pk , breaking hence the strong unforge-
ability of Schnorr signatures.

Notice that Schnorr.Verify(m′||ξ′, pk ′, γ′)→ true entails:

u′
π′

= f ′v′
c

(u′
π′

)1/t
′

= (f ′v′
c
)1/t

′

uπ
′

= uπ = fvc

Note also that

c = H(m′||ξ′, pk ′, f ′) = H(m′||ξ′, pk , f ′
1/t′

) = H(m, pk , f)

B FNIZK Instantiation

We instantiate FNIZK with Groth-Sahai (GS) proofs [21, 15, 17], which are commit-and-prove proof systems
tailored for equations in bilinear groups, and which make use of GS commitments. These can be setup to either
be perfectly hiding (ensuring witness indistinguishability) or perfectly binding (allowing extractability).

For completeness purposes, we introduce in the following, the definitions and notations relevant to GS proofs.

B.1 Groth-Sahai Commitments

We use Groth-Sahai commitments to commit to group elements – either in G1 or G2. For ease of exposition,
we use G as a shorthand for both groups. We present here the instantiation that’s secure under the Symmetric
External Diffie-Hellman (SXDH) assumption.

Definition 2 (SXDH Assumption). Let G1, G2 and GT be three groups that admit an efficient bilinear
pairing e : G1 ×G2 → GT .

We say that SXDH assumption holds if DDH holds in both G1 and G2.

SXDH-based Groth-Sahai commitments consist of the following algorithms.

– Keygen(1κ) → ck : on input of security parameter 1κ, Keygen outputs a commitment public key ck =
(x,y,u,v) ∈ G4.

– commit(w, r, s, ck)→ com: on input of w ∈ G, randomness (r, s) and key ck = (x,y,u,v), commit outputs
com = (xrys,wurvs). A commitment to a value w ∈ Fq is computed by calling commit on input w = gw.

– open(w, r, s, com, ck) → bool: on input of w ∈ G, randomness (r, s), commitment com = (com1, com2)
and key ck = (x,y,u,v), open returns true if com1 = xrys and com2 = wurvs, and false otherwise.

Note that ck can be generated so as the commitments are perfectly hiding. This is achieved by having
generators (x,y,u,v) produced independently of each other. ck in this case is a hiding key. In the case where
(u,v) = (xt,yt) for some t ∈ Fq, the commitment is perfectly binding and ck is a binding key.

Notice that when ck is binding, the commitment corresponds to an Elgamal encryption, and as a result,
anyone with knowledge of the corresponding trapdoor td = t can extract the committed group element.

15

B.2 Groth-Sahai Proofs

Groth-Sahai proofs are designed to prove statements expressed as equations over bilinear groups. In particular,
they allow a prover to produce a NIZK for the following relations:

pub = (x1, ..., xm,y1, ...,yn,h)

~w = (w1, ..., wn,w1, ...,wm)

RG(pub, ~w) = 1 ⇐⇒ h =

m∏
i=1

wxi
i

n∏
i=1

ywi
i

and

pub = (g1, ...,gn,x1, ...,xm,y1, ...,ym)

~w = (w1, ...,wn)

RGt(pub, ~w) = 1 ⇐⇒
n∏
i=1

e(gi,wi)

m∏
j=1

e(xj ,yj) = 1

It is easy to see that RG and RGt
capture R depicted in Figure 3, and as a result, Groth-Sahai proofs can

be used in a straightforward manner to instantiate FNIZK.
For completeness sake, we generically describe the algorithms underlying Groth-Sahai proofs.

– CRSGen(1κ,R) → crs: on input of security parameter 1κ and relation R, CRSGen outputs a common
reference string crs = (ck , ppR) whereby ck is the commitment key of Groth-Sahai commitments and ppR
are relation-dependent public parameters.

– commit(~w, ~r, ~s, ck) → ~com: on input of ~w = (w1, ...,wn) ∈ Gn, vectors ~r = (r1, ..., rn) ∈ Fnq and ~s =
(s1, ..., sn) ∈ Fnq and key ck , commit outputs vector ~com = (com1, ..., comn) where comi ← commit(wi, ri, si, ck).

– Prove(crs, ~com, ~w, ~r, ~s, pub) → ξ: on input of key ck , vectors ~com, ~w, ~r and ~s, and public input pub,
Prove produces a proof ξ.

– Verify(crs, ~com, pub, ξ) → bool: on input of crs, vector ~com = (com1, ..., comn), public input pub and
proof ξ, Verify outputs true if ξ is valid; otherwise, it outputs false. ξ is valid if it proves knowledge of
vectors ~w = (w1, ...,wn), ~r = (r1, ..., rn) and ~s = (s1, ..., sn) such that:

∀ 1 ≤ i ≤ n,open(wi, ri, si, comi, ck)→ true

∧ R(~w, pub) = 1

– TDCRSGen(1κ,R) → (crs, td): on input of security parameter 1κ and relation R, TDCRSGen out-
puts crs = (ck , ppR) and a secret trapdoor td such that ck is a binding commitment key and td is the
corresponding trapdoor.

– extract(crs, td , ~com, pub, ξ) → ~w: on input of crs, trapdoor td , vector ~com = (com1, ..., comn), public
input pub and a valid proof ξ, extract outputs a vector ~w = (w1, ...,wn) ∈ Gn such that R(~w, pub) = 1.

Extractability Note that relation R depicted in Figure 3 mostly involves group elements – either in G1 or G2.
The only exception is the proof of correct randomization of the user’s public key that involves field element
t′ ∈ Fq. As a result, the extraction of t would require commitments to the bit representation of t, which is not

practical. Note that the extraction of t′ is used in proof of Lemma 1 to compute f = f ′1/t
′

= gf to both simulate
random oracle H and compute A’s forgery.

An alternative is to include in signature ψ an Elgamal ciphertext of f and enhance proof ξ to show that the
ciphertext encrypts the correct information.

Let γ′ = (f ′, π′) be the Schnorr signature on m||ξ with respect to randomized public key upk ′ = (upk ′1, upk ′2).

We define relation R̂ that augments relation R as follows: R̂(p̂ub, ŵ) = 1 for ŵ = (w, f, s); p̂ub = (pub, C, f ′),
iff:

R(pub, w) = 1 ∧ f ′ = (upk ′1)f

∧ C ← Elgamal.Enc(gf , s, ccrs)

The new proof allows the extraction of f = gf directly, which is all that is needed to successfully simulate
random oracle H.

16

Malleability Groth-Sahai proofs are malleable, however, the inclusion of proof ξ in the hash of Schnorr signature
γ′ ensures that ξ cannot be tampered with without detection (i.e., ξ becomes non-malleable).

17

