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Abstract—Cryptographic accumulators are a common solution
to proving information about a large set S. They allow to compute
a short digest of S and short certificates of some of its basic
properties, notably membership of an element. Accumulators also
allow to track set updates: a new accumulator is obtained by
inserting/deleting a given element. In this work we consider the
problem of generating membership and update proofs for batches
of elements so that we can succinctly prove additional properties
of the elements (i.e., proofs are of constant size regardless of the
batch size), and we can preserve privacy. Solving this problem
would allow to obtain blockchain systems with improved privacy
and scalability.

The state-of-the-art approach to achieve this goal is to
combine accumulators (typically Merkle trees) with zkSNARKs.
This solution is however expensive for provers and does not
scale for large batches of elements. In particular, there is no
scalable solution for proving batch membership proofs when
we require zero-knowledge (a standard definition of privacy-
preserving protocols).

In this work we propose new techniques to efficiently use
zkSNARKs with RSA accumulators. We design and implement
two main schemes: 1) HARiSA, which proves batch membership in
zero-knowledge; 2) B-INS-ARiSA, which proves batch updates. For
batch membership, the prover in HARiSA is orders of magnitude
faster than existing approaches based on Merkle trees (depending
on the hash function). For batch updates we get similar cost
savings compared to approaches based on Merkle tree; we also
improve over the recent solution of Ozdemir et al. [USENIX’20].

I. INTRODUCTION

Blockchains are decentralized and distributed systems in
which a vast network of nodes maintain, distributed and
replicated, a digital ledger. Core to blockchains is the
maintenance of the global state of the system across its
nodes. This state is usually large and is encoded in data
structures such as an UTXO set (unspent transaction outputs,
intuitively the unspent coins) in Bitcoin and Zcash [1],
[2], the set of account-balances in Ethereum, or the set of
identities in Decentralized Identity (DID) systems (e.g., Iden3,
Sovrin, Hyperledger Indy) [3]–[5]. In these systems executing
a transaction typically involves two steps, one “local” and
one “global”: (i) checking a given property with respect to
the current state (e.g., the transaction is properly signed,

some coins are spendable, some credentials exist), and (ii)
modifying the global state (e.g., updating balances, adding
a credential) and checking its correct update. The validity
checks that are local to the transaction can for example involve
checking a digital signature. Checking against the global state
typically translate into set-membership (x ∈ S) or set-update
(S′ ?

= S \ {x} ∪ {x′}).
Blockchain systems grow through time and so do their

global states (at the time of writing the UTXO set in Bitcoin is
4.6 GB). Verifying this state at scale is a challenging problem:
every user, even one that only “passively” looks at the history
of transactions, must re-execute them and store them to verify
future ones.

A common approach to address this problem is the use
of authenticated data structures (ADS) [6]—Merkle trees [7]
as their most popular and deployed incarnation, or RSA
accumulators [8]–[11]. This idea [12]–[14] splits users into
two groups. More “passive” users (aka verifiers) store only a
succinct digest of the large set. A user proposing a transaction,
on the other hand, has more information on the state (e.g.,
their account information) that it can use to prove either the
membership of some elements, or the correctness of an update,
with respect to the digest. This approach achieves scalable
verification because ADS proofs are succinct, i.e., they are
short and the time to verify is sublinear in the size of the
set, e.g., it is logarithmic in Merkle trees, or constant in RSA
accumulators.

While the efficiency benefits of this approach are clear, there
are two additional challenges emerging in this space. They are
the focus of our work.

1) how to obtain privacy? This is paramount whenever
transactions data cannot be publicly exposed (e.g., to preserve
anonymity or prevent front-running).

2) how to improve throughput? That is, the number of
transactions we can process per unit of time.

The ADS-based approach above falls short on both issues.
First, it generally requires that the global state is public.
Second, it scales poorly when proving many transactions.
Assume we want to batch prove m transactions at once, ADS



either allow membership/update proofs for a single element
only [7], or they have succinct batch proofs but the verifier
must know and receive the elements [15]. This entails at least
an O(m) communication and verification time, affecting on-
chain storage and work.

Both these problems can be solved via the use of zkSNARKs
[16], [17], cryptographic proof systems that enable a prover
to convince a verifier about the veracity of statements of the
form “given a function F and a public input x, there is a
secret w such that F (x,w) is true”. In particular, zkSNARKs
proofs are zero-knowledge and succinct. The former means
that proofs do not reveal any information about the secret w
and give solutions to the privacy challenge. For instance, in
Zcash one proves the existence of a coin that is valid and
part of the UTXO set, without revealing which is the coin so
as to guarantee anonymity of a spend transaction. The other
property, succinctness, means that proofs are short and efficient
to verify, regardless of how much time it takes to execute
F . This gives a solution to the throughput question above.
The idea (known as zk-Rollup [18]) is that an aggregator can:
collect a batch of m transactions; prove that they are valid;
compute the updated global set and the corresponding digest;
and finally broadcast the new digest with a succinct proof that
its update is correct.

If zkSNARKs make verifiers’ life easier, the same cannot
be said for provers. In these applications, the function to
be proven includes the verification algorithm of an ADS
which makes zkSNARK proving extremely expensive in terms
of both computing time and RAM. As of today the most
deployed option is based on Merkle trees [7]. Proving their
verification for a set of size n and a batch of m elements
requires to encode about ≈ m log n hash computations in the
zkSNARK constraint system. Even by using hash functions
that are optimized for zkSNARKs [19], [20], the proving time
degrades very quickly (see section VI). In part, a reason of
this cost is that Merkle trees do not allow batch openings.
RSA accumulators are a promising alternative as they enjoy
constant-size batch proofs for membership and updates [15].
Yet, naively encoding their verification—O(m) RSA group
operations—in zkSNARK constraints is concretely prohibitive
too (≈ 1.8 ·m millions constraints).

To summarize, to the best of our knowledge in the state-
of-the-art there is no scalable solution for succinct zero-
knowledge proofs of batch membership.

The closest works in this area are two recent papers
[21], [22] that efficiently combine RSA accumulators with
zkSNARKs avoiding expensive encodings. Benarroch et
al. [22] propose SNARKs for set-membership (proving that a
committed element is in a large set, of which the verifier knows
an RSA accumulator) but only support membership of a single
element. Ozdemir et al. [21] propose a verifiable computation
for batch updates of sets succinctly represented by RSA
accumulators. Since in RSA accumulators, membership and
updates are expressed through the same algebraic property,
their techniques could be extended to support zero-knowledge
membership. But this would entail a very high cost related to

encoding RSA group operations as constraints. Finally, their
improvements with respect to proving Merkle tree openings
hold beyond a fairly large threshold: 220-elements sets and
batches of ≈ 1, 300 values.

A. Our work

We advance this research line by proposing new techniques
to efficiently use zkSNARKs with RSA accumulators.

Succinct proofs of batch membership. Our first result is a
commit-and-prove [23] zkSNARK for batch membership, that
is: given an RSA accumulator acc to a set S = {x1, . . . , xn}
and a succinct Pedersen commitment cu to a vector of values
(u1, . . . , um), it holds ui ∈ S for every i = 1, . . . ,m.
Thanks to the commit-and-prove feature, our scheme can be
efficiently and modularly composed with other commit-and-
prove1 zkSNARKs [24] in order to prove further properties of
the committed elements, e.g., ∀i : ui ∈ S ∧ P (u1, . . . , um) =
true (P could be for example a numerical range check; see
also our DID application in section VI-B2). We dub our
construction HARiSA2.

Our technical contributions include: a new randomization
method for RSA accumulators witnesses (needed to obtain
zero-knowledge) and a new way to prove the accumulator
verification in zero-knowledge in a SNARK without encoding
RSA group operations in the constraint system. The latter
is based on a novel combination of (non-succinct) sigma
protocols, succinct proof of knowledge of exponent [15], and
zkSNARKs for integer arithmetic.

Succinct proofs of batch insertion. Our second result
concerns succinct proofs for batch insertion, that is: given
two RSA accumulators acc, acc′ to sets S and S′ respectively
and a succinct Pedersen commitment cu to (u1, . . . , um), it
holds that S′ = S ∪ {u1, . . . , um}.3 We build our scheme
for set insertions—dubbed B-INS-ARiSA4—by “scaling down”
our techniques for set-membership, removing zero-knowledge
and simplifying, finally obtaining a solution that is simpler
and faster than our batch-membership scheme. Furthermore,
inspired by [21], we show how to use this scheme to obtain
one for proving MultiSwaps, which in a nutshell means
checking if S′ is obtained by applying a sequence of “swaps”
{(x1, x

′
1), . . . , (xm, x′

m)} (i.e., add x′
i, remove xi) to S—

essentially what we informally referred as set update. As
shown in [21], proving MultiSwaps for accumulated sets
has applications to verifiable outsourcing of state updates,
applicable to Rollups [18] and efficient persistent RAM [25].

Implementation and evaluation. We implement our protocols
and evaluate them experimentally, comparing with the state of
the art. For zero-knowledge batch membership, we compare

1Roughly, the verification algorithm of the zkSNARK takes as input short
commitments to a long (potentially private) input. This property is useful as
the elements for which we prove set membership need to stay private, but
still “referred to”, e.g. for proving additional properties on them.

2HARiSA stands for “elements-Hiding Argument for RSA accumulators”.
3More precisely, our schemes work with multisets.
4For Batch INSertion. It is pronounced as in the word beans.
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our solution with Merkle trees on two benchmarks: one
that considers generic membership operations, and one that
implements a DID application. For batch updates, we compare
our MultiSwap solution with that of Ozdemir et al. [21]
and with Merkle trees. We do the latter comparison via a
cost model analysis based on number of SNARK constraints.
We also validate the case of set membership on a realistic
application scenario (Decentralized Identity in section VI-B2.

For batch membership our construction saves at least an
order of magnitude in proving time (depending on which hash
function we use for Merkle tree in the comparison). As an
example, proving a batch membership with SHA256 Merkle
trees requires more than an hour, while it requires less than 20
seconds with our scheme. Its public parameters are 5x smaller
than solutions based on Merkle trees. Our verification times
and proof size are also competitive (close to one kilobyte for
any batch/set size).

For MultiSwaps our solution surpasses Merkle-based swaps
earlier than [21] (140 operations for 220-large sets).

II. TECHNICAL OVERVIEW

We now present a high-level overview of our main technical
contributions.

Our core protocol is a succinct zero-knowledge proof of
set membership for a batch of set elements. Given a (public)
set S = {x1, . . . , xn} and commitments to u1, . . . , um, we
aim at proving that u1, . . . , um ∈ S. We require for privacy
that the ui-s remain hidden (and thus we provide them only
as commitments in the public input). We also require for
efficiency that proof size and verification time should not
depend either on the batch size m or the set size n.

We start from applying RSA accumulators [9] to compress
the set into a succinct digest. Given random group element
g in a group of unknown order (e.g. an RSA or class
group [26]), one can produce a compressed representation of
the set as acc = gx1·x2···xn . RSA accumulators enjoy succinct
batch-membership proofs: to prove that u1, . . . , um ∈ S
it suffices to provide a single group element (a witness)
W = g

∏
i∈[n] xi/

∏
i∈[m] uj , which the verifier can check as

Wu1···um = acc.
Though succinct, the batch-membership proofs of RSA

accumulators do not hide the ui elements, as the verifier should
know them in order to perform the exponentiation. To address
this problem, we could use a non-interactive zero-knowledge
proof of exponentiation, which can be obtained using a Σ-
protocol [27] (a three-message zero-knowledge scheme) made
non-interactive through the Fiat-Shamir transform [28]. In it
the prover computes: R←W r for a sufficiently large random
r; a random oracle challenge h ← H(acc||g||W ||R), an
integer k ← r+h·

∏
i∈[m] ui. The verifier accepts this zk-proof

(R, h, k) if h = H(acc||g||W ||R) and R · acch = W k.
This protocol however does not yet achieve our goal, which

is to generate a zero-knowledge batch-membership proof for
committed ui’s. Towards this goal, we need to solve the
following technical challenges. (A) The verifier needs to know
the witness W , which can itself leak information about the

elements it proves membership of. For example for m = 1 one
can efficiently find the element u1 by brute-force testing all
elements of the set S, W xi

?
= acc (recall that the set is public).

The xi∗ for which the test passes will be u1. (B) The proof
(R, h, k) above simply shows existence of an exponent u such
that Wu = acc, in particular it does not link this statement
to committed (u1, . . . , um) such that u = u1 · · ·um. (C) the
proof is not succinct since the integer k is O(m)-bits long.

Our key contribution is an efficient technique to efficiently
prove the verification of this Σ-protocol using a SNARK.
Notably, we do not need encode any RSA group operations
in the SNARK constraint system5. To obtain this result we
combine three main ideas:

1) We introduce a novel randomization method for an RSA
accumulator witness, W 7→ Ŵ , so that Ŵ provably doesn’t
leak any information about the ui’s.
Our hiding-witness transformation works as follows: let
p1, . . . , p2λ be the first 2λ prime numbers. These primes
are always (artificially) added to the accumulator, i.e., the
accumulator of a set S is an RSA accumulator ˆacc of
Ŝ ← S∪{p1, . . . , p2λ}: ˆacc← accp1...p2λ (we assume that
S does not contain any of the pi’s). Then to produce the
hiding witness Ŵ we raise to the exponent each prime pi
with probability 1/2. A bit more formally, we sample bi ←$

{0, 1} and set Ŵ ← W
∏

i∈[2λ] p
1−bi
i , bi’s should remain

hidden. We formally prove that under a cryptographic
assumption (DDH-II, a variant of DDH [29]) Ŵ is
computationally indistinguishable from random and thus
Ŵ , alone, hides ui’s (see section IV-A). Notice that Ŵ can
be verified through the equality Ŵ

∏
i∈[m] ui·

∏
i∈[2λ] p

bi
i =

ˆacc. Therefore we can use the NIZK for exponentiation
described above, but for base Ŵ and exponent e :=∏

i∈[m] ui ·
∏

i∈[2λ] p
bi
i .

This technique solves the challenge (A) as it turns an
RSA accumulator verification into a ZK verification. Yet
challenges (B) and (C) remain: k is not short and the
protocol only proves the existence of e such that Ŵ e =
ˆacc—which says nothing about membership of legitimate

elements from S. For example e can contain only elements
of {p1, . . . , p2λ} and no element from S.

2) To solve (B) we “link” the Σ-protocol to cu⃗, a commitment
to all ui’s, by using a zkSNARK that proves the correct
computation of k from the committed legitimate ui’s.
Namely it proves that, for cu⃗ commitment to u⃗ and cr,s
commitment to integers s =

∏
i∈[2λ] p

bi
i and r, k =

r+h·s·
∏

i∈[m] ui holds over the integers and ui > p2λ for
each i ∈ [m]. Recall that p2λ is the largest of all pi’s, so
ui > p2λ translates to ui ̸= pj for all j ∈ [2λ]. This means
that the exponent of e contains elements ui’s committed a-
priori and that they are legitimate (not one of the artificially
added pi’s).

5A “constraint system” is an encoding of the property proved by the
SNARK. Its size, the number of constraints, is a key efficiency metric when
evaluating proof schemes.
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3) Although the above careful interplay between RSA
Accumulators, Σ-protocols, zkSNARKs and our hiding
technique for RSA accumulators witnesses gives a secure
zero-knowledge proof of set membership, it is not yet
succinct, as the verifier needs to receive the O(m)-
long integer k. To solve this technical challenge, we
apply a succinct proof of knowledge of exponent PoKE
[15]. Instead of sending k, the prover sends B = Ŵ k

accompanied with a succinct proof that there is an integer
k such that B = Ŵ k. Adding the PoKE proof however
breaks the link between the Σ-protocol and the zkSNARK
as the latter is supposed to generate a proof for a public k.
To solve this last challenge, we “open the box” of PoKE
verification and observe that the verifier receives the short
integer k̂ = k mod ℓ, where ℓ is a random prime challenge
of 2λ bits. Therefore, the last idea of our protocol is to let
the zkSNARK prove the same statement as above but for
k̂, namely that k̂ = r + h · s ·

∏
i∈[m] ui mod ℓ.

III. BACKGROUND

A. Commitments

Commitment schemes allow one to commit to a value, or a
collection of values (e.g., a vector), in a way that is binding—
a commitment cannot be opened to two different values—and
hiding—commitment leaks nothing about the value it opens
to. In our work we also consider commitment schemes that
are succinct, meaning informally that the commitment size
is fixed and shorter than the committed value. Here is a brief
description of the syntax we use in our work: Setup(1λ)→ ck
returns a commitment key ck; Comm(ck, x; o) → c produces
a commitment c on input a value x and randomness o (which
is also the opening).

B. (Commit-and-Prove) SNARKs

Definition 1 (SNARK). A SNARK for a relation family R =
{Rλ}λ∈N is a tuple of algorithms Π = (Setup,Prove,Verify)
with the following syntax:

• Π.Setup(1λ, R) → crs outputs a relation-specific
common reference string crs.

• Π.Prove(crs,x,w)→ π on input crs, a statement x and
a witness w such that R(x,w), it returns a proof π.

• Π.Verify(crs,x, π)→ b ∈ {0, 1} on input crs, a statement
x and a proof π, it accepts or rejects the proof.

We require a SNARK to be complete, knowledge-sound and
succinct. Completeness means that for any λ ∈ N, R ∈ Rλ

and (x,w) ∈ R it holds with overwhelming probability that
Verify(crs,x, π) = 1 where crs ← Setup(1λ, R) and proof
π ← Prove(crs, R,x,w). Knowledge soundness informally
states we can efficiently “extract” a valid witness from a proof
that passes verification. Succinctness means that proofs are
of size poly(λ) (or sometimes poly(λ, log |w|)) and can be
verified in time poly(λ)poly(|x| + log |w|). A SNARK may
also satisfy zero-knowledge, that is the proof leaks nothing
about the witness (this is modeled through a simulator that
can output a valid proof for an input in the language without
knowing the witness). In this case we call it a zkSNARK.

Whenever the relation family is obviously defined, we talk
about a “SNARK for a relation R”.

1) Commit-and-Prove SNARKs (CP-SNARKs): We use the
framework for black-box modular composition of commit-and-
prove SNARKs (or CP-SNARKs) in [24] and [22]. Informally
a CP-SNARK is a SNARK that can efficiently prove properties
of inputs committed through some commitment scheme C.
More in detail, a CP-SNARK for a relation Rinner(x;u, ω)
is a SNARK that for a given commitment c can prove
knowledge of w := (u, ω, o) such that c = Comm(u; o) and
Rinner(x;u, ω) holds. We can think of ω as a non-committed
part of the witness. In a CP-SNARK, besides the proof, the
verifier’s inputs are x and c.

Remark 1 (Syntactic Sugar for SNARKs/CP-SNARKs). For
convenience we will use the following notational shortcuts.
We make explicit what the private input of the prover is by
adding semicolon in a relation and in a prover’s algorithm
(e.g., R(x;w)). We explicitly mark relations as “commit-and-
prove” by a tilde. We let the assumed commitment scheme
implicit when it’s obvious from the context. Occasionally, we
will also explicitly mark the commitment inputs by squared box
around them (e.g. cu ) and we will assume implicitly that the
relation includes checking the opening of these commitments
(and we will not make explicit the openings). We assume that
in the commitment cu the subscript u defines the variable u
the commitment opens to. Analogously the opening for cu is
automatically defined as ou. Example: R̃ck( cu , h; r) = 1 ⇔
h = SHA256(u||r) is a shortcut for R̃ck(cu, h; r, u, ou) =
1 ⇔ h = SHA256(u||r) ∧ cu = Comm(ck, u; ou).

2) Modular SNARKs through CP-SNARKs: We make use
of the following folklore composition of (zero-knowledge)
CP-SNARKs (cf. [24, Theorem 3.1]). Fixed a commitment
scheme and given two CP-SNARKs cpΠ1, cpΠ2 respectively
for two “inner” relations R̃1 and R̃2, we can build a
(CP) SNARK for their conjunction (for a shared witness u)
R̃∗( cu ,x1,x2;ω1, ω2) = R1( cu ,x1;ω1)∧R2( cu ,x2;ω2)
like this: the prover commits to u as cu ← Comm(u, o);
generates proofs π1 and π2 from the respective schemes;
outputs combined proof π∗ := (cu, π1, π2). The verifier checks
each proof over respective inputs (x1, cu) and (x2, cu), with
shared commitment cu.

C. Accumulators to Multisets

A multiset is an unordered collection of values in which the
same value may appear more than once. We denote by S1⊎S2

the union of multisets S1 and S2, i.e., the multiset S3 where
the multiplicity of any x ∈ S3 is the sum of its multiplicity in
S1 and S2. For two multisets S2 ⊂ S1, S1 ⊟ S2 denotes the
multiset difference of S1 and S2, i.e., the multiset S3 where
the multiplicity of any x ∈ S3 is the multiplicity of x in S1

minus the multiplicity of x in S2.
Cryptographic accumulators [8] are succinct commitments

to sets that also allow one to generate succinct proofs
of membership (and sometimes also non-membership). In
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our work we use accumulators that enjoy three additional
properties. First, they support multisets. Second, they are
dynamic, meaning that from an accumulator to S1 one can
publicly compute an accumulator to S1 ⊎S2 without knowing
S1. Third, one can create succinct membership proofs for
batches of elements, i.e., to prove that X ⊂ S. More in
detail, such an accumulator is a tuple of algorithms Acc =
(Setup,Accum,PrvMem,VfyMem, Ins) such that:

• Setup(1λ)→ pp generates public parameters;
• Accum(pp, S) → acc generates the accumulator acc for

a multiset S;
• PrvMem(pp, S,X) → WX generates a membership

proof for X ⊂ S;
• VfyMem(pp, acc, X,WX) → 0/1 accepts or rejects a

membership proof WX ;
• Ins(pp, acc, S′)→ acc′ computes accumulator to S ⊎ S′.

A multiset accumulator is secure if any PPT adversary has
negligible probability of creating a valid membership proof
for a multiset X ̸⊂ S, namely to output a tuple (S,X,W )
such that there is an x ∈ X such that x /∈ S and
VfyMem(pp,Accum(pp, S), X,WX) = 1.

We note that the popular RSA accumulator [9]–[11], [15]
enjoys all the properties mentioned above.

D. Relations for batch set-membership and set-insertion

Our focus in this work is on building efficient CP-SNARKs
for the following two relations parametrized by an accumulator
scheme Acc and parameters ppAcc:

R̃mem
ck ( cU , acc;W )=1⇔ Acc.VfyMem(pp, acc, U,W )=1

R̃ins
ck ( cU , acc, acc′) = 1 ⇔ Acc.Ins(ppAcc, acc, U) = acc′

In a nutshell, a CP-SNARK for R̃mem
ck can prove that cU is a

commitment to a vector of values such that each of them is in
the multiset accumulated in acc. A CP-SNARK for R̃ins

ck can
instead prove that acc′ is a correct update of the accumulator
acc obtained by inserting the elements committed in cU . For
the relation R̃ins

ck we are not interested in obtaining proofs that
are zero-knowledge (i.e., so as to hide U ), as the Ins algorithm
is deterministic and thus simply having public accumulators
acc, acc′ may leak information on the added elements.

The specific notion of knowledge soundness we assume for
CP-SNARKs for these relations is the one where the malicious
prover is allowed to select an arbitrary set S to be accumulated
but the accumulator acc is computed honestly from S. Given
an accumulator scheme Acc, we informally talk about this
specific notion as “security under the Trusted Accumulator-
Model for Acc”. We do not provide formal details since
this model corresponds to the notion of partial-extractable
soundness in Section 5.2 in [22]6; we refer the reader to this
work for further details.

This trusted accumulator model fits several applications
where the accumulator is maintained by the network.

6We notice that their model uses a slightly different language and formalizes
accumulators as (binding-only) commitments for commit-and-prove NIZKs.

On the other hand, we stress that in the Rins relation, the
trusted accumulator assumption is assumed only for acc but
not for acc′. The interesting implication of this is that one can
view a CP-SNARK for Rins as a means to move from a trusted
accumulator acc to a trustworthy one acc′. Indeed, thinking of
acc0 as the accumulator to the empty set that everyone knows
and can efficiently compute, Rins then allows one to certify
the generation of an accumulator to any multiset.

In the following two sections we show two interesting
byproducts of having modular commit-and-prove SNARKs for
the relations R̃mem

ck and R̃ins
ck .

1) Composing (commit-and-prove) set-membership
relations: The advantage of having CP-SNARKs for the
set-membership relation (rather than just SNARKs) is that
one can use the composition of section III-B2 to obtain
efficient zkSNARKs for proving properties of elements in
an accumulated set, e.g., to show that ∃U = {u1, . . . , un}
such that a property P holds for U (say, every ui is properly
signed) and U ⊂ S, where S is accumulated in some acc. In
particular, such a zkSNARK can be obtained via the simple
and efficient composition of a CP-SNARK for R̃mem

ck (like the
ones we construct in our work) and any other CP-SNARK
for P .

2) From set-insertion to MultiSwap: Ozdemir et al. [21]
introduce an operation over (RSA) accumulators called
MultiSwap. Consider two multisets S and S′ and a sequence
of pairs (x1, y1), . . . , (xn, yn), where each pair represents in
order a “swap”, namely removal of xi and insertion of yi.
Verifying a MultiSwap means checking that S′ = Sn where
S0 = S and Si = Si−1 ⊟ xi ⊎ yi. [21] shows that this check
can be reduced to

∃Smid : Smid = S ⊎ {yi}i ∧ Smid = S′ ⊎ {xi}i

So, when using accumulators, we can represent MultiSwap
via the following relation:

Rmswap(acc, acc′;X,Y ) = 1 ⇔

∃accmid : Rins(acc, accmid;Y ) ∧Rins(accmid, acc
′;X)

Thus, a CP-SNARK for Rmswap can be obtained via the
(self)composition of a CP-SNARK for Rins.

3) Chaining MultiSwap: Consider a scenario where an
accumulator evolves in time, namely at time i a user
returns a new accumulator acci along with a proof πi that
(acci−1, acci) ∈ Rmswap (and possibly additional proof that
the elements added/removed satisfy a certain property, e.g., in
Rollup they are valid transactions). It is easy to see that the
concatenation (π1, acc1, . . . , accn−1, πn) constitutes a proof
for (acc0, accn) ∈ Rmswap.

E. Building blocks

1) Pedersen Commitments of Integer values: The CP-
SNARKs we construct are defined for commitments generated
using the classical extension of Pedersen commitments to
vectors. In particular, we sometimes use a variant of this
scheme for committing to integers (instead of field elements);
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we describe it in fig. 1b. We assume a prime p and an algorithm
Gp that generates appropriate parameters for groups of order
p. Since we commit to an integer x whose size is potentially
larger than p we split the integer into several “chunks”, of size
ChkSz ≤ p specified in the parameters, and then we apply the
standard vector-Pedersen on this split representation. We let
the setup algorithm take as input a bound B denoting the max
integer that we can commit to. The construction is perfectly
hiding, and computationally binding secure under the discrete
logarithm assumption.

2) RSA Accumulators: Another crucial component of our
CP-SNARKs are RSA accumulators to multisets [9], [15], that
we recall in fig. 1a. In particular, we assume their instantiation
over any group of unknown order (including, e.g., classical
RSA groups or class groups [26]) whose parameters are
generated by an algorithm G? and over which the Strong RSA
[9] and the Adaptive Root [30] assumptions hold.

IV. HARISA: ZERO-KNOWLEDGE CP-SNARK FOR BATCH
SET-MEMBERSHIP

In this section we show the construction of a CP-SNARK
for the relation R̃mem

ck defined in section III-D1, where: the
accumulator is the classical RSA accumulator from Figure 1a
where the accumulated elements are prime numbers larger than
the 2λ-th prime (1619 for λ = 128), and the commitment
scheme for the commit-and-prove functionality is the Pedersen
scheme of Fig. 1b. In appendix C we discuss how this
construction can be easily extended to accumulate arbitrary
elements via an efficient hash-to-prime function.

A. RSA Accumulators with hiding witnesses

We describe a method to turn a witness W of an RSA
accumulator into another witness that computationally hides

all the elements ui it proves membership of. As discussed
in Section II this constitutes the first building block towards
achieving a zero-knowledge membership proof for committed
elements.

Let Pn = {2, 3, 5, 7, . . . , pn} be the set of the first n prime
numbers. Our method relies on two main ideas.

First, prover and verifier modify the accumulator acc so
as to contain the first 2λ primes by computing ˆacc ←

acc

(∏
pi∈P2λ

pi

)
. Note, ˆacc = g

(∏
xi∈S xi

)
·
(∏

pi∈P2λ
pi

)
? =

Accum(pp, S ∪ P2λ).
Second, we build a randomized witness for X ⊂ S as the

witness for (X ∪ P ) ⊂ (S ∪ P2λ) where P is a randomly
chosen subset of P2λ. More in detail, given W , the prover
compute Ŵ as follows:

• choose at random 2λ bits b1, . . . , b2λ ←$ {0, 1} and let
s :=

∏
pi∈P2λ

pbii and s̄ :=
∏

pi∈P2λ
p1−bi
i .

• Ŵ ←W s̄ = g

(∏
xi∈S\X xi

)
·
(∏

pi∈P2λ
p
1−bi
i

)
? .

Essentially, we have s as the product of the randomly chosen
primes, s̄ as the product of the primes not chosen, and we
denote with p∗ :=

∏
pi∈P2λ

pi the product of all the first 2λ
primes. We denote the bit-length of p∗ as ρ = ⌈log(p∗)⌉.
Finally, by D2λ we denote the distribution of s̄, according to
the sampling method described above. Note that ss̄ = p∗.
Also, the new witness Ŵ could be verified by checking
Ŵ s

∏
xi∈X xi = ˆacc.

Our first technical contribution is proving that this
randomization is sufficient. More precisely, we use a
computational assumption over groups of unknown order,
called DDH-II, and we show that under DDH-II Ŵ is
computationally indistinguishable from a random R ←$ G?.
We stress that this hiding property holds only for the value
Ŵ alone, i.e., when the random subset of P2λ is not revealed.

Setup(1λ) :

(G?, g?)← G?(1λ)

return pp := (G?, g?)

Accum(pp, S) :

prd← Prod(S)

return acc := gprd?

Ins(pp, acc, S′) :

prd′ ← Prod(S′)

return acc′ := accprd
′

PrvMem(pp, S,X) :

prd← Prod(S)

prdX ← Prod(X)

return W := g
prd/prdX
?

VfyMem(pp, acc, X,W ) :

prdX ← Prod(X)

Accept iff W prdX = acc

(a) RSA Accumulator for multisets of prime numbers. Above Prod(S) denotes the integer product of the elements in S.

Setup(1λ,B ∈ N,ChkSz ∈ N, n ∈ N) :

(Gp, f)← Gp(1λ)

If ChkSz > p then output ⊥

Let N := n ·
⌈

B

ChkSz

⌉
Sample g1, . . . , gN , h←$ Gp

return ck := (G,B,ChkSz, n, g1, . . . , gN , h)

Comm(ck, x⃗ ∈ Zn; r ∈ Zp) :

If ∃i : xi > B then output ⊥

Let
(
x
(i)
1 , . . . , x

(i)
m

)
be the representation of xi in base ChkSz for i ∈ [n]

y⃗ :=
(
x
(1)
1 , . . . , x

(1)
m , . . . , x

(n)
1 , . . . , x

(n)
m

)
return hr

N∏
i=1

g
yi
i

(b) Pedersen Commitments for vectors of integers. B is an upper bound over the integers we can commit to. ChkSz is the size
of the chunks in which we divide each integer. n is the number of integers we can commit at the same time. m =

⌈
B

ChkSz

⌉
is

the number of chunks needed for each integer.

Fig. 1: Accumulator and commitment schemes we will use throughout this work
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As we show later, this is sufficient for our purpose as we can
hide the integer s in the same way as we hide the elements
we prove membership of.

In the following section we state and explain the DDH-II
assumption. In brief, this is a variant of the classical DDH
assumption where the random exponents follow specific, not
uniform, distributions. Next, we prove that under DDH-II Ŵ
is computationally indistinguishable from random.

1) The DDH-II assumption: First, we state the DDH-II
assumption, which is parametrized by a generator G?(1λ)
of a group (of unknown order in our case) and by a well-
spread distribution WS2λ (in our case D2λ). A distribution
WS2λ with domain X2λ is called well-spread if Pr[x ←$

WS2λ] ≤ 2−2λ for each x ∈ X2λ. Intuitively, this means that
the elements sampled from this distribution are ‘sufficiently
random’.

Assumption 1 (DDH-II). Let G? ← G?(1λ) and g? ←$ G?.
Let WS2λ be a well-spread distribution with domain X2λ ⊆
[1,minord(G?)]. Then for any PPT A:∣∣Pr[A(gx? , gy? , gxy? ) = 0]− Pr[A(gx? , g

y
? , g

t
?) = 0]

∣∣ = negl(λ)

where x←$WS2λ and y, t←$ [1,maxord(G?)2
λ].7

Our distribution of interest D2λ can be shown well-spread:
there are 22λ outcomes and are all distinct, s̄ =

∏
pi∈P2λ

p1−bi
i

are distinct since they are different products of the same primes
(no pi can be used twice). It follows that Pr[s̄←$ Dλ] = 1/22λ

for every s̄.

Remark 2. The constraint that the domain should be in
[1,minord(G?)] is for the following reason: If a sampled x
is larger than ord(g?) then in the exponent of gx? a reduction
modulo ord(g?) will implicitly happen leading to a gx? = gx

′

?

for some x′ ̸= x. This can turn gx? more frequently sampled,
which can potentially help the adversary distinguish between
(gx? )

y and gt?.

Different variants of DDH-II have been proven secure in the
generic group model [31], [32] for prime order groups [33],
[34]. Similarly, we can prove it secure for groups of unknown
order, with minor technical modifications related to GGM
proofs for hidden order groups [35].

Remark 3. The need of an at least 22λ-large domain X2λ (and
at most 2−2λ probability) for λ security parameter comes from
well-known subexponential attacks on DLOG.

2) Security Proof of our hiding witnesses:

Theorem 1. For any parameters pp ← Setup(1λ), set S
(where S∩P2λ = ∅), R←$ G? and Ŵ computed as described
above it holds that:∣∣∣Pr[A(pp, S, Ŵ ) = 0]− Pr[A(pp, S,R) = 0]

∣∣∣ = negl(λ)

7Since the order of the group is unknown, we cannot efficiently produce
uniformly random elements with y, t ←$ [1, ord(g?)]. However, y, t ←$

[1,maxord(G)2λ] still produces statistically close to uniform elements.

for any PPT adversary A, assuming that DDH-II assumption
holds for G? and D2λ.

Proof. Let A be a PPT adversary that achieves a non-
negligible advantage ϵ on the above, i.e.∣∣∣Pr[A(pp, S, Ŵ ) = 0]− Pr[A(pp, S,R) = 0]

∣∣∣ = ϵ

We construct an adversary B against DDH-II that, using
adversary A, gains the same advantage.
B receives (G?, g?, g

s̄
? , g

r
? , g

bs̄r+(1−b)t
? ), where s̄ ←$ D2λ

and r, t ←$ [1,maxord(G?)2
λ]. Then it chooses arbitrarily

an element u and sets S = {u}, pp ← (G?, g
r
?) and

V = g
bs̄r+(1−b)t
? . B sends (pp, S, V ) to the adversary A, who

outputs a bit b∗. Finally, B outputs b∗.
First, notice that gr? is statistically close to a random group

element of G?, meaning that A cannot distinguish pp from
public parameters generated by Acc.Setup(1λ). Furthermore
if b = 0 then V is again a (statistically indistinguishable
element from a) uniformly random group element of G?

so Pr[B = 0|b = 0] = Pr[A(pp, S,R) = 0]. On the other
hand, if b = 1 then V = gr·s̄? = Ŵu is a witness of u
so Pr[B = 0|b = 1] = Pr[A(pp, S, Ŵ ) = 0]. Therefore we
conclude that the probability of B to win the DDH-II is ϵ.

B. Building Blocks

1) Succinct proofs of knowledge of exponent (PoKE): We
recall the succinct proofs of knowledge of a DLOG for hidden
order groups, introduced by Boneh et al. [15]. More formally,
PoKE is a protocol for the relation

RPoKE(A,B;x) = 1 ⇔ Ax = B

parametrized by a group of unknown order G? and a random
group element g? ∈ G?. The statement consists of group
elements A,B ∈ G? while the witness is an arbitrarily large
x ∈ Z.

In Figure 8 (appendix A) is the description of the protocol.
For simplicity we directly expose its non-interactive version
(after Fiat-Shamir). This protocol is succinct: proof size and
verifier’s work are independent of the size of x, O(1) and
O(∥ℓ∥) = O(λ) respectively.

2) CP-SNARK for integer arithmetic relations: We assume
an efficient CP-SNARK cpΠmodarithm for the following relation:

R̃modarithm
ck ( cu⃗ , cs,r , h, ℓ, k′) = 1 ⇔

k′ = s · h ·
∏

i∈[m]

ui + r mod ℓ

Above, u⃗ = (u1, . . . , um) ∈ Zm is a vector of integers
with a corresponding multi-integer commitment cu⃗; r, s ∈ Z
are integers committed with a corresponding multi-integer
commitment cs,r and ℓ, h ∈ Z, k′ ∈ [0, ℓ − 1] are (small)
integers known as public inputs by both prover and verifier.

The above relation is equivalent to the integer relation:

R̃arithm
ck ( cu⃗ , cs,r , h, ℓ, k′; q) = 1 ⇔ qℓ+k′ = s ·h

∏
i

ui+r
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In fact this is how a modulo operation is encoded in a SNARK
circuit. q here is a witness given to the SNARK.8

3) CP-SNARK for inequalities: We need a CP-SNARK
cpΠbound for the relation (where B is a public integer):

R̃bound
ck ( cu⃗ , B) = 1 ⇔ ui > B

C. Our Construction for Batched Set Membership (HARiSA)

Here we describe our CP-SNARK for the relation R̃mem
ck for

RSA accumulators and Pedersen commitments to vectors of
integers. Let us recall the setting in more detail.

Prover and verifier hold an accumulator acc to a set S and
a commitment cu⃗. The set’s domain are natural primes greater
than p2λ, the 2λ-th prime. The protocol works in the “trusted
accumulator model” (section III-D), which means the set is
assumed to be public but the verifier does not take it as an
input, it only uses acc, for efficiency reasons.9

The prover knows a batch of set elements u⃗ = (u1, . . . , um)
that are an opening of the commitment cu⃗, and its goal is to
convince the verifier that all the ui’s are in S. To this end,
we assume that the prover has an accumulator witness Wu⃗ as
an input, either precomputed or given by a witness-providing
entity. In this sense, the prover’s goal translates into convincing
the verifier that it has Wu⃗ such that W

∏
i ui

u⃗ = acc.
We give a full description of the CP-SNARK in Figure 2.

We refer to the technical overview (sec. II) for an high-level
explanation. Below we provide additional comments.

To begin with, both prover and verifier transform the
accumulator acc into ˆacc, the one corresponding to the same
set with the additional small prime numbers from P2λ.10 Next,
the prover transforms W into a hiding witness as Ŵ = W s̄

via our masking method of section IV-A, and then computes a
(Fiat-Shamir-transformed) zero-knowledge Σ-protocol for the
accumulator’s verification Ŵ su∗

= ˆacc. However, since the
last message k of the protocol is not succinct, it computes
a PoKE for the relation ( ˆacchR) = (Ŵu⃗)

k (exponent k),
which is the verification equation of the Σ-protocol. The PoKE
verification requires a check QℓŴ res

u⃗ where res is supposed
to be k mod ℓ. The last step of the proof is to show that
res is not just “some exponent” but it is exactly r + hsu∗

mod ℓ with u∗ being the product of all the ui’s committed in
cu⃗. To do so, the prover generates a proof with the cpΠarithm

CP-SNARK over the commitments cu⃗, cs,r (r is the masking
randomness of the Σ-protocol sampled in the first move). Also,
for a technicality related to the soundness of the protocol, we
require that s and r are committed before receiving the random
oracle challenge h. Finally, the prover generates a proof with

8For the sake of our general protocol, it is not necessary that q remains
hidden. It is only important that the proof is succinct w.r.t. its size. However,
u⃗, s and r should remain hidden.

9This is a common consideration in scalable systems. The accumulator to
the set is either computed once by the verifier or validated by an incentivized
majority of parties that is supposed to maintain it.

10This operation can also be precomputed, we make it explicit only to show
that they can both work with a classical RSA accumulator as an input.

cpΠbound over the commitment cu⃗ to ensure that the elements
are in the right domain.11

We present our construction in fig. 2. This construction
is obtained by applying Fiat-Shamir in the random oracle
model (ROM) and additional optimizations to its interactive
counterpart which we describe in the appendix (fig. 9).

Setup
(
1λ, ck, pp

)
:

crs2 ← cpΠmodarithm.Setup(1λ, ck, R̃modarithm
ck )

crs3 ← cpΠbound.Setup(1λ, ck, Rbound)

return crs := (ck, pp, crsarithm, crsbound)

Prove (crs, acc, cu⃗;Wu⃗, u⃗, ou⃗) :

ˆacc← acc
∏

pi∈P2λ
pi

Let u∗ =
∏
i

ui

Sample b1, . . . , b2λ ←$ {0, 1}

Let s :=
∏

pi∈P2λ

pbii , s̄ :=
∏

pi∈P2λ

p1−bi
i

Ŵu⃗ ←W s̄
u⃗

Sample r ←$ {0, 1}∥p
∗∥+∥u∗∥+2λ

cs,r ← Commck(s, r; os,r)

R← Ŵ r
u⃗

h← H(crs||acc||cu⃗||cs,r||Ŵu⃗||R)

k ← r + (u∗s)h

π1 ← ΠPoKE.Prv
(
(G?, g?), Ŵu⃗, ˆacchR; k

)
Parse π1 as (Q, res)

ℓ← Hprime((G?, g?), Ŵu⃗, ˆacchR)

π2 ← cpΠmodarithm.Prv(crs2, cu⃗, cs,r, h, ℓ, res; u⃗, ou⃗, r, s, os,r)

π3 ← cpΠbound.Prv(crs3, cu⃗, p2λ; u⃗, ou⃗)

return π =
(
Ŵu⃗, R, cs,r, π1, π2, π3

)
Verify (crs, acc, cu⃗, π) :

ˆacc← acc
∏

pi∈P2λ
pi

Parse π as (Ŵu⃗, R, cs,r, π1, π2, π3) and π1 as (Q, res)

ℓ← Hprime((G?, g?), Ŵu⃗, ˆacchR)

h← H(crs||acc||cu⃗||cs,r||Ŵu⃗||R)

Reject if ΠPoKE.Vfy(G?, g?), Ŵu⃗, ˆacchR, π1) ̸= 1

Reject if cpΠmodarithm.Vfy(crs2, cu⃗, cs,r, h, ℓ, res, π2) ̸= 1

Reject if cpΠbound.Vfy(crs3, cu⃗, p2λ, π3) ̸= 1

Fig. 2: HARiSA: our scheme for proving set membership of
a committed element. We let H denote a cryptographic hash
function modeled as a random oracle.

Theorem 2. Let H,Hprime be modeled as random oracles and
cpΠmodarithm, cpΠbound be secure CP-SNARKs. The construction
in fig. 2 for the relation R̃mem

ck is a secure CP-SNARK: succinct,

11For the sake of generality we present π2, π3 as distinct proofs. In practice
they can be proved by the same CP-SNARK and save one proof-size.
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knowledge-sound under the adaptive root assumption, and
zero-knowledge under the DDH-II assumption.

Proof. For succinctness, one can inspect that the proof size is
proportional to the proof size of cpΠarithm and cpΠbound plus
some small constant overhead. Similarly for the verifier’s cost.
So succinctness is inherited from succinctness of cpΠarithm and
cpΠbound.

The proof for its interactive version (fig. 9) is in the
appendix, theorem 3. Then knowledge-soundness and zero-
knowledge come directly from security of the Fiat-Shamir
transformation in the random oracle model.

Extensions. In Appendix B we show how to extend our
CP-SNARK to support arbitrary—not necessarily prime—set
elements, using an efficient hash-to-prime proof based on a
single hash execution. We also discuss how to extend our
protocol to prove (in zero-knowledge) batch non-membership.

V. B-INS-ARISA: CP-SNARK FOR SET-INSERTION

We show a CP-SNARK for the relation R̃ins
ck (see sec. III-D)

and consequently for the MultiSwap relation Rmswap, using
RSA accumulators. We call this construction B-INS-ARiSA.

For set-insertion we need to prove that
Acc.Ins(pp, acc, U) = acc′, where acc and acc′ are public
but the set of elements added U is not publicly provided,12

but instead a succinct commitment of it cU . The accumulator
acc is assumed to be trusted, in the sense that it is computed
correctly from a set of valid elements, however for acc′ we
do not make this assumption. In fact this is essentially the
purpose of the protocol, to prove correctness of acc′.

A. Our construction for R̃ins
ck (B-INS-ARiSA)

We begin with an high-level overview of the scheme.
Proving correctness of set-insertion in RSA accumulators
roughly consists of proving the following:

1) acc
∏

ui∈U ui = acc′.
2) ui ∈ D for each ui ∈ U .

Clearly the first point ensures that the insertion of the elements
has been done correctly. However we still need to prove that
the elements of U are in the correct domain D. A usual domain
for secure RSA Accumulators is the prime numbers, D = P.
We will discuss later alternative domains.

1) On the choice of set-membership protocol: Notice that
the first point is in fact a set-membership verification for
the set of acc′ and acc is the corresponding witness of
the membership. Therefore, we could in principle apply our
batch set-membership protocol of sec. IV and already obtain
a construction. However, that construction would carry an
overhead, due to zero-knowledge, unnecessary for the the
purposes of this section(for set-insertion we do not aim at zero-
knowledge as discussed above). Therefore we use a simple
PoKE proof for the exponentiation acc

∏
ui∈U ui = acc′.

12As mentioned before, not giving U to the verifier is for the sake of
succinctness. Hiding U is not in our scope.

2) On the choice of the domain: For the second point,
ui ∈ D, we need a domain that preserves the security of RSA
accumulators but at the same time can be proven efficiently
with a succinct protocol. Some examples of secure domains
include: (1) prime numbers or prime numbers of a specific
size, (2) outputs of a collision resistant hash-to-prime function,
(3) outputs of a division-intractable hash function.

However, for the first two options there is no known efficient
argument of knowledge; the only existing (succinct) solution is
proving them with a general-purpose SNARK.13 In particular,
it is the primality check that is difficult to handle, and encoding
it inside a SNARK circuit gets prohibitive as it usually requires
many iterations.

Ozdemir et al. [21] observed that the division-intractable
hash of Coron and Naccache [37] is (comparably) lightweight.
Division intractability of a hash function HDI with range
in Z briefly means that it is hard for an adversary to find
an element x∗ and a set {xi} such that x /∈ {xi} but
HDI(x) |

∏
i HDI(xi). Essentially the function of [37] consists

of a single hash computation and an addition (of 2048-bit
integers). This function, denoted HDI, works as follows: given
a large public offset ∆ of 2048-bits, the output of HDI is

HDI(x) = ∆ +H(x)

where H is any collision-resistant hash function with image
[0, 22λ]. It can be shown that if we model H as a random oracle
HDI is collision-intractable [37]. That is any output has at least
a unique large prime factor, with overwhelming probability.
H can be any standard hash function as SHA256, or

even a SNARK-friendly hash as Poseidon [20]. Proving a
hash evaluation per element inserted inside a SNARK can
be affordable in comparison to the rest of the solutions
mentioned above that require primality checks. For this reason,
we use division-intractable hashes as to produce accumulator
elements. This technique, together with an implementation
inside a SNARK, was introduced in [21].

The original elements of the set are arbitrary integers,
S ⊂ Z. Every element of the set x is mapped, through HDI,
to a division-intractable element u = HDI(x) that are next
accumulated to produce acc. Proving that {x1, . . . , xm} were
inserted in S is equivalent to proving that the accumulator
was updated with the corresponding {u1, . . . , um} =
{HDI(x1), . . . ,HDI(xm)}. We refer the reader to [37] for a
security analysis.

For our protocol we assume a CP-SNARK for the above
DI-hash function evaluation:

R̃HDI
ck ( cu⃗ ; x⃗) = 1 ⇔ ui = ∆+H(xi)

parameterized by a division-intractable hash, (H,∆).
3) CP-SNARK for integer arithmetic relations: Again we

assume an efficient CP-SNARK cpΠmodarithm for the relation:
R̃modarithm

ck ( cu⃗ , ℓ, k′) = 1 ⇔ k′ =
∏

i∈[m] ui mod ℓ which
is a simplification of the relation defined in section IV.

13Specialized solutions based on Σ-protocols exist [36] but are both
inefficient and for a single prime, thus not succinct.
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4) Summary of the construction: Putting things together,
for our construction we prove that: a batch U = {u1, . . . , um}
of committed elements is an output of HDI, with cpΠHDI ; these
elements are inserted in the accumulator, with a PoKE for
acc

∏
i ui = acc′.

However, there should be a way to “link” the elements U in
the two proofs. Essentially to show that the proofs are about
the same batch of elements. In order to avoid encoding the
RSA exponentiation accu

∗
inside the SNARK, which would

be virtually infeasible,14 we use an intermediate CP-SNARK
that proves the following: the product u∗ of the committed
elements modulo the ℓ of the PoKE equals the res part of
the PoKE proof, u∗ = res mod ℓ. As we show in the next
section, this guarantees that the u∗ of the PoKE is the same
as the u∗ (implicitly) committed, in cu⃗.

A full description of our scheme is in Figure 3.

Setup
(
1λ, ck, pp

)
:

crs2 ← cpΠmodarithm.Setup(1λ, ck, R̃modarithm
ck )

crs3 ← cpΠHDI .Setup(1λ, ck, R̃HDI
ck )

return crs := (ck, ppAcc, crs2, crs3)

Prove
(
crs, acc, acc′, cu⃗; u⃗, ou⃗, x⃗

)
:

Let u∗ =
∏
i

ui

π1 ← ΠPoKE.Prv
(
(G?, g?), acc, acc

′;u∗)
Parse π1 as (Q, res)

ℓ← Hprime((G?, g?), acc, acc
′)

π2 ← cpΠmodarithm.Prv(crs2, cu⃗, ℓ, res; u⃗, ou⃗)

π3 ← cpΠHDI .Prv(crs3, cu⃗; u⃗, ou⃗, x⃗)

return π =
(
π1, π2, π3

)
Verify

(
crs, acc, acc′, cu⃗, π

)
:

Parse π as (π1, π2, π3) and π1 as (Q, res)

Reject if ΠPoKE.Vfy(G?, g?), acc, acc
′, π1) ̸= 1

Reject if cpΠmodarithm.Vfy(crs2, cu⃗, ℓ, res, π2) ̸= 1

Reject if cpΠHDI .Vfy(crs3, cu⃗, π3) ̸= 1

Fig. 3: B-INS-ARiSA: our scheme for proving correct set
insertion of a committed batch of elements.

B. Multiswaps

As argued in section III-D2 batch-insertion gives a succinct
MultiSwap protocol: the relation Rmswap roughly consists of
two set insertions.

Rmswap(acc, acc′;X,Y ) = 1 ⇔

∃accmid : Rins(acc, accmid;Y ) ∧Rins(accmid, acc
′;X)

14An RSA exponentiation of this size would require nearly 2 millions
constraints per element of the batch.

Given a set S, its corresponding (trusted) accumulator acc
and a sequence of "swap" pairs (x1, y1), . . . , (xm, ym) the
prover computes accmid, acc′ and two corresponding batch
insertion proofs for acc

Ins−→ accmid, acc′ Ins−→ accmid. In short
the prover publishes acc′ and the proof for the multiswap is
acc

MultiSwap−−−−−−→ acc′ is:

π ← (πins
1 , πins

2 , accmid)

This proof can convince a verifier that the multiswap was done
correctly (and that acc′ is trusted).

1) Generating accmid and acc′: Computationally speaking
the bottleneck in the above is the generation of acc′.
Nevertheless, the intermediate value accmid is the result of the
batch insertion of all yi’s, hence it can be efficiently computed
in time O(m) (m the size of the batch) by m sequential
Acc.Ins. On the other hand, the value acc′ is the result of
"batch deletion" of all xi’s, an operation that cannot be done
efficiently (in O(m)-time) and the only manner is to compute
acc′ from scratch, i.e. accumulate all remaining values: acc′ ←
Acc.Accum(pp, S′), where S′ = S ⊎ {yi}i ⊟ {xi}. This
requires time proportional to the size of the set, O(n+m).

To this end, one can use a precomputation technique to
speed-up the online computational cost. As shown by Boneh
et al. [15], if one has precomputed a witness Wx1

then
already acc′ = Wx1

is an accumulator for S ⊟ {x1}. If
one has precomputed witnesses Wx1

and Wx2
one can in

compute acc′ = Wx1,x2
, in O(1)-time by using Shamir’s

trick [38], which is essentially an accumulator for S ⊟
{x1, x2}. Generalizing this, if all witnesses are precomputed
Wx1

, . . . ,Wxn
then one can compute acc′ for any S ⊟

{xi1 , . . . xim}, in O(m) time. This would require the prover
to store additional O(n) group elements.

To avoid storing linear-number of elements one can use
another preprocessing method, introduced by Campanelli et
al. [39], that offers storage-online time tradeoffs. The storage
cost is O(n/B) and the online time (worst-case) O(mB), for
any chosen parameter B. Essentially, the more elements one
stores the less resources it uses online and vice-versa.

C. Comparison with [21]

Technically speaking our approach in this section carries
similarities with the one of Ozdemir et al. There are two
distinguishing differences. The first is in the succinct protocol
for the exponentiation accu

∗
= acc′. Ozdemir et al. make use

of a Wesolowski proof (PoE protocol), while we propose the
use of the Boneh et al. proof (PoKE protocol). The second is
that we do not encode the verification of this proof inside the
circuit of the SNARK.

The PoE protocol is a succinct proof of correct RSA
exponentiation, introduced in [30]. It is defined for verifiers
that know the exponent, i.e. the proof’s input is (acc, acc′, u∗).
For the non-interactive version, in order for the Fiat-Shamir
transform to be sound the challenge should be generated
as ℓ ← Hprime(acc, acc

′, u∗), meaning that it should take
the large exponent as input. Since the verifier shall not
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receive the set U , it cannot generate the challenge ℓ itself.
Subsequently, the prover should, in addition to the rest of
the computations, prove inside the SNARK the computation
ℓ = Hprime(acc, acc

′, u∗). This computation gives a significant
overhead to the prover’s workload.

We replace the PoE protocol with a PoKE protocol. The
PoKE proof, introduced in [15], is a proof of knowledge
of exponent. That is, here the exponent u∗ is a witness
instead of an input. Meaning that the Fiat-Shamir challenge
is now generated as ℓ ← Hprime(acc, acc

′). All inputs are
public and known to the verifier. This translates to a save
on the expensive SNARK computation Hprime(acc, acc

′, u∗).
This saves m hash computations for the SNARK and a hash-
to-prime computation (applied on the output of the m hash-
chain). The former has a cost of ≈ 300–45, 000 constraints per
input (depending on the choice of the hash), while the latter
has a fixed cost of 217, 703 constraints [21]. So overall it has
a significant impact that depends on batch size. For example,
for SHA256 and a moderate-sized batch size m = 1000, our
approach saves more than 45 million constraints.

Notably this replacement does not affect the security
assumptions: although the PoKE itself is secure in the generic
group model [31], [32], a careful security analysis shows that
when combined with cpΠmodarithm it can be proven secure in
the standard model under the adaptive root assumption [30]
(see proof of theorem 3), which is the same assumption as in
[21]. Furthermore, in our favor, for this step we do not need to
take the heuristic assumption of encoding a random oracle’s
representation inside a SNARK.

Instead of encoding the PoKE verification Qℓaccres = acc′

inside the SNARK, we let the verifier perform it itself.
According to [21] (figure 3) the RSA operations needed for
this verification—two RSA |ℓ|-bit exponentiations and one
RSA multiplication—overall cost about 5 million constraints.
Our approach has the downside of having to additionally
include the PoKE proof, (Q, res), in the overall proof of set-
insertion, which has an overhead of 1 RSA group elements and
a 256-bit prime in the proof size. Therefore our approach can
be viewed as a tradeoff: 288 bytes in the proof vs 5 million
constraints less for the prover (and vice versa).

VI. EVALUATION

A. Instantiations and Implementation

We instantiate the CP-SNARKs building blocks in our
construction in fig. 2, cpΠmodarithm and cpΠbound, with
LegoGroth16 from [24], an efficient commit-and-prove version
of Groth16 [41]. Like Groth16, it requires an elliptic curve
endowed with a bilinear map. We use the curve BLS12-
381 [42] for our instantiations. The proof size of LegoGroth16
is constant (five group elements), amounting to 288 bytes in
BLS12-381. For the accumulator scheme we use a 2048-bit
RSA group. To be compatible with the assumptions of DDH-
II in such a group, we must take at most 2λ = 232 primes to
hide the RSA witness in our construction. This does not affect
the security provided by a 2048-bit RSA group. We enforce the
relation in cpΠbound through the Poseidon hash function [20].

Implementation: We provide an implementation of our
construction (fig. 2) comprising LegoGroth16, cpΠarithm and
PoKE. Part of our code is an extension of the C++ SNARK
library libsnark [43] with LegoGroth16. We use the Java
library JSnark [44] to produce the circuit representation for
the arithmetic relation in cpΠarithm. We use a chunk size
ChkSz = 32 for commitments to integer (fig. 1).

Our code consists of approximately 2000 lines of C++ code
and 100 lines of Java code. We plan to release it under an open-
source license. We ran all our benchmarks single-threaded on
CPU i7-10510U with 16GB of RAM (we ran DID-related
benchmarks on a different but comparable machine).

B. Benchmarks for Batch Membership

We evaluate our approach comparing it to Merkle Tree for
benchmarks. Specifically we compare it to the following (the
asterisk is a placeholder for the depth of the tree):

• MT-Pos-*: Merkle trees based on the Poseidon hash [20].
• MT-SHA-*: Merkle trees based on the SHA-256 hash.

These hash functions have different tradeoffs: while Poseidon
has a much smaller encoding for SNARKs, it is hundreds of
times slower when executed natively. For the case of SHA
we (very conservatively) estimate timings for larger batches.
Each of the Merkle-tree instantiations above is benchmarked
by proving their (batch) opening using LegoGroth16 as a CP-
SNARK. We compare these solutions on two benchmarks: a
generic computation that consists only of batch membership
statements, and a DID application in which one proves
membership of a batch of elements as well as additional
properties of these elements.

1) General purpose Batch Membership of n Elements: We
describe our evaluations in fig. 4. Notice that the performance
of Merkle-tree solutions vary with the size of the accumulated
set (ours does not). We benchmark both the minimal set size
216 and the more realistic set size 232.

Our scheme shows an order of magnitude savings in proving
time. Our verification time is slower but still highly practical:
approximately 60 ms vs 30 ms for CP-SNARKs on Merkle
trees for common set sizes. Our proof size is also competitive
although 4x larger at 1.17 KB15

CRS size. Our constructions also show a better size of public
parameters (not in figure). For batch sizes respectively 1, 16
and 64, we estimate the CRS size of our scheme to be lower
than 1, 2.5, 8.5 MB respectively. In contrast, the smallest
CRS for the Merkle-tree solutions (MT-Pos-16 for batch size
1) is already of approximately 5 MB, 5x larger than ours.
We incur even better relative or absolute savings for more
expensive hash functions—MT-SHA-16 has a CRS of more
than 250MB for batch size 1—or larger batch sizes in larger
sets—MT-Pos-32 has a CRS of more than 650MB for batch
size 64. Notably, these savings on CRS size immediately
translate in higher scalability due to less RAM consumption.

15This proof size uses the fact we can optimize the two LegoGroth16
proofs in fig. 2 as just one.
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2) Decentralized Identity (DID): We now experimentally
validate our membership scheme in a more realistic scenario:
a Decentralized ID (DID) application on the blockchain.
In this setting, issuers can broadcast signed transactions
consisting of a hiding commitment to a set of valid attributes
of some identity holder (e.g., a bank account balance, a
month’s paycheck, identity information such as age). The
appropriate holder receives the commitment with its opening,
while the blockchain is supposed to validate and collect
these transactions in an accumulator16. Next, whenever a
verifier requests a holder to make some claim about some
of her attributes, the holder sends a batch membership proof,
proving that 1) a batch of commitments are members of
the accumulator and 2) the attributes in these commitments
meet a given property. Finally, the verifier validates the batch
membership proof against the accumulator in the blockchain.

We compare our zero-knowledge batch membership proof
(HARiSADID) against the MT-SHA-16 solution (MT-16DID) in
the above setting. Both schemes use the SHA-256 hash: ours
for creating hash-to-prime commitments, MT-SHA-16 for the
Merkle tree. We assume sets of 216 numerical elements and
that we test each attribute for a range property Figure 5 reports
the proving time in HARiSADID and MT-16DID as the number of
proved attributes increase. The proving time for DID increases
due to the two hash and attribute range check relations for each
attribute. Note that the size of two hash relations dominate
in HARiSADID circuit (99.7%). Therefore the performance
improvement in HARiSADID becomes less dramatic compared
to the pure batch membership proof example. The proving time
in HARiSADID is still 6–15x faster than in MT-16DID. For larger
sets, we can expect even larger improvements. The verification
time and the proof size are equivalent to the batch membership
example as shown in fig. 4.

C. MultiSwap Benchmark

We evaluate our MultiSwap solution built on top of
B-INS-ARiSA (sec. V-B) and compare it with that of [21] and
with a Merkle-tree based approach (Merkle-Swap). In all
solutions we instantiate the hash functions with Poseidon. Our
benchmark considers a computation consisting only of swap
operations; we vary the number of swaps in 1–10, 000 and fix
the set size to 220.
Proving costs. For this evaluation, we use a cost-model
analysis using, as metric, the number of constraints, that we
compute based on the model of fig. 6. For Merkle-Swap
the number of constraints is the only metric that conditions
proving time. For our (resp. [21]) MultiSwap, the proving cost
is made of the zkSNARK prover cost (which again depends on
the number of constraints reported in fig. 6) plus the cost of
RSA group operations to compute the accumulator acc′ after
deleting elements and the PoKE (resp. PoE) proof. To estimate

16We can assume that a smart contract checks the signature of the
transaction and updates the accumulator by inserting the new commitment,
which guarantees that every commitment in the accumulator is authenticated
by an issuer.
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Fig. 4: Comparison of batched set-membership in zero-
knowledge: our scheme (HARiSA) vs LegoGroth16 on Merkle
tree circuits. Plot is in log-scale. Verification time and proof
size are O(1) and independent of set/batch size. Due to
constraints on RAM in our machine, timings for MT-SHA-*
for batch size larger than 1 are an extrapolated lower bound.

the latter costs, we extract an equivalent measure in number
of constraints based on [21, Sec. 4.4].

We report our results in fig. 7. Our MultiSwap solution has
proving cost larger than Merkle-Swap for small batches, but
it breaks even at ≈ 140 swaps. Also, it strictly improves over
[21] MultiSwap, which has a larger fixed cost, and a break-
even point w.r.t. Merkle-Swap at ≈ 1400 swaps.

Verification time and proof size. For this evaluation we
consider an instantiation of all solutions with LegoGroth16 as
a CP-SNARK. Similarly to the batch-membership case, our
solution has slower verification and larger proofs, which are
still practical. Our MultiSwap proof is 1.4 KB whereas proofs
for Merkle-Swap and [21] are 288 bytes. Our verification
time is ≈ 120ms and is about 4 times slower than that of
Merkle-Swap and [21].

VII. RELATED WORK

Succinct proofs for RSA accumulators. The works that
are closest to ours are those of Benarroch et al. [22] and
Ozdemir et al. [21], both concerning the efficient use of
RSA accumulators with zkSNARKs. Comparing to [22], we
achieve constant-size proofs of membership for batches of
elements whereas [22] can only prove membership of a single
(committed) element. In particular, the technique of [22] does
not seem extendable to support batching with constant size
proofs: they mainly rely on a new sigma-protocol for proving
that two commitments, one in a prime order group and one
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log-scale. Due to constraints on RAM in our machine, timings
for Merkle Tree solution for batch size larger than 1 are an
extrapolated lower bound.

in a hidden-order group, open to the same integer value (the
element in the accumulated set), but the size of its proof is
linear in the integer’s size. This means that extending this
protocol to batch RSA witnesses would lead to linear-size
proofs. Comparing to [21], our protocol for batch insertions
is similar but has the following key differences. We employ a
PoKE protocol instead of a proof-of-exponentiation (PoE); this
allows us to generate the PoKE random oracle challenge based
on the short and public verifier’s input as opposed to the long
and unknown exponent as in [21]. Thanks to this we can avoid
encoding in the SNARK an expensive and long hashing along
with a prime certification of its outputs. The second major
difference is that Ozdemir et al. technique is not ZK-friendly
and could not be used to do batch membership; to the best of
our knowledge, hiding the RSA accumulator witness would
require encoding an RSA group operation in the constraints.

Another work related to batch proofs is that of Boneh et
al. [15] who construct such proofs for RSA accumulators
with an efficient verification procedure. In their constructions,
however, the verifier knows the elements for which it is
verifying (non)membership. In contrast, our goal is to build
proofs that can be verified by having only has a succinct
commitment to the batch of elements, over which one can
also verify additional properties.

Verifiable computation with state. Verifiable computation
and zkSNARKs have a vast literature; a complete coverage
goes beyond the scope of this paper, yet some seminal
papers include [45]–[47]. More relevant to our work are some
works that address the problem of verifiable computation
(or zkSNARKs) with respect to succinct digests. Pantry [25]
use Merkle trees to model RAM computations. Fiore et
al. [48] propose hash&prove and accumulate&prove protocols
that avoid expensive hash encodings in the circuit, but their

solutions require the SNARK prover to do work linear in the
hashed/accumulated set, which limits their scalability to large
sets. The same limitation applies to the efficient commit-and-
prove SNARKs [24], [49] as well as to the vSQL scheme of
Zhang et al. [50] and TRUESET by Kosba et al. [51]. Also,
all these schemes [24], [48], [50] require public parameters
linear in the largest set. ADSNARK [52] can generate proofs
on authenticated data; this setting is similar to accumulated
sets except that inserting data in the set requires a secret
authentication key; also [52] achieves succinct proofs only
when the verifier knows the secret authentication key.

Accumulators and vector commitments for stateless
blockchains. In addition to the already mentioned
accumulators from hidden-order groups and Merkle trees,17

other popular schemes rely on bilinear pairings [54], [55].
Merkle trees actually generalize to vector commitments [56],
of which we also know realizations from hidden-order groups
and bilinear pairings. Recent works [15], [57]–[60] have
extended these two primitives with additional functionalities,
including batch proofs, and shown applications to stateless
blockchains. In the latter approach, transactions need to
be sent and known for verification. Also, their use within
zkSNARKs presents the same efficiency challenges—their
verification (including elliptic curve operations and pairings)
is considerably expensive when compiled into constraints
[44], [49]—in addition to the fact that they need public
parameters linear in the largest set to be accumulated.
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Number of Constraints
System Per-operation cost Per-proof cost
Merkle-Swap 2(cHe

+ log |S| · cH) —
MultiSwap from [21] 2(cHe

+ cHin
+ csplit + c+ℓ(f) + c×ℓ) 4ceG?

(|ℓ|) + 2c×G?
+ cHp

+ cmodℓ(bHDI)

B-INS-ARiSA-MultiSwap 2(cHe
+ csplit + c+ℓ(f) + c×ℓ) cmodℓ(bHDI)

λ security parameter (128)
|ℓ| prime challenge bits (256 in ours, 352 in [21])
bHDI output size of division-intractable hash HDI (2048)
cH hash F2 → F (varies)
cHe set items hashing to F, used in HDI (varies)
cHin per-operation cost of full-input hash in [21] (varies)
cHp prime generation (217703)

f field elements size log2 |F| (255)
csplit strict bit split in F (388)
c+ℓ(b) addition mod ℓ of two inputs of b-bits (16 + b)
c×ℓ multiplication mod ℓ (479)
cmodℓ(b) reduction mod ℓ of b-bit input (16 + b)
c×G?

multiplication in G?

ceG?
(b) exponentiation in G? with b-bit exponent

Fig. 6: Constraints count model for Merkle swaps, the MultiSwap of [21], and our MultiSwap of section V-B. The values of
the cost parameters are from [21]. The hash functions costs ‘(varies)’ depend on the hash instantiation.
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APPENDIX

THE PoKE PROTOCOL [15]

For the ease of presentation we recall the PoKE protocol
in fig. 8. Although the interactive version of the protocol is
secure with λ-sized challenges its non-interactive version is
only secure with 2λ-sized challenges, due to a subexponential
attack [61].

Remark 4. We note that the proof of fig. 8 is not originally
secure for arbitrary bases A, but rather for random ones.
For arbitrary bases extra care should be taken, that give a
proof of additional 2 group elements. We wil show that the
protocol still suffices for our needs, since we combine it with
a SNARK for the relation x = res mod ℓ. In a nutshell, a
PoKE for random bases with a SNARK for x = res mod ℓ
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give a succinct proof of knowledge of exponent for arbitrary
bases.

Setup(1λ) :

(G?, g?)← G?(1λ)
return crs := (G?, g?)

Prove (crs, A,B;x) :

ℓ← Hprime(crs, A,B)

Q← A⌊
x
ℓ ⌋, res ← x mod ℓ

return π = (Q, res)

Verify (crs, A,B, π) :

Parse π as (Q, res)

ℓ← Hprime(crs, A,B)

Reject if A,B,Q /∈ G? or res /∈ [0, ℓ− 1]

Reject if QℓAres ̸= B

Fig. 8: The succinct argument of knowledge PoKE [15]. Hprime
denotes a cryptographic hash function that outputs a prime of
size 2λ, modeled as a random oracle.

DEFERRED SECURITY PROOFS

A. Security of the construction of section IV
In fig. 9 we describe an interactive version of our

construction.

Theorem 3. The construction in fig. 9 for the relation R̃mem
ck

is a secure CP-NIZK: succinct, knowledge-sound under the
adaptive root assumption and zero-knowledge under the DDH-
II assumption.

Proof. Succinctness: Comes from inspection and from the
assumption that cpΠmodarithm and cpΠbound are succinct.
(2,M)-Special Soundness: assume that we have a tree

of (2,M) successful transcripts, for M = poly(λ) >⌈
∥p∗∥+∥u∗∥+λ

2λ

⌉
, i.e.{(

Ŵu⃗, cs,r, R
)
, h, ℓ(j),

(
Q(i), res(j)

)
, π

(j)
2 , π

(j)
3

}M

j=1

and{(
Ŵu⃗, cs,r, R

)
, h̃, ℓ̃′(j),

(
Q̃(i), ˜res(j)

)
, π̃

(j)
2 , π̃

(j)
3

}M

j=1

We construct an extractor Ext that works as follows.
Ext uses the extractor of cpΠmodarithm to extract

u⃗(j), s(j), r(j), openings of cu⃗ and cs,r respectively,
such that res(j) = s(j)h

∏
i u

(j)
i + r(j) mod ℓ(j).

From the binding of the commitments we get that
u⃗(j) = u⃗(j′), s(j) = s(j

′), r(j) = r(j
′) for each transcript,

since they refer to the same commitments. So we denote the
extracted values as u⃗, s, r and get:

sh
∏
i

ui + r = res(j) mod ℓ(j), for each j ∈ [M ]

Using the Chinese Remainder Theorem we get a k such that

k = sh
∏
i

ui + r mod

 M∏
j=1

ℓ(j)


M can be set sufficiently large (but still polynomial-sized) so
that

∏M
j=1 ℓ

(j) > sh
∏

i ui + r and thus k = sh
∏

i ui + r

over the integers. Furthermore, k = res(j) mod ℓ(j) for each
j ∈ [M ].

As shown in [15] the fact that for any accepting proof,
(ℓ,Q, res), it holds that QℓŴ res

u⃗ = acchR and k = res
mod ℓ (the latter in our case is ensured by the SNARK) then
under the adaptive root assumption we get:

Ŵ k
u⃗ = ˆacchR

(we refer to [15] appendix C.2 for the formal reduction).
Then the extractor does the same for the second set of

transcripts to get k̃, ˜⃗u, s̃, r̃ such that Ŵ k̃
˜⃗u
= ˆacch̃R and k̃ =

s̃h̃
∏

i ũi + r̃ over the integers. Now since ˜⃗u, s̃, r̃ refer to the
same commitment as u⃗, s, r (recall that the commitment were
sent a priori) from the binding of the pedersen commitment
we get that ˜⃗u = u⃗, s̃ = s, r̃ = r, which gives us that
k̃ = sh̃

∏
i ui + r.

From the above we have: Ŵ k
u⃗ = ˆacchR and Ŵ k̃

˜⃗u
= ˆacch̃R.

Combining the two we get that

Ŵ k−k̃
u⃗ = ˆacch−h̃ ⇔

Ŵ
sh

∏
i ui+r−sh̃

∏
i ui−r

u⃗ = ˆacch−h̃ ⇔

Ŵ
(s

∏
i ui)(h−h̃)

u⃗ = ˆacch−h̃

From the low order assumption (which is implied by the
adaptive root assumption) we get Ŵ s

∏
i ui

u⃗ = ˆacc.
Finally, the extractor runs once the extractor of cpΠbound to

get that ui > 2λ.
To conclude the proof, (2,M)-special soundness implies

knowledge-soundness [62].
Zero-Knowledge: It comes directly from the standard

rewinding-simulation Σ-method and the use of the simulators
of cpΠmodarithm and cpΠbound.

B. Security of the construction of section V
We give a formal statement of the security of the scheme

and then give an overview of the security proof. The proof
can be seen as a simplification of the proof of theorem 3.

Theorem 4. Let Hprime a hash-to-prime function modeled
as a random oracle, HDI be a division-intractable hash
function and cpΠmodarithm, cpΠHDI be secure CP-SNARKs. The
construction in fig. 3 for the relation R̃ins

ck is a succinct and
knowledge-sound, under the adaptive root assumption, CP-
SNARK.

Succinctness: is inherited from the succinctness of
cpΠmodarithm, cpΠHDI and PoKE.

Knowledge-Soundness intuition: the extractor proceeds
similarly to a PoKE extractor, it rewinds the prover until it
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gets M = poly(λ) proofs {Q(i), res(i), π
(i)
2 }i∈[M ] and ℓ(i)

such that each proof verifies, Q(i)ℓ(i)accres
(i)

= acc′. For
each proof it runs the corresponding extractor cpΠmodarithm and
gets a (common) u⃗ such that u∗ = res(i) mod ℓ(i) for each
i ∈ [M ]. As argued in the proof of theorem 3 for a sufficiently
large M > ∥u∗∥/∥ℓ∥ we get that accu

∗
= acc′. This by using

the CRT and a reduction to the adaptive root assumption from
[15].

To conclude the extraction we additionally need a single π3

and run the extractor of cpΠHDI to get that ui = HDI(xi).

EXTENDING OUR CP-SNARK FOR BATCH MEMBERSHIP

C. Dealing with sets of arbitrary elements

The scheme described in the section IV works for sets
whose elements are suitably large prime numbers. Working
with primes can be a limitation in practical applications. Here
we describe how to get rid of this limitation and can support
sets of arbitrary elements, such as binary strings. The idea is
common in previous work and is to use a suitable collision-
resistant hash function that maps arbitrary strings to prime
numbers. What is a bit more complicated in our setting is that
in order to prove membership of an arbitrary element, we need
to prove the mapping to a prime.

Thanks to the commit-and-prove modularity of our protocol
we can do this extension easily. This is the same idea used in
[22]. Say that the prover holds a commitment ĉ to a vector of
binary strings (û1, . . . , ûm). To prove the mapping the prover
creates a commitment c to the primes (u1, . . . , um) such that
ui = Hprime(ûi), runs our CP-SNARK with c and adds a
proof πHprime showing that c, ĉ commit to elements such that
∀i : ui = Hprime(ûi). The latter proof can be generated via a
CP-SNARK for this hashing relation. In particular, although
a computation of Hprime involves several computations of a
collision resistant hash function until reaching a prime, for
the sake of proving one can use nondeterminism and prove a
single hash evaluation (see [22] for details).

D. Succinct batch proofs of non-membership

We observe that by using a CP-SNARK for batch
membership it is also possible to prove batch non-membership,
if one accumulates sets using an interval-based encoding. The
idea is that the elements of the set S = {xi}i are ordered,
x1 < x2 < · · · < xn, and the accumulator actually contains
hashes of consecutive pairs ui = H(xi−1, xi). This way,
proving that x /∈ S translates into proving that there is an
element uj = H(xj−1, xj) in the accumulator such that
xj−1 < x < xj . The idea of interval-based non-membership
proofs was introduced by Buldas et al. in the context of
Merkle trees [63]. The drawback of this method is that it
needs some coordination in order to add the data to the
accumulator in this structured form and has an additional cost
to the prover to prove the range. As an alternative, we can
also extend our technique of this section to generate succinct
zero-knowledge batch membership proofs for generic RSA
accumulators. The idea is to build a randomization method
for the batch non-membership witnesses of [11], [15] and add

a similar combination of a sigma protocol for its verification
together with a PoKE proof. We leave the formalization of
this extension to the full version of the paper.
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Setup
(
1λ, ck, ppAcc

)
:

crs2 ← cpΠarithm.Setup(1λ, ck, R̃arithm
ck )

crs3 ← cpΠbound.Setup(1λ, ck, Rbound)

return crs := (ck, ppAcc, crs2, crs3)

P (crs, ˆacc, cu⃗;Wu⃗, u⃗, ou⃗, S) V (crs, ˆacc, cu⃗)

π3 ← cpΠbound.Prv(crs3, cu⃗, p2λ; u⃗, ou⃗)

Sample b1, . . . , b2λ ←$ {0, 1}

let s :=
∏

pi∈P2λ

pbii , s̄ :=
∏

pi∈P2λ

p1−bi
i

Ŵu⃗ ←W s̄
u⃗

Sample r ←$ {0, 1}∥p
∗∥+∥u∗∥+λ

cs,r ← Commck(s, r; os,r)

R← Ŵ r
u⃗

π3, Ŵu⃗, cs,r, R

h←$ {0, 1}λ

h

k ← r + (s
∏
i

ui)h

ℓ←$ P22λ

ℓ

Q← A⌊
k
ℓ ⌋, res ← x mod ℓ

π2 ← cpΠmodarithm.Prv(crs2, cu⃗ , cs,r , h, ℓ, res)

(Q, res), π2

Accept if all are true:

•Q ∈ G? and res ∈ [0, ℓ− 1]

•QℓŴ res
u⃗ = âcchR and

• cpΠmodarithm.Vfy(crs2, cu⃗, cs,r, h, ℓ, res, π2) = 1

• cpΠbound.Vfy(crsbound, cu⃗, p2λ, π3) = 1

Fig. 9: Interactive version of our protocol for batch membership.
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