
Succinct Zero-Knowledge Batch Proofs for Set Accumulators
Matteo Campanelli

Protocol Labs
matteo@protocol.ai

Dario Fiore
IMDEA Software Institute, Spain

dario.fiore@imdea.org

Semin Han
Hanyang University, Korea
seminhan@hanyang.ac.kr

Jihye Kim
Kookmin University, Korea
jihyek@kookmin.ac.kr

Dimitris Kolonelos
IMDEA Software Institute, Spain
Universidad Politecnica de Madrid

dimitris.kolonels@imdea.org

Hyunok Oh
Hanyang University, Korea

hoh@hanyang.ac.kr

ABSTRACT

Cryptographic accumulators are a common solution to proving
information about a large set 𝑆 . They allow one to compute a short
digest of 𝑆 and short certificates of some of its basic properties,
notably membership of an element. Accumulators also allow one to
track set updates: a new accumulator is obtained by inserting/deleting
a given element. In this work we consider the problem of generating
membership and update proofs for batches of elements so that we
can succinctly prove additional properties of the elements (i.e.,
proofs are of constant size regardless of the batch size), and we
can preserve privacy. Solving this problem would allow obtaining
blockchain systems with improved privacy and scalability.

The state-of-the-art approach to achieve this goal is to combine
accumulators (typicallyMerkle trees) with zkSNARKs. This solution
is however expensive for provers and does not scale for large
batches of elements. In particular, there is no scalable solution for
proving batchmembership proofs whenwe require zero-knowledge
(a standard definition of privacy-preserving protocols).

In this workwe propose new techniques to efficiently use zkSNARKs
with RSA accumulators.We design and implement twomain schemes:
1) harisa, which proves batch membership in zero-knowledge; 2)
b-ins-arisa, which proves batch updates. For batch membership,
the prover in harisa is orders of magnitude faster than existing
approaches based on Merkle trees (depending on the hash function).
For batch updateswe get similar cost savings compared to approaches
based on Merkle trees; we also improve over the recent solution of
Ozdemir et al. [USENIX’20].

KEYWORDS

snarks; accumulators; zero-knowledge

1 INTRODUCTION

Blockchains are decentralized and distributed systems in which
a vast network of nodes maintain, distributed and replicated, a
digital ledger. Core to blockchains is the maintenance of the global
state of the system across its nodes. This state is usually large
and is encoded in data structures such as a UTXO set (unspent
transaction outputs, intuitively the unspent coins) in Bitcoin and
Zcash [10, 66], the set of account-balances in Ethereum, or the set
of identities in Decentralized Identity (DID) systems (e.g., Iden3,
Sovrin, Hyperledger Indy) [61, 62, 65]. In these systems executing
a transaction typically involves two steps, one “local” and one
“global”: (i) checking a given property with respect to the current
state (e.g., the transaction is properly signed, some coins are spendable,

some credentials exist), and (ii) modifying the global state (e.g.,
updating balances, adding a credential) and checking its correct
update. The validity checks that are local to the transaction can
for example involve checking a digital signature. Checking against
the global state typically translate into set-membership (𝑥 ∈ 𝑆) or
set-update (𝑆 ′ ?

= 𝑆 \ {𝑥} ∪ {𝑥 ′}).
Blockchain systems grow through time and so do their global

states (at the time of writing the UTXO set in Bitcoin is 4.6 GB).
Verifying this state at scale is a challenging problem: every user,
even one that only “passively” looks at the history of transactions,
must re-execute them and store them to verify future ones.

A common approach to this problem uses authenticated data
structures (ADS) [56], e.g., Merkle trees [46] as their most popular
and deployed incarnation, or RSA accumulators [7, 11, 21, 44]. This
idea [36, 53, 58] splits users into two groups. More “passive” users
(aka verifiers) store only a succinct digest of the large set. A user
proposing a transaction, on the other hand, has more information
on the state (e.g., their account information) that it can use to prove
either the membership of some elements, or the correctness of an
update, with respect to the digest. This approach achieves scalable
verification because ADS proofs are succinct, i.e., they are short
and the time to verify is sublinear in the size of the set, e.g., it is
logarithmic in Merkle trees, or constant in RSA accumulators.

While the efficiency benefits of this approach are clear, there
are two additional challenges emerging in this space. They are the
focus of our work.

1) how to obtain privacy? This is paramountwhenever transactions
data cannot be publicly exposed (e.g., to preserve anonymity or
prevent front-running).

2) how to improve throughput? That is, the number of transactions
we can process per unit of time.

The ADS-based approach above falls short on both issues. First,
it generally requires that the global state is public. Second, it scales
poorly when proving many transactions. Assume we want to batch
prove𝑚 transactions at once, ADS either allow membership/update
proofs for a single element only [46], or they have succinct batch
proofs but the verifier must know and receive the elements [15].
This entails at least an 𝑂 (𝑚) communication and verification time,
affecting on-chain storage and work.

Both these problems can be solved via the use of zkSNARKs [13,
47], cryptographic proof systems that enable a prover to convince
a verifier about the veracity of statements of the form “given a
function 𝐹 and a public input 𝑥 , there is a secret 𝑤 such that
𝐹 (𝑥,𝑤) is true”. In particular, zkSNARK proofs are zero-knowledge

1

and succinct. The former means that proofs do not reveal any
information about the secret 𝑤 and give solutions to the privacy
challenge. For instance, in Zcash one proves the existence of a coin
that is valid and part of the UTXO set, without revealing which
is the coin so as to guarantee anonymity of a spend transaction.
The other property, succinctness, means that proofs are short and
efficient to verify, faster than the time it takes to execute 𝐹 . This
gives a solution to the throughput question above. The idea (known
as zk-Rollup [8]) is that an aggregator can: collect a batch of 𝑚
transactions; prove that they are valid; compute the updated global
set and the corresponding digest; and finally broadcast the new
digest with a succinct proof that its update is correct.

Even though zkSNARKs make verifiers’ lives easier, the same
cannot be said for provers. In these applications, the function to be
proven includes the verification algorithm of an ADS which makes
zkSNARK proving extremely expensive in terms of both computing
time and RAM. To date the most deployed option is based onMerkle
trees [46]. Proving their verification for a set of size 𝑛 and a batch of
𝑚 elements requires encoding about ≈𝑚 log𝑛 hash computations
in the zkSNARK constraint system. Even by using hash functions
that are optimized for zkSNARKs [1, 40], the proving time degrades
very quickly (see section 6). In part, a reason of this cost is that
Merkle trees do not allow batch openings.

RSA accumulators are a promising alternative as they enjoy
constant-size batch proofs for membership and updates [15]. Yet,
they have two potential limitations.

The first one is that generating a (batch) inclusion proof requires
𝑂 (𝑛) RSA group operations, which is concretely more expensive
than the analogous cost forMerkle trees, that is𝑂 (𝑛) hash computations.
This issue, however, is heavily mitigated in several applications
and does not represent a showstopper. For instance, in stateless
blockchains [30, 59] a user can be provided the inclusion proof for
her elements of the set (e.g., her account, identities) and does not
need to recompute it from scratch, only to keep it updated, a task
which in RSA accumulators can be performed at a constant-time
cost per update.

The second limitation (and the focus of our work) has to do with
applying SNARKs on them for succinct batch opening. The naive
approach that encodes their verification as a constraint system for
zkSNARKs is concretely prohibitive (verification consists of 𝑂 (𝑚)
RSA group operations becoming ≈ 1.8 ·𝑚 millions constraints).

Two recent papers [12, 49] consider this problem of efficiently
combining RSA accumulators with zkSNARKs avoiding expensive
encodings. Benarroch et al. [12] propose SNARKs for set-membership
(proving that a committed element is in a large set, of which the
verifier knows an RSA accumulator) but only support membership
of a single element. Ozdemir et al. [49] propose a verifiable computation
for batch updates of sets succinctly represented by RSA accumulators.
Since in RSA accumulators, membership and updates are expressed
through the same algebraic property, their techniques can be extended
to support zero-knowledgemembership. But this still entails a large
fixed cost of 5 millions constraints to encode RSA group operations,
in addition to ≈ 2 ·𝑚 thousands constraints, for a batch of size𝑚.
Also, for the problem of proving batch updates they improve over
Merkle trees only beyond a fairly large threshold: 220-elements sets
and batches of ≈ 1, 300 values.

1.1 Our work

We advance this research line by proposing new techniques to
efficiently use zkSNARKs with RSA accumulators. We propose new,
more scalable protocols for succinct zero-knowledge proofs of batch
membership and updates. In what follows we give more details on
our contributions.

Succinct proofs of batchmembership.Our first result is a commit-
and-prove [27] zkSNARK for batch membership, that is: given
an RSA accumulator acc to a set 𝑆 = {𝑥1, . . . , 𝑥𝑛} and a succinct
Pedersen commitment 𝑐𝑢 to a vector of values (𝑢1, . . . , 𝑢𝑚), it holds
𝑢𝑖 ∈ 𝑆 for every 𝑖 = 1, . . . ,𝑚. Thanks to the commit-and-prove
feature, our scheme can be efficiently and modularly composed
with other commit-and-prove1 zkSNARKs [25] in order to prove
further properties of the committed elements, e.g., ∀𝑖 : 𝑢𝑖 ∈ 𝑆 ∧
𝑃 (𝑢1, . . . , 𝑢𝑚) = true (𝑃 could be for example a numerical range
check; see also our DID application in section 6.2.2). We dub our
construction harisa2.

Our technical contributions include: a new randomizationmethod
for RSA accumulator witnesses (needed to obtain zero-knowledge)
and a new way to prove the accumulator verification in zero-
knowledge in a SNARK without encoding RSA group operations in
the constraint system. The latter is based on a novel combination
of (non-succinct) sigma protocols, succinct proof of knowledge of
exponent [15], and zkSNARKs for integer arithmetic.

Succinct proofs of batch insertion. Our second result concerns
succinct proofs for batch insertion, that is: given two RSA accumulators
acc, acc′ to sets 𝑆 and 𝑆 ′ respectively and a succinct Pedersen
commitment 𝑐𝑢 to (𝑢1, . . . , 𝑢𝑚), it holds that 𝑆 ′ = 𝑆∪{𝑢1, . . . , 𝑢𝑚}.3
We build our scheme for set insertions—dubbed b-ins-arisa4—by
“scaling down” our techniques for set-membership, removing zero-
knowledge and simplifying, finally obtaining a solution that is
simpler and faster than our batch-membership scheme. Furthermore,
following [49], we show how to use this scheme to obtain one for
proving MultiSwaps, which in a nutshell means checking if 𝑆 ′ is
obtained by applying a sequence of “swaps” {(𝑥1, 𝑥 ′1), . . . , (𝑥𝑚, 𝑥 ′𝑚)}
(i.e., add 𝑥 ′

𝑖
, remove 𝑥𝑖) to 𝑆—essentially what we informally referred

as set update. As shown in [49], provingMultiSwaps for accumulated
sets has applications to verifiable outsourcing of state updates,
applicable to Rollups [8] and efficient persistent RAM [17].

Implementation and evaluation. We implement our protocols5
and evaluate them experimentally comparing with the state of
the art. For zero-knowledge batch membership, we compare our
solution with Merkle trees on two benchmarks: one that considers
generic membership operations, and one that implements a DID
application. For batch updates, we compare ourMultiSwap solution
with that of Ozdemir et al. [49] and with Merkle trees. We do the
latter comparison via a cost model analysis based on number of
SNARK constraints. We also validate the case of set membership on
a realistic application scenario (Decentralized Identity in section 6.2.2).
1Roughly, the verification algorithm of the zkSNARK takes as input short commitments
to a long (potentially private) input. This property is useful as the elements for which
we prove set membership need to stay private, but still “referred to”, e.g. for proving
additional properties on them.
2harisa stands for “elements-Hiding Argument for RSA accumulators”.
3More precisely, our schemes work with multisets.
4For Batch INSertion. It is pronounced as in the word beans.
5Part of implementation available at https://github.com/matteocam/libsnark-lego

2

https://github.com/matteocam/libsnark-lego

For batch membership, our experiments show that harisa saves
at least an order of magnitude in proving time (depending on which
hash function we use for Merkle trees in the comparison). As an
example, proving batch-membership of 16 elements with SHA256
(resp. Poseidon) Merkle trees of depth 16 requires about 30 (resp.
1.5) minutes, while it requires less than 3 seconds with harisa. Our
solution also enjoys >5× smaller public parameters than solutions
based onMerkle trees, which also translates into less RAMconsumption
for the prover. A downside of harisa are slower verification and
larger proofs; yet they remain competitive: verification takes ≈
60ms (vs. 30ms for Merkle trees) and proofs are close to one kilobyte
for any batch/set size.

ForMultiSwaps, b-ins-arisa obtains similar improvements over
Merkle-tree based solutions, i.e., more scalable prover and slightly
worse verification and proof size. Also, b-ins-arisa surpassesMerkle-
based swaps earlier than [49] (140 operations for 220-large sets).

2 TECHNICAL OVERVIEW

Wenowpresent a high-level overview of ourmain technical contributions.
Our core protocol is a succinct zero-knowledge proof of set

membership for a batch of elements. Given a (public) set 𝑆 =

{𝑥1, . . . , 𝑥𝑛} and a commitment to 𝑢1, . . . , 𝑢𝑚 , we aim at proving
that 𝑢1, . . . , 𝑢𝑚 ∈ 𝑆 . We require for privacy that the 𝑢𝑖 ’s remain
hidden (and thus we provide them only as a commitment in the
public input). We also require for efficiency that proof size and
verification time should not depend either on the batch size𝑚 or
the set size 𝑛.

We start from applying RSA accumulators [7] to compress the
set into a succinct digest. Given random group element 𝑔 in a group
of unknown order (e.g. an RSA or class group [18]), one can produce
a compressed representation of the set6 as acc = 𝑔𝑥1 ·𝑥2 · · ·𝑥𝑛 . RSA
accumulators enjoy succinct batch-membership proofs: to prove
that 𝑢1, . . . , 𝑢𝑚 ∈ 𝑆 it suffices to provide a single group element (a
witness)𝑊 = 𝑔

∏
𝑖∈[𝑛] 𝑥𝑖/

∏
𝑖∈[𝑚] 𝑢 𝑗 , which the verifier can check as

𝑊𝑢1 · · ·𝑢𝑚 = acc.
Though succinct, the batch-membership proofs of RSA accumulators

do not hide the 𝑢𝑖 elements, as the verifier should know them in
order to perform the exponentiation. To address this problem, we
could use a non-interactive zero-knowledge proof of exponentiation,
which can be obtained using a Σ-protocol [33] (a three-message
zero-knowledge scheme) made non-interactive through the Fiat-
Shamir transform [37]. In it the prover computes: 𝑅 ← 𝑊 𝑟 for
a sufficiently large random 𝑟 ; a random oracle challenge ℎ ←
𝐻 (acc| |𝑔| |𝑊 | |𝑅), an integer 𝑘 ← 𝑟 + ℎ · ∏𝑖∈[𝑚] 𝑢𝑖 . The verifier
accepts this zk-proof (𝑅,ℎ, 𝑘) if ℎ = 𝐻 (acc| |𝑔| |𝑊 | |𝑅) and 𝑅 · accℎ =

𝑊 𝑘 .
This protocol however does not yet achieve our goal, which is to

generate a zero-knowledge batch-membership proof for committed
𝑢𝑖 ’s. Towards this goal, we need to solve the following technical
challenges. (A) The verifier needs to know the witness𝑊 , which
can itself leak information about the elements it proves membership
of. For example for𝑚 = 1 one can efficiently find the element 𝑢1 by
brute-force testing all elements of the set 𝑆 ,𝑊 𝑥𝑖 ?

= acc (recall that
the set is public). The 𝑥𝑖∗ for which the test passes will be 𝑢1. (B)
6The elements of the set should be primes (or hashed to ones) for the RSA accumulator
to securely apply.

The proof (𝑅,ℎ, 𝑘) above simply shows existence of an exponent 𝑢
such that𝑊𝑢 = acc, in particular it does not link this statement to
committed (𝑢1, . . . , 𝑢𝑚) such that𝑢 = 𝑢1 · · ·𝑢𝑚 . (C) The proof is not
succinct since the integer 𝑘 is𝑂 (𝑚)-bits long. (D) Most notably, the
Σ-protocol described above is not even sound, unless the challenge
is binary, ℎ ∈ {0, 1} [6, 57].

Our key contribution is an efficient technique to efficiently prove
the verification of this Σ-protocol using a SNARK. Notably, we do
not need encode any RSA group operations in the SNARK constraint
system7. To obtain this result we combine three main ideas:
(1) We introduce a novel randomizationmethod for an RSA accumulator

witness,𝑊 ↦→ �̂� , so that�̂� provably doesn’t leak any information
about the 𝑢𝑖 ’s.

Our hiding-witness transformation works as follows: let
𝑝1, . . . , 𝑝2_ be the first 2_ prime numbers.We always (artificially)
add these primes to the accumulator, i.e., the accumulator of
a set 𝑆 is an RSA accumulator ˆacc of 𝑆 ← 𝑆 ∪ {𝑝1, . . . , 𝑝2_}:
ˆacc ← acc𝑝1 ...𝑝2_ (we assume that 𝑆 does not contain any of
the 𝑝𝑖 ’s). Then, to produce the hiding witness �̂� we raise to
the exponent each prime 𝑝𝑖 with probability 1/2. A bit more
formally, we sample 𝑏𝑖 ←$ {0, 1} and set �̂� ←𝑊

∏
𝑖∈[2_] 𝑝

1−𝑏𝑖
𝑖 ,

𝑏𝑖 ’s should remain hidden. We formally prove that under a
cryptographic assumption (DDH-II, a variant of DDH [26]) �̂�
is computationally indistinguishable from random and thus �̂� ,
alone, hides 𝑢𝑖 ’s (see section 4.1). Notice that �̂� can be verified
through the equality �̂�

∏
𝑖∈[𝑚] 𝑢𝑖 ·

∏
𝑖∈[2_] 𝑝

𝑏𝑖
𝑖 = ˆacc. Therefore

we can use the NIZK for exponentiation described above, but
for base �̂� and exponent 𝑒 :=

∏
𝑖∈[𝑚] 𝑢𝑖 ·

∏
𝑖∈[2_] 𝑝

𝑏𝑖
𝑖
.

This technique solves the challenge (A) as it turns an RSA
accumulator verification into a ZK verification. Yet challenges
(B) and (C) remain: 𝑘 is not short and the protocol only proves
the existence of 𝑒 such that �̂� 𝑒 = ˆacc—which says nothing
about membership of legitimate elements from 𝑆 . For example
𝑒 can contain only elements of {𝑝1, . . . , 𝑝2_} and no element
from 𝑆 .

(2) To solve (B) we “link” the Σ-protocol to 𝑐 ®𝑢 , a commitment to all
𝑢𝑖 ’s, by using a zkSNARK that proves the correct computation
of 𝑘 from the committed legitimate 𝑢𝑖 ’s. Namely it proves that,
for 𝑐 ®𝑢 , a commitment to ®𝑢, and 𝑐𝑟,𝑠 , a commitment to integers
𝑠 =

∏
𝑖∈[2_] 𝑝

𝑏𝑖
𝑖

and 𝑟 , the equality 𝑘 = 𝑟 +ℎ ·𝑠 ·∏𝑖∈[𝑚] 𝑢𝑖 holds
over the integers and 𝑢𝑖 > 𝑝2_ for each 𝑖 ∈ [𝑚]. Recall that 𝑝2_
is the largest of all 𝑝𝑖 ’s, so 𝑢𝑖 > 𝑝2_ translates to 𝑢𝑖 ≠ 𝑝 𝑗 for all
𝑗 ∈ [2_]. This means that the exponent of 𝑒 contains elements
𝑢𝑖 ’s committed a-priori and that they are legitimate (not one of
the artificially added 𝑝𝑖 ’s).

(3) Although the above careful interplay between RSAAccumulators,
Σ-protocols, zkSNARKs and our hiding technique for RSA accumulators
witnesses gives a secure zero-knowledge proof of setmembership,
it is not yet succinct, as the verifier needs to receive the 𝑂 (𝑚)-
long integer 𝑘 . To solve this technical challenge, we apply a
succinct proof of knowledge of exponent PoKE [15]. Instead
of sending 𝑘 , the prover sends 𝐵 = �̂� 𝑘 accompanied with a
succinct proof that there is an integer 𝑘 such that 𝐵 = �̂� 𝑘 .

7A “constraint system” is an encoding of the property proved by the SNARK. Its size,
the number of constraints, is a key efficiency metric when evaluating proof schemes.

3

Adding the PoKE proof however breaks the link between the Σ-
protocol and the zkSNARK as the latter is supposed to generate
a proof for a public 𝑘 . To solve this last challenge, we “open the
box” of PoKE verification and observe that the verifier receives
the short integer 𝑘 = 𝑘 mod ℓ , where ℓ is a random prime
challenge of 2_ bits. Therefore, the last idea of our protocol is
to let the zkSNARK prove the same statement as above but for
𝑘 , namely that 𝑘 = 𝑟 + ℎ · 𝑠 ·∏𝑖∈[𝑚] 𝑢𝑖 mod ℓ .

A special mention needs to be made to (D), the soundness of
the Σ-protocol. Standard impossibility results [6, 57] show that the
Σ-protocols over groups of unknown order (as the groups of RSA
accumulators) can have at most 1/2 soundness-error, meaning that
they need many repetitions (e.g. _ = 128) to leverage them to fully
sound (with negligible soundness-error). This usually makes the
protocols prohibitively expensive.

The general intuition of the impossibility is that (using usual
rewinding techniques) the extractor gets (𝑅,ℎ, 𝑘) and (𝑅,ℎ′, 𝑘 ′)
such that accℎ−ℎ

′
= 𝑊 𝑘−𝑘′ . However, we cannot imply to 𝑎𝑐𝑐 =

𝑊 (𝑘−𝑘
′)/(ℎ−ℎ′) because (ℎ−ℎ′)−1-in the exponent cannot be efficiently

computed in groups of unknown order. So we are bound to set
ℎ ∈ {0, 1} (so that ℎ − ℎ′ = 1). In our solution, the zkSNARK
proof described in (2) makes the extraction of the Sigma-protocol
possible. This is possible because this proof guarantees that, in the
two executions, 𝑘 = 𝑟 + 𝑠𝑢ℎ and 𝑘 ′ = 𝑟 + 𝑠𝑢ℎ′, for committed 𝑟, 𝑠,𝑢.
This way, we get that accℎ−ℎ

′
= 𝑊 𝑠𝑢 (ℎ−ℎ′) , from which we can

conclude the desired result acc =𝑊 𝑠𝑢 .
Our technique of using a zkSNARK for the correct computation

of the last message of a Σ-protocol over groups of unknown order, is
generic for any such protocol and gives a way to efficiently bypass
the impossibility results [6, 57] without inexpensive repetitions. We
expect this to be of independent interest.

3 BACKGROUND

We give informal definitions for the main cryptographic primitives
used in our constructions.

3.1 Commitments

Commitment schemes allow one to commit to a value, or a collection
of values (e.g., a vector), in a way that is binding—a commitment
cannot be opened to two different values—and hiding—a commitment
leaks nothing about the value it opens to. In our work we also
consider commitment schemes that are succinct, meaning informally
that the commitment size is fixed and shorter than the committed
value. Here is a brief description of the syntax we use in our work:
Setup(1_) → ck returns a commitment key ck; Comm(ck, 𝑥 ;𝑜) →
𝑐 produces a commitment 𝑐 on input a value 𝑥 and randomness 𝑜
(which is also the opening).

3.2 (Commit-and-Prove) SNARKs

Definition 3.1 (SNARK). A SNARK for a relation family ℛ =

{ℛ_}_∈N is a tuple of algorithms Π = (Setup, Prove,Verify) with
the following syntax:

• Π.Setup(1_, 𝑅) → crs outputs a relation-specific common
reference string crs.

• Π.Prove(crs,x,w) → 𝜋 on input crs, a statement x and a
witnessw such that 𝑅(x,w), it returns a proof 𝜋 .
• Π.Verify(crs,x, 𝜋) → 𝑏 ∈ {0, 1} on input crs, a statement
x and a proof 𝜋 , it accepts or rejects the proof.

We require a SNARK to be complete, knowledge-sound and
succinct. Completeness means that for any _ ∈ N, 𝑅 ∈ ℛ_ and
(x,w) ∈ 𝑅 it holds with overwhelming probability that Verify(crs,
x, 𝜋) = 1 where crs ← Setup(1_, 𝑅) and proof 𝜋 ← Prove(crs, 𝑅,
x,w). Knowledge soundness informally states we can efficiently
“extract” a validwitness from a proof that passes verification. Succinctness
means that proofs are of size poly(_) (or sometimes poly(_, log |w|))
and can be verified in time poly(_)poly(|x| + log |w|). A SNARK
may also satisfy zero-knowledge, that is the proof leaks nothing
about the witness (this is modeled through a simulator that can
output a valid proof for an input in the language without knowing
the witness). In this case we call it a zkSNARK. Whenever the
relation family is obviously defined, we talk about a “SNARK for a
relation 𝑅”.

3.2.1 Commit-and-Prove SNARKs (CP-SNARKs). Weuse the framework
for black-box modular composition of commit-and-prove SNARKs
(or CP-SNARKs) in [25] and [12]. Informally a CP-SNARK is a
SNARK that can efficiently prove properties of inputs committed
through some commitment scheme C. In more detail, a CP-SNARK
for a relation𝑅inner (x;𝑢,𝜔) is a SNARK that for a given commitment
𝑐 can prove knowledge ofw := (𝑢,𝜔, 𝑜) such that 𝑐 = Comm(𝑢;𝑜)
and 𝑅inner (x;𝑢,𝜔) holds. We can think of 𝜔 as a non-committed
part of the witness. In a CP-SNARK, besides the proof, the verifier’s
inputs are x and 𝑐 .

Remark 1 (Syntactic Sugar for SNARKs/CP-SNARKs). For convenience
we will use the following notational shortcuts. We make explicit what
the private input of the prover is by adding semicolon in a relation and
in a prover’s algorithm (e.g., 𝑅(x;w)). We explicitly mark relations
as “commit-and-prove” by a tilde. We leave the assumed commitment
scheme implicit when it’s obvious from the context. Occasionally,
we will also explicitly mark the commitment inputs by squared box
around them (e.g. 𝑐𝑢) and we will assume implicitly that the relation
includes checking the opening of these commitments (and we will not
make explicit the openings). We assume that in the commitment
𝑐𝑢 the subscript 𝑢 defines the variable 𝑢 the commitment opens
to. Analogously the opening for 𝑐𝑢 is automatically defined as 𝑜𝑢 .
Example: �̃�ck (𝑐𝑢 , ℎ; 𝑟) = 1 ⇔ ℎ = SHA256(𝑢 | |𝑟) is a shortcut for
�̃�ck (𝑐𝑢 , ℎ; 𝑟,𝑢, 𝑜𝑢) = 1 ⇔ ℎ = SHA256(𝑢 | |𝑟)∧𝑐𝑢 = Comm(ck, 𝑢;𝑜𝑢).

3.2.2 Modular SNARKs throughCP-SNARKs. Weuse the following
folklore composition of (zero-knowledge) CP-SNARKs (cf. [25, Theorem
3.1]). Fixed a commitment scheme and given two CP-SNARKs
cpΠ1, cpΠ2 respectively for two “inner” relations �̃�1 and �̃�2, we
can build a (CP) SNARK for their conjunction (for a shared witness
𝑢) �̃�∗ (𝑐𝑢 ,x1,x2;𝜔1, 𝜔2) = 𝑅1 (𝑐𝑢 ,x1;𝜔1) ∧𝑅2 (𝑐𝑢 ,x2;𝜔2) like
this: the prover commits to𝑢 as 𝑐𝑢 ← Comm(𝑢, 𝑜); generates proofs
𝜋1 and 𝜋2 from the respective schemes; outputs combined proof
𝜋∗ := (𝑐𝑢 , 𝜋1, 𝜋2). The verifier checks each proof over respective
inputs (x1, 𝑐𝑢) and (x2, 𝑐𝑢), with shared commitment 𝑐𝑢 .

4

3.3 Accumulators to Multisets

A multiset is an unordered collection of values in which the same
value may appear more than once. We denote by 𝑆1 ⊎ 𝑆2 the union
of multisets 𝑆1 and 𝑆2, i.e., the multiset 𝑆3 where the multiplicity
of any 𝑥 ∈ 𝑆3 is the sum of its multiplicity in 𝑆1 and 𝑆2. For two
multisets 𝑆2 ⊂ 𝑆1, 𝑆1 ⊟ 𝑆2 denotes the multiset difference of 𝑆1 and
𝑆2, i.e., the multiset 𝑆3 where the multiplicity of any 𝑥 ∈ 𝑆3 is the
multiplicity of 𝑥 in 𝑆1 minus the multiplicity of 𝑥 in 𝑆2.

Cryptographic accumulators [11] are succinct commitments to
sets that also allow one to generate succinct proofs of membership
(and sometimes also non-membership). In ourworkwe use accumulators
that enjoy three additional properties. First, they support multisets.
Second, they are dynamic, meaning that from an accumulator to
𝑆1 one can publicly compute an accumulator to 𝑆1 ⊎ 𝑆2 without
knowing 𝑆1. Third, one can create succinct membership proofs
for batches of elements, i.e., to prove that 𝑋 ⊂ 𝑆 . In more detail,
such an accumulator is a tuple of algorithms Acc = (Setup,Accum,

PrvMem,VfyMem, Ins) such that:
• Setup(1_) → pp generates public parameters;
• Accum(pp, 𝑆) → acc outputs accumulator acc for a multiset 𝑆 ;
• PrvMem(pp, 𝑆, 𝑋) →𝑊𝑋 outputs a membership proof (𝑋 ⊂ 𝑆);
• VfyMem(pp, acc, 𝑋,𝑊𝑋) → 0/1 accepts or rejects amembership

proof𝑊𝑋 ;
• Ins(pp, acc, 𝑆 ′) → acc′ computes accumulator to 𝑆 ⊎ 𝑆 ′.
Amultiset accumulator is secure if any PPT adversary has negligible
probability of creating a valid membership proof for a multiset
𝑋 ⊄ 𝑆 , namely to output a tuple (𝑆, 𝑋,𝑊) such that there is an
𝑥 ∈ 𝑋 such that 𝑥 ∉ 𝑆 and VfyMem(pp,Accum(pp, 𝑆), 𝑋,𝑊𝑋) = 1.

We note that the popular RSA accumulator [7, 15, 21, 44] enjoys
all the properties mentioned above.

3.4 Relations for batch set-membership and

set-insertion

Our focus in this work is on building efficient CP-SNARKs for the
following two relations parametrized by an accumulator scheme
Acc and parameters ppAcc:

�̃�mem
ck (𝑐𝑈 , acc;𝑊)=1⇔ Acc.VfyMem(pp, acc,𝑈 ,𝑊)=1

�̃�insck (𝑐𝑈 , acc, acc′) = 1 ⇔ Acc.Ins(ppAcc, acc,𝑈) = acc′

In a nutshell, a CP-SNARK for �̃�mem
ck can prove that 𝑐𝑈 is a commitment

to a vector of values such that each of them is in the multiset
accumulated in acc. A CP-SNARK for �̃�insck can instead prove that
acc′ is a correct update of the accumulator acc obtained by inserting
the elements committed in 𝑐𝑈 . For the relation �̃�insck we are not
interested in obtaining proofs that are zero-knowledge (i.e., so as
to hide 𝑈), as the Ins algorithm is deterministic and thus simply
having public accumulators acc, acc′ may leak information on the
added elements.

The specific notion of knowledge soundness we assume for
CP-SNARKs for these relations is the one where the malicious
prover is allowed to select an arbitrary set 𝑆 to be accumulated
but the accumulator acc is computed honestly from 𝑆 . Given an
accumulator scheme Acc, we informally talk about this specific
notion as “security under the Trusted Accumulator-Model for Acc”.
We do not provide formal details since this model corresponds to

the notion of partial-extractable soundness in Section 5.2 in [12]8;
we refer the reader to this work for further details.

This trusted accumulator model fits several applications where
the accumulator is maintained by the network.

On the other hand, we stress that in the 𝑅ins relation, the trusted
accumulator assumption is assumed only for acc but not for acc′.
The interesting implication of this is that one can view a CP-SNARK
for 𝑅ins as a means to move from a trusted accumulator acc to a
trustworthy one acc′. Thinking of acc0 as the accumulator to the
empty set that everyone knows and can efficiently compute, 𝑅ins
allows certifying the generation of an accumulator to any multiset.

The next sections show some interesting byproducts of having
modular commit-and-prove SNARKs for relations �̃�mem

ck and �̃�insck .

3.4.1 Composing (commit-and-prove) set-membership relations.
The advantage of having CP-SNARKs for the set-membership relation
(rather than just SNARKs) is that one can use the composition of
section 3.2.2 to obtain efficient zkSNARKs for proving properties of
elements in an accumulated set, e.g., to show that ∃𝑈 = {𝑢1, . . . , 𝑢𝑛}
such that a property 𝑃 holds for𝑈 (say, every 𝑢𝑖 is properly signed)
and𝑈 ⊂ 𝑆 , where 𝑆 is accumulated in some acc. In particular, such a
zkSNARK can be obtained via the simple and efficient composition
of a CP-SNARK for �̃�mem

ck (like the ones we construct in our work)
and any other CP-SNARK for 𝑃 .

3.4.2 From set-insertion toMultiSwap. Ozdemir et al. [49] introduce
an operation over (RSA) accumulators called MultiSwap. Consider
two multisets 𝑆 and 𝑆 ′ and a sequence of pairs (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛),
where each pair represents in order a “swap”, namely removal of
𝑥𝑖 and insertion of 𝑦𝑖 . Verifying a MultiSwap means checking that
𝑆 ′ = 𝑆𝑛 where 𝑆0 = 𝑆 and 𝑆𝑖 = 𝑆𝑖−1 ⊟ 𝑥𝑖 ⊎ 𝑦𝑖 . [49] shows that this
check can be reduced to

∃𝑆𝑚𝑖𝑑 : 𝑆𝑚𝑖𝑑 = 𝑆 ⊎ {𝑦𝑖 }𝑖 ∧ 𝑆𝑚𝑖𝑑 = 𝑆 ′ ⊎ {𝑥𝑖 }𝑖
So, when using accumulators,MultiSwap can be represented via
the following relation:

𝑅mswap (acc, acc′;𝑋,𝑌) = 1 ⇔

∃accmid : 𝑅ins (acc, accmid;𝑌) ∧ 𝑅ins (acc′, accmid;𝑋)
Thus, a CP-SNARK for𝑅mswap can be obtained via the (self)composition
of a CP-SNARK for 𝑅ins.

3.4.3 ChainingMultiSwap. Consider a scenariowhere an accumulator
evolves in time, namely at time 𝑖 a user returns a new accumulator
acc𝑖 alongwith a proof𝜋𝑖 that (acc𝑖−1, acc𝑖) ∈ 𝑅mswap (and possibly
additional proof that the elements added/removed satisfy a certain
property, e.g., in Rollup they are valid transactions). It is easy to
see that the concatenation (𝜋1, acc1, . . . , acc𝑛−1, 𝜋𝑛) constitutes a
proof for (acc0, acc𝑛) ∈ 𝑅mswap.

3.5 Building blocks

3.5.1 Pedersen Commitments of Integer values. The CP-SNARKs
we construct are defined for commitments generated using the
classical extension of Pedersen commitments to vectors. In particular,
we sometimes use a variant of this scheme for committing to
integers (instead of field elements); we describe it in fig. 1b. We
8We notice that their model uses a slightly different language and formalizes
accumulators as (binding-only) commitments for commit-and-prove NIZKs.

5

assume a prime 𝑝 and an algorithm 𝒢𝑝 that generates appropriate
parameters for groups of order 𝑝 . Since we commit to an integer
𝑥 whose size is potentially larger than 𝑝 we split the integer into
several “chunks”, of size ChkSz ≤ 𝑝 specified in the parameters, and
thenwe apply the standard vector-Pedersen on this split representation.
We let the setup algorithm take as input a bound B denoting the
max integer that we can commit to. The construction is perfectly
hiding, and computationally binding under the discrete logarithm
assumption.

3.5.2 RSA Accumulators. Another crucial component of our CP-
SNARKs are RSA accumulators to multisets [7, 15], that we recall in
fig. 1a. In particular, we assume their instantiation over any group
of unknown order (including, e.g., classical RSA groups or class
groups [18]) whose parameters are generated by an algorithm 𝒢?
and over which the Strong RSA [7] and the Adaptive Root [68]
assumptions hold. We recall that for these Accumulators the set
elements should be primes (or hashed-to-primes if not).

4 HARISA: ZERO-KNOWLEDGE CP-SNARK

FOR BATCH SET-MEMBERSHIP

In this section we show the construction of a CP-SNARK for the
relation �̃�mem

ck defined in 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 3.4.1, where: the accumulator is the
classical RSA accumulator from Figure 1a where the accumulated
elements are prime numbers larger than the 2_-th prime (1619 for
_ = 128), and the commitment scheme for the commit-and-prove
functionality is the Pedersen scheme of Fig. 1b. In appendix C.1 we
discuss how this construction can be easily extended to accumulate
arbitrary elements via an efficient hash-to-prime function.

4.1 RSA Accumulators with hiding witnesses

We describe a method to turn a witness𝑊 of an RSA accumulator
into another witness that computationally hides all the elements
𝑢𝑖 it provesmembership of. As discussed in Section 2 this constitutes
the first building block towards achieving a zero-knowledgemembership
proof for committed elements.

Let P𝑛 = {2, 3, 5, 7, . . . , 𝑝𝑛} be the set of the first𝑛 prime numbers.
Our method relies on two main ideas.

First, prover and verifier modify the accumulator acc so as to

contain the first 2_ primes by computing ˆacc ← acc

(∏
𝑝𝑖 ∈P2_ 𝑝𝑖

)
.

Note, ˆacc = 𝑔

(∏
𝑥𝑖 ∈𝑆 𝑥𝑖

)
·
(∏

𝑝𝑖 ∈P2_ 𝑝𝑖

)
? = Accum(pp, 𝑆 ∪ P2_).

Second, we build a randomized witness for 𝑋 ⊂ 𝑆 as the witness
for (𝑋 ∪ 𝑃) ⊂ (𝑆 ∪ P2_) where 𝑃 is a randomly chosen subset of
P2_ . In more detail, given𝑊 , the prover computes �̂� as follows:

• choose at random 2_ bits 𝑏1, . . . , 𝑏2_ ←$ {0, 1} and let 𝑠 :=∏
𝑝𝑖 ∈P2_ 𝑝

𝑏𝑖
𝑖

and 𝑠 :=
∏

𝑝𝑖 ∈P2_ 𝑝
1−𝑏𝑖
𝑖

.

• �̂� ←𝑊 𝑠 = 𝑔

(∏
𝑥𝑖 ∈𝑆\𝑋 𝑥𝑖

)
·
(∏

𝑝𝑖 ∈P2_ 𝑝
1−𝑏𝑖
𝑖

)
? .

Essentially, we have 𝑠 as the product of the randomly chosen primes,
𝑠 as the product of the primes not chosen, and we denote with
𝑝∗ :=

∏
𝑝𝑖 ∈P2_ 𝑝𝑖 the product of all the first 2_ primes. Finally, by

𝒟2_ we denote the distribution of 𝑠 , according to the sampling
method described above. Note that 𝑠𝑠 = 𝑝∗. Also, the new witness
�̂� could be verified by checking �̂� 𝑠

∏
𝑥𝑖 ∈𝑋 𝑥𝑖 = ˆacc.

Our first technical contribution is proving that this randomization
is sufficient. More precisely, we use a computational assumption
over groups of unknown order, called DDH-II, and we show that
under DDH-II�̂� is computationally indistinguishable from a random
𝑅←$G?. We stress that this hiding property holds only for the value
�̂� alone, i.e., when the random subset of P2_ is not revealed. As
we show later, this is sufficient for our purpose as we can hide
the integer 𝑠 in the same way as we hide the elements we prove
membership of.

In the following sectionwe state and explain theDDH-II assumption.
In brief, this is a variant of the classical DDH assumption where the
random exponents follow specific, not uniform, distributions. Next,
we prove that under DDH-II�̂� is computationally indistinguishable
from random.

4.1.1 TheDDH-II assumption. First, we state theDDH-II assumption,
which is parametrized by a generator𝒢? (1_) of a group (of unknown
order in our case) and by a well-spread distribution𝒲𝒮2_ (in our

Setup(1_) :

(G?, 𝑔?) ← 𝒢? (1_)
return pp := (G?, 𝑔?)

Accum(pp, 𝑆) :

prd← Prod(𝑆)

return acc := 𝑔
prd
?

Ins(pp, acc, 𝑆′) :

prd′ ← Prod(𝑆′)

return acc′ := accprd′

PrvMem(pp, 𝑆,𝑋) :

prd← Prod(𝑆), prd𝑋 ← Prod(𝑋)

return𝑊 := 𝑔
prd/prd𝑋
?

VfyMem(pp, acc, 𝑋,𝑊) :

prd𝑋 ← Prod(𝑋)
Accept iff𝑊 prd𝑋 = acc

(a) RSA Accumulator for multisets of prime numbers. Above Prod(𝑆) denotes the integer product of the elements in 𝑆 .

Setup(1_,B ∈ N,ChkSz ∈ N, 𝑛 ∈ N) :

(G𝑝 , 𝑓) ← 𝒢𝑝 (1_) ; If ChkSz > 𝑝 then output ⊥

Let 𝑁 := 𝑛 ·
⌈

B
ChkSz

⌉
Sample 𝑔1, . . . , 𝑔𝑁 , ℎ ←$G𝑝
return ck := (G,B,ChkSz, 𝑛, 𝑔1, . . . , 𝑔𝑁 , ℎ)

Comm(ck, ®𝑥 ∈ Z𝑛 ; 𝑟 ∈ Z𝑝) :

If ∃𝑖 : 𝑥𝑖 > B then output ⊥

Let
(
𝑥
(𝑖)
1 , . . . , 𝑥

(𝑖)
𝑚

)
be the representation of 𝑥𝑖 in base ChkSz for 𝑖 ∈ [𝑛]

®𝑦 :=
(
𝑥
(1)
1 , . . . , 𝑥

(1)
𝑚 , . . . , 𝑥

(𝑛)
1 , . . . , 𝑥

(𝑛)
𝑚

)
; return ℎ𝑟

𝑁∏
𝑖=1

𝑔
𝑦𝑖
𝑖

(b) Pedersen Commitments for vectors of integers. B is an upper bound over the integers we can commit to. ChkSz
is the size of the chunks in which we divide each integer. 𝑛 is the number of integers we can commit at the same

time.𝑚 =
⌈ B

ChkSz

⌉
is the number of chunks needed for each integer.

Figure 1: Accumulator and commitment schemes we will use throughout this work

6

case 𝒟2_). A distribution 𝒲𝒮2_ with domain 𝒳2_ is called well-
spread if Pr[𝑥 ←$𝒲𝒮2_] ≤ 2−2_ for each 𝑥 ∈ 𝒳2_ (Intuition: the
elements sampled from this distribution are “sufficiently random”).

Assumption 1 (DDH-II). Let G? ← 𝒢? (1_) and 𝑔? ←$G?. Let
𝒲𝒮2_ be awell-spread distributionwith domain𝒳2_ ⊆ [1,minord(G?)].
Then for any PPT 𝒜:���Pr[𝒜(𝑔𝑥? , 𝑔

𝑦

? , 𝑔
𝑥𝑦

?) = 0] − Pr[𝒜(𝑔𝑥? , 𝑔
𝑦

? , 𝑔
𝑡
?) = 0]

��� = negl(_)

where 𝑥 ←$𝒲𝒮2_ and 𝑦, 𝑡 ←$ [1,maxord(G?)2_].9

Our distribution of interest𝒟2_ can be shown well-spread: there
are 22_ outcomes and are all distinct, 𝑠 =

∏
𝑝𝑖 ∈P2_ 𝑝

1−𝑏𝑖
𝑖

are distinct
since they are different products of the same primes (no 𝑝𝑖 can be
used twice). It follows that Pr[𝑠 ←$𝒟_] = 1/22_ for every 𝑠 .

Remark 2. The constraint that the domain should be in [1,minord(G?)]
is for the following reason: If a sampled 𝑥 is larger than ord(𝑔?) then
in the exponent of 𝑔𝑥? a reduction modulo ord(𝑔?) will implicitly
happen leading to a 𝑔𝑥? = 𝑔𝑥

′
? for some 𝑥 ′ ≠ 𝑥 . This can turn 𝑔𝑥?

more frequently sampled, which can potentially help the adversary
distinguish between (𝑔𝑥?)

𝑦 and 𝑔𝑡?.

Different variants of DDH-II have been proven secure in the
generic group model [45, 55] for prime order groups [9, 34]. We can
prove it secure for groups of unknown order similarly with minor
technical modifications related to GGM proofs in such groups [35].

Remark 3. The need of an at least 22_-large domain 𝒳2_ (and at
most 2−2_ probability) for _ security parameter comes from well-
known subexponential attacks on DLOG [51, 52].

4.1.2 Security Proof of our hiding witnesses.

Theorem 4.1. For any parameters pp← Setup(1_), set 𝑆 (where
𝑆 ∩ P2_ = ∅), 𝑅←$G? and �̂� computed as described above it holds:��Pr[𝒜(pp, 𝑆,�̂�) = 0] − Pr[𝒜(pp, 𝑆, 𝑅) = 0]

�� = negl(_)
for any PPT 𝒜, under the DDH-II assumption for G? and 𝒟2_ .

Proof. Call𝒜 an adversary achieving a non-negligible advantage
𝜖 above, i.e. 𝜖 :=

��Pr[𝒜(pp, 𝑆,�̂�) = 0] − Pr[𝒜(pp, 𝑆, 𝑅) = 0]
�� We

construct an adversary ℬ against DDH-II that, using adversary 𝒜,
gains the same advantage. ℬ receives (G?, 𝑔?, 𝑔

𝑠
?, 𝑔

𝑟
?, 𝑔

𝑏𝑠𝑟+(1−𝑏)𝑡
?),

where 𝑠 ←$𝒟2_ and 𝑟, 𝑡 ←$ [1,maxord(G?)2_]. Then it chooses
arbitrarily an element 𝑢 and sets 𝑆 = {𝑢}, pp ← (G?, 𝑔

𝑟
?) and

𝑉 = 𝑔
𝑏𝑠𝑟+(1−𝑏)𝑡
? .ℬ sends (pp, 𝑆,𝑉) to the adversary𝒜, who outputs

a bit 𝑏∗. Finally, ℬ outputs 𝑏∗.
First, notice that 𝑔𝑟? is statistically close to a random group

element ofG?, meaning that𝒜 cannot distinguish pp from parameters
generated by Acc.Setup(1_). Furthermore if 𝑏 = 0 then 𝑉 is again
a (statistically indistinguishable element from a) uniformly random
group element ofG? therefore Pr[ℬ = 0|𝑏 = 0] = Pr[𝒜(pp, 𝑆, 𝑅) = 0].
On the other hand, if 𝑏 = 1 then 𝑉 = 𝑔𝑟 ·𝑠? = �̂�𝑢 is a witness of 𝑢
so Pr[ℬ = 0|𝑏 = 1] = Pr[𝒜(pp, 𝑆,�̂�) = 0]. Therefore we conclude
that the probability of ℬ to win the DDH-II is 𝜖 . □

9Since the order of the group is unknown, we cannot efficiently produce uniformly
random elements with 𝑦, 𝑡 ←$ [1, ord(𝑔?)]. However, 𝑦, 𝑡 ←$ [1,maxord(G)2_]
still produces statistically close to uniform elements.

4.2 Building Blocks

4.2.1 Succinct proofs of knowledge of exponent (PoKE). We recall
the succinct proofs of knowledge of a DLOG for hidden order
groups, introduced by Boneh et al. [15]. More formally, PoKE is a
protocol for the relation

𝑅PoKE (𝐴, 𝐵;𝑥) = 1 ⇔ 𝐴𝑥 = 𝐵

parametrized by a group of unknown order G? and a random group
element 𝑔? ∈ G?. The statement consists of group elements 𝐴, 𝐵 ∈
G? while the witness is an arbitrarily large 𝑥 ∈ Z.

Figure 2 gives a description of the protocol. For simplicity we
directly expose its non-interactive version (after Fiat-Shamir). Although
the interactive version of the protocol is securewith _-sized challenges
its non-interactive version is only secure with 2_-sized challenges,
due to a subexponential attack [14].

Setup(1_) :

(G?, 𝑔?) ← 𝒢? (1_)
return crs := (G?, 𝑔?)

Prove (crs, 𝐴, 𝐵;𝑥) :
ℓ ← 𝐻prime (crs, 𝐴, 𝐵)

𝑄 ← 𝐴 ⌊
𝑥
ℓ ⌋ , res← 𝑥 mod ℓ

return 𝜋 = (𝑄, res)

Verify (crs, 𝐴, 𝐵, 𝜋) :

Parse 𝜋 as (𝑄, res)
ℓ ← 𝐻prime (crs, 𝐴, 𝐵)
Reject if 𝐴, 𝐵,𝑄 ∉ G? or res ∉ [0, ℓ − 1]
Reject if𝑄ℓ𝐴res ≠ 𝐵

Figure 2: The succinct argument of knowledge PoKE [15].

𝐻prime denotes a cryptographic hash function that outputs

a prime of size 2_, modeled as a random oracle.

Remark 4. We note that the proof of fig. 2 is not originally secure
for arbitrary bases 𝐴, but rather for random ones. For arbitrary bases
extra care should be taken, that give a proof of additional 2 group
elements. We wil show that the protocol still suffices for our needs,
since we combine it with a SNARK for the relation res = 𝑥 mod ℓ .
In a nutshell, a PoKE for random bases with a SNARK for res = 𝑥

mod ℓ give a succinct proof of knowledge of exponent for arbitrary
bases.

This protocol is succinct: proof size and verifier’s work are
independent of the size of 𝑥 , 𝑂 (1) and 𝑂 (∥ℓ ∥) = 𝑂 (_) respectively.

4.2.2 CP-SNARK for integer arithmetic relations. We assume an
efficient CP-SNARK cpΠmodarithm for the following relation:

�̃�modarithm
ck (𝑐 ®𝑢 , 𝑐𝑠,𝑟 , ℎ, ℓ, 𝑘) = 1 ⇔

𝑘 = 𝑠 · ℎ ·
∏

𝑖∈[𝑚]
𝑢𝑖 + 𝑟 mod ℓ

Above, ®𝑢 = (𝑢1, . . . , 𝑢𝑚) ∈ Z𝑚 is a vector of integers with a
corresponding multi-integer commitment 𝑐 ®𝑢 ; 𝑟, 𝑠 ∈ Z are integers

7

committed with a corresponding multi-integer commitment 𝑐𝑠,𝑟
and ℓ, ℎ ∈ Z, 𝑘 ∈ [0, ℓ − 1] are (small) integers known as public
inputs by both prover and verifier.

The above relation is equivalent to the integer relation:

�̃�arithmck (𝑐 ®𝑢 , 𝑐𝑠,𝑟 , ℎ, ℓ, 𝑘 ;𝑞) = 1 ⇔ 𝑞ℓ + 𝑘 = 𝑠 · ℎ
∏
𝑖

𝑢𝑖 + 𝑟

In fact this is how a modulo operation is encoded in a SNARK
circuit. 𝑞 here is a witness given to the SNARK.10

4.2.3 CP-SNARK for inequalities. Weneed a CP-SNARK cpΠbound

for the relation (where 𝐵 is a public integer):

�̃�boundck (𝑐 ®𝑢 , 𝐵) = 1 ⇔
∧
𝑖∈[𝑛]

𝑢𝑖 > 𝐵

4.3 Our Construction for Batched Set

Membership (harisa)

Here we describe our CP-SNARK for the relation �̃�mem
ck for RSA

accumulators and Pedersen commitments to vectors of integers.
Let us recall the setting in more detail.

Prover and verifier hold an accumulator acc to a set 𝑆 and
a commitment 𝑐 ®𝑢 . The set’s domain are prime numbers greater
than 𝑝2_ , the 2_-th prime. The protocol works in the “trusted
accumulator model” (section 3.4), which means the set is assumed
to be public but the verifier does not take it as an input, it only uses
acc, for efficiency reasons.11

The prover knows a batch of set elements ®𝑢 = (𝑢1, . . . , 𝑢𝑚) that
are an opening of the commitment 𝑐 ®𝑢 , and its goal is to convince
the verifier that all the 𝑢𝑖 ’s are in 𝑆 . To this end, we assume that
the prover has an accumulator witness 𝑊®𝑢 as an input, either
precomputed or given by a witness-providing entity. In this sense,
the prover’s goal translates into convincing the verifier that it has
𝑊®𝑢 such that𝑊

∏
𝑖 𝑢𝑖

®𝑢 = acc (see also remark 5 where we further
refine this setting).

We give a full description of the CP-SNARK in Figure 3. We
refer to the technical overview (sec. 2) for a high-level explanation.
Below we provide additional comments.

To beginwith, both prover and verifier transform the accumulator
acc into ˆacc, the one corresponding to the same set with the additional
small prime numbers from P2_ .12 Next, the prover transforms𝑊
into a hiding witness as �̂� = 𝑊 𝑠 via our masking method of
section 4.1, and then computes a (Fiat-Shamir-transformed) zero-
knowledge Σ-protocol for the accumulator’s verification �̂� 𝑠𝑢∗ =

ˆacc. However, since the last message𝑘 of the protocol is not succinct,
it computes a PoKE for the relation (ˆaccℎ𝑅) = (�̂�®𝑢)𝑘 (exponent
𝑘), which is the verification equation of the Σ-protocol. The PoKE

verification requires a check 𝑄ℓ�̂� 𝑘
®𝑢 where 𝑘 is supposed to be 𝑘

mod ℓ . The last step of the proof is to show that 𝑘 is not just “some
exponent” but it is exactly 𝑟+ℎ𝑠𝑢∗ mod ℓ with𝑢∗ being the product

10For the sake of our general protocol, it is not necessary that 𝑞 remains hidden. It
is only important that the proof is succinct w.r.t. its size. However, ®𝑢, 𝑠 and 𝑟 should
remain hidden.
11This is a common consideration in scalable systems. The accumulator to the set is
either computed once by the verifier or validated by an incentivized majority of parties
that is supposed to maintain it.
12This operation can also be precomputed, we make it explicit only to show that they
can both work with a classical RSA accumulator as an input.

of all the 𝑢𝑖 ’s committed in 𝑐 ®𝑢 . To do so, the prover generates a
proof with the cpΠarithm CP-SNARK over the commitments 𝑐 ®𝑢 , 𝑐𝑠,𝑟
(𝑟 is the masking randomness of the Σ-protocol sampled in the first
move). Also, for soundness we require that 𝑠 and 𝑟 are committed
before receiving the random oracle challenge ℎ. Finally, the prover
generates a proof with cpΠbound over the commitment 𝑐 ®𝑢 to ensure
that the elements are in the right domain.13

Wepresent our construction in fig. 3. This construction is obtained
by applying Fiat-Shamir in the random oracle model (ROM) and
additional optimizations to its interactive counterpart which we
describe in the appendix (fig. 9).

Theorem 4.2. Let 𝐻,𝐻prime be modeled as random oracles and
cpΠmodarithm, cpΠbound be secure CP-SNARKs. The construction in
fig. 3 for the relation �̃�mem

ck is a secure CP-SNARK: succinct, knowledge-
sound under the adaptive root assumption, and zero-knowledge under
the DDH-II assumption.

Proof. For succinctness, one can inspect that the proof size is
proportional to that of cpΠarithm and cpΠbound plus some small
constant overhead. Similarly for the verifier’s cost. So succinctness
is inherited from succinctness of cpΠarithm and cpΠbound.

The proof for its interactive version (fig. 9) is in the appendix,
theoremB.1. Then knowledge-soundness and zero-knowledge come
directly from the (tight) security of the Fiat-Shamir transformation
for constant-round protocols [4], in the random oracle model. □

Extensions. In Appendix C we show how to extend our CP-SNARK
to support arbitrary—not necessarily prime—set elements, using an
efficient hash-to-prime proof based on a single hash execution.
We also discuss how to extend our protocol to prove (in zero-
knowledge) batch non-membership.

5 B-INS-ARISA: CP-SNARK FOR

SET-INSERTION

We show aCP-SNARK for the relation �̃�insck (see sec. 3.4) and consequently
for theMultiSwap relation 𝑅mswap, using RSA accumulators. We
call this construction b-ins-arisa.

For set-insertion we need to prove that Acc.Ins(pp, acc,𝑈) =
acc′, where acc and acc′ are public but the set of elements added
𝑈 is not publicly provided14, but instead a succinct commitment of
it 𝑐𝑈 . The accumulator acc is assumed to be trusted, in the sense
that it is computed correctly from a set of valid elements, however
for acc′ we do not make this assumption. In fact this is essentially
the purpose of the protocol, to prove correctness of acc′.

5.1 Our construction for �̃�ins

ck (b-ins-arisa)

Webeginwith a high-level overview of the scheme. Proving correctness
of set-insertion in RSA accumulators roughly consists of proving
the following:

(1) acc
∏

𝑢𝑖 ∈𝑈 𝑢𝑖 = acc′.
(2) 𝑢𝑖 ∈ 𝒟 for each 𝑢𝑖 ∈ 𝑈 .

13For the sake of generality we present 𝜋2, 𝜋3 as distinct proofs. In practice they can
be proved by the same CP-SNARK and save on proof-size.
14As mentioned before, not giving 𝑈 to the verifier is for the sake of succinctness.
Hiding𝑈 is not in our scope.

8

Setup
(
1_, ck, pp

)
:

crs2 ← cpΠmodarithm .Setup(1_, ck, �̃�modarithm
ck)

crs3 ← cpΠbound .Setup(1_, ck, 𝑅bound)
return crs := (ck, pp, crsarithm, crsbound)

Prove (crs, acc, 𝑐 ®𝑢 ;𝑊®𝑢 , ®𝑢,𝑜 ®𝑢) :

ˆacc← acc
∏

𝑝𝑖 ∈P2_ 𝑝𝑖

Let 𝑢∗ =
∏
𝑖

𝑢𝑖 , 𝑝
∗ =

∏
𝑝𝑖 ∈P2_

𝑝𝑖

Sample 𝑏1, . . . , 𝑏2_ ←$ {0, 1}

Let 𝑠 :=
∏

𝑝𝑖 ∈P2_

𝑝
𝑏𝑖
𝑖
, 𝑠 :=

∏
𝑝𝑖 ∈P2_

𝑝
1−𝑏𝑖
𝑖

�̂�®𝑢 ←𝑊 𝑠
®𝑢

Sample 𝑟 ←$ {0, 1}∥𝑝∗ ∥+∥𝑢∗ ∥+2_

𝑐𝑠,𝑟 ← Commck (𝑠, 𝑟 ;𝑜𝑠,𝑟)
𝑅 ← �̂� 𝑟

®𝑢
ℎ ← 𝐻 (crs | |acc | |𝑐 ®𝑢 | |𝑐𝑠,𝑟 | |�̂�®𝑢 | |𝑅)
𝑘 ← 𝑟 + (𝑢∗𝑠)ℎ
𝜋1 ← ΠPoKE .Prv

(
(G?, 𝑔?),�̂�®𝑢 , ˆaccℎ𝑅;𝑘

)
Parse 𝜋1 as (𝑄,𝑘)
ℓ ← 𝐻prime ((G?, 𝑔?),�̂�®𝑢 , ˆaccℎ𝑅)
𝜋2 ← cpΠmodarithm .Prv(crs2, 𝑐 ®𝑢 , 𝑐𝑠,𝑟 , ℎ, ℓ, 𝑘 ; ®𝑢,𝑜 ®𝑢 , 𝑟 , 𝑠, 𝑜𝑠,𝑟)
𝜋3 ← cpΠbound .Prv(crs3, 𝑐 ®𝑢 , 𝑝2_ ; ®𝑢,𝑜 ®𝑢)
return 𝜋 =

(
�̂�®𝑢 , 𝑅, 𝑐𝑠,𝑟 , 𝜋1, 𝜋2, 𝜋3

)
Verify (crs, acc, 𝑐 ®𝑢 , 𝜋) :

ˆacc← acc
∏

𝑝𝑖 ∈P2_ 𝑝𝑖

Parse 𝜋 as (�̂�®𝑢 , 𝑅, 𝑐𝑠,𝑟 , 𝜋1, 𝜋2, 𝜋3) and 𝜋1 as (𝑄,𝑘)

ℓ ← 𝐻prime ((G?, 𝑔?),�̂�®𝑢 , ˆaccℎ𝑅)

ℎ ← 𝐻 (crs | |acc | |𝑐 ®𝑢 | |𝑐𝑠,𝑟 | |�̂�®𝑢 | |𝑅)

Reject if ΠPoKE .Vfy(G?, 𝑔?),�̂�®𝑢 , ˆaccℎ𝑅, 𝜋1) ≠ 1

Reject if cpΠmodarithm .Vfy(crs2, 𝑐 ®𝑢 , 𝑐𝑠,𝑟 , ℎ, ℓ, 𝑘, 𝜋2) ≠ 1

Reject if cpΠbound .Vfy(crs3, 𝑐 ®𝑢 , 𝑝2_, 𝜋3) ≠ 1

Figure 3:harisa: our scheme for proving set membership of

a committed element. We let𝐻 denote a cryptographic hash

function modeled as a random oracle.

Clearly the first point ensures that the insertion of the elements
has been done correctly. However we still need to prove that the
elements of 𝑈 are in the correct domain 𝒟. A usual domain for
secure RSA Accumulators is the prime numbers, 𝒟 = P. We will
discuss later alternative domains.

5.1.1 On the choice of set-membership protocol. Notice that the
first point is in fact a set-membership verification for the set of acc′

and acc is the corresponding witness of the membership. Therefore,
we could in principle apply our batch set-membership protocol of
sec. 4 and already obtain a construction. However, that construction

would carry an overhead, due to zero-knowledge, unnecessary for
the purposes of this section(for set-insertion we do not aim for
zero-knowledge as discussed above). Therefore we use a simple
PoKE proof for the exponentiation acc

∏
𝑢𝑖 ∈𝑈 𝑢𝑖 = acc′.

5.1.2 On the choice of the domain. For the second point, 𝑢𝑖 ∈ 𝒟,
we need a domain that preserves the security of RSA accumulators
but at the same time can be proven efficiently with a succinct
protocol. Some examples of secure domains include: (1) prime
numbers or prime numbers of a specific size, (2) outputs of a
collision resistant hash-to-prime function, (3) outputs of a division-
intractable hash function.

However, for the first two options there is no known efficient
argument of knowledge; the only existing (succinct) solution is
proving them with a general-purpose SNARK.15 In particular, it
is the primality check that is difficult to handle, and encoding it
inside a SNARK circuit gets prohibitive as it usually requires many
iterations.

Ozdemir et al. [49] observed that a variant of the division-intractable
hash of Coron and Naccache [31] is (comparably) lightweight.
Division intractability of a hash function𝐻DI with range in Z briefly
means that it is hard for an adversary to find an element 𝑥 and a
set {𝑥𝑖 } such that 𝑥 ∉ {𝑥𝑖 } but 𝐻DI (𝑥) |

∏
𝑖 𝐻DI (𝑥𝑖). The function

of [49] consists of a single hash computation and an addition (of
2048-bit integers). This function, denoted 𝐻DI, works as follows:
given a large public offset Δ of 2048-bits, the output of 𝐻DI is

𝐻DI (𝑥) = Δ + 𝐻 (𝑥)

where𝐻 is any collision-resistant hash function with image [0, 22_].
Ozdemir et. al. showed that, under a plausible number-theoretic
conjecture, 𝐻DI is collision-intractable in the random oracle model
(𝐻 is modeled as a random oracle). That is any output has at least a
unique large prime factor, with overwhelming probability. This is a
generalization of [31], where 𝐻DI (𝑥) = 𝐻 (𝑥), for a hash function
with large outputs instead.

𝐻 can be any standard hash function as SHA256, or even a
SNARK-friendly hash as Poseidon [40]. Proving a hash evaluation
per element inserted inside a SNARK can be affordable in comparison
to the rest of the solutions mentioned above that require primality
checks. For this reason, we use division-intractable hashes as to
produce accumulator elements. This technique, together with an
implementation inside a SNARK, was introduced in [49].

The original elements of the set are arbitrary integers, 𝑆 ⊂ Z.
Every element of the set 𝑥 is mapped, through 𝐻DI, to a division-
intractable element𝑢 = 𝐻DI (𝑥) that are next accumulated to produce
acc. Proving that {𝑥1, . . . , 𝑥𝑚} were inserted in 𝑆 is equivalent to
proving that the accumulator was updated with the corresponding
{𝑢1, . . . , 𝑢𝑚} = {𝐻DI (𝑥1), . . . , 𝐻DI (𝑥𝑚)}. We refer the reader to [31]
for a security analysis.

For our protocol we assume a CP-SNARK for the above DI-hash
function evaluation:

�̃�
𝐻DI
ck (𝑐 ®𝑢 ; ®𝑥) = 1 ⇔ 𝑢𝑖 = Δ + 𝐻 (𝑥𝑖)

parametrized by a division-intractable hash, (𝐻,Δ).

15Specialized solutions based on Σ-protocols exist [22] but are both inefficient and for
a single prime, thus not succinct.

9

5.1.3 CP-SNARK for integer arithmetic relations. Againwe assume
an efficient CP-SNARK cpΠmodarithm for the relation:
�̃�modarithm

ck (𝑐 ®𝑢 , ℓ, 𝑘) = 1 ⇔ 𝑘 =
∏

𝑖∈[𝑚] 𝑢𝑖 mod ℓ which is a
simplification of the relation defined in section 4.

5.1.4 Summary of the construction. Putting things together, for
our constructionwe prove that: a batch𝑈 = {𝑢1, . . . , 𝑢𝑚} of committed
elements is an output of 𝐻DI, with cpΠ𝐻DI ; these elements are
inserted in the accumulator, with a PoKE for acc

∏
𝑖 𝑢𝑖 = acc′.

However, there should be a way to “link” the elements𝑈 in the
two proofs. Essentially to show that the proofs are about the same
batch of elements. In order to avoid encoding the RSA exponentiation
acc𝑢

∗
inside the SNARK, which would be virtually infeasible,16

we use an intermediate CP-SNARK that proves the following: the
product 𝑢∗ of the committed elements modulo the ℓ of the PoKE
equals the 𝑘 part of the PoKE proof, 𝑘 = 𝑢∗ mod ℓ . As we show
in the next section, this guarantees that the 𝑢∗ of the PoKE is the
same as the 𝑢∗ (implicitly) committed, in 𝑐 ®𝑢 .

A full description of our scheme is in Figure 4.

Setup
(
1_, ck, pp

)
:

crs2 ← cpΠmodarithm .Setup(1_, ck, �̃�modarithm
ck)

crs3 ← cpΠ𝐻DI .Setup(1_, ck, �̃�𝐻DI
ck)

return crs := (ck, ppAcc, crs2, crs3)

Prove
(
crs, acc, acc′, 𝑐 ®𝑢 ; ®𝑢,𝑜 ®𝑢 , ®𝑥

)
:

Let 𝑢∗ =
∏
𝑖

𝑢𝑖

𝜋1 ← ΠPoKE .Prv
(
(G?, 𝑔?), acc, acc′;𝑢∗

)
Parse 𝜋1 as (𝑄,𝑘)
ℓ ← 𝐻prime ((G?, 𝑔?), acc, acc′)

𝜋2 ← cpΠmodarithm .Prv(crs2, 𝑐 ®𝑢 , ℓ, 𝑘 ; ®𝑢,𝑜 ®𝑢)

𝜋3 ← cpΠ𝐻DI .Prv(crs3, 𝑐 ®𝑢 ; ®𝑢,𝑜 ®𝑢 , ®𝑥)
return 𝜋 =

(
𝜋1, 𝜋2, 𝜋3

)
Verify

(
crs, acc, acc′, 𝑐 ®𝑢 , 𝜋

)
:

Parse 𝜋 as (𝜋1, 𝜋2, 𝜋3) and 𝜋1 as (𝑄,𝑘)

Reject if ΠPoKE .Vfy(G?, 𝑔?), acc, acc′, 𝜋1) ≠ 1

Reject if cpΠmodarithm .Vfy(crs2, 𝑐 ®𝑢 , ℓ, res, 𝜋2) ≠ 1

Reject if cpΠ𝐻DI .Vfy(crs3, 𝑐 ®𝑢 , 𝜋3) ≠ 1

Figure 4: b-ins-arisa: our scheme for proving correct set

insertion of a committed batch of elements.

5.2 Multiswaps

As argued in [49] (we recall this in section 3.4.2) batch-insertion
gives a succinctMultiSwap protocol: the relation 𝑅mswap roughly

16An RSA exponentiation of this size would require nearly 2 millions constraints per
element of the batch.

consists of two set insertions.

𝑅mswap (acc, acc′;𝑋,𝑌) = 1 ⇔

∃accmid : 𝑅ins (acc, accmid;𝑌) ∧ 𝑅ins (acc′, accmid;𝑋)
Given a set 𝑆 , its corresponding (trusted) accumulator acc and a

sequence of "swap" pairs (𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚) the prover computes
accmid, acc′ and two corresponding batch insertion proofs for
acc

Ins−−→ accmid, acc′
Ins−−→ accmid. In short the prover publishes

acc′ and the proof for the multiswap is acc
MultiSwap
−−−−−−−−−→ acc′ is:

𝜋 ← (𝜋 ins1 , 𝜋 ins2 , accmid)

This proof can convince a verifier that the multiswap was done
correctly (and that acc′ is trusted).

5.2.1 Generating accmid and acc′. Computationally speaking
the bottleneck in the above is the generation of acc′. Nevertheless,
the intermediate value accmid is the result of the batch insertion of
all𝑦𝑖 ’s, hence it can be efficiently computed in time𝑂 (𝑚) (𝑚 the size
of the batch) by𝑚 sequential Acc.Ins. On the other hand, the value
acc′ is the result of "batch deletion" of all 𝑥𝑖 ’s, an operation that
cannot be done efficiently (in 𝑂 (𝑚)-time) and the only manner is
to compute acc′ from scratch, i.e. accumulate all remaining values:
acc′ ← Acc.Accum(pp, 𝑆 ′), where 𝑆 ′ = 𝑆 ⊎ {𝑦𝑖 }𝑖 ⊟ {𝑥𝑖 }. This
requires time proportional to the size of the set, 𝑂 (𝑛 +𝑚).

To this end, one can use a precomputation technique to speed-up
the online computational cost. As shown by Boneh et al. [15], if
one has precomputed a witness𝑊𝑥1 then already acc′ = 𝑊𝑥1 is
an accumulator for 𝑆 ⊟ {𝑥1}. If one has precomputed witnesses
𝑊𝑥1 and 𝑊𝑥2 one can compute acc′ = 𝑊𝑥1,𝑥2 , in 𝑂 (1)-time by
using Shamir’s trick [54], which is essentially an accumulator for
𝑆 ⊟ {𝑥1, 𝑥2}. Generalizing this, if all witnesses are precomputed
𝑊𝑥1 , . . . ,𝑊𝑥𝑛 then one can compute acc′ for any 𝑆 ⊟ {𝑥𝑖1 , . . . 𝑥𝑖𝑚 },
in 𝑂 (𝑚) time. This would require the prover to store additional
𝑂 (𝑛) group elements.

To avoid storing linear-number of elements one can use another
preprocessing method, introduced by Campanelli et al. [23], that
offers storage-online time tradeoffs. The storage cost is𝑂 (𝑛/𝐵) and
the online time (worst-case) 𝑂 (𝑚𝐵), for any chosen parameter 𝐵.
Essentially, the more elements one stores the less resources it uses
online and vice-versa.

5.3 Comparison with [49]

Technically speaking our approach carries similarities with the one
of Ozdemir et al. There are two distinguishing differences. The
first is in the succinct protocol for the exponentiation acc𝑢

∗
= acc′.

Ozdemir et al. make use of a Wesolowski proof (PoE protocol),
while we propose the use of the Boneh et al. proof (PoKE protocol).
The second is that we do not encode the verification of this proof
inside the circuit of the SNARK.

The PoE protocol is a succinct proof of correct RSA exponentiation,
introduced in [68]. It is defined for verifiers that know the exponent,
i.e. the proof’s input is (acc, acc′, 𝑢∗). For the non-interactive version,
in order for the Fiat-Shamir transform to be sound the challenge
should be generated as ℓ ← 𝐻prime (acc, acc′, 𝑢∗), meaning that it
should take the large exponent as input. Since the verifier shall
not receive the set 𝑈 , it cannot generate the challenge ℓ itself.

10

Subsequently, the prover should, in addition to the rest of the
computations, prove inside the SNARK that ℓ = 𝐻prime (acc, acc′, 𝑢∗).
This computation gives a significant overhead to the prover’s workload
(see also further details below).

We replace the PoE protocol with a PoKE protocol. The PoKE
proof, introduced in [15], is a proof of knowledge of exponent.
That is, here the exponent 𝑢∗ is a witness instead of an input.
Meaning that the Fiat-Shamir challenge is now generated as ℓ ←
𝐻prime (acc, acc′). All inputs are public and known to the verifier.
This translates to a save on the expensive SNARK computation
𝐻prime (acc, acc′, 𝑢∗). This saves𝑚 hash computations for the SNARK
and a hash-to-prime computation (applied on the output of the𝑚
hash-chain). The former has a cost of ≈ 300–45, 000 constraints per
input (depending on the choice of the hash), while the latter has a
fixed cost of 217, 703 constraints [49]. So overall it has a significant
impact that depends on batch size. For example, for SHA256 and a
moderate-sized batch size𝑚 = 1000, our approach saves more than
45 million constraints.

Notably this replacement does not affect the security assumptions:
although the PoKE itself is secure in the generic group model
[45, 55], a careful security analysis shows that when combined
with cpΠmodarithm it can be proven secure in the standard model
under the adaptive root assumption [68] (see proof of theorem B.1),
which is the same assumption as in [49].

Instead of encoding the PoKE verification 𝑄ℓacc𝑘 = acc′ inside
the SNARK, we let the verifier perform it itself. According to [49]
(figure 3) the RSA operations needed for this verification—two
RSA |ℓ |-bit exponentiations and one RSA multiplication—overall
cost about 5 million constraints. Our approach has the downside
of having to additionally include the PoKE proof, (𝑄,𝑘), in the
overall proof of set-insertion, which has an overhead of 1 RSA
group elements and a 256-bit prime in the proof size. Therefore
including this trick can be viewed as a tradeoff: 288 bytes in the
proof vs 5 million constraints less for the prover (and vice versa).

6 EVALUATION

6.1 Instantiations and Implementation

We consider the variant of our construction in fig. 3 that supports
arbitrary set elements, by hashing them to prime numbers (see
appendix C) and proving this hash-to-prime by extending accordingly
the relation proven by cpΠbound.We use the Poseidon hash function [40]
to instantiate this hash-to-prime. We instantiate the CP-SNARKs
building blocks of the construction, cpΠmodarithm and cpΠbound,
with LegoGroth16 from [25], an efficient commit-and-prove version
of Groth16 [41]. Like Groth16, it requires an elliptic curve endowed
with a bilinear map. We use the curve BLS12-381 [16] for our
instantiations. The proof size of LegoGroth16 is constant (five
group elements), amounting to 288 bytes in BLS12-381. For the
accumulator scheme we use a 2048-bit RSA group. To be compatible
with the assumptions of DDH-II in such a group, we must take at
most 2_ = 232 primes to hide the RSA witness in our construction.
This does not affect the security provided by a 2048-bit RSA group.

Implementation. Weprovide an implementation of the instantiation
described above comprising LegoGroth16, cpΠarithm and PoKE.
Part of our code is an extension of the C++ SNARK library libsnark [64]

with LegoGroth16. We use the Java library JSnark [63] to produce
the circuit representation for the arithmetic relation in cpΠarithm.
We use a chunk size ChkSz = 32 for commitments to integer (fig. 1).

Our code consists of ≈ 2000 lines of C++ code and 100 lines of
Java code.We plan to release it under an open-source license.We ran
our benchmarks single-threaded on Amazon EC2 using r5.8xlarge
instances (248GB of memory). We ran DID-related benchmarks on
an ordinary laptop (CPU i7-10510U with 16GB of RAM).

6.2 Benchmarks for Batch Membership

Weevaluate our approach comparing it toMerkle Tree for benchmarks.
Specificallywe compare it to the following (the asterisk is a placeholder
for the depth of the tree):

• MT-Pos-*: Merkle trees based on the Poseidon hash [40].
• MT-SHA-*: Merkle trees based on the SHA-256 hash.

These hash functions have different tradeoffs: while Poseidon has
a much smaller encoding for SNARKs, it is hundreds of times
slower when executed natively. For the case of SHA we (very
conservatively) estimate timings for larger batches. Each of the
Merkle-tree instantiations above is benchmarked by proving their
(batch) opening using LegoGroth16 as a CP-SNARK. We compare
these solutions on two benchmarks: a generic computation that
consists only of batchmembership statements, and aDID application
in which one proves membership of a batch of elements as well as
additional properties of these elements.

Remark 5 (On the witness for the batch set). Our evaluations
measure the performance of proof generation, assuming that the
proving user holds all the accumulator witnesses corresponding to
the single elements it has interest to prove membership of. We do
not include the cost of computing the accumulator witness from
scratch since this task is application-dependent. For instance, in some
applications (e.g., UTXO-sets and whitelists) the proving user may
receive this witness and then have to keep it updated. In our construction
the prover algorithm takes as input a single witness for the batch of
elements. This batch-witness can be computed by aggregating the
single ones held by the user; this aggregation is significantly cheaper
than producing the witness for the batch subset from scratch. In
our benchmarks we do include this aggregation cost, which does
not impact our overall proving time significantly (it amounts to
approximately 1% or less). See appendix A for more details.

6.2.1 General purpose Batch Membership of 𝑛 Elements. We
describe our evaluations in fig. 5. Notice that the performance of
Merkle-tree solutions vary with the size of the accumulated set
(ours does not). We benchmark both the minimal set size 216 and
the more realistic set size 232.

Our scheme shows an order ofmagnitude savings in proving time.
Our verification time is slower but still highly practical: approximately
60ms vs 30ms for CP-SNARKs on Merkle trees for common set sizes.
Our proof size is also competitive although 4x larger at 1.17 KB.17

CRS size and RAM consumption. Our constructions also show
a better size of public parameters (not in figure). For batch sizes
respectively 1, 16 and 64, we estimate the CRS size of our scheme to
be lower than 1, 2.5, 8.5 MB respectively. In contrast, the smallest

17We use this fact: we can optimize the two LegoGroth16 proofs in fig. 3 as just one.

11

CRS for the Merkle-tree solutions (MT-Pos-16 for batch size 1)
is already of approximately 5 MB, 5x larger than ours. We incur
even better relative or absolute savings for more expensive hash
functions—MT-SHA-16 has a CRS of more than 250MB for batch
size 1—or larger batch sizes in larger sets—MT-Pos-32 has a CRS of
more than 650MB for batch size 64. Notably, these savings on CRS
size immediately translate into higher scalability due to less RAM
consumption. For example, for a batch of size 64,MT-Pos-32 needs
5GB of RAM,MT-SHA-32 more than 64GB, our solution 420MB.

6.2.2 Decentralized Identity (DID). We experimentally validate
our membership scheme in a realistic scenario: a Decentralized ID
(DID) application on the blockchain. In this setting, the accumulator
can be thought of as a portfolio of identity-related attributes/credentials
of a user (e.g., bank account balance, value of monthly paycheck,
identity information such as age, etc.). We are interested in privacy-
preserving settingswherewe actually accumulate hiding commitments
to the attributes and prove that a subset of them satisfy certain
properties in zero-knowledge. We can assume the accumulator is
maintained honestly, e.g, by a consensus or a smart contract that
checks the signature of an authority issuing a new attribute before
updating the accumulator.

Whenever a party aims to make a claim about some of her
attributes, she sends a batch membership proof proving that 1)
a commitment to the batch opens to a subset of the accumulator
and 2) the elements in the batch refer to attributes satisfying a
given property. We implement and evaluate our constructions in a
concrete DID scenario where the attributes are used for computing
car insurance premiums in a privacy-preserving way. See further
details in appendix D.

We compare a solution based on harisa, against a solution based
onMerkle trees. We implement two instantiations of harisa for this
protocol, one using SHA-256 for the hash-to-prime commitments
to the attributes (harisa-DIDsha), and one using Poseidon (harisa-
DIDpos); similarly we consider instantiations of the Merkle tree
solutionwith both SHA-256 (MT-DIDsha) and Poseidon (MT-DIDpos).

In Figure 6 we report the proving time of the solutions for
increasing batches of attributes. The accumulator contains a sets of
216 committed attributes.

We find that harisa-DIDposachieves the fastest proving time. For
realistic batch sizes (16 and 64 attributes) harisa-DIDposobtains a
speedup of 12.29–12.57x compared toMT-DIDpos. When using SHA-
256, the improvements for harisa-DIDshavs.MT-DIDsha

18 are 8.57–
9.26x. For larger sets we expect larger improvements, analogously
to Figure 5. The tradeoffs in verification time and proof size are the
same as those in fig. 5.

6.3 MultiSwap Benchmark

We evaluate our MultiSwap solution built on top of b-ins-arisa
(sec. 5.2) and compare it with that of [49] (OWWB) and with a
Merkle-tree based approach (Merkle-Swap). In all solutions we
instantiate the hash functionswith Poseidon. Our benchmark considers
a computation consisting only of swap operations; we vary the
number of swaps in 1–10, 000 and fix the set size to 220.

18Timings forMT-DIDsha for batch sizes larger than 1 are an extrapolated conservative
lower bound because very RAM/CPU-intensive.

1 16 64

100

101

102

103

104

0.49

2.86

9.066.97

81.93

297.58

12.81

155.26

567.93

132.87

1,891.56

7,160.04

249.44

3,682.44

13,962.08

Batch size

pr
ov
in
g
tim

e
(s
)

harisa (this work)

MT-Pos-16

MT-Pos-32

MT-SHA-16

MT-SHA-32

Scheme V time (ms) Proof size (KB)
MT-∗ 31 0.29
harisa 63 1.17

Figure 5: Comparison of batched set-membership in zero-

knowledge: our scheme (harisa) vs LegoGroth16 on Merkle

tree circuits. Plot is in log-scale. Verification time and proof

size are 𝑂 (1) and independent of set/batch size.

1 16 64
100

101

102

103

104

31.19

274.33

1,015.72

1.96

8.1

25.78

146.93

2,350.8

9,403.21

7.41

99.55

324.11

of attributes (batch size)

pr
ov
in
g
tim

e
(s
)

harisa-DIDsha

harisa-DIDpos

MT-DIDsha
MT-DIDpos

Figure 6: Comparison for ourDID application:harisa-based

solutions vs Merkle tree solutions. Plot is in log-scale.

Proving costs. For this evaluation, we use a cost-model analysis using,
as metric, the number of constraints (see fig. 7). ForMerkle-Swap
the number of constraints is the only metric that conditions proving
time. For our (resp. [49]) MultiSwap, the proving cost is made of
the zkSNARK prover cost (which again depends on the number of
constraints reported in fig. 7) plus the cost of RSA group operations
to compute the accumulator acc′ after deleting elements and the

12

Number of Constraints

System Per-operation cost Per-proof cost
Merkle-Swap 2(𝑐𝐻𝑒

+ log |𝑆 | · 𝑐𝐻) —
MultiSwap from [49] 2(𝑐𝐻𝑒

+ 𝑐𝐻𝑖𝑛
+ 𝑐split + 𝑐+ℓ (𝑓) + 𝑐×ℓ) 4𝑐𝑒G?

(|ℓ |) + 2𝑐×G? + 𝑐𝐻𝑝
+ 𝑐modℓ (𝑏𝐻DI)

b-ins-arisa-MultiSwap 2(𝑐𝐻𝑒
+ 𝑐split + 𝑐+ℓ (𝑓) + 𝑐×ℓ) 𝑐modℓ (𝑏𝐻DI)

_ security parameter (128)
|ℓ | prime challenge bits (256 in ours, 352 in [49])
𝑏𝐻DI output size of division-intractable hash 𝐻DI (2048)
𝑐𝐻 hash F2 → F (varies)
𝑐𝐻𝑒 set items hashing to F, used in 𝐻DI (varies)
𝑐𝐻𝑖𝑛

per-operation cost of full-input hash in [49] (varies)
𝑐𝐻𝑝 prime generation (217703)

𝑓 field elements size log2 |F | (255)
𝑐split strict bit split in F (388)
𝑐+ℓ (𝑏) addition mod ℓ of two inputs of 𝑏-bits (16 + 𝑏)
𝑐×ℓ multiplication mod ℓ (479)
𝑐𝑚𝑜𝑑ℓ (𝑏) reduction mod ℓ of 𝑏-bit input (16 + 𝑏)
𝑐×G?

multiplication in G? (7563)
𝑐𝑒G?
(𝑏) exponentiation in G? with 𝑏-bit exponent (7044𝑏)

Figure 7: Constraints count model for Merkle swaps, theMultiSwap of [49], and ourMultiSwap of section 5.2. The cost model

and its parameters are from [49]. The hash functions cost “varies” depending on the hash instantiation.

10−3 2 4 6 8 10
104

105

106

107

108

Number of swaps (·103)

pr
ov
in
g
co
st
(#
co
ns
tr
ai
nt
s)

b-ins-arisa (this work)
OWWB

MerkleSwap

Figure 8: Proving cost vs. # swaps in MultiSwap. Set size |𝑆 |
is 220

and y-axis is in log-scale.

PoKE (resp. PoE) proof. To estimate the latter costs, we extract an
equivalent measure in number of constraints based on [49, Sec. 4.4].

We report our results in fig. 8. Our MultiSwap solution has
proving cost larger than Merkle-Swap for small batches, but it
breaks even at ≈ 140 swaps. Also, it strictly improves over OWWB
[49] MultiSwap, which has a larger fixed cost, and a break-even
point w.r.t.Merkle-Swap at ≈ 1400 swaps.

Verification time and proof size. For this evaluation we consider an
instantiation of all solutions with LegoGroth16 as a CP-SNARK.
Similarly to the batch-membership case, our solution has slower
verification and larger proofs, which are still practical. OurMultiSwap
proof is 1.4 KB whereas proofs forMerkle-Swap and [49] are 288
bytes. Our verification time is ≈ 120ms and is about 4 times slower
than that ofMerkle-Swap and OWWB [49].

7 RELATEDWORK

Succinct proofs forRSAaccumulators.Theworks that are closest
to ours are those of Benarroch et al. [12] and Ozdemir et al. [49],

both concerning the efficient use of RSA accumulatorswith zkSNARKs.
Comparing to [12], we achieve constant-size proofs of membership
for batches of elements whereas [12] can only prove membership
of a single (committed) element. In particular, the technique of
[12] does not seem extendable to support batching with constant
size proofs: they mainly rely on a new sigma-protocol for proving
that two commitments, one in a prime order group and one in a
hidden-order group, open to the same integer value (the element
in the accumulated set), but the size of its proof is linear in the
integer’s size. This means that extending this protocol to batch
RSA witnesses would lead to linear-size proofs. Comparing to [49],
our protocol for batch insertions is similar but has the following
key differences. We employ a PoKE protocol instead of a proof-of-
exponentiation (PoE); this allows us to generate the PoKE random
oracle challenge based on the short and public verifier’s input as
opposed to the long and unknown exponent as in [49]. Thanks to
this we can avoid encoding in the SNARK an expensive and long
hashing along with a prime certification of its outputs. The second
major difference is that Ozdemir et al. technique is not ZK-friendly
and could not be used to do batch membership; to the best of our
knowledge, hiding the RSA accumulator witness would require
encoding an RSA group operation in the constraints.

Another work related to batch proofs is that of Boneh et al. [15]
who construct such proofs for RSA accumulators with an efficient
verification procedure. In their constructions, however, the verifier
knows the elements for which it is verifying (non)membership. In
contrast, our goal is to build proofs that can be verified by having
only a succinct commitment to the batch of elements, over which
one can also verify additional properties.

Verifiable computation with state. Verifiable computation and
zkSNARKs have a vast literature; a complete coverage goes beyond
the scope of this paper, e.g., see this recent survey [67] and references
therein. More relevant to our work are some works that address
the problem of verifiable computation (or zkSNARKs) with respect
to succinct digests. Pantry [17] use Merkle trees to model RAM
computations. Fiore et al. [38] propose hash&prove as well as
accumulate&prove protocols that avoid expensive hash encodings
in the circuit, but their solutions require the SNARK prover to
do work linear in the hashed/accumulated set, which limits their

13

scalability to large sets. The same limitation applies to the efficient
commit-and-prove SNARKs [25, 32] as well as to the vSQL scheme
of Zhang et al. [69] and TRUESET by Kosba et al. [42]. Also, all
these schemes [25, 38, 69] require public parameters linear in the
largest set. ADSNARK [5] can generate proofs on authenticated
data; this setting is similar to accumulated sets except that inserting
data in the set requires a secret authentication key; proofs in [5] are
succinct only when verifiers know the secret authentication key.

Accumulators/vector commitments in stateless blockchains.

In addition to the already mentioned accumulators from hidden-
order groups and Merkle trees,19 other popular schemes rely on
bilinear pairings [20, 48]. Merkle trees actually generalize to vector
commitments [28], of which we also know realizations from hidden-
order groups and bilinear pairings. Recent works [15, 29, 39, 43, 60]
have extended these two primitives with additional functionalities,
including batch proofs, and shown applications to stateless blockchains.
In the latter approach, transactions need to be sent and known for
verification. Also, their use within zkSNARKs presents the same
efficiency challenges—their verification (including elliptic curve
operations and pairings) is considerably expensive when compiled
into constraints [32, 63]—in addition to the fact that they need
public parameters linear in the largest set to be accumulated.

ACKNOWLEDGMENTS

This work has received funding in part from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programunder project PICOCRYPT (grant agreement
No. 101001283), by the Spanish Government under projects SCUM
(ref. RTI2018-102043-B-I00) and SECURITAS (ref. RED2018-102321-
T), by the Madrid Regional Government under project BLOQUES
(ref. S2018/TCS-4339), and by a grant from Nomadic Labs and the
Tezos foundation. This work was also partly supported by the
Institute of Information Communications Technology Planning
Evaluation (IITP) grant funded by the Korean government (MSIT)
(No.2021-0-00518, High performance blockchain privacy preserving
techniques based on commitment, encryption, and zero-knowledge
proofs, 50%, No.2021-0-00532, Blockchain scalability solutions supporting
high performance/capacity transactions, 30%, No.2021-0-00727, A
Study on Cryptographic Primitives for SNARK, 10%, No.2021-0-
00528, Development of Hardware-centric Trusted Computing Base
and Standard Protocol for Distributed Secure Data Box, 5% and
No.2021-0-00590, Decentralized High Performance Consensus for
Large-Scale Blockchains, 5%) and by a grant fromKlaytn foundation..
Other support was provided by the Carlsberg Foundation under
the Semper Ardens Research Project CF18-112 (BCM) while Matteo
Campanelli was affiliated with Aarhus University.

REFERENCES

[1] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. 2016. MiMC: Efficient Encryption and Cryptographic Hashing with
Minimal Multiplicative Complexity. In ASIACRYPT 2016, Part I (LNCS), Jung Hee
Cheon and Tsuyoshi Takagi (Eds.), Vol. 10031. Springer, Heidelberg, 191–219.
https://doi.org/10.1007/978-3-662-53887-6_7

[2] Jason Metz Ashley Kilroy. 2022. "9 Factors That Affect Your Car Insurance Rates".
https://www.forbes.com/advisor/car-insurance/factors-in-rates/. (2022).

[3] Thomas Attema, Ronald Cramer, and Lisa Kohl. 2021. A Compressed 𝛴-Protocol
Theory for Lattices. In CRYPTO 2021, Part II (LNCS), Tal Malkin and Chris Peikert

19We can include under this category existing lattice-based schemes [50].

(Eds.), Vol. 12826. Springer, Heidelberg, Virtual Event, 549–579. https://doi.org/
10.1007/978-3-030-84245-1_19

[4] Thomas Attema, Serge Fehr, andMichael Klooß. 2021. Fiat-shamir transformation
of multi-round interactive proofs. Cryptology ePrint Archive (2021).

[5] Michael Backes, Manuel Barbosa, Dario Fiore, and Raphael M. Reischuk. 2015.
ADSNARK: Nearly Practical and Privacy-Preserving Proofs on Authenticated
Data. In 2015 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, 271–286. https://doi.org/10.1109/SP.2015.24

[6] Endre Bangerter, Jan Camenisch, and Stephan Krenn. 2010. Efficiency Limitations
for S-Protocols for Group Homomorphisms. In TCC 2010 (LNCS), Daniele
Micciancio (Ed.), Vol. 5978. Springer, Heidelberg, 553–571. https://doi.org/10.
1007/978-3-642-11799-2_33

[7] Niko Bari and Birgit Pfitzmann. 1997. Collision-Free Accumulators and Fail-Stop
Signature Schemes Without Trees. In EUROCRYPT’97 (LNCS), Walter Fumy (Ed.),
Vol. 1233. Springer, Heidelberg, 480–494. https://doi.org/10.1007/3-540-69053-0_
33

[8] barry WhiteHat. 2018. roll_up: Scale ethereum with SNARKs. https://github.
com/barryWhiteHat/roll_up. (2018).

[9] James Bartusek, Fermi Ma, and Mark Zhandry. 2019. The Distinction Between
Fixed and Random Generators in Group-Based Assumptions. In CRYPTO 2019,
Part II (LNCS), Alexandra Boldyreva and Daniele Micciancio (Eds.), Vol. 11693.
Springer, Heidelberg, 801–830. https://doi.org/10.1007/978-3-030-26951-7_27

[10] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous
Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, 459–474. https://doi.org/10.1109/SP.2014.36

[11] Josh Cohen Benaloh and Michael de Mare. 1994. One-Way Accumulators:
A Decentralized Alternative to Digital Sinatures (Extended Abstract). In
EUROCRYPT’93 (LNCS), Tor Helleseth (Ed.), Vol. 765. Springer, Heidelberg, 274–
285. https://doi.org/10.1007/3-540-48285-7_24

[12] Daniel Benarroch, Matteo Campanelli, Dario Fiore, Kobi Gurkan, and Dimitris
Kolonelos. 2021. Zero-Knowledge Proofs for Set Membership: Efficient, Succinct,
Modular. In International Conference on Financial Cryptography and Data Security.
Springer, 393–414.

[13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2012. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In ITCS 2012, Shafi Goldwasser (Ed.). ACM, 326–349.
https://doi.org/10.1145/2090236.2090263

[14] Dan Boneh, Benedikt Bünz, and Ben Fisch. 2018. A Survey of Two Verifiable
Delay Functions. IACR Cryptol. ePrint Arch. 2018 (2018), 712.

[15] Dan Boneh, Benedikt Bünz, and Ben Fisch. 2019. Batching Techniques
for Accumulators with Applications to IOPs and Stateless Blockchains. In
CRYPTO 2019, Part I (LNCS), Alexandra Boldyreva and Daniele Micciancio
(Eds.), Vol. 11692. Springer, Heidelberg, 561–586. https://doi.org/10.1007/
978-3-030-26948-7_20

[16] Sean Bowe. 2017. BLS12-381: New zk-SNARK elliptic curve construction. Zcash
Company blog, URL: https://z. cash/blog/new-snark-curve (2017).

[17] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J.
Blumberg, and Michael Walfish. 2013. Verifying computations with state. In Proc.
of the ACM SOSP.

[18] Johannes Buchmann and Safuat Hamdy. 2011. A survey on IQ cryptography. In
Public-Key Cryptography and Computational Number Theory. De Gruyter, 1–16.

[19] Ahto Buldas, Peeter Laud, and Helger Lipmaa. 2000. Accountable Certificate
Management Using Undeniable Attestations. InACMCCS 2000, Dimitris Gritzalis,
Sushil Jajodia, and Pierangela Samarati (Eds.). ACM Press, 9–17. https://doi.org/
10.1145/352600.352604

[20] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. 2009. An Accumulator
Based on Bilinear Maps and Efficient Revocation for Anonymous Credentials. In
PKC 2009 (LNCS), Stanislaw Jarecki and Gene Tsudik (Eds.), Vol. 5443. Springer,
Heidelberg, 481–500. https://doi.org/10.1007/978-3-642-00468-1_27

[21] Jan Camenisch and Anna Lysyanskaya. 2002. Dynamic Accumulators and
Application to Efficient Revocation of Anonymous Credentials. In CRYPTO 2002
(LNCS), Moti Yung (Ed.), Vol. 2442. Springer, Heidelberg, 61–76. https://doi.org/
10.1007/3-540-45708-9_5

[22] Jan Camenisch and Markus Michels. 1999. Proving in Zero-Knowledge that a
Number Is the Product of Two Safe Primes. In EUROCRYPT’99 (LNCS), Jacques
Stern (Ed.), Vol. 1592. Springer, Heidelberg, 107–122. https://doi.org/10.1007/
3-540-48910-X_8

[23] Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and Luca
Nizzardo. 2020. Incrementally Aggregatable Vector Commitments and
Applications to Verifiable Decentralized Storage. In ASIACRYPT 2020, Part II
(LNCS), ShihoMoriai and HuaxiongWang (Eds.), Vol. 12492. Springer, Heidelberg,
3–35. https://doi.org/10.1007/978-3-030-64834-3_1

[24] Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and Luca
Nizzardo. 2020. Incrementally Aggregatable Vector Commitments and
Applications to Verifiable Decentralized Storage. Cryptology ePrint Archive,
Report 2020/149. (2020). https://eprint.iacr.org/2020/149.

14

https://doi.org/10.1007/978-3-662-53887-6_7
https://www.forbes.com/advisor/car-insurance/factors-in-rates/
https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1109/SP.2015.24
https://doi.org/10.1007/978-3-642-11799-2_33
https://doi.org/10.1007/978-3-642-11799-2_33
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://github.com/barryWhiteHat/roll_up
https://github.com/barryWhiteHat/roll_up
https://doi.org/10.1007/978-3-030-26951-7_27
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1145/352600.352604
https://doi.org/10.1145/352600.352604
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1007/978-3-030-64834-3_1
https://eprint.iacr.org/2020/149

[25] Matteo Campanelli, Dario Fiore, and Anaïs Querol. 2019. LegoSNARK: Modular
Design and Composition of Succinct Zero-Knowledge Proofs. In ACM CCS 2019,
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.).
ACM Press, 2075–2092. https://doi.org/10.1145/3319535.3339820

[26] Ran Canetti. 1997. Towards Realizing Random Oracles: Hash Functions That
Hide All Partial Information. In CRYPTO’97 (LNCS), Burton S. Kaliski Jr. (Ed.),
Vol. 1294. Springer, Heidelberg, 455–469. https://doi.org/10.1007/BFb0052255

[27] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. 2002. Universally
composable two-party and multi-party secure computation. In 34th ACM STOC.
ACM Press, 494–503. https://doi.org/10.1145/509907.509980

[28] Dario Catalano and Dario Fiore. 2013. Vector Commitments and Their
Applications. In PKC 2013 (LNCS), Kaoru Kurosawa and Goichiro Hanaoka
(Eds.), Vol. 7778. Springer, Heidelberg, 55–72. https://doi.org/10.1007/
978-3-642-36362-7_5

[29] Alexander Chepurnoy, Charalampos Papamanthou, Shravan Srinivasan, and
Yupeng Zhang. 2018. Edrax: A Cryptocurrency with Stateless Transaction
Validation. Cryptology ePrint Archive, Report 2018/968. (2018). https:
//ia.cr/2018/968.

[30] Alexander Chepurnoy, Charalampos Papamanthou, and Yupeng Zhang. 2018.
Edrax: A Cryptocurrency with Stateless Transaction Validation. Cryptology
ePrint Archive, Report 2018/968. (2018). https://eprint.iacr.org/2018/968.

[31] Jean-Sébastien Coron and David Naccache. 2000. Security Analysis of the
Gennaro-Halevi-Rabin Signature Scheme. In EUROCRYPT 2000 (LNCS), Bart
Preneel (Ed.), Vol. 1807. Springer, Heidelberg, 91–101. https://doi.org/10.1007/
3-540-45539-6_7

[32] Craig Costello, Cédric Fournet, JonHowell, Markulf Kohlweiss, Benjamin Kreuter,
Michael Naehrig, Bryan Parno, and Samee Zahur. 2015. Geppetto: Versatile
Verifiable Computation. In 2015 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, 253–270. https://doi.org/10.1109/SP.2015.23

[33] Ronald Cramer. 1996. Modular design of secure yet practical cryptographic
protocols. Ph. D. Thesis, CWI and University of Amsterdam (1996).

[34] Ivan Damgard, Carmit Hazay, and Angela Zottarel. 2014. Short Paper On the
Generic Hardness of DDH-II. (2014).

[35] Ivan Damgård and Maciej Koprowski. 2002. Generic Lower Bounds for Root
Extraction and Signature Schemes in General Groups. In EUROCRYPT 2002
(LNCS), Lars R. Knudsen (Ed.), Vol. 2332. Springer, Heidelberg, 256–271. https:
//doi.org/10.1007/3-540-46035-7_17

[36] Justin Drake. 2017. Accumulators, scalability of UTXO
blockchains, and data availability. https://ethresear.ch/t/
accumulators-scalability-of-utxo-blockchains-and-data-availability/176.
(2017).

[37] Amos Fiat and Adi Shamir. 1987. How to Prove Yourself: Practical Solutions
to Identification and Signature Problems. In CRYPTO’86 (LNCS), Andrew M.
Odlyzko (Ed.), Vol. 263. Springer, Heidelberg, 186–194. https://doi.org/10.1007/
3-540-47721-7_12

[38] Dario Fiore, Cédric Fournet, Esha Ghosh, Markulf Kohlweiss, Olga Ohrimenko,
and Bryan Parno. 2016. Hash First, Argue Later: Adaptive Verifiable
Computations on Outsourced Data. In ACM CCS 2016, Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.).
ACM Press, 1304–1316. https://doi.org/10.1145/2976749.2978368

[39] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang. 2020.
Pointproofs: Aggregating Proofs for Multiple Vector Commitments. In ACM
CCS 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.).
ACM Press, 2007–2023. https://doi.org/10.1145/3372297.3417244

[40] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. 2021. Poseidon: A new hash function for zero-knowledge
proof systems. In 30th USENIX Security Symposium (USENIX Security 21).

[41] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments.
In EUROCRYPT 2016, Part II (LNCS), Marc Fischlin and Jean-Sébastien Coron
(Eds.), Vol. 9666. Springer, Heidelberg, 305–326. https://doi.org/10.1007/
978-3-662-49896-5_11

[42] Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou,
Mahmoud F. Sayed, Elaine Shi, and Nikos Triandopoulos. 2014. TRUESET: Faster
Verifiable Set Computations. In USENIX Security 2014, Kevin Fu and Jaeyeon Jung
(Eds.). USENIX Association, 765–780.

[43] Russell W. F. Lai and Giulio Malavolta. 2019. Subvector Commitments with
Application to Succinct Arguments. In CRYPTO 2019, Part I (LNCS), Alexandra
Boldyreva and Daniele Micciancio (Eds.), Vol. 11692. Springer, Heidelberg, 530–
560. https://doi.org/10.1007/978-3-030-26948-7_19

[44] Jiangtao Li, Ninghui Li, and Rui Xue. 2007. Universal Accumulators with
Efficient Nonmembership Proofs. In ACNS 07 (LNCS), Jonathan Katz and Moti
Yung (Eds.), Vol. 4521. Springer, Heidelberg, 253–269. https://doi.org/10.1007/
978-3-540-72738-5_17

[45] Ueli M. Maurer. 2005. Abstract Models of Computation in Cryptography (Invited
Paper). In 10th IMA International Conference on Cryptography and Coding (LNCS),
Nigel P. Smart (Ed.), Vol. 3796. Springer, Heidelberg, 1–12.

[46] Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional Encryption
Function. In CRYPTO’87 (LNCS), Carl Pomerance (Ed.), Vol. 293. Springer,
Heidelberg, 369–378. https://doi.org/10.1007/3-540-48184-2_32

[47] Silvio Micali. 1994. CS Proofs (Extended Abstracts). In 35th FOCS. IEEE Computer
Society Press, 436–453. https://doi.org/10.1109/SFCS.1994.365746

[48] Lan Nguyen. 2005. Accumulators from Bilinear Pairings and Applications. In CT-
RSA 2005 (LNCS), Alfred Menezes (Ed.), Vol. 3376. Springer, Heidelberg, 275–292.
https://doi.org/10.1007/978-3-540-30574-3_19

[49] Alex Ozdemir, Riad S. Wahby, Barry Whitehat, and Dan Boneh. 2020. Scaling
Verifiable Computation Using Efficient Set Accumulators. In USENIX Security
2020, Srdjan Capkun and Franziska Roesner (Eds.). USENIX Association, 2075–
2092.

[50] Charalampos Papamanthou, Elaine Shi, Roberto Tamassia, and Ke Yi. 2013.
Streaming Authenticated Data Structures. In EUROCRYPT 2013 (LNCS), Thomas
Johansson and Phong Q. Nguyen (Eds.), Vol. 7881. Springer, Heidelberg, 353–370.
https://doi.org/10.1007/978-3-642-38348-9_22

[51] Stephen Pohlig andMartin Hellman. 1978. An improved algorithm for computing
logarithms over GF (p) and its cryptographic significance (corresp.). IEEE
Transactions on information Theory 24, 1 (1978), 106–110.

[52] John M Pollard. 1978. Monte Carlo methods for index computation mod p.
Mathematics of computation 32, 143 (1978), 918–924.

[53] Tomas Sander and Amnon Ta-Shma. 1999. Auditable, Anonymous Electronic
Cash. In CRYPTO’99 (LNCS), Michael J. Wiener (Ed.), Vol. 1666. Springer,
Heidelberg, 555–572. https://doi.org/10.1007/3-540-48405-1_35

[54] Adi Shamir. 1983. On the generation of cryptographically strong pseudorandom
sequences. ACM Transactions on Computer Systems (TOCS) 1, 1 (1983), 38–44.

[55] Victor Shoup. 1997. Lower Bounds for Discrete Logarithms and Related Problems.
In EUROCRYPT’97 (LNCS), Walter Fumy (Ed.), Vol. 1233. Springer, Heidelberg,
256–266. https://doi.org/10.1007/3-540-69053-0_18

[56] Roberto Tamassia. 2003. Authenticated Data Structures. In ESA.
[57] Björn Terelius and DouglasWikström. 2012. Efficiency Limitations of S-Protocols

for Group Homomorphisms Revisited. In SCN 12 (LNCS), Ivan Visconti and
Roberto De Prisco (Eds.), Vol. 7485. Springer, Heidelberg, 461–476. https://doi.
org/10.1007/978-3-642-32928-9_26

[58] Peter Todd. 2016. Making UTXO Set Growth Irrelevant With Low-
Latency Delayed TXO Commitments. https://petertodd.org/2016/
delayed-txo-commitments. (2016).

[59] Peter Todd. 2016. Making UTXO Set Growth Irrelevant With Low-
Latency Delayed TXO Commitments. https://petertodd.org/2016/
delayed-txo-commitments. (2016).

[60] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist,
and Dmitry Khovratovich. 2020. Aggregatable Subvector Commitments for
Stateless Cryptocurrencies. In SCN 20 (LNCS), Clemente Galdi and Vladimir
Kolesnikov (Eds.), Vol. 12238. Springer, Heidelberg, 45–64. https://doi.org/10.
1007/978-3-030-57990-6_3

[61] V.A. 2022. Hyperledger Indy. https://www.hyperledger.org/use/
hyperledger-indy. (2022).

[62] V.A. 2022. Iden3. https://iden3.io. (2022).
[63] V.A. 2022. jsnark. https://github.com/akosba/jsnark. (2022).
[64] V.A. 2022. libsnark. https://github.com/scipr-lab/libsnark. (2022).
[65] V.A. 2022. Sovrin. https://sovrin.org. (2022).
[66] V.A. 2022. Zcash. https://z.cash. (2022).
[67] Michael Walfish and Andrew J. Blumberg. 2015. Verifying Computations without

Reexecuting Them. Commun. ACM 58, 2 (jan 2015), 74–84. https://doi.org/10.
1145/2641562

[68] Benjamin Wesolowski. 2019. Efficient Verifiable Delay Functions. In
EUROCRYPT 2019, Part III (LNCS), Yuval Ishai and Vincent Rijmen
(Eds.), Vol. 11478. Springer, Heidelberg, 379–407. https://doi.org/10.1007/
978-3-030-17659-4_13

[69] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. 2017. vSQL: Verifying Arbitrary SQL Queries over
Dynamic Outsourced Databases. In 2017 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 863–880. https://doi.org/10.1109/SP.2017.43

A MORE ON THE GENERATION AND

MAINTENANCE OF ACCUMULATOR

WITNESSES

The setting. When evaluating our proof system for batchmembership
we assume that the prover already has access to precomputed
witnesses of its singletons of elements (fig. 5); we do account for
witness generation in our MultiSwap benchmark (section 6.3).

There are different scenarios where it is plausible that users hold
precomputed witnesses for their set elements of interest. These

15

https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1007/BFb0052255
https://doi.org/10.1145/509907.509980
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-642-36362-7_5
https://ia.cr/2018/968
https://ia.cr/2018/968
https://eprint.iacr.org/2018/968
https://doi.org/10.1007/3-540-45539-6_7
https://doi.org/10.1007/3-540-45539-6_7
https://doi.org/10.1109/SP.2015.23
https://doi.org/10.1007/3-540-46035-7_17
https://doi.org/10.1007/3-540-46035-7_17
https://ethresear.ch/t/accumulators-scalability-of-utxo-blockchains-and-data-availability/176
https://ethresear.ch/t/accumulators-scalability-of-utxo-blockchains-and-data-availability/176
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/2976749.2978368
https://doi.org/10.1145/3372297.3417244
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-540-72738-5_17
https://doi.org/10.1007/978-3-540-72738-5_17
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/3-540-48405-1_35
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-642-32928-9_26
https://doi.org/10.1007/978-3-642-32928-9_26
https://petertodd.org/2016/delayed-txo-commitments
https://petertodd.org/2016/delayed-txo-commitments
https://petertodd.org/2016/delayed-txo-commitments
https://petertodd.org/2016/delayed-txo-commitments
https://doi.org/10.1007/978-3-030-57990-6_3
https://doi.org/10.1007/978-3-030-57990-6_3
https://www.hyperledger.org/use/hyperledger-indy
https://www.hyperledger.org/use/hyperledger-indy
https://iden3.io
https://github.com/akosba/jsnark
https://github.com/scipr-lab/libsnark
https://sovrin.org
https://z.cash
https://doi.org/10.1145/2641562
https://doi.org/10.1145/2641562
https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1109/SP.2017.43

scenarios include for example UTXO-like settings and whitelists
(where the elements represent respectively an unspent transaction
and an identity).

Aggregating witnesses for singletons. Consider a party holding
a “set of interest”𝑈 (the subset of accumulated elements in which
it has a stake to prove set membership). As mentioned above we
assume that each party holds an accumulator witness for each of
the elements in𝑈 . When requested to batch prove membership for
𝑢1, . . . , 𝑢𝑚 ∈ 𝑈 , the party can obtain a single witness for the whole
batch (like the one assumed as input in fig. 3) without recomputing
it from scratch. In RSA accumulators, we can in fact apply a process
of aggregation among the witnesses. Aggregation uses Shamir’s
trick [54]20 and proceeds in a tree-like fashion. For a batch of size𝑚
it consists of roughly𝑚 GCD computations, and a similar number
of products and RSA exponentiations with integer inputs of varying
size. As we observe in remark 5, aggregation does not significantly
impact overall proving time.

Witness generation andmaintenance. Herewe discuss howproving
parties can obtain and maintain witnesses for elements in their set
of interest21.

A straightforward way for a user to obtain a witness to their
elements of interest is to precompute it from scratch. For a single
witness, this involves performing roughly 𝑁 exponentiations with
exponents of 256 bits in an RSA group (where 𝑁 is the whole set
size). There are efficient ways to reuse work and distribute it in
parallel for subsets of elements. The naive approach to generate
a witness requires less than a minute on an ordinary laptop for
a set of size 216, but it can be costly for larger sets. In order to
mitigate this, there exist more sophisticated highly-parallelizable
approaches to generate witnesses. For example, those described
in Section 4.4 in [49]. As an alternative this can be delegated to a
service provider as described for updates in [15] (notice that the
witnesses from this service providers does not need to be trusted
and can be efficiently verified through the standard accumulator
verification algorithm).

Does a party need to recompute their witness from scratch if the
accumulator (and its underlying set) changes over time? Fortunately
not. A party observing updates to the accumulators can update their
witnesses cheaply. For example, appending an element 𝑥 to the set
requires updating the witness by simply exponentiating the old
witness to 𝑥 . Other types of updates (e.g., removal of an element)
can be handled through Shamir’s trick22

If a party cannot observe all updates or if the update process
is too demanding, this can be delegate to a (non trusted) service
provider as described in [15].

A note on storage: if storing all witnesses for singletons of
interests is too demanding, this can be mitigated through some
of the disaggregation & aggregation techniques described in [23]

20See page 12 in [24].
21Here we provide an overview of techniques that can be useful to make these issues
practical. Which approach is best is something highly sensitive to idiosyncratic aspects
of the domain and a full analysis is out of the scope of this paper.
22 These operations can be concretely inexpensive for meaningful sizes of the subset
of interest. For example, we measure the time required to update 64 witnesses after an
element is removed from the set to be around 0.3𝑠 on an ordinary laptop. Performing
a similar update in the event of an element being added to the set is even faster.

and storing only witnesses for “chunks” of elements of interest23.
A similar technique can also be useful to reduce the complexity of
handling updates.

B DEFERRED SECURITY PROOFS

B.1 Security of the construction of section 4

In fig. 9 we describe an interactive version of our construction.

Theorem B.1. Let cpΠmodarithm, cpΠbound be secure CP-SNARKs
then the construction in fig. 9 for the relation �̃�mem

ck is a secure CP-
NIZK: succinct, knowledge-sound under the adaptive root assumption
and zero-knowledge under the DDH-II assumption.

Proof. Succinctness: Comes from inspection and from the assumption
that cpΠmodarithm and cpΠbound are succinct.
(2, 𝑀)-Special Soundness: assume that we have a tree of (2, 𝑀)

successful transcripts, for𝑀 = poly(_) >
⌈
∥𝑝∗ ∥+∥𝑢∗ ∥+_

2_

⌉
, i.e.{(

�̂�®𝑢 , 𝑐𝑠,𝑟 , 𝑅
)
, ℎ, ℓ (𝑗) ,

(
𝑄 (𝑖) , res (𝑗)

)
, 𝜋
(𝑗)
2 , 𝜋

(𝑗)
3

}𝑀
𝑗=1

and {(
�̂�®𝑢 , 𝑐𝑠,𝑟 , 𝑅

)
, ℎ̃, ℓ̃ ′(𝑗) ,

(
�̃� (𝑖) , ˜res (𝑗)

)
, �̃�
(𝑗)
2 , �̃�

(𝑗)
3

}𝑀
𝑗=1

We construct an extractor Ext that works as follows.
Ext uses the extractor of cpΠmodarithm to extract ®𝑢 (𝑗) , 𝑠 (𝑗) , 𝑟 (𝑗) ,

openings of 𝑐 ®𝑢 and 𝑐𝑠,𝑟 respectively, such that res (𝑗) = 𝑠 (𝑗)ℎ
∏

𝑖 𝑢
(𝑗)
𝑖
+

𝑟 (𝑗) mod ℓ (𝑗) . From the binding of the commitments we get that
®𝑢 (𝑗) = ®𝑢 (𝑗 ′) , 𝑠 (𝑗) = 𝑠 (𝑗

′) , 𝑟 (𝑗) = 𝑟 (𝑗
′) for each transcript, since they

refer to the same commitments. So we denote the extracted values
as ®𝑢, 𝑠, 𝑟 and get:

𝑠ℎ
∏
𝑖

𝑢𝑖 + 𝑟 = res (𝑗) mod ℓ (𝑗) , for each 𝑗 ∈ [𝑀]

Using the Chinese Remainder Theorem we get a 𝑘 such that

𝑘 = 𝑠ℎ
∏
𝑖

𝑢𝑖 + 𝑟 mod ©«
𝑀∏
𝑗=1

ℓ (𝑗)ª®¬
𝑀 can be set sufficiently large (but still polynomial-sized) so that∏𝑀

𝑗=1 ℓ
(𝑗) > 𝑠ℎ

∏
𝑖 𝑢𝑖 +𝑟 and thus 𝑘 = 𝑠ℎ

∏
𝑖 𝑢𝑖 +𝑟 over the integers.

Furthermore, 𝑘 = res (𝑗) mod ℓ (𝑗) for each 𝑗 ∈ [𝑀].
As shown in [15] the fact that for any accepting proof, (ℓ,𝑄, res),

it holds that 𝑄ℓ�̂� res
®𝑢 = accℎ𝑅 and 𝑘 = res mod ℓ (the latter in

our case is ensured by the SNARK) then under the adaptive root
assumption we get:

�̂� 𝑘
®𝑢 = ˆaccℎ𝑅

(we refer to [15] appendix C.2 for the formal reduction).
Then the extractor does the same for the second set of transcripts

to get �̃�, ®̃𝑢, 𝑠, 𝑟 such that �̂� �̃�

®̃𝑢
= ˆaccℎ̃𝑅 and �̃� = 𝑠ℎ̃

∏
𝑖 �̃�𝑖 + 𝑟 over the

integers. Now since ®̃𝑢, 𝑠, 𝑟 refer to the same commitment as ®𝑢, 𝑠, 𝑟
(recall that the commitment were sent a priori) from the binding
of the pedersen commitment we get that ®̃𝑢 = ®𝑢, 𝑠 = 𝑠, 𝑟 = 𝑟 , which
gives us that �̃� = 𝑠ℎ̃

∏
𝑖 𝑢𝑖 + 𝑟 .

23The concrete costs for aggregation and disaggregation correspond to the cost of
updating witnesses for respectively deletions and additions of elements since they use
the same techniques. See also numbers reported in footnote 22.

16

From the abovewe have:�̂� 𝑘
®𝑢 = ˆaccℎ𝑅 and�̂� �̃�

®̃𝑢
= ˆaccℎ̃𝑅. Combining

the two we get that

�̂� 𝑘−�̃�
®𝑢 = ˆaccℎ−ℎ̃ ⇔

�̂�
𝑠ℎ

∏
𝑖 𝑢𝑖+𝑟−𝑠ℎ̃

∏
𝑖 𝑢𝑖−𝑟

®𝑢 = ˆaccℎ−ℎ̃ ⇔

�̂�
(𝑠∏𝑖 𝑢𝑖) (ℎ−ℎ̃)
®𝑢 = ˆaccℎ−ℎ̃

From the low order assumption (which is implied by the adaptive
root assumption) we get �̂� 𝑠

∏
𝑖 𝑢𝑖

®𝑢 = ˆacc.
Finally, the extractor runs once the extractor of cpΠbound to get

that 𝑢𝑖 > 2_.

Setup
(
1_, ck, ppAcc

)
:

crs2 ← cpΠarithm .Setup(1_, ck, �̃�arithm
ck)

crs3 ← cpΠbound .Setup(1_, ck, 𝑅bound)

return crs := (ck, ppAcc, crs2, crs3)

𝑃 (crs, ˆacc, 𝑐 ®𝑢 ;𝑊®𝑢 , ®𝑢,𝑜 ®𝑢 , 𝑆) 𝑉 (crs, ˆacc, 𝑐 ®𝑢)

𝜋3 ← cpΠbound .Prv(crs3, 𝑐 ®𝑢 , 𝑝2_ ; ®𝑢,𝑜 ®𝑢)

Sample 𝑏1, . . . , 𝑏2_ ←$ {0, 1}

let 𝑠 :=
∏

𝑝𝑖 ∈P2_

𝑝
𝑏𝑖
𝑖
, 𝑠 :=

∏
𝑝𝑖 ∈P2_

𝑝
1−𝑏𝑖
𝑖

�̂�®𝑢 ←𝑊 𝑠
®𝑢

Sample 𝑟 ←$ {0, 1}∥𝑝∗ ∥+∥𝑢∗ ∥+_

𝑐𝑠,𝑟 ← Commck (𝑠, 𝑟 ;𝑜𝑠,𝑟)

𝑅 ← �̂� 𝑟
®𝑢

𝜋3,�̂�®𝑢 , 𝑐𝑠,𝑟 , 𝑅

ℎ ←$ {0, 1}_

ℎ

𝑘 ← 𝑟 + (𝑠
∏
𝑖

𝑢𝑖)ℎ

ℓ ←$P22_

ℓ

𝑄 ← 𝐴

⌊
𝑘
ℓ

⌋
, res← 𝑘 mod ℓ

𝜋2 ← cpΠmodarithm .Prv(crs2, 𝑐 ®𝑢 , 𝑐𝑠,𝑟 , ℎ, ℓ, res)

(𝑄, res), 𝜋2

Accept if all are true:

•𝑄 ∈ G? and res ∈ [0, ℓ − 1]

•𝑄ℓ�̂� res
®𝑢 = ˆ𝑎𝑐𝑐ℎ𝑅 and

• cpΠmodarithm .Vfy(crs2, 𝑐 ®𝑢 , 𝑐𝑠,𝑟 , ℎ, ℓ, res, 𝜋2) = 1

• cpΠbound .Vfy(crsbound, 𝑐 ®𝑢 , 𝑝2_, 𝜋3) = 1

Figure 9: Interactive version of our protocol for batch membership.

17

To conclude the proof, (2, 𝑀)-special soundness implies knowledge-
soundness [3].

Zero-Knowledge: It comes directly from the standard rewinding-
simulation Σ-method and the use of the simulators of cpΠmodarithm

and cpΠbound. □

B.2 Security of the construction of section 5

We give a formal statement of the security of the scheme and then
give an overview of the security proof. The proof can be seen as a
simplification of the proof of theorem B.1.

Theorem B.2. Let 𝐻prime a hash-to-prime function modeled as
a random oracle, 𝐻DI be a division-intractable hash function and
cpΠmodarithm, cpΠ𝐻DI be secure CP-SNARKs. The construction in
fig. 4 for the relation �̃�insck is a succinct and knowledge-sound, under
the adaptive root assumption, CP-SNARK.

Succinctness: is inherited from the succinctness of cpΠmodarithm,
cpΠ𝐻DI and PoKE.

Knowledge-Soundness intuition: the extractor proceeds similarly
to a PoKE extractor, it rewinds the prover until it gets𝑀 = poly(_)
proofs {𝑄 (𝑖) , res (𝑖) , 𝜋 (𝑖)2 }𝑖∈[𝑀] and ℓ

(𝑖) such that each proof verifies,
𝑄 (𝑖)ℓ

(𝑖)
accres

(𝑖)
= acc′. For each proof it runs the corresponding

extractor cpΠmodarithm and gets a (common) ®𝑢 such that𝑢∗ = res (𝑖)

mod ℓ (𝑖) for each 𝑖 ∈ [𝑀]. As argued in the proof of theorem B.1
for a sufficiently large𝑀 > ∥𝑢∗∥/∥ℓ ∥ we get that acc𝑢

∗
= acc′. This

by using the CRT and a reduction to the adaptive root assumption
from [15].

To conclude the extraction we additionally need a single 𝜋3 and
run the extractor of cpΠ𝐻DI to get that 𝑢𝑖 = 𝐻DI (𝑥𝑖).

For the non-interactive version, security come directly from
the (tight) security of the Fiat-Shamir transformation for constant-
round protocols [4], in the random oracle model.

C EXTENDING OUR CP-SNARK FOR BATCH

MEMBERSHIP

C.1 Dealing with sets of arbitrary elements

The scheme described in the section 4works for sets whose elements
are suitably large prime numbers. Working with primes can be a
limitation in practical applications. Here we describe how to get rid
of this limitation and can support sets of arbitrary elements, such
as binary strings. The idea is common in previous work and is to
use a suitable collision-resistant hash function that maps arbitrary
strings to prime numbers. What is a bit more complicated in our
setting is that in order to prove membership of an arbitrary element,
we need to prove the mapping to a prime.

Thanks to the commit-and-prove modularity of our protocol
we can do this extension easily. This is the same idea used in [12].
Say that the prover holds a commitment 𝑐 to a vector of binary
strings (𝑢1, . . . , 𝑢𝑚). To prove the mapping the prover creates a
commitment 𝑐 to the primes (𝑢1, . . . , 𝑢𝑚) such that𝑢𝑖 = 𝐻prime (𝑢𝑖),
runs our CP-SNARK with 𝑐 and adds a proof 𝜋𝐻prime showing that
𝑐, 𝑐 commit to elements such that ∀𝑖 : 𝑢𝑖 = 𝐻prime (𝑢𝑖). The latter
proof can be generated via a CP-SNARK for this hashing relation.
In particular, although a computation of 𝐻prime involves several
computations of a collision resistant hash function until reaching

a prime, for the sake of proving one can use nondeterminism and
prove a single hash evaluation (see [12] for details).

C.2 Succinct batch proofs of non-membership

We observe that by using a CP-SNARK for batch membership it is
also possible to prove batch non-membership, if one accumulates
sets using an interval-based encoding. The idea is that the elements
of the set 𝑆 = {𝑥𝑖 }𝑖 are ordered, 𝑥1 < 𝑥2 < · · · < 𝑥𝑛 , and the
accumulator actually contains hashes of consecutive pairs 𝑢𝑖 =

𝐻 (𝑥𝑖−1, 𝑥𝑖). This way, proving that 𝑥 ∉ 𝑆 translates into proving
that there is an element 𝑢 𝑗 = 𝐻 (𝑥 𝑗−1, 𝑥 𝑗) in the accumulator such
that 𝑥 𝑗−1 < 𝑥 < 𝑥 𝑗 . The idea of interval-based non-membership
proofs was introduced by Buldas et al. in the context of Merkle trees
[19]. The drawback of thismethod is that it needs some coordination
in order to add the data to the accumulator in this structured form
and has an additional cost to the prover to prove the range. As
an alternative, we can also extend our technique of this section to
generate succinct zero-knowledge batch membership proofs for
generic RSA accumulators. The idea is to build a randomization
method for the batch non-membership witnesses of [15, 44] and
add a similar combination of a sigma protocol for its verification
together with a PoKE proof. We leave the formalization of this
extension to the full version of the paper.

D DECENTRALIZED IDENTITY (DID)

IMPLEMENTATION

Wenowgive further details regarding our application toDecentralized
Identity. While we focus and implement the specific scenario of
cars insurance, we remark that the same approach can be applicable
in other DID scenarios, such as financial instruments subscription
and loans.

D.1 Scenario overview

We assume a car insurance scenario to show an example of how
our approach can be used in a DID scenario. In many cases, a
person who wants to take out car insurance has to submit her
sensitive information such as health record, income, or diploma
since the insurance company computes a premium through those
information. We propose a privacy-preserving solution based on
zero-knowledge and that does not require sending any data in the
clear. In the remainder, we will denote by “attribute” the bits of
information that can be useful for computing the premium and
by “holder” the customer of the insurance (the one interested in
preserving their information).

At the high level we store the attributes in a public accumulators.
For privacy, we do not let the attributes in plain be the elements of
the accumulators. Instead, the accumulated set consists of hiding
commitments to the attributes (this commitment can be realized
as a randomized hashing-to-prime). The idea is that the holder
can compute her premium herself without revealing her attributes.
The accumulator can be thought of as a portfolio of the (private)
attributes of the holder. It gets updated with new credentials by
authorized issuers and maintained publicly (through a consensus
or a smart contract). When adding a new credential, the issuer
broadcasts a signed transaction consisting of a hiding commitment

18

to a valid attribute of the holder. The holder is given access to the
commitment together with its opening.

Whenever necessary, the holder can compute the premium with
the attributes using a public formula and show in zero-knowledge
that the premium is computed correctly (we provide an example in
appendix D.2. To do that, the holder does roughly the following: she
generates a fresh Pedersen commitment cmbatch to the attributes of
interest, then it produces a batch membership proof showing that
1) the freshly committed cmbatch actually contains members of the
accumulator, 2) the computed premium is correctly computed with
the attributes. At last, the verifier validates the batch membership
proof with the accumulator in the network. In the description
above we ignored for simplicity the fact that the elements in the
accumulators are actually commitments themselves. The Pedersen
commitment cmbatch should then actually be a commitment to
commitments. The proof system should then show, besidesmembership,
that the opening of these commitments (the elements in the set)
satisfy the required premium relation.We stress that our implementation
and evaluation do account for this.

D.2 Formula for computing insurance

premium

We assume that 16 attributes are required to compute a premium of
a single holder, and thus the holder has 16 commitments to these
credentials, one for each attribute. In our benchmark we consider
both 16 and 64 as the batch size. The former corresponds to the
case of a single holder making a proof for her own premium; the
latter corresponds to the case of a user generating a proof for 4
insurance premiums, a use case which plausibly applies to a family’s
or company’s group subscription. The 16 attributes (𝑎𝑖) and their
weight (𝑤𝑖) to compute the premium are as follows. Our attributes
are variations from real world settings [2].

Attributes:

• 𝑎0 : Driving history(date of license acquisition)
• 𝑎1 : Married or single
• 𝑎2 : Having a child or not
• 𝑎3 : Completing a safe driving education
• 𝑎4 : Driver’s age
• 𝑎5 : Driver’s diploma(engineer)
• 𝑎6 : Residential area
• 𝑎7 : Income
• 𝑎8 : Credit score
• 𝑎9 : Driving habit(average driving hour per day)
• 𝑎10 : 1-year recent accident record
• 𝑎11 : 1 ∼ 5 year recent accident record
• 𝑎12 : penalty point record
• 𝑎13 : Specialized job
• 𝑎14 : property
• 𝑎15 : Health record(number of family history like acute

myocardial infraction).
Weights (they are such that [𝑤𝑖]15

𝑖=0 = 0):
• 𝑤0 : if 𝑎0 < 3 , then 𝑤0 = 600, else if 3 ≤ 𝑎0 < 10, then

𝑤0 = 300, else if 𝑎0 ≥ 10, then𝑤0 = −200.
• 𝑤1 : if 𝑎1 = 1,(holder is married), then𝑤1 = −120.
• 𝑤2 : if 𝑎2 = 1, (holder has child), then𝑤2 = −120.

• 𝑤3 : if 𝑎3 = 1, (holder completed training), then𝑤3 = −200
• 𝑤4 : if 20 ≤ 𝑎4 < 30 or 50 ≤ 𝑎4 < 60, then𝑤4 = 0.02, else if

30 ≤ 𝑎4 < 40, then𝑤4 = 0, else if 𝑎4 ≥ 60, then𝑤4 = 0.05.
• 𝑤5 : if 𝑎5 = 1, (holder has engineer diploma) then 𝑤5 =

−150.
• 𝑤6 : if 𝑎6 = 0, (holder resides where the traffic accident

rate is low), then𝑤6 = −200, else if 𝑎6 = 1 (holder resides
where the traffic accident rate is high), then𝑤6 = 200.
• 𝑤7 : if 𝑎7 < 35000, then 𝑤7 = 350, else if 35000 ≤ 𝑎7 <

65000, then 𝑤7 = 200, else if 65000 ≤ 𝑎7 < 100000, then
𝑤7 = 100.
• 𝑤8 : if 𝑎8 = 1 (credit score is medium), then𝑤8 = 100, else

if 𝑎8 = 2 (credit score is low), then𝑤8 = 150.
• 𝑤9 : if 𝑎9 < 2, then𝑤9 = −200, 𝑎9 > 4, then𝑤9 = 150.
• 𝑤10 : if 𝑎10 = 0,𝑤10 = −150, else𝑤10 = 𝑎10 ∗ 0.01.
• 𝑤11 :𝑤11 = 𝑎11 ∗ 100.
• 𝑤12 :𝑤12 = 𝑎12 ∗ 10.
• 𝑤13 : if 𝑎13 = 1, then𝑤13 = −200.
• 𝑤14 : if 𝑎14 < 50000, then 𝑤14 = 500, if 50000 ≤ 𝑎14 <

100000, then 𝑤14 = 300, if 100000 ≤ 𝑎14 < 300000, then
𝑤14 = 200, and if 300000 ≤ 𝑎14 < 500000, then𝑤14 = 100.
• 𝑤15 :𝑤15 = 𝑎15 ∗ 500.

Formula to compute premium (Basic fee=1800 USD):
If𝑤10 = −150, then:

𝑝𝑟𝑒𝑚𝑖𝑢𝑚 = (1800 + Σ𝑖∈[0,16]−{4,10}𝑤𝑖) ∗ (1 +𝑤4 +𝑤10)
otherwise:

𝑝𝑟𝑒𝑚𝑖𝑢𝑚 = (1800 + Σ𝑖∈[0,16]−{4}𝑤𝑖) ∗ (1 +𝑤4).
Example Assume that the holder has the following attributes:
[𝑎0 = 20], [𝑎1 = 1], [𝑎2 = 1], [𝑎3 = 1], [𝑎4 = 49], [𝑎5 = 1], [𝑎6 = 0],
[𝑎7 = 70000], [𝑎8 = 0], [𝑎9 = 3], [𝑎10 = 1], [𝑎11 = 1], [𝑎12 = 0],

[𝑎13 = 0], [𝑎14 = 300000], [𝑎15 = 0].
Then, the premium must be 1121.1(USD) and the prover shows that
the formulas above lead to this premium.

19

	Abstract
	1 Introduction
	1.1 Our work

	2 Technical Overview
	3 Background
	3.1 Commitments
	3.2 (Commit-and-Prove) SNARKs
	3.3 Accumulators to Multisets
	3.4 Relations for batch set-membership and set-insertion
	3.5 Building blocks

	4 harisa: Zero-Knowledge CP-SNARK for Batch Set-Membership
	4.1 RSA Accumulators with hiding witnesses
	4.2 Building Blocks
	4.3 Our Construction for Batched Set Membership (harisa)

	5 b-ins-arisa: CP-SNARK for set-insertion
	5.1 Our construction for insck (b-ins-arisa)
	5.2 Multiswaps
	5.3 Comparison with USENIX:OWWB20

	6 Evaluation
	6.1 Instantiations and Implementation
	6.2 Benchmarks for Batch Membership
	6.3 MultiSwap Benchmark

	7 Related Work
	Acknowledgments
	References
	A More on the Generation and Maintenance of Accumulator Witnesses
	B Deferred Security proofs
	B.1 Security of the construction of sec:set-mem
	B.2 Security of the construction of sec:set-ins

	C Extending our CP-SNARK for batch membership
	C.1 Dealing with sets of arbitrary elements
	C.2 Succinct batch proofs of non-membership

	D Decentralized IDentity (DID) implementation
	D.1 Scenario overview
	D.2 Formula for computing insurance premium

